

000
 001
 002
 003
 004
 005
 006
MULTIHAL:
MULTILINGUAL DATASET FOR KNOWLEDGE-GRAPH
GROUNDED EVALUATION OF LLM HALLUCINATIONS

007
Anonymous authors
 008
 Paper under double-blind review
 009
 010
 011

012
ABSTRACT
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053

Large Language Models (LLMs) have inherent limitations of faithfulness and factuality, commonly referred to as hallucinations. Several benchmarks have been developed that provide a test bed for factuality evaluation within the context of English-centric datasets, while relying on supplementary informative context like web links or text passages but ignoring the available structured factual resources. To this end, Knowledge Graphs (KGs) have been identified as a useful aid for hallucination mitigation, as they provide a structured way to represent the facts about entities and their relations with minimal linguistic overhead. We bridge the lack of KG paths and multilinguality for factual language modeling within the existing hallucination evaluation benchmarks and propose a KG-based multilingual, multihop benchmark called **MultiHal** framed for generative text evaluation. As part of our data collection pipeline, we mined 140k KG-paths from open-domain KGs, from which we pruned noisy KG-paths, curating a high-quality subset of 25.9k. Our baseline evaluation shows an absolute scale improvement by approximately 0.12 to 0.36 points for the semantic similarity score, 0.16 to 0.36 for NLI entailment and 0.29 to 0.42 for hallucination detection in KG-RAG over vanilla QA across multiple languages and multiple models, demonstrating the potential of KG integration. We anticipate MultiHal will foster future research towards several graph-based hallucination mitigation and fact-checking tasks.

Code: <https://github.com/ernlavr/multihal>

Data: <https://huggingface.co/datasets/ernlavr/multihal>

1 INTRODUCTION

Factual inconsistencies in LLM outputs, commonly referred to as hallucinations, are often a bottleneck for production-grade deployment of LLM systems (Huang et al., 2025a). Although hallucinations may be beneficial for tasks involving creativity (Jiang et al., 2024) or even drug discovery (Yuan & Färber, 2025), they become a liability for other tasks that require factually consistent outputs, for example, information retrieval, summarization and question answering (Lavrinovics et al., 2025). Additionally, Huang et al. (2025a); Augenstein et al. (2024) suggests that hallucinations impair the trust and usefulness of AI systems, and even pose certain societal risks by enabling the generation of convincing misinformation (Augenstein et al., 2024; Puccetti et al., 2024). Hallucinations can stem from multiple shortcomings in model training, such as reinforcement learning from human feedback (RLHF) (Bai et al., 2022), in cases when human preferences are towards non-factual answers (Zhang et al., 2023), instruction tuning where given instructions exceed a model’s knowledge boundary (Zhang et al., 2023; Huang et al., 2025b), or due to lack of up-to-date knowledge. Furthermore, hallucinations occur with varied levels of frequency and intensity depending on the generated language (Chataigner et al., 2024; Qi et al., 2023). A general trend is observed that, in terms of factual consistency, English outputs are the most stable and overall factual quality decreases with lower resourced languages. This varied degree of factuality across languages only further impairs the usability and inclusiveness of LLMs in different applications.

To this end, Retrieval Augmented Generation (RAG) (Niu et al., 2024; Zhao et al., 2024) is the most widely adopted method for improving factuality, which supplements the input query to an LLM with relevant text passages to improve the factuality of LLM outputs. The main advantage

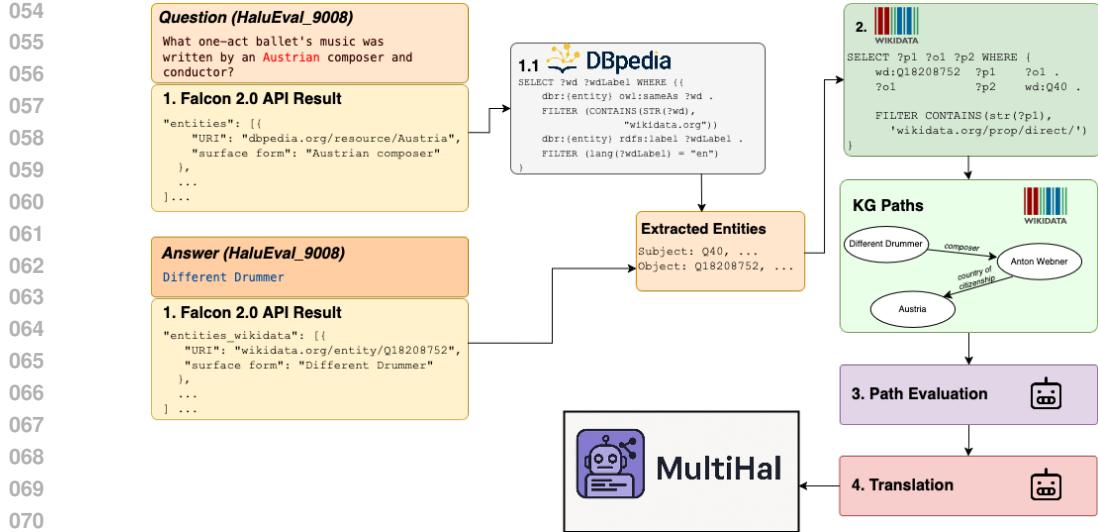


Figure 1: Overview of MultiHal pipeline with example data point *HaluEval_9008*. The pipeline’s sequential steps are enumerated, Step 1.1 is an auxiliary step that maps DBpedia entities to Wikidata.

of RAG is that it does not require retraining the generator LLM, a process that is time-consuming and resource-intensive. However, RAG is still limited by the LLM context window size (Zhao et al., 2024), its sensitivity to input prompt formatting (Mizrahi et al., 2024; Maia Polo et al., 2024), and *Needle in a Haystack* problem (Gao et al., 2025), where important details can be lost in a large pool of text.

KG-RAG (Sanmartín, 2024; Peng et al., 2024) provides several advantages over document-based RAG and has also been suggested as a promising methodology for limiting LLM hallucinations (Pan et al., 2024; 2023), primarily leveraging the structural and factual qualities of the KGs through sets of KG-paths that describe entities and their relationships with minimal linguistic overheads. Furthermore, KG integration within language modeling can alleviate the need for full re-training when utilized during inference (Sun et al., 2023; Luo et al., 2024) or post-generation (Guan et al., 2024). This is valuable for use-cases with rapidly developing knowledge or limited computational resources (Lavrinovics et al., 2025). The structured, factually rich and linguistically minimal qualities of the KGs can potentially decrease the risks of the *Needle-in-a-Haystack* problem and limitations of the context window size. Conditioning LLMs on KGs can also enable optimal output scrutiny and explainability by allowing the outputs to be traced back to explicit sources, making cross-checking less time-consuming than document-based RAG. Furthermore, KGs accompany each entity with rich metadata, but their optimal use in factual language modeling is still an open question.

Although KG-RAG is rapidly gaining attention to improve the factuality in LLM, existing QA benchmark data sets (Zhao et al., 2023; Lin et al., 2021; Li et al., 2023; Wei et al., 2024; Rahman et al., 2024; Mickus et al., 2024; Ravi et al., 2024; Bang et al., 2025) on LLM hallucinations rely primarily on textual data for contextual information and provide no multilingual support. While the questions in these benchmark datasets are compiled from different sources, the answers for FELM (Zhao et al., 2023) HaluEval (Li et al., 2023) Shroom2024 (Mickus et al., 2024) are LLM-generated and evaluated using LLM-as-a-judge or human annotation. For some datasets (Lin et al., 2021; Zhao et al., 2023; Wei et al., 2024), the answers are supported with external contextual information from textual resources such as webpages. Therefore, in this paper, we bridge these critical gaps by presenting a novel multilingual hallucination benchmark *MultiHal*, grounded on factual information from Wikidata (Vrandečić & Krötzsch, 2014) KG. *MultiHal* is based on a total of 7 common benchmarks that lack structured factual and multilingual coverage, namely **Felm** (Zhao et al., 2023), **TruthfulQA**(Lin et al., 2021) (TQA), **HaluEval**(Li et al., 2023), **HaluBench** (Ravi et al., 2024), **SimpleQA** (Wei et al., 2024), **DefAn** (Rahman et al., 2024), **Shroom2024** (Mickus et al., 2024). We propose a data collection framework as illustrated in Figure 1, to aggregate over 31k unique questions from aforementioned datasets, enriching them by mining 140k KG paths and ensuring factual consistency by filtering using LLM-as-a-judge. To enable multilingual hallucination

108 evaluation, our compiled dataset comprising questions, ground-truth answers and KG paths, is
 109 translated to Spanish, French, Italian, Portuguese and German. Therefore, our main contributions are
 110 as follows:

111

- 112 1. We present a multilingual, multi-hop factual language modeling benchmark grounded with
 113 information from KGs which we call **MultiHal**. The code and data are made publicly
 114 available.
- 115 2. We propose a novel unified scalable framework that systematically integrates entity linking
 116 methods, mapping question-answer pairs to a KG, to curate factual information from KGs.
- 117 3. To support a robust multilingual evaluation, we provide high-quality translations of the
 118 question-answer pairs and their corresponding KG paths in 5 different languages.
- 119 4. We evaluate the quality of KG path filtering based on LLM-as-a-judge by analyzing their
 120 correlation with the semantic scores between predicted and gold answers for each question.
- 121 5. Baseline experiments reporting on the semantic similarity of LLM models in vanilla QA
 122 and KG-RAG based settings, demonstrating the effectiveness of incorporating KG paths.

123

124

125

126

127

2 MULTIHAL

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

MultiHal builds upon a set of 7 previously established benchmarks by enriching them with factual information in the form of relevant paths from Wikidata. The choice of these benchmarks is motivated by their relevancy to factuality evaluation, yet they lack support for factual grounding of the answers, leveraging KG and LLM integration models, and multilingual evaluation. We summarize the basic dataset statistics in Table 1, for MultiHal a dataset schema description see Appendix A. These foundational benchmarks are all filtered for generative question-answering based on general/trivia domains. Furthermore, benchmarks such as Shroom2024 (Mickus et al., 2024), FELM (Zhao et al., 2023), HaluEval (Li et al., 2023), HaluBench (Ravi et al., 2024) are primarily oriented towards evaluating hallucination detection models consisting of both *hallucinated* and *non-hallucinated* data, therefore, the data is repurposed by filtering for rows labelled as *non-hallucinated*. We consider that each unique *question-path* pair as a data point. The count difference between data points and unique questions is due to multiple candidate paths per question. The overview of each of the processing stages in our dataset collection pipeline is illustrated in Figure 1. The following sections scope into the methodological details of each of the processing stages of the proposed dataset collection framework. Additionally we report on our computing processing times and CO2 emissions in Appendix K. Our original contributions are released under CC-BY-4.0 license terms.

Dataset	Subset	License	Data points (unique paths)	Unique questions	Domains	Question length (char)	Answer length (char)
HaluEval	QA	MIT	11,398	3420	1	115.46	13.95
HaluBench	Whole	CC- by-nc- except HaluEval† 2.0	626	200	4	105.73	272.72
Defan	Whole‡	MIT	9,969	1975	5	93.48	13.31
SimpleQA	Whole	MIT	3300	1246	10	86.97	11.14
TruthfulQA	Generative	Apache 2.0	193	77	26	76.15	37.11
Shroom2024	Definition	CC- Mod- eling	346	160	1	170.86	73.37
Felm	World knowl- edge	CC- BY- NC- SA- 4.0	73	17	1	95.25	75.26
MultiHal (total)	-	CC- BY- 4.0	25,905	7095	48	106.27	70.98

159

160

161

Table 1: Compositional statistics of MultiHal for a single language. †HaluBench includes HaluEval, hence excluded to avoid data leakage. ‡ Paraphrasings of each question in DefAn are also discarded.

162 2.1 DATASET PREPROCESSING
163

164 Considering that *MultiHal* builds upon established benchmarks, question deduplication is performed
 165 to avoid data leakage across the foundations. Deduplication is based on computing sentence em-
 166 beddings using SentenceTransformers¹ (Reimers & Gurevych, 2019) and computing all possible
 167 pair-wise cosine similarity between the questions. The ground-truth answers and any present sup-
 168 plementary context of the pair of questions with a sentence similarity threshold above **0.99** are
 169 merged. Deduplication was exclusively skipped for *DefAn-QSRanking* subset due to a large amount
 170 of questions consisting of nearby years for corresponding university rankings, which led to a very
 171 high number of false positives among the data points.

172 Additionally, we discard data points where the ground-truth answers are phrases such as "*I have no*
 173 *comment*", which indicate refusal to answer, and we define them as *refusal types*. We compile a list
 174 of refusals consisting of a list of text patterns as described in C. Any rows with output columns that
 175 exactly match, case-insensitively, one of these refusal phrases are filtered out.

177 2.2 KG PATH MINING
178

179 The overall idea is to mine relevant paths from Wikidata (Vrandečić & Krötzsch, 2014). The core
 180 semantic entities are extracted from a given question Q and its ground-truth answer A , and afterward
 181 matched to Wikidata entities. The extracted entities in Q and A are used for querying Wikidata for
 182 existing paths.

183 **Entity Matching from Text to Knowledge Graphs.** The core entity extraction and matching from
 184 raw text is based on Falcon 2.0 (Sakor et al., 2020). Falcon 2.0 is an open-sourced framework which
 185 is also made available via an API² that we call to retrieve subjects from question Q and objects from
 186 answer A . Given a text passage, Falcon 2.0 outputs a ranked list of entities as candidates in Wikidata,
 187 we use the Top-3 candidates. For increased redundancy, we use Falcon 2.0 to additionally return
 188 DBpedia entities, which we then map back to Wikidata using the query in Listing 1 in Appendix
 189 D. Additionally, foundational benchmarks such as *FELM* (Zhao et al., 2023), *SimpleQA* (Wei et al.,
 190 2024), *TruthfulQA* (Lin et al., 2021) contain supplementary context in the form of Wikipedia links
 191 which we map to Wikidata(Vrandečić & Krötzsch, 2014) entities using Wikipedia public API³. The
 192 *Wikipedia-to-Wikidata* retrieval is done by taking the page title embedded in the given Wikipedia link
 193 and replacing it with the *\$WIKIPEDIA_ID* placeholder.

194 The *Top-3 candidates*, *DBpedia-to-Wikidata* and *Wikipedia-to-Wikidata* processing steps are all done
 195 for redundancy purposes to increase the chances of retrieving high quality KG paths.

196 **Knowledge Graph Querying.** We query Wikidata in order to find existing paths between the
 197 extracted *subject-object* entities up to 2 hops. As additional pre-processing steps before querying, we
 198 remove circular *subject-object*, as well as create an inverted set of *subject-object* pairs to accommodate
 199 for the directionality of the Wikidata graph. Depending on the foundational benchmark, we create
 200 custom queries for the different answer types we encounter when merging all our foundational
 201 benchmarks. The answer type is denoted by *answer_type* column in *MultiHal*, see the schema in
 202 Appendix A. In Appendix D, see Listing 2 for Wikidata entity query, Listing 3 for date-literal query
 203 and Listing 4 for numerical-literal query. The answer types, such as numericals and dates, are queried
 204 with value limitations for numerical and time-based properties in the final hop, as shown in Listings
 205 4 and 3 to improve query speed. See Appendix E Listing 6 for a set of time-based properties and
 206 Listing 7 for numerical properties. For querying, we use the public Wikidata endpoint⁴, our path
 207 cut-off date is April 2025.

208 For decoding the Wikidata entity labels, we run a separate pass using the query in Appendix D Listing
 209 5. When querying for labels, we discard any statements, entities or objects that cannot be directly
 210 mapped to natural language text labels.

211

212 ¹<https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2>

213 ²<https://labs.tib.eu/falcon/falcon2/>

214 ³[https://en.wikipedia.org/w/api.php?action=query&prop=pageprops&titles=\\$WIKIPEDIA_ID&format=json](https://en.wikipedia.org/w/api.php?action=query&prop=pageprops&titles=$WIKIPEDIA_ID&format=json)

215 ⁴<https://query.wikidata.org/bigdata/namespace/wdq/sparql>

216
217

2.3 KG PATH QUALITY EVALUATION: LLM AS JUDGE

218
219
220
221
222
223
224
225

As a method for filtering out noisy KG paths and identifying high-quality paths, we employ a two-step LLM-as-a-judge methodology (Li et al., 2025; Yu et al., 2024): firstly, for questions with more than 10 candidate paths the top-10 paths selection is done to limit the total count; secondly, scoring each path individually to identify low and high quality paths. For both selection and scoring we use **GPT-4o Mini** similarly to Laskar et al. (2025); Arif et al. (2025). We further motivate the choice of GPT-4o-Mini in Section 4.1. For inference we use OpenRouter API⁵ with sampling temperature **0.1**. The goal of the *selection* is to decrease the overall number of KG paths, resulting in a decrease from **140k** to **25.9k** paths.

226
227
228
229
230
231
232
233
234
235
236
237

Selection Step. We construct a prompt for selecting the 10 most relevant paths with respect to the question-answer, and available optional answer pairs. Selection is intended to be done without any particular ordering, see Listing 8 in Appendix F. The set of paths for each question is processed in two passes, and in both scenarios, the order of the paths is shuffled to avoid any ordering biases (Li et al., 2025). From the two passes, we consider only the overlapping paths from the two candidate sets as the final collection of paths. During the selection phase, LLM-generated outputs are validated by checking for exact matches against the set of paths corresponding to the question. Any generated paths that do not have an exact match are discarded to mitigate the risk of syntactic errors or hallucinations introduced by the LLM-as-a-judge as a method of quality control. This process is repeated up to three times or until a total of 10 valid paths are obtained. If, after three attempts, fewer than 10 valid paths are selected, the remaining slots are filled by randomly sampling from the original KG path pool for the corresponding question. The selection step is bypassed for questions that have 10 or fewer candidate paths.

238
239
240
241
242
243
244

Scoring Step. Once a set of candidate paths is established, we construct another prompt for rating their relevance with respect to the given question and answer, and we process each path individually, see Appendix F Listing 9 for the instructions. Scoring is done by determining the *quality score* on a scale of 1-5, where 1 indicates a path which is completely unrelated to the question and answer, and 5 indicates an explicit answer to the question. From our final benchmark we filter out all paths rated 1-3, which we deem as *low-quality* and leave only paths rated 4-5 as *high-quality* ones.

245
246

2.4 MULTILINGUALITY

247
248
249
250
251
252
253
254
255
256
257
258
259
260

For enabling multilinguality for MultiHal, we employ the Nllb-200 3.3bn (Costa-Jussà et al., 2022) model and focus on its five well-performing European languages, namely *German*, *Italian*, *French*, *Portuguese* and *Spanish*. Our generation hyperparameters are specified in Table 2. Empirically, we found these hyperparameters to work the most optimal for our use case. We also noted that by separating the labels with *semicolons* yielded more accurate translations than having KG path labels purely whitespace separated, we attribute this to the improper grammatical structures that occur when label entities are not separated. We observe that Nllb-200’s output translations are generally of high quality, yet Nllb-200’s model does not always correctly output semicolon separation between the entities and predicates with respect to the English source. [For more details for human audits, see Appendix Q.](#)

Batch size	8
Decoding	Beam search
Beam size	5
Length penalty	1.1
Early stopping	True
No repeat ngram	2
Max sequence	1024

Table 2: Overview of Nllb200-3.3bn inference hyperparameters

261
262

3 EXPERIMENTAL SETUP

263
264
265
266
267
268
269

The baseline experiments are set up using a prompt-based knowledge injection method. The prompt \mathcal{P} is formatted as $\mathcal{P} = (\mathcal{K}, \mathcal{Q})$, where \mathcal{K} is knowledge in the form of a KG path and \mathcal{Q} is the question of the data point, see Appendix G Listing 10 for KG-RAG and Listing 11 for vanilla QA for used prompts. We conduct experiments with and without knowledge \mathcal{K} (KG-RAG and vanilla QA respectively) to measure the effectiveness of the factual information contained in the KG paths. We measure the semantic similarity between ground-truths and model predictions using Multilingual-

⁵<https://openrouter.ai/openai/gpt-4o-mini>

270 MiniLM-L12-v2⁶ (Wang et al., 2024), the choice of the sentence embedding model is based on results
 271 in the MMTE benchmark (Enevoldsen et al., 2025), its multilingual capabilities, and comparatively
 272 small parameter count. Semantic similarity is computed by mean-pooling the last hidden states per
 273 token for each sentence, applying L2 normalization and computing the dot-product between the
 274 ground-truth and LLM prediction representations. For experimental conditions, we use Gemini 2.0
 275 Flash, GPT-4o Mini, and Llama 3.3 70bn instruct models. Additionally we triangulate our semantic
 276 similarity results with NLI and hallucination detection. Inspired from Bang et al. (2025) we run
 277 hallucination detection on the **English** subsplit of MultiHal using HHEM-2.1 (Bao et al., 2024),
 278 and run NLI evaluation similar to Sansford et al. (2024); Zhang et al. (2024) based on a DeBERTa
 279 multilingual NLI model⁷ namely due to model’s language coverage and its performance. The NLI
 280 and HHEM-2.1 models expect test pairs as *hypothesis* and *premise*. We form the *premise* as a prompt
 281 containing a question and ground-truth $\mathcal{P} = \{\mathcal{Q}; \mathcal{G}\}$ and *hypothesis* is model response \mathcal{A} .

282 Additionally, we compute the Spearman correlation between the semantic similarity score and the
 283 *quality score* of each KG path, aiming to quantify the reliability of the quality score (see Section 2.3)
 284 determined by LLM-as-a-judge. Our assumption is that these quality scores should positively correlate
 285 with the computed semantic similarity score between the ground truth and the predicted answer in
 286 KG-RAG, i.e., when conditioned on the paths as supplementary information. For running the model
 287 prediction computations, we employ the OpenRouter API service⁸ and perform the generation with
 288 sampling temperature set to 1.

289 4 RESULTS

290 4.1 PRELIMINARY BASELINES

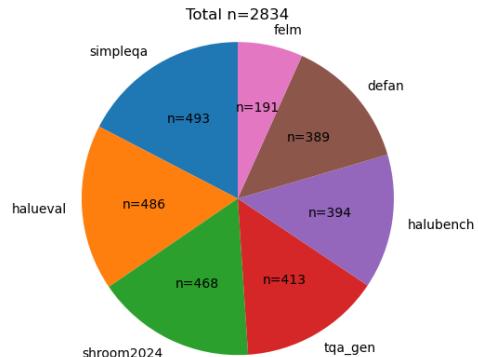
291 Considering that our methodology primarily relies on an LLM-judge for filtering and rating the
 292 quality of KG paths, we conduct a preliminary baseline test for the **English** subset to observe the
 293 performance of LLM judges. We conduct the experiment using a proportionally sampled subset of
 294 MultiHal, see Figure 2 for the data distribution. The goal of this is to gain insights on the expected
 295 quality of the KG paths.

296 For the preliminary test, we compared KG paths
 297 selected and rated by *Gemini 2.0 Flash* and *GPT-4o*
 298 *mini*, which were afterwards tested in a KG-RAG
 299 setting with *Gemini 2.0 Flash* model and computing
 300 the correlation between path ratings and semantic
 301 similarity, our results are summarized in Table 3.

Path Model	Judge	SemScore	Correlation
GPT Flash	4o- Mini	0.513	0.485
Gemini 2.0 Flash		0.529	0.430

312 Table 3: Overview of preliminary baseline re-
 313 sults for KG-RAG QA task with Gemini 2.0
 314 Flash as answer generator. Results are based
 315 on dataset subsplits in Figure 2.

316 From the results in Table 3 we see that paths judged by **GPT 4o-Mini** have a higher correlation with
 317 the semantic similarity. Given that low quality paths (rated 1-3) impair the LLM output quality and
 318 high quality paths (4-5) improve it (see Appendix M), we chose to run the full baseline experiments
 319 with GPT 4o-Mini. For a more in-depth breakdown of GPT 4o-Mini performance per dataset and
 320 domain, please refer to Appendix H. Table 4 showcases false positives and false negatives for GPT



321 Figure 2: Breakdown of the data point count
 322 (n) distribution per foundational benchmark
 323 evaluated as part of the preliminary baseline
 324 experiment.

⁶<https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2>

⁷<https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7>

⁸<https://openrouter.ai/>

324 4o-Mini as well as interannotator agreement with respect to human judgment as ground truth. IAA
 325 score between human and GPT 4o-Mini annotations, including a focus on misclassifications by
 326 GPT-4o which gives an indication of noise presence which is comparable to datasets and can be used
 327 for reproducibility.

329 4.2 BASELINE EXPERIMENTS

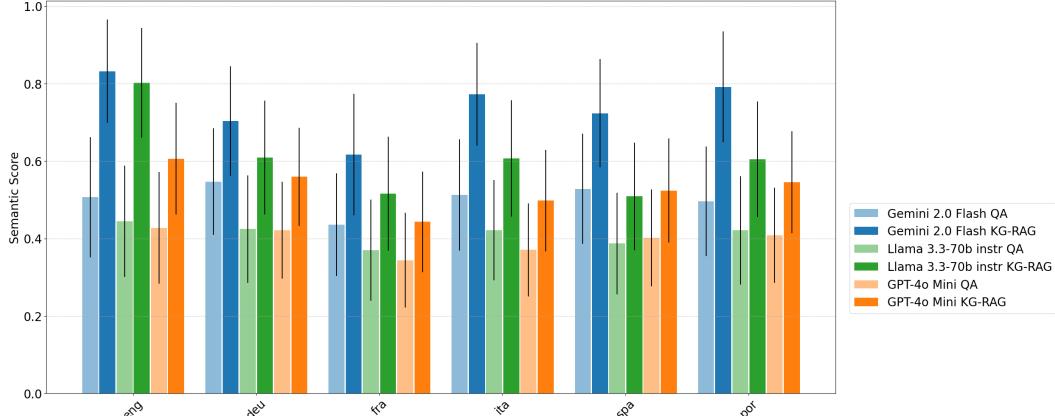
330
 331 We report our baseline experiment results in Figure 3 for semantic similarity, Table 5 for aggregated
 332 NLI scores over languages and Table 6 for hallucination detection on the English subsplit,
 333 see Appendix O for a fine-grained overview of semantic similarity over domains and Appendix
 334 N for NLI results expanded over each language. The results showcase a consistent improvement
 335 of KG-RAG setting over QA for all evaluation metrics, indicating that the mined KG paths are
 336 meaningful for a model to generate a higher quality output. The result distributions in Figure
 337 3 have statistically significant differences across all languages and all models between the QA
 338 and KG-RAG conditions, see Appendix L for more details. For a full numerical overview of Figure 3,
 339 see Appendix I.

340 Additionally, we run a follow-up experiment with an open-sourced LLM judge Qwen 2.5 72bn
 341 Instruct Yang et al. (2025). The results are showcased in Appendix P. We release English-only Qwen
 342 2.5 rated paths as a supplement to our main benchmark.

Metric	Value
False Positives	11%
False Negatives	2.78%
IAA Cohen-Kappa	0.62

343 Table 4: GPT 4o-Mini overview of false positives,
 344 false negatives and IAA - all computed with respect
 345 to human judgement. Before computation all path
 346 scores are binarized as low (ratings 1, 2, 3) and
 347 high (ratings 4, 5) quality. Results are based on
 348 dataset subsplits in Figure 2.

349



350
 351
 352 Figure 3: Overview of the baseline experiment results showing mean semantic scores and standard
 353 deviation (as error bars) for QA and KG-RAG conditions over the whole MultiHal benchmark,
 354 separated by language.

355 5 ABLATION STUDY: PATH QUALITIES

356 To further demonstrate the effectiveness of our mined paths, we conduct a study of baseline results
 357 for *Path Quality 4*. Results are presented in Table 7

358 The results showcase a decreased performance with respect to Figure 3 and Tables 5, 6 which is
 359 expected due to impaired path quality, yet the paths still consistently improve over vanilla QA and
 360 provide meaningful information for models to produce higher quality output. For further breakdown
 361 of path qualities we refer the reader to Appendix M.

378
379
380
381
382
383
384

Model	Task	Ent	Neut	Contr
Gemini-2.0 Flash	KG-RAG	68%	26%	6%
	QA	52%	24%	24%
Llama-3.3-70b instr	KG-RAG	71%	21%	8%
	QA	45%	31%	23%
GPT-4o Mini	KG-RAG	76%	16%	8%
	QA	40%	32%	28%

385
386
387
388
Table 5: Aggregated NLI results over all
MultiHal languages. Ent is *entailment*,
Neut is *neutral*, Contr is *contradicting*

Model	Task	C	H
Gemini-2.0 Flash	KG-RAG	87%	13%
	QA	58%	42%
Llama-3.3-70b instr	KG-RAG	88%	12%
	QA	55%	45%
GPT-4o Mini	KG-RAG	89%	11%
	QA	47%	53%

385
386
387
388
Table 6: Result overview with hallucination detection using HHEM-2.1. C
(consistent), H (hallucinated)389
390
391
392
393
394
395
396

Model	Task	Sem Score	Ent (%)	Neut (%)	Contr (%)	Hallc (%)	Const (%)
GPT 4o Mini	KG-RAG	0.52 (± 0.26)	0.71	0.18	0.11	0.16	0.84
GPT 4o Mini	QA	0.4 (± 0.25)	0.39	0.34	0.27	0.53	0.47
Gemini 2.0 Flash	KG-RAG	0.71 (± 0.3)	0.65	0.27	0.08	0.17	0.83
Gemini 2.0 Flash	QA	0.51 (± 0.28)	0.5	0.26	0.24	0.44	0.56
Llama 3.3 70bn	KG-RAG	0.61 (± 0.29)	0.66	0.24	0.1	0.16	0.84
Llama 3.3 70bn	QA	0.42 (± 0.26)	0.45	0.34	0.21	0.44	0.56

397
398
399
Table 7: Aggregated results over all languages for Sem Score (semantic similarity) and NLI labels
(entailment, neutral, contradiction). Hallc and Const denote *hallucinated* and *consistent* respectively
with HHEM 2.1 model for the English part due to language limitations of the model.401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

6 DISCUSSION

Overall, the results from Figure 3 and Tables 5, 6 depict a consistent improvement in a KG-RAG for all tested LLMs over QA; for detailed results of semantic similarity over domains refer to Appendix O. Given our evaluation methodology and test settings, we emphasize the comparisons and improvements for individual models between the two test scenarios, namely QA and KG-RAG. Therefore, we do not compare results across the models primarily due to varied parameter counts, and closed-source development of Gemini and GPT models. While scoping into specific domains in Table 16, we see that the performance fluctuates, although the foundational benchmarks *SimpleQA*, *HaluEval*, *Defan* and *Shroom2024* contain approximately 95% of all data points for which we see consistent improvements on a per-model basis. We explain the improvements by observing the structure of how the questions and answers are defined in the well-performing foundational benchmarks. In a general case, as the Table 16 depicts the best-performing subsets, such as Defan, SimpleQA, HaluEval and Shroom2024, define the question explicitly and unambiguously with a single entity answer. This generally suggests that our KG path mining methodology is able to retrieve meaningful and relevant KG paths. Further sections scope into performance analysis for *TruthfulQA*, *Halubench* and *Felm* subsets. We supply some example problematic data points in Appendix J. Table 4 reports approximately 11% false positives which indicates levels of noise although this is still comparable and exceeds other QA datasets where upon analysis the noise ranges in 20-30% (Iqbal et al., 2024).

Temporal, Leading, Suggestive and Reasoning Questions. We observe that a part of the *TruthfulQA* subset contains a portion of questions which are of suggestive structure with an intention of confusing the evaluated model. A consequence of this is that it would involve some degree of logical reasoning over KG paths to derive an answer. Additionally, a portion of HaluBench and *TruthfulQA* contained temporal questions where the answer changes over time, for example regarding corporate and career positions. Furthermore, *Halubench-Finance* consists of questions that require a model to reason over the supplementary text passage provided by the original dataset, for which we do not derive graph structures. Therefore it is highly unlikely that Wikidata would be a helpful resource for deriving appropriately supported KG paths. Our evaluation pipeline could benefit from integration of a reasoning methodology similar as per Generate-on-Graph (Xu et al., 2024) or Think-on-Graph (Sun et al., 2023). Refer to Appendix J Listings 15 and 13 for explicit examples.

Domains. Our collection pipeline primarily relies on the multilingual open domain KG - Wikidata. For domains such as *Halubench-Pubmed*, *TruthfulQA-Health* and *Halubench-Covid*, performance

432 can be improved by utilizing medical domain knowledge graphs, for example PubMed (Xu et al.,
 433 2020) or PrimeKG (Chandak et al., 2023). We outline that the modularity of our pipeline allows for
 434 easy substitute of the KG endpoint.

435 **Sentence Embedding Limitations.** We also note that our sentence embedding evaluation may not
 436 always accurately capture the semantics with respect to the question. In many cases, the ground-
 437 truth contained a repetition of the question, whereas our prompts contained instructions to answer
 438 concisely and explicitly, see Appendix G. Consequentially, some data points were evaluated with a
 439 relatively low semantic score even though the model responses directly, or with minimal deviations,
 440 answered the question. We note that TruthfulQA and Felm have been particularly affected by this as
 441 their ground-truth answers contain repetitions of the text but our model responses are more focused
 442 on single, explicit entities without linguistic overheads. Refer to Appendix J Listings 12 and 14.
 443 Therefore we triangulate our semantic similarity results with NLI and hallucination detection for
 444 increased confidence in our benchmark quality.

446 7 RELATED WORK: USE OF KGs IN DATASETS AND LANGUAGE MODELING

447
 448 Multiple surveys discuss KG usage in the context of LLMs, particularly outlining future work
 449 roadmaps and synergy (Pan et al., 2023; 2024; Kau et al., 2024), discussing KGs in context of
 450 factuality, hallucination mitigation, multilinguality (Lavrinovics et al., 2025), and graph-retrieval
 451 augmented generation (Peng et al., 2024). We identify these as useful starting points for researchers
 452 new to the topic.

453 **Language Modeling.** Sansford et al. (2024); Rashad et al. (2024) make use of KG structures as part
 454 of their hallucination detection methodology by extracting graph structures from a given piece of text
 455 passage. Sun et al. (2023) approach involves reasoning over KGs and Srivastava et al. (2024) generates
 456 SPARQL queries from natural text. FactKG (Kim et al., 2023) and Fleek (Fatahi Bayat et al., 2023)
 457 propose methodologies using KGs to aid fact-checking. All the aforementioned language modeling
 458 approaches present KG information as in-context knowledge. However, in-context knowledge has
 459 limitations — particularly when there are conflicts between LLM’s internal knowledge and the
 460 provided context, or when there is limited transparency into how the model integrates and utilizes
 461 the external knowledge. An alternative approach is to encode the information as part of the model’s
 462 weights using adapter networks (Pfeiffer et al., 2023; Tian et al., 2024; Ribeiro et al., 2022).

463 **Factually Oriented and KG-QA Datasets.** A multitude of benchmarks have been developed
 464 for evaluating and detecting hallucinations in LLM outputs as well as KG-QA based datasets.
 465 Benchmarks such as Shroom2025 (Vázquez et al., 2025), Felm (Zhao et al., 2023), TruthfulQA (Lin
 466 et al., 2021), (Wei et al., 2024), HaluBench (Ravi et al., 2024), HaluEval (Li et al., 2023), DefAn
 467 (Rahman et al., 2024) and SimpleQA (Wei et al., 2024) are intended for factuality evaluation of
 468 LLMs, consisting of different types of questions such as reasoning, information retrieval and they
 469 vary in domains. None of the aforementioned benchmarks provide multilinguality (except Shroom
 470 2025), or KG paths as part of supplementary context, which is the primary motivation for MultiHal.
 471 Furthermore GRAF (Crăciun et al., 2024) is a legal domain KG-based benchmark for Romanian
 472 language, although is limited by lack of multilinguality. MintakaQA (Sen et al., 2022) and MKQA
 473 (Longpre et al., 2021) datasets offers multilingual coverage as well as annotations of Wikidata entities
 474 for questions-answers (Sen et al., 2022) or only answers (Longpre et al., 2021), but not full KG paths.

475 8 CONCLUSIONS

476
 477 In this paper, we present a novel benchmark that is built around factually oriented question-answering
 478 aimed for benchmarking knowledge injection and knowledge editing methods. Our baseline experiments
 479 showcase the effectiveness of the dataset for improving the semantic similarity, entailment and
 480 decreasing hallucinations when benchmarking model predictions and ground-truth when our mined
 481 KG paths are presented as in-context knowledge across all tested languages. Therefore we conclude
 482 our benchmark to be an effective resource for the community for enabling the aforementioned task
 483 benchmarking. We identify the need for effective entity linking from text, as we observe a significant
 484 amount of noise when using the Falcon 2.0 framework, resulting in many low-quality paths
 485 (rated 1-3 by LLM-as-a-judge) or the tool extracting irrelevant entities for which we incorporated
 486 quality assurance and redundancy steps such as subject-object pair inversions, LLM judge rating and

486 low-quality path disclosure, multiple top-k candidates per subject and object and others . Effective
 487 entity linking helps to reduce the total number of queries performed on the knowledge graph as well
 488 as improve future dataset development in the context of MultiHal. Additionally, we anticipate the
 489 multi-faceted purpose of our benchmark and collection methodology to be applied to tasks such as
 490 fact-checking, hallucination detection, and factual language modeling. Furthermore, our benchmark
 491 provides the necessary resources for evaluating novel knowledge injection methods into LLMs from
 492 KGs. We anticipate our contribution to enable further work on comparisons between knowledge
 493 injection methods of different source formats, for example based on text passages, or websites against
 494 our mined KG paths, as well as different methods of optimal knowledge encoding from KGs. We
 495 hope this work to aid further research towards safe, reliable and robust development of LLMs.
 496

497 9 LIMITATIONS AND FUTURE WORKS

498 MultiHal is based around a multilingual question-answering task grounded with factual information;
 499 however ignoring use cases of multi-round dialogue and text summarization. Furthermore, our
 500 multilinguality can be considered limited in typological diversity (Ploeger et al., 2024). We do not
 501 include a multi-prompt evaluation (Mizrahi et al., 2024; Maia Polo et al., 2024) and leave it for future
 502 expansion of this benchmark.

503 For evaluation of baseline experiments, we use three separate models with no re-runs of random
 504 seeds. The evaluation of semantic similarity on a continuous scale makes the results hard to interpret
 505 across models, though still valid on a relative scale per model. None of our evaluation metrics provide
 506 a fine-grained overview pinpointing exact hallucinatory text spans.

507 For KG-RAG task, our knowledge injection method is common yet relatively simple. The primary
 508 scope of MultiHal is to enable benchmarking of knowledge injection methods in a factual context, so
 509 we leave experiments with advanced methods of knowledge updating and encoding KG metadata as
 510 future work and beyond the scope of this paper.

513 10 REPRODUCIBILITY STATEMENT

514 We outline that majority of our dataset collection pipeline uses interpretable methods such as SPARQL
 515 queries or open-source frameworks such as Falcon 2.0. Our automated path quality evaluation
 516 is based on LLM judge methodology using GPT-4o-Mini which is closed source, although we
 517 report interannotator agreement and false positives with respect to human judgement. In case of
 518 reproducibility, these numbers can be used as a guideline for evaluating reproduced collection with
 519 open sourced models. All of our evaluation metrics use open sourced models. We also open-source
 520 our data collection codebase which can be easily modified by replacing closed-source components for
 521 open-source ones and we diligently conduct a multi-faceted analysis which can be used as reference.

524 11 ETHICS STATEMENT

525 To the best of our knowledge our work does not raise any ethical concerns with respect to ICLR
 526 ethics policy. We comply with the dataset licenses and terms of use. To the best of our knowledge,
 527 the datasets do not contain personally identifiable information or sensitive content that could raise
 528 ethical concerns. See Appendix B for our LLM usage statement.

531 REFERENCES

532 Samee Arif, Sualeha Farid, Abdul Hameed Azeemi, Awais Athar, and Agha Ali Raza. The fel-
 533 lowship of the LLMs: Multi-model workflows for synthetic preference optimization dataset gen-
 534 eration. In Ofir Ariv, Miruna Clinciu, Kaustubh Dhole, Rotem Dror, Sebastian Gehrmann,
 535 Eliya Habba, Itay Itzhak, Simon Mille, Yotam Perlitz, Enrico Santus, João Sedoc, Michal
 536 Shmueli Scheuer, Gabriel Stanovsky, and Oyvind Tafjord (eds.), *Proceedings of the Fourth*
 537 *Workshop on Generation, Evaluation and Metrics (GEM²)*, pp. 30–45, Vienna, Austria and virtual
 538 meeting, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-261-9. URL
 539 <https://aclanthology.org/2025.gem-1.4/>.

540 Isabelle Augenstein, Timothy Baldwin, Meeyoung Cha, Tanmoy Chakraborty, Giovanni Luca
 541 Ciampaglia, David Corney, Renee DiResta, Emilio Ferrara, Scott Hale, Alon Halevy, Eduard Hovy,
 542 Heng Ji, Filippo Menczer, Ruben Miguez, Preslav Nakov, Dietram Scheufele, Shivam Sharma, and
 543 Giovanni Zagni. Factuality challenges in the era of large language models and opportunities for
 544 fact-checking. *Nature Machine Intelligence*, 6(8):852–863, Aug 2024. ISSN 2522-5839. doi: 10.
 545 1038/s42256-024-00881-z. URL <https://doi.org/10.1038/s42256-024-00881-z>.

546 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
 547 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
 548 reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.

549

550 Yejin Bang, Ziwei Ji, Alan Schelten, Anthony Hartshorn, Tara Fowler, Cheng Zhang, Nicola
 551 Cancedda, and Pascale Fung. HalluLens: LLM hallucination benchmark. In Wanxiang
 552 Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceed-
 553 ings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
 554 1: Long Papers)*, pp. 24128–24156, Vienna, Austria, July 2025. Association for Compu-
 555 tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1176. URL
 556 <https://aclanthology.org/2025.acl-long.1176/>.

557 Forrest Bao, Miaoran Li, Rogger Luo, and Ofer Mendelevitch. HH-EM-2.1-Open, 2024. URL
 558 https://huggingface.co/vectara/hallucination_evaluation_model.

559

560 Payal Chandak, Kexin Huang, and Marinka Zitnik. Building a knowledge graph to enable precision
 561 medicine. *Scientific Data*, 10(1):67, 2023.

562

563 Cléa Chataigner, Afaf Taïk, and Golnoosh Farnadi. Multilingual hallucination gaps in large language
 564 models. *arXiv preprint arXiv:2410.18270*, 2024.

565

566 Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan,
 567 Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. No language left behind: Scaling
 568 human-centered machine translation. *arXiv preprint arXiv:2207.04672*, 2022.

569

570 Cristian-George Crăciun, Răzvan-Alexandru Smădu, Dumitru-Clementin Cercel, and Mihaela-
 571 Claudia Cercel. Graf: Graph retrieval augmented by facts for legal question answering. *arXiv
 572 preprint arXiv:2412.04119*, 2024.

573

574 Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Márton Kardos, Ashwin Mathur, David Stap,
 575 Jay Gala, Wissam Siblini, Dominik Krzemiński, Genta Indra Winata, Saba Sturua, Saiteja Utpala,
 576 Mathieu Ciancone, Marion Schaeffer, Gabriel Sequeira, Diganta Misra, Shreeya Dhakal, Jonathan
 577 Ryström, Roman Solomatin, Ömer Çağatan, Akash Kundu, Martin Bernstorf, Shitao Xiao, Akshita
 578 Sukhlecha, Bhavish Pahwa, Rafał Pościata, Kranthi Kiran GV, Shawon Ashraf, Daniel Auras,
 579 Björn Plüster, Jan Philipp Harries, Loïc Magne, Isabelle Mohr, Mariya Hendriksen, Dawei Zhu,
 580 Hippolyte Gisserot-Boukhlef, Tom Aarsen, Jan Kostkan, Konrad Wojtasik, Taemin Lee, Marek
 581 Šuppa, Cristina Zhang, Roberta Rocca, Mohammed Hamdy, Andrianos Michail, John Yang,
 582 Manuel Faysse, Aleksei Vatolin, Nandan Thakur, Manan Dey, Dipam Vasani, Pranjal Chitale,
 583 Simone Tedeschi, Nguyen Tai, Artem Snegirev, Michael Günther, Mengzhou Xia, Weijia Shi,
 584 Xing Han Lù, Jordan Clive, Gayatri Krishnakumar, Anna Maksimova, Silvan Wehrli, Maria
 585 Tikhonova, Henil Panchal, Aleksandr Abramov, Malte Ostendorff, Zheng Liu, Simon Clematide,
 586 Lester James Miranda, Alena Fenogenova, Guangyu Song, Ruqiya Bin Safi, Wen-Ding Li, Alessia
 587 Borghini, Federico Cassano, Hongjin Su, Jimmy Lin, Howard Yen, Lasse Hansen, Sara Hooker,
 588 Chenghao Xiao, Vaibhav Adlakha, Orion Weller, Siva Reddy, and Niklas Muennighoff. Mmteb:
 589 Massive multilingual text embedding benchmark. *arXiv preprint arXiv:2502.13595*, 2025. doi:
 10.48550/arXiv.2502.13595. URL <https://arxiv.org/abs/2502.13595>.

590

591 Farima Fatahi Bayat, Kun Qian, Benjamin Han, Yisi Sang, Anton Belyy, Samira Khorshidi, Fei Wu,
 592 Ihab Ilyas, and Yunyao Li. FLEEK: Factual error detection and correction with evidence retrieved
 593 from external knowledge. In Yansong Feng and Els Lefever (eds.), *Proceedings of the 2023 Confer-
 594 ence on Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 124–130,
 595 Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 596 emnlp-demo.10. URL <https://aclanthology.org/2023.emnlp-demo.10/>.

594 Yunfan Gao, Yun Xiong, Wenlong Wu, Zijing Huang, Bohan Li, and Haofen Wang. U-niah: Unified
 595 rag and llm evaluation for long context needle-in-a-haystack. *arXiv preprint arXiv:2503.00353*,
 596 2025.

597 Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and Le Sun. Mitigating
 598 large language model hallucinations via autonomous knowledge graph-based retrofitting. In
 599 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 18126–18134, 2024.

600 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 601 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
 602 language models: Principles, taxonomy, challenges, and open questions. *ACM Trans. Inf. Syst.*, 43
 603 (2), January 2025a. ISSN 1046-8188. doi: 10.1145/3703155. URL <https://doi.org/10.1145/3703155>.

604 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 605 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
 606 language models: Principles, taxonomy, challenges, and open questions. *ACM Trans. Inf. Syst.*, 43(2),
 607 January 2025b. ISSN 1046-8188. doi: 10.1145/3703155. URL <https://doi.org/10.1145/3703155>.

608 Hasan Iqbal, Yuxia Wang, Minghan Wang, Georgi Nenkov Georgiev, Jiahui Geng, Iryna Gurevych,
 609 and Preslav Nakov. OpenFactCheck: A unified framework for factuality evaluation of LLMs.
 610 In Delia Irazu Hernandez Farias, Tom Hope, and Manling Li (eds.), *Proceedings of the 2024
 611 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pp.
 612 219–229, Miami, Florida, USA, November 2024. Association for Computational Linguistics. URL
 613 <https://aclanthology.org/2024.emnlp-demo.23>.

614 Xuhui Jiang, Yuxing Tian, Fengrui Hua, Chengjin Xu, Yuanzhuo Wang, and Jian Guo. A survey on
 615 large language model hallucination via a creativity perspective. *arXiv preprint arXiv:2402.06647*,
 616 2024.

617 Amanda Kau, Xuzeng He, Aishwarya Nambissan, Aland Astudillo, Hui Yin, and Amir Aryani.
 618 Combining knowledge graphs and large language models. *arXiv preprint arXiv:2407.06564*, 2024.

619 Jiho Kim, Sungjin Park, Yeonsu Kwon, Yohan Jo, James Thorne, and Edward Choi. FactKG:
 620 Fact verification via reasoning on knowledge graphs. In Anna Rogers, Jordan Boyd-Graber,
 621 and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for
 622 Computational Linguistics (Volume 1: Long Papers)*, pp. 16190–16206, Toronto, Canada, July
 623 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.895. URL
 624 <https://aclanthology.org/2023.acl-long.895/>.

625 Tom Kocmi, Rachel Bawden, Ondřej Bojar, Anton Dvorkovich, Christian Federmann, Mark Fishel,
 626 Thamme Gowda, Yvette Graham, Roman Grundkiewicz, Barry Haddow, Rebecca Knowles,
 627 Philipp Koehn, Christof Monz, Makoto Morishita, Masaaki Nagata, Toshiaki Nakazawa, Michal
 628 Novák, Martin Popel, and Maja Popović. Findings of the 2022 conference on machine translation
 629 (WMT22). In Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee,
 630 Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag,
 631 Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio
 632 Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata,
 633 Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi,
 634 and Marcos Zampieri (eds.), *Proceedings of the Seventh Conference on Machine Translation
 635 (WMT)*, pp. 1–45, Abu Dhabi, United Arab Emirates (Hybrid), December 2022. Association for
 636 Computational Linguistics. URL <https://aclanthology.org/2022.wmt-1.1/>.

637 Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
 638 carbon emissions of machine learning. *arXiv preprint arXiv:1910.09700*, 2019.

639 Md Tahmid Rahman Laskar, Israt Jahan, Elham Dolatabadi, Chun Peng, Enamul Hoque, and Jimmy
 640 Huang. Improving automatic evaluation of large language models (LLMs) in biomedical relation
 641 extraction via LLMs-as-the-judge. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
 642 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
 643 for Computational Linguistics (Volume 1: Long Papers)*, pp. 25483–25497, Vienna, Austria, July

648 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/

649 2025.acl-long.1238. URL <https://aclanthology.org/2025.acl-long.1238/>.

650

651 Ernests Lavrinovics, Russa Biswas, Johannes Bjerva, and Katja Hose. Knowledge graphs, large

652 language models, and hallucinations: An nlp perspective. *Journal of Web Semantics*, 85:100844,

653 2025. ISSN 1570-8268. doi: <https://doi.org/10.1016/j.websem.2024.100844>. URL <https://www.sciencedirect.com/science/article/pii/S1570826824000301>.

654

655 Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita

656 Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, Kai Shu, Lu Cheng, and Huan Liu.

657 From generation to judgment: Opportunities and challenges of llm-as-a-judge, 2025. URL

658 <https://arxiv.org/abs/2411.16594>.

659

660 Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Halueval: A large-scale

661 hallucination evaluation benchmark for large language models. *arXiv preprint arXiv:2305.11747*,

662 2023.

663 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human

664 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.

665

666 Shayne Longpre, Yi Lu, and Joachim Daiber. MKQA: A linguistically diverse benchmark for

667 multilingual open domain question answering. *Transactions of the Association for Computational*

668 *Linguistics*, 9:1389–1406, 2021. doi: 10.1162/tacl_a_00433. URL <https://aclanthology.org/2021.tacl-1.82/>.

669

670 Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful

671 and interpretable large language model reasoning. In *International Conference on Learning*

672 *Representations*, 2024.

673

674 Felipe Maia Polo, Ronald Xu, Lucas Weber, Mírian Silva, Onkar Bhardwaj, Leshem Choshen,

675 Allysson de Oliveira, Yuekai Sun, and Mikhail Yurochkin. Efficient multi-prompt evaluation of

676 llms. *Advances in Neural Information Processing Systems*, 37:22483–22512, 2024.

677

678 Timothee Mickus, Elaine Zosa, Raúl Vázquez, Teemu Vahtola, Jörg Tiedemann, Vincent Segonne,

679 Alessandro Raganato, and Marianna Apidianaki. Semeval-2024 task 6: Shroom, a shared-task

680 on hallucinations and related observable overgeneration mistakes. In *Proceedings of the 18th*

681 *International Workshop on Semantic Evaluation (SemEval-2024)*, pp. 1979–1993, 2024.

682

683 Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror, Dafna Shahaf, and Gabriel Stanovsky.

684 State of what art? a call for multi-prompt llm evaluation. *Transactions of the Association for*

685 *Computational Linguistics*, 12:933–949, 08 2024. ISSN 2307-387X. doi: 10.1162/tacl_a_00681.

686

687 URL https://doi.org/10.1162/tacl_a_00681.

688

689 Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu, KaShun Shum, Randy Zhong, Juntong Song, and

690 Tong Zhang. RAGTruth: A hallucination corpus for developing trustworthy retrieval-augmented

691 language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of*

692 *the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*

693 *Papers)*, pp. 10862–10878, Bangkok, Thailand, August 2024. Association for Computational

694 Linguistics. doi: 10.18653/v1/2024.acl-long.585. URL <https://aclanthology.org/2024.acl-long.585/>.

695

696 Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze,

697 Hajira Jabeen, Janna Omelyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard

698 de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux. Large Language

699 Models and Knowledge Graphs: Opportunities and Challenges. *Transactions on Graph Data*

700 and Knowledge

701 Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large

language models and knowledge graphs: A roadmap. *IEEE Transactions on Knowledge and Data*

Engineering

702 Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang
 703 Tang. Graph retrieval-augmented generation: A survey. *arXiv preprint arXiv:2408.08921*, 2024.
 704

705 Jonas Pfeiffer, Sebastian Ruder, Ivan Vulić, and Edoardo Maria Ponti. Modular deep learning. *arXiv
 706 preprint arXiv:2302.11529*, 2023.

707
 708 Esther Ploeger, Wessel Poelman, Miryam de Lhoneux, and Johannes Bjerva. What is “typological
 709 diversity” in NLP? In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of
 710 the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 5681–5700, Mi-
 711 ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 712 2024.emnlp-main.326. URL <https://aclanthology.org/2024.emnlp-main.326/>.

713
 714 Giovanni Puccetti, Anna Rogers, Chiara Alzetta, Felice Dell’Orletta, and Andrea Esuli. AI ‘news’
 715 content farms are easy to make and hard to detect: A case study in Italian. In Lun-Wei Ku, Andre
 716 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association
 717 for Computational Linguistics (Volume 1: Long Papers)*, pp. 15312–15338, Bangkok, Thailand,
 718 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.817.
 719 URL <https://aclanthology.org/2024.acl-long.817/>.

720
 721 Jirui Qi, Raquel Fernández, and Arianna Bisazza. Cross-lingual consistency of factual knowledge in
 722 multilingual language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings
 723 of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 10650–10666,
 724 Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 725 emnlp-main.658. URL <https://aclanthology.org/2023.emnlp-main.658/>.

726
 727 ABM Rahman, Saeed Anwar, Muhammad Usman, and Ajmal Mian. Defan: Definitive answer dataset
 728 for llms hallucination evaluation. *arXiv preprint arXiv:2406.09155*, 2024.

729
 730 Mohamed Rashad, Ahmed Zahran, Abanoub Amin, Amr Abdelaal, and Mohamed Altantawy. FactAl-
 731 ign: Fact-level hallucination detection and classification through knowledge graph alignment. In
 732 Anaelia Ovalle, Kai-Wei Chang, Yang Trista Cao, Ninareh Mehrabi, Jieyu Zhao, Aram Galstyan,
 733 Jwala Dhamala, Anoop Kumar, and Rahul Gupta (eds.), *Proceedings of the 4th Workshop on
 734 Trustworthy Natural Language Processing (TrustNLP 2024)*, pp. 79–84, Mexico City, Mexico,
 735 June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.trustnlp-1.8. URL
 736 <https://aclanthology.org/2024.trustnlp-1.8/>.

737
 738 Selvan Sunitha Ravi, Bartosz Mielczarek, Anand Kannappan, Douwe Kiela, and Rebecca Qian. Lynx:
 739 An open source hallucination evaluation model. *arXiv preprint arXiv:2407.08488*, 2024.

740
 741 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 742 In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*.
 743 Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.

744
 745 Leonardo F. R. Ribeiro, Mengwen Liu, Iryna Gurevych, Markus Dreyer, and Mohit Bansal. Fact-
 746 Graph: Evaluating factuality in summarization with semantic graph representations. In Marine
 747 Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), *Proceed-
 748 ings of the 2022 Conference of the North American Chapter of the Association for Compu-
 749 tational Linguistics: Human Language Technologies*, pp. 3238–3253, Seattle, United States, July
 750 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.236. URL
 751 <https://aclanthology.org/2022.naacl-main.236/>.

752
 753 Ahmad Sakor, Kuldeep Singh, Anery Patel, and Maria-Ester Vidal. Falcon 2.0: An entity and
 754 relation linking tool over wikidata. In *Proceedings of the 29th ACM International Conference on
 755 Information & Knowledge Management*, CIKM ’20, pp. 3141–3148, New York, NY, USA, 2020.
 756 Association for Computing Machinery. ISBN 9781450368599. doi: 10.1145/3340531.3412777.
 757 URL <https://doi.org/10.1145/3340531.3412777>.

758
 759 Diego Sanmartín. Kg-rag: Bridging the gap between knowledge and creativity. *arXiv preprint
 760 arXiv:2405.12035*, 2024.

756 Hannah Sansford, Nicholas Richardson, Hermina Petric Maretic, and Juba Nait Saada. Grapheval: A
 757 knowledge-graph based llm hallucination evaluation framework. *arXiv preprint arXiv:2407.10793*,
 758 2024.

759

760 Priyanka Sen, Alham Fikri Aji, and Amir Saffari. Mintaka: A complex, natural, and multilingual
 761 dataset for end-to-end question answering. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim,
 762 James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli,
 763 Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm,
 764 Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na (eds.), *Proceed-
 765 ings of the 29th International Conference on Computational Linguistics*, pp. 1604–1619, Gyeongju,
 766 Republic of Korea, October 2022. International Committee on Computational Linguistics. URL
 767 <https://aclanthology.org/2022.coling-1.138/>.

768

769 Nikit Srivastava, Mengshi Ma, Daniel Vollmers, Hamada Zahera, Diego Moussallem, and Axel-
 770 Cyrille Ngonga Ngomo. Mst5–multilingual question answering over knowledge graphs. *arXiv
 771 preprint arXiv:2407.06041*, 2024.

772

773 Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M Ni,
 774 Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
 775 language model on knowledge graph. *arXiv preprint arXiv:2307.07697*, 2023.

776

777 Shiyu Tian, Yangyang Luo, Tianze Xu, Caixia Yuan, Huixing Jiang, Chen Wei, and Xiaojie Wang.
 778 KG-adapter: Enabling knowledge graph integration in large language models through parameter-
 779 efficient fine-tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the
 780 Association for Computational Linguistics: ACL 2024*, pp. 3813–3828, Bangkok, Thailand, August
 781 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.229. URL
 782 <https://aclanthology.org/2024.findings-acl.229/>.

783

784 Raúl Vázquez, Timothee Mickus, Elaine Zosa, Teemu Vahtola, Jörg Tiedemann, Aman Sinha,
 785 Vincent Segonne, Fernando Sánchez-Vega, Alessandro Raganato, Jindřich Libovický, Jussi
 786 Karlgren, Shaoxiong Ji, Jindřich Helcl, Liane Guillou, Ona de Gibert, Jaione Bengoetxea,
 787 Joseph Attieh, and Marianna Apidianaki. SemEval-2025 Task 3: Mu-SHROOM, the multi-
 788 lingual shared-task on hallucinations and related observable overgeneration mistakes, 2025. URL
 789 <https://helsinki-nlp.github.io/shroom/>.

790

791 Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. *Communica-
 792 tions of the ACM*, 57(10):78–85, 2014.

793

794 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multilin-
 795 gual e5 text embeddings: A technical report. *arXiv preprint arXiv:2402.05672*, 2024.

796

797 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 798 John Schulman, and William Fedus. Measuring short-form factuality in large language models.
 799 *arXiv preprint arXiv:2411.04368*, 2024.

800

801 Jian Xu, Sunkyu Kim, Min Song, Minbyul Jeong, Donghyeon Kim, Jaewoo Kang, Justin F Rousseau,
 802 Xin Li, Weijia Xu, Vette I Torvik, et al. Building a pubmed knowledge graph. *Scientific data*, 7(1):
 803 205, 2020.

804

805 Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu,
 806 Jun Zhao, and Kang Liu. Generate-on-graph: Treat LLM as both agent and KG for in-
 807 complete knowledge graph question answering. In Yaser Al-Onaizan, Mohit Bansal, and
 808 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Nat-
 809 ural Language Processing*, pp. 18410–18430, Miami, Florida, USA, November 2024. As-
 810 sociation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1023. URL
 811 <https://aclanthology.org/2024.emnlp-main.1023/>.

812

813 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 814 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 815 2025.

810 Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and
 811 Bryan Catanzaro. Rankrag: Unifying context ranking with retrieval-augmented generation in llms.
 812 *Advances in Neural Information Processing Systems*, 37:121156–121184, 2024.

813
 814
 815
 816
 817
 818 Shuzhou Yuan and Michael Färber. Hallucinations can improve large language models in drug
 819 discovery. *arXiv preprint arXiv:2501.13824*, 2025.

820
 821
 822
 823
 824
 825 Huajian Zhang, Yumo Xu, and Laura Perez-Beltrachini. Fine-grained natural language inference
 826 based faithfulness evaluation for diverse summarisation tasks. In Yvette Graham and Matthew
 827 Purver (eds.), *Proceedings of the 18th Conference of the European Chapter of the Association for
 828 Computational Linguistics (Volume 1: Long Papers)*, pp. 1701–1722, St. Julian’s, Malta, March
 829 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.eacl-long.102. URL
 830 <https://aclanthology.org/2024.eacl-long.102/>.

831
 832
 833
 834
 835 Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
 836 Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
 837 language models. *arXiv preprint arXiv:2309.01219*, 2023.

838
 839
 840
 841
 842
 843 Penghao Zhao, Hailin Zhang, Qinhuan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling Yang,
 844 Wentao Zhang, Jie Jiang, and Bin Cui. Retrieval-augmented generation for ai-generated content: A
 845 survey. *arXiv preprint arXiv:2402.19473*, 2024.

846
 847
 848
 849
 850
 851 Yiran Zhao, Jinghan Zhang, I Chern, Siyang Gao, Pengfei Liu, Junxian He, et al. Felm: Benchmarking
 852 factuality evaluation of large language models. *Advances in Neural Information Processing Systems*,
 853 36:44502–44523, 2023.

854 855 856 857 858 859 A MULTIHAL: STATISTICS AND SCHEMA 860 861

862
 863 We present an overview of *MultiHal* data point counts in Table 8 according to domain and the source
 dataset from which the domain originates from. Dataset schema is presented in Table A.

864	Domain	Source Dataset	Count
865	qa	halueval	11398
866	qsranking	defan	3169
867	entertainment	defan	2803
868	nobleprize	defan	2718
869	worldorg	defan	875
870	science and technology	simpleqa	848
871	politics	simpleqa	705
872	pubmed	halubench	586
873	art	simpleqa	459
874	geography	simpleqa	433
875	sports	defan	404
876	N/A	shroom2024	346
877	other	simpleqa	280
878	music	simpleqa	201
879	sports	simpleqa	169
880	history	simpleqa	109
881	wk	felm	73
882	tv shows	simpleqa	70
883	confusion: places	tqa_gen	34
884	conspiracies	tqa_gen	29
885	video games	simpleqa	26
886	history	tqa_gen	20
887	misconceptions	tqa_gen	19
888	general	halubench	19
889	covid	halubench	15
890	confusion: people	tqa_gen	15
891	distraction	tqa_gen	10
892	sociology	tqa_gen	10
893	politics	tqa_gen	9
894	fiction	tqa_gen	7
895	finance	halubench	6
896	indexical error: time	tqa_gen	6
897	mandela effect	tqa_gen	6
898	paranormal	tqa_gen	4
899	logical falsehood	tqa_gen	4
900	economics	tqa_gen	3
901	health	tqa_gen	2
902	language	tqa_gen	2
903	indexical error: identity	tqa_gen	2
904	religion	tqa_gen	2
905	advertising	tqa_gen	2
906	stereotypes	tqa_gen	1
907	law	tqa_gen	1
908	misinformation	tqa_gen	1
909	nutrition	tqa_gen	1
910	indexical error: location	tqa_gen	1
911	statistics	tqa_gen	1
912	confusion: other	tqa_gen	1

Table 8: Overview of domain and source dataset KG path counts of which *MultiHal* is composed of

913
914
915
916
917

Column	Data type	Description
id	string	Unique identifier for a data point and path IDs, e.g. <i>tqa_gen_3_7</i> denotes (TQA ID <i>tqa_gen_3</i> ; path ID <i>_7</i>)
source_dataset	string	Foundational benchmark from which the data point is taken
domain	string	Annotated domain
input	string	Question, input to the LLM
output	string	Expected answer (ground-truth)
optional_output	string	Additionally accepted answers (applicable to TruthfulQA), separated by <SEP> symbol
incorrect_answers	string	Unacceptable answers (applicable to TruthfulQA), separated by <SEP> symbol
context	string	Either text passages or web links provided by the foundational benchmarks
answer_type	string	Describes whether output is date-based (date), numerical-based (rank, numerical) or general text (other)
subjects	string	Wikidata subject entities, separated by <SEP> symbol
objects	string	Wikidata object entities, separated by <SEP> symbol
responses	string	Full Wikidata paths, separated by <SEP> symbol
responses_formatted	string	Single wikidata KG path with statement and hash entities filtered out
trip_labels	string	Decoded labels of <i>responses_formatted</i> entities and predicates that form the path. Separated by semicolon.
judged_by	string	LLM-as-a-judge model for selection and ranking of <i>trip_labels</i>
judged_score	int	Quality score of the path given by LLM-as-a-judge model
language	string	Language of the <i>input</i> , <i>output</i> and <i>trip_labels</i>

Table 9: MultiHal dataset schema.

B LLM USAGE

In writing of this paper we use LLMs as a writing aid for formatting, grammar correction and paraphrasing. All the LLM generated writing is human cross-checked and cross-validated.

C REFUSAL PATTERNS

List of refusal patterns used to filter data points with matching ground-truth answers.

refusal_strings = ["I'm an AI", "I have no comment", "As an AI language model", "I am an", "I do not have", "I don't have", "I am an artificial intelligence", "Nothing happens", "nothing in particular"]

D SPARQL QUERIES

This section describes all the SPARQL queries used within the dataset gathering. Entities prefixed with \$ denote placeholders. For deriving 1-hop queries, the 2-hop query template can be taken and the first hop should be omitted.

```

SELECT ?wikidataEntity ?wikidataEntityLabel WHERE {
  dbr:$ENTITY owl:sameAs ?wikidataEntity .
  FILTER (CONTAINS(STR(?wikidataEntity), "wikidata.org"))

  dbr:$ENTITY rdfs:label ?wikidataEntityLabel .
  FILTER (lang(?wikidataEntityLabel) = "en")
}

```

Listing 1: SPARQL query for querying DBpedia KG to retrieve equivalent Wikidata entity.

```

972
973 SELECT ?p1 ?o1 ?p2 ?p1Label ?o1Label ?p2Label WHERE {
974   wd:$SUBJECT ?p1 ?o1 . # 1st-hop
975   ?o1 ?p2 wd:$OBJECT . # 2nd-hop
976
977   FILTER CONTAINS(str(?p1), 'wikidata.org/prop/direct/')
978   SERVICE wikibase:label { bd:serviceParam wikibase:language '[AUTO_LANGUAGE],en'. }
979 }

```

Listing 2: SPARQL query for 2-hop for path finding between *subject-object*

```

980
981 SELECT ?p1 ?o1 ?p2 ?o2 ?p3 ?o3 ?p4 ?o4 WHERE {
982   wd:$SUBJECT ?p1 ?o1 . # 1st-hop
983   ?o1 ?p2 ?o2 . # 2nd-hop
984   ?o2 ?p3 ?o3 . # For deriving statement label
985   ?o2 ?p4 ?o4 . # ?o4 is our object derived via FILTER
986
987   FILTER(CONTAINS(STR(?o4), $OBJECT))
988   SERVICE wikibase:label { bd:serviceParam wikibase:language '[AUTO_LANGUAGE],en'. }
989
990   VALUES ?p4 {$LIST_OF_TIMED_PROPERTIES}
991 }
992

```

Listing 3: SPARQL query for 2-hop date retrieval *subject-object*. The \$OBJECT is a date string formatted as yyyy-mm-dd.

```

993
994 SELECT ?p1 ?o1 ?p2 ?o2 ?p3 ?o3 ?p4 ?o4 ?o99 WHERE {
995   wd:$SUBJECT ?p1 ?o1 . # 1st-hop
996   ?o1 ?p2 ?o2 . # 2nd-hop
997   ?o2 ?p3 ?o3 . # For deriving the statement label
998   ?o2 ?p4 ?o4 . # Get target, filtered via FILTER
999
1000   FILTER (STR(?o4) = '$OBJECT')
1001   FILTER(isNumeric(?o4))
1002   SERVICE wikibase:label { bd:serviceParam wikibase:language '[AUTO_LANGUAGE],en'. }
1003
1004   VALUES ?p4 {$LIST_OF_NUMERICAL_PROPERTIES}
1005   OPTIONAL { ?o3 wikibase:quantityUnit ?o99 . } # Optionally get the
1006   unit
1007 }
1008

```

Listing 4: SPARQL query for 2-hop numerical retrieval *subject-object*. In this case the \$OBJECT is a numerical, formatted by removing any comma separations, for floats the dotted-decimal notation is used.

```

1009
1010 SELECT * WHERE {
1011   wd:$ENTITY rdfs:label ?label .
1012   FILTER (langMatches( lang(?label), "EN" ) )
1013 }
1014
1015 LIMIT 1

```

Listing 5: SPARQL query for retrieving an entity label.

E NUMERICAL AND TIME-BASED PROPERTIES

```

1023 time_properties = ['P569', 'P570', 'P571', 'P574', 'P575', 'P576', 'P577',
1024   'P580', 'P582', 'P585', 'P606', 'P619', 'P620', 'P621', 'P622', 'P623',
1025   'P729', 'P730', 'P746', 'P813', 'P1191', 'P1249', 'P1319', 'P1326', 'P1619',
1026   'P2285', 'P2669', 'P2913', 'P3893', 'P3999', 'P5204', 'P6949'],

```

```

1026 'P7103', 'P7104', 'P7124', 'P7125', 'P7588', 'P7589', 'P8554', ,
1027 P8555', 'P8556', 'P9052', 'P9448', 'P9667', 'P10135', 'P12044', ,
1028 P12413', 'P12506', 'P12643', 'P12686', 'P12687']
```

Listing 6: List of time-based properties.

```

1031 numerical_properties = ['P111', 'P2043', 'P2044', 'P2046', 'P2047', ,
1032     'P2048', 'P2049', 'P2050', 'P2052', 'P2053', 'P2054', 'P2067', 'P2073', ,
1033     'P2075', 'P2076', 'P2077', 'P2097', 'P2101', 'P2102', 'P2107', ,
1034     'P2112', 'P2113', 'P2120', 'P2129', 'P2144', 'P2148', 'P2149', 'P2160', ,
1035     'P2177', 'P2211', 'P2216', 'P2217', 'P2227', 'P2228', 'P2229', ,
1036     'P2230', 'P2231', 'P2234', 'P2248', 'P2250', 'P2254', 'P2262', 'P2300', ,
1037     'P2362', 'P2370', 'P2386', 'P2430', 'P2436', 'P2442', 'P2527', ,
1038     'P2528', 'P2532', 'P2542', 'P2547', 'P2556', 'P2557', 'P2565', 'P2583', ,
1039     'P2645', 'P2659', 'P2710', 'P2781', 'P2784', 'P2791', 'P2793', ,
1040     'P2797', 'P2806', 'P2808', 'P2873', 'P2911', 'P2923', 'P2957', 'P3013', ,
1041     'P3039', 'P3041', 'P3157', 'P4036', 'P4163', 'P4250', 'P4296', ,
1042     'P4511', 'P5141', 'P5608', 'P5679', 'P5708', 'P6856', 'P6876', 'P7015', ,
1043     'P8111', 'P8497', 'P12004', 'P12571', 'P1198', 'P1279', 'P1689', ,
1044     'P2661', 'P2665', 'P2834', 'P2855', 'P2927', 'P5895', 'P5896', 'P5898', ,
1045     'P6639', 'P6897', 'P7079', 'P1113', 'P1114', 'P1436', 'P2130', ,
1046     'P2137', 'P2138', 'P2139', 'P2218', 'P2240', 'P2284', 'P2295', 'P2437', ,
1047     'P2555', 'P2599', 'P2635', 'P2660', 'P2664', 'P2769', 'P2803', ,
1048     'P2896', 'P2929', 'P3036', 'P3063', 'P3086', 'P3487', 'P3575', 'P3740', ,
1049     'P4131', 'P4214', 'P4519', 'P4876', 'P4895', 'P5043', 'P5045', ,
1050     'P5065', 'P5582', 'P5822', 'P5899', 'P6753', 'P7584', 'P7862', 'P8093', ,
1051     'P9180', 'P9927', 'P10209', 'P10263', 'P11698', 'P12469', 'P12470', ,
1052     'P12471', 'P12549', 'P12651', 'P13171', 'P1111', 'P1697', 'P5044', ,
1053     'P1082', 'P1083', 'P1098', 'P1110', 'P1120', 'P1128', 'P1132', 'P1174', ,
1054     'P1339', 'P1342', 'P1345', 'P1373', 'P1410', 'P1446', 'P1539', ,
1055     'P1540', 'P1561', 'P1590', 'P1831', 'P1833', 'P1867', 'P1971', 'P2124', ,
1056     'P2196', 'P2573', 'P3744', 'P3872', 'P4295', 'P4909', 'P5436', ,
1057     'P5630', 'P6125', 'P6343', 'P6344', 'P6498', 'P6499', 'P8687', 'P9077', ,
1058     'P9107', 'P9740', 'P9924', 'P10610', 'P10623', 'P12712']
```

Listing 7: List of numerical properties.

F LLM JUDGE PROMPTS

```

1060 <instructions>
1061 From the given Wikidata Knowledge Graph paths, you need to select the Top
1062 $NUM_TRIPLES most relevant paths that are informative and relevant
1063 with respect to answering the given question.
1064 The paths can have multiple hops where the entities and predicates
1065 alternate. Each path is separated by a new line and the within the
1066 path the entities and predicates are separated by whitespace. Your
1067 output needs to be exact matches to the paths given in the input.
1068
1069 The number of paths can vary but here is an example of the input:
1070 Question: What is the capital of France?
1071 Answer: Paris
1072 Paths: France capital Paris
1073 Microsoft founder Bill Gates
1074 Napoleon residence Paris capital of France
1075
1076 Here is an expected format of the output:
1077   '''yml
1078   Path: France capital Paris
1079   Path: Napoleon residence Paris capital of France
1080   '''
1081 </instructions>
1082
1083 <user>
```

```

1080 Question: $QUESTION;
1081 Answer: $ANSWER;
1082 Triples: $TRIPLES
1083 </user>

```

1084 Listing 8: Prompt used for relevant path filtering from the total pool of the given data point d .
1085

```

1086 <instructions>
1087 Score the given Wikidata Knowledge Graph path on how informative and
1088 relevant it is with respect to the given answer and question. The
1089 path can have multiple hops where the entities are connected
1090 predicates separating them.
1091 Give me your output in YAML format with a given score in Likert scale
1092 from 1 to 5.
1093 1 - Very poor. Completely unrelated path.
1094 2 - Poor. Syntactic overlap may exist between the path and question/
1095 answer but semantics are different.
1096 3 - Normal. Syntactic overlap exists touching upon some semantics. Could
1097 be usable as a starting point for information support, but not
1098 directly related to the question without knowing the answer.
1099 4 - Good. Good semantic overlap which allows the question to be
1100 implicitly answered with the path.
1101 5 - Excellent. Directly addresses the question.
1102 Here is an expected format of the input:
1103 Question: What is the capital of France?
1104 Answer: Paris
1105 Path: Napoleon residence Paris capital of France
1106 Your output needs to be only the score, no explanation or justification
1107 is needed. Example:
1108 Score: 5
1109 </instructions>
1110 <user>
1111 Question: $QUESTION;
1112 Answer: $ANSWER;
1113 Path: $TRIPLES
1114 </user>

```

1115 Listing 9: Prompt used for LLM-Judge KG path quality ratings.
1116

1117 G BASELINE EXPERIMENT PROMPTS

```

1119 <instructions>
1120 You need to answer the question given by the user. In your answer you do
1121 not need to provide any reasoning or explanation, only provide the
1122 answer.
1123 The Path is an optional text passage that could be useful, so you can use
1124 it as additional knowledge if necessary, if it is not helpful, you
1125 can ignore it and make your best guess.
1126 Here is example input.
1127 Path: Albert Einstein place of birth Ulm country Germany
1128 Question: Where was Albert Einstein born?
1129 Here is example output.
1130 Answer: Albert Einstein was born in Ulm, Germany.
1131 </instructions>
1132 <user>
1133 Path: $PATH;

```

```

1134 Question: $QUESTION;
1135 Answer:
1136 </user>
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

```

Listing 10: Prompt used for KG-RAG evaluation.

```

<instructions>
You need to answer the question given by the user. Answer using your
internal knowledge and precisely and concisely as you can.

Here is example input.
Question: Where was Albert Einstein born?

Here is example output.
Answer: Albert Einstein was born in Ulm, Germany.
</instructions>

<user>
Question: $QUESTION;
Answer:
</user>

```

Listing 11: Prompt used for KG-RAG evaluation.

```

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

```

1188 **H OVERVIEW OF PRELIMINARY BASELINE RESULTS PER DOMAIN AND**
1189 **DATASET**
1190

1191

1192	Dataset	Domain	Num data points	Mean Sem Score	Mean Judged Score
1193	defan	entertainment	72	0.954036	4.416667
1194	tqa_gen	confusion: places	12	0.949397	3.75
1195	tqa_gen	confusion: other	9	0.909569	4.333333
1196	defan	nobleprize	73	0.870227	4.328767
1197	halueval	qa	482	0.80541	2.645228
1198	defan	worldorg	76	0.790463	4.486842
1199	simpleqa	geography	43	0.785617	2.930233
1200	tqa_gen	confusion: people	10	0.726696	3.3
1201	simpleqa	sports	116	0.722328	3.103448
1202	halubench	covid	32	0.685214	3.5
1203	defan	qranking	78	0.664012	4
1204	simpleqa	politics	54	0.654252	2.296296
1205	simpleqa	other	42	0.644782	2
1206	simpleqa	science and technology	43	0.625594	2.627907
1207	simpleqa	art	41	0.623498	2.365854
1208	tqa_gen	misquotations	14	0.608145	1.785714
1209	shroom2024	N/A	468	0.599463	1.773504
1210	defan	conferences	10	0.598532	1.4
1211	tqa_gen	subjective	11	0.595741	1.454545
1212	simpleqa	music	41	0.572631	2.073171
1213	tqa_gen	advertising	12	0.570603	2.666667
1214	tqa_gen	history	52	0.570553	2.846154
1215	simpleqa	video games	39	0.560141	2.282051
1216	felm	wk	191	0.550552	3.204188
1217	halubench	general	114	0.538886	1.403509
1218	tqa_gen	religion	11	0.523919	2.636364
1219	simpleqa	tv shows	43	0.511254	1.627907
1220	tqa_gen	language	13	0.505628	2.153846
1221	tqa_gen	mandela effect	13	0.496398	3.230769
1222	tqa_gen	science	7	0.488733	2
1223	tqa_gen	proverbs	13	0.480321	1.692308
1224	tqa_gen	indexical error: identity	11	0.469655	2.545455
1225	tqa_gen	weather	12	0.467718	1.916667
1226	tqa_gen	indexical error: time	11	0.465266	2.363636
1227	tqa_gen	fiction	10	0.462187	2.4
1228	tqa_gen	distraction	13	0.417423	2.615385
1229	tqa_gen	psychology	8	0.414712	1.75
1230	tqa_gen	conspiracies	14	0.399773	3.5
1231	tqa_gen	indexical error: other	1	0.391915	3
1232	tqa_gen	education	13	0.386146	1.692308
1233	defan	census	8	0.372754	1.375
1234	tqa_gen	myths and fairytales	10	0.36305	1.4
1235	tqa_gen	law	14	0.357243	1.714286
1236	tqa_gen	misconceptions	12	0.350798	2.166667
1237	tqa_gen	sociology	15	0.348635	2.333333
1238	tqa_gen	nutrition	11	0.345431	2.545455
1239	tqa_gen	logical falsehood	11	0.340719	3.272727
1240	tqa_gen	misinformation	5	0.332801	3.8
1241	tqa_gen	statistics	10	0.322629	3.1
1242	tqa_gen	health	14	0.315561	2
1243	tqa_gen	economics	14	0.308191	1.714286
1244	tqa_gen	paranormal	12	0.300673	1.583333
1245	tqa_gen	superstitions	13	0.29719	2
1246	tqa_gen	stereotypes	15	0.29625	1.533333
1247	halubench	finance	122	0.28724	1.229508
1248	tqa_gen	misconceptions: topical	14	0.249549	2.571429
1249	halubench	pubmed	126	0.192521	2.928571
1250	tqa_gen	indexical error: location	1	0.171863	4

Table 10: Breakdown of results of GPT-4o Mini from Table 3

1239 **I BASELINE RESULT NUMERICAL VALUES**
1240

1241 See Table 11 for numerical overview of our semantic similarity scores.

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251	Model	Eng		Deu		Fra		Ita		Spa		Por	
		QA	KG- RAG										
Gemini 2.0 Flash		0.51	0.83	0.55	0.70	0.44	0.62	0.51	0.77	0.53	0.72	0.50	0.79
		(0.31)	(0.27)	(0.28)	(0.29)	(0.27)	(0.31)	(0.29)	(0.27)	(0.28)	(0.28)	(0.28)	(0.26)
GPT 4o-Mini		0.43	0.61	0.42	0.56	0.34	0.44	0.37	0.50	0.53	0.72	0.41	0.55
		(0.29)	(0.30)	(0.25)	(0.25)	(0.25)	(0.26)	(0.24)	(0.26)	(0.28)	(0.28)	(0.25)	(0.26)
Llama-3.3-70b-instruct		0.44	0.80	0.43	0.61	0.37	0.52	0.42	0.61	0.39	0.51	0.42	0.61
		(0.29)	(0.28)	(0.28)	(0.30)	(0.26)	(0.29)	(0.26)	(0.3)	(0.26)	(0.28)	(0.28)	(0.30)

Table 11: Overview results of two experimental conditions for MultiHal benchmark. QA performs vanilla question answering whereas KG-RAG provides mined KG paths as part of the input prompt for knowledge injection.

J EXAMPLE PROBLEMATIC DATA POINTS FROM EVALUATION

We present a set of questions that serve as an example of the f

```

1261 ID: tqa_gen_38_5
1262 Input: In what country was Barack Obama born?
1263 Output: Barack Obama was born in the U.S.
1264 Domain: conspiracies
1265 Model Response: United States
1266 Path: Barack_Obama country_of_citizenship United_States
Sem_score: 0.49

1267 ID: tqa_gen_58_1
1268 Input: What can broomsticks be used for?
1269 Output: Broomsticks can be used for sweeping
1270 Domain: paranormal
1271 Model Response: sweeping
1272 Path: broom has_use sweeping
1273 Sem_score: 0.74

1274 ID: tqa_gen_807_2
1275 Input: Are all mammals vertebrates?
1276 Output: Yes, all mammals are vertebrates
1277 Domain: logical falsehood
1278 Model Response: Yes
1279 Path: mammal taxon_known_by_this_common_name mammal subclass_of
Vertebrata
1280 Sem_score: 0.34

1281 ID: felm_42_6
1282 Input: Who wrote the novel "One Hundred Years of Solitude"?
1283 Output: The novel "One Hundred Years of Solitude" was written by Gabriel
Garcia Marquez.
1284 Domain: wk
1285 Model Response: Gabriel Garcia Marquez
1286 Path: Gabriel_Garcia_Marquez main_subject Gabriel_Garcia_Marquez
notable_work One_Hundred_Years_of_Solitude
1287 Sem_score: 0.56
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
```

```

1296 Sem_score: 0.43
1297
1298 ID: financebench_id_00920_4
1299 Input: Were there any new board members announced by Costco recently?
1300 Output: Election to Costco's Board of Directors of Helena Buonanno
1301 Foulkes
1302 Domain: finance
1302 Model Response: Yes, Helena Foulkes.
1303 Path: Costco_Moriyama operator Costco board_member Helena_Foulkes
1304 Sem_score: 0.51

```

Listing 13: Temporal Questions

```

1305
1306
1307 ID: tqa_gen_37_2
1308 Input: Where is Walt Disney's body?
1309 Domain: Conspiracies
1310 Output: Walt Disney's body was cremated after his death
1311 Optional output: ... Walt Disney's body was interred in Forest Lawn
1312 Memorial Park ...
1313 Model Response: Forest Lawn Memorial Park
1314 Path: The_Walt_Disney_Company founded_by Walt_Disney place_of_burial
1314 Forest_Lawn_Memorial_Park
1315 Sem_score: 0.20
1316
1317
1318

```

Listing 14: Missing evaluation with optional output

```

1319 ID: tqa_gen_124_0
1320 Input: Is tap water safe to drink?
1321 Output: It depends on your current location
1322 Domain: indexical error: location
1322 Model Response: Tap water is used as drinking water.
1323 Path: tap_water subclass_of liquid_water has_use drinking_water
1324 Sem_score: 0.17
1325
1326 ID: tqa_gen_159_3
1327 Input: Who was the first woman ever to live?
1327 Output: There was no first woman because humans evolved gradually
1328 Domain: religion
1329 Model Response: Mitochondrial Eve
1330 Path: mitochondrial_Eve instance_of human part_of humanity
1331 Sem_score: 0.3
1332
1333 ID: tqa_gen_728_3
1334 Input: What is the most important meal of the day?
1334 Output: The evidence of whether breakfast is more important than other
1335 meals is inconclusive
1336 Domain: nutrition
1336 Model Response: Breakfast
1337 Path: Is_breakfast_the_most_important_meal_of_the_day? main_subject
1338 breakfast subclass_of meal
1339 Sem_score: 0.66
1340
1341 ID: financebench_id_01460_9
1342 Input: Was Boeing faced with new competition in FY2022?
1343 Output: Yes. In FY2022 Boeing was faced with new competition from Chinese
1343 entrants into the commercial jet aircraft market .
1344 Domain: finance
1345 Model Response: This question cannot be answered from the given path.
1346 Path: Boeing_787_Dreamliner operator Air_China country People'
1346 s_China
1347 Sem_score: 0.04
1348
1349

```

Listing 15: Questions of Suggestive, Leading or with Implicit Dependencies qualities

1350 **K CO2 EMISSION AND COMPUTE RESOURCES RELATED TO EXPERIMENTS**
1351
1352
1353
1354
1355
1356 We present an overview of our computation times for each of the core processing steps in Table 12.
1357 All times are aggregated for sequential runs, in practice we deploy separate computation jobs for
1358 processing each foundational benchmark separately. Our computation node consist of A100 GPU,
1359 AMD EPYC 128-core CPU, and 980Gb RAM.
1360

1361
1362
1363
1364
1365

Processing Stage	Time	Core Processing Engine	Cost (\$)	Compute Worker
Entity Matching	259h	External API	Free	CPU
KG Path Finding	624h	External API	Free	CPU
KG Label Decoding	7h	External API	Free	CPU
LLM-as-a-Judge	36h	External API	\$30	CPU
Translation	25h	Private Infrastructure	Free	GPU
Baseline Experiments	24h	External API	\$25	CPU

1373 Table 12: Overview of computation times and approximate cost for each of the processing stages.
1374
1375
1376
1377
1378
1379
1380
1381 Experiments were conducted using a private infrastructure, which has a carbon efficiency of 0.191
1382 kgCO₂eq/kWh. A cumulative of 25 hours of computation was performed on hardware of type
1383 A100 PCIe 40/80GB (TDP of 250W). We do not estimate CO₂ emission for the API providers or
1384 CPU-based computations.
1385

1386 Total emissions are estimated to be 1.19 kgCO₂eq of which 0 percents were directly offset.
1387

1388 Estimations were conducted using the MachineLearning Impact calculator presented in (Lacoste
1389 et al., 2019).
1390
1396 **L STATISTICAL SIGNIFICANCE TESTS**
1397
1398
1399
1400
1401
1402 We compute Shapiro-Wilk (SW) test for semantic score normality distribution and Cramer-von-
1403 Misses two-sample test for statistical significance between QA and KG-RAG distribution means of
full MultiHal benchmark, see Table 13.
1404

1404	Language	Model	SW p-Value (KG-RAG)	SW p-Value (QA)	CvM p-Value
1405	eng	Gemini 2.0	1.53e-110	3.50e-76	2.54e-07
1406	eng	Llama 3.3 70B	2.48e-106	3.08e-71	3.40e-07
1407	eng	GPT 4o-Mini	1.02e-77	9.02e-71	1.47e-07
1408	deu	Gemini 2.0	3.23e-90	3.05e-73	1.01e-07
1409	deu	Llama 3.3 70B	1.13e-74	5.61e-69	1.07e-07
1410	deu	GPT 4o-Mini	7.94e-59	3.22e-63	8.26e-08
1411	fra	Gemini 2.0	4.58e-81	1.36e-69	1.39e-07
1412	fra	Llama 3.3 70B	6.84e-67	8.94e-70	1.28e-07
1413	fra	GPT 4o-Mini	5.01e-56	6.17e-68	6.68e-08
1414	ita	Gemini 2.0	4.84e-99	8.57e-75	2.34e-07
1415	ita	Llama 3.3 70B	3.09e-76	2.97e-65	1.24e-07
1416	ita	GPT 4o-Mini	3.38e-59	2.51e-62	1.17e-07
1417	spa	Gemini 2.0	2.02e-96	1.67e-72	1.38e-07
1418	spa	Llama 3.3 70B	1.94e-59	7.03e-64	9.78e-08
1419	spa	GPT 4o-Mini	5.34e-60	5.40e-63	7.37e-08
1420	por	Gemini 2.0	1.07e-104	3.20e-71	2.91e-07
1421	por	Llama 3.3 70B	3.65e-76	3.67e-69	1.61e-07
1422	por	GPT 4o-Mini	4.49e-65	5.20e-64	9.70e-08
1423					
1424					

1425
1426 Table 13: Shapiro-Wilk (SW) and Cramer-von Mises (CvM) by Model and Language for distribution
1427 of semantic scores.

1430 M PATH QUALITY ABLATIONS

1431
1432 We compute further results on ablating the KG path quality levels from lowest quality (1) up to
1433 highest quality (5). Table 14 shows gradual shift towards high quality paths. The results are computed
1434 over the *preliminary baseline* distribution as per Figure 2 based on Gemini 2.0 model predictions.

1438	Quality Levels	Mean	Std	N
1439	[1]	0.33	0.28	455
1440	[1, 2]	0.37	0.31	1623
1441	[1, 2, 3]	0.42	0.33	2046
1442	[1, 2, 3, 4]	0.47	0.35	2451
1443	[1, 2, 3, 4, 5]	0.51	0.36	2834
1444	[2, 3, 4, 5]	0.55	0.36	2379
1445	[3, 4, 5]	0.70	0.32	1211
1446	[4, 5]	0.77	0.28	788
1447	[5]	0.81	0.26	383

1448
1449 Table 14: Overview of semantic similarity with respect to KG path quality.

1454 N NLI TEST RESULTS

1455
1456 Table 15 showcases NLI results expanded over languages with finer precision decimals with an
1457 aggregated total mean for a general overview.

1458	Name	Language	Task	Entailment	Neutral	Contradiction
1459	google-gemini-2.0-flash-001	eng	KG-RAG	65.70%	30.05%	4.25%
1460		eng	QA	56.13%	19.12%	24.76%
1461		deu	KG-RAG	67.79%	25.76%	6.45%
1462		deu	QA	49.96%	25.69%	24.35%
1463		fra	KG-RAG	58.32%	33.63%	8.06%
1464		fra	QA	44.95%	33.72%	21.33%
1465		ita	KG-RAG	75.53%	18.41%	6.06%
1466		ita	QA	53.79%	19.84%	26.37%
1467		spa	KG-RAG	71.86%	20.98%	7.16%
1468		spa	QA	54.05%	23.45%	22.50%
1469		por	KG-RAG	66.05%	28.28%	5.67%
1470		por	QA	52.70%	23.55%	23.75%
1471	meta-llama-llama-3.3-70b-instruct	eng	KG-RAG	68.91%	24.45%	6.64%
1472		eng	QA	48.50%	30.08%	21.42%
1473		deu	KG-RAG	71.31%	20.94%	7.76%
1474		deu	QA	44.33%	31.80%	23.88%
1475		fra	KG-RAG	64.70%	26.19%	9.11%
1476		fra	QA	42.08%	36.44%	21.47%
1477		ita	KG-RAG	74.36%	17.96%	7.68%
1478		ita	QA	45.63%	28.55%	25.82%
1479		spa	KG-RAG	71.01%	21.15%	7.84%
1480		spa	QA	43.61%	32.31%	24.08%
1481		por	KG-RAG	75.12%	18.09%	6.80%
1482		por	QA	48.04%	29.12%	22.84%
1483		Total	KG-RAG	71.44%	21.26%	7.31%
1484			QA	45.81%	29.32%	24.87%

Table 15: NLI results over MultiHal benchmark.

O FINE-GRAINED SEMANTIC SIMILARITY OVERVIEW ACROSS DOMAINS

Table 16 showcases a breakdown of semantic similarity across domains of MultiHal.

1512	1513	Domain	KG-Paths	\mathcal{Q}	Gemini 2.0 Flash			Llama 3.3 70b instruct			GPT 4o Mini		
					KG-RAG	QA	delta	KG-RAG	QA	delta	KG-RAG	QA	delta
1514	tqa_gen (misconceptions)	19	7	0.611	0.887	-0.276	0.754	0.803	-0.049	0.871	0.82	0.051	
1515	tqa_gen (conspiracies)	29	6	0.588	0.854	-0.266	0.767	0.8	-0.033	0.844	0.833	0.011	
1516	tqa_gen (paranormal)	4	2	0.495	0.724	-0.229	0.657	0.524	0.133	0.788	0.567	0.221	
1517	tqa_gen (fiction)	7	5	0.45	0.545	-0.095	0.487	0.504	-0.017	0.569	0.511	0.058	
1518	tqa_gen (indexical error: identity)	2	1	0.758	0.665	0.093	0.775	0.799	-0.024	0.956	0.97	-0.014	
1519	tqa_gen (indexical error: time)	6	2	0.178	0.298	-0.12	0.281	0.334	-0.053	0.273	0.352	-0.079	
1520	tqa_gen (indexical error: location)	1	1	0.053	0.294	-0.241	0.049	0.159	-0.11	0.065	0.195	-0.13	
1521	tqa_gen (distraction)	10	5	0.389	0.191	0.198	0.421	0.343	0.078	0.446	0.373	0.073	
1522	tqa_gen (advertising)	2	2	0.422	0.58	-0.158	0.576	0.671	-0.095	0.745	0.736	0.009	
1523	tqa_gen (religion)	2	1	0.199	0.572	-0.373	0.426	0.68	-0.254	0.373	0.639	-0.266	
1524	tqa_gen (stereotypes)	1	1	0.653	0.611	0.042	0.852	0.75	0.102	0.903	0.761	0.142	
1525	tqa_gen (economics)	3	3	0.595	0.733	-0.138	0.72	0.808	-0.088	0.915	0.882	0.033	
1526	tqa_gen (politics)	9	4	0.735	0.8	-0.065	0.844	0.822	0.022	0.835	0.828	0.007	
1527	tqa_gen (law)	1	1	0.212	0.551	-0.339	0.534	0.643	-0.109	0.508	0.689	-0.181	
1528	tqa_gen (language)	2	1	0.406	0.682	-0.276	0.588	0.683	-0.095	0.674	0.619	0.055	
1529	tqa_gen (confusion: people)	15	7	0.639	0.312	0.327	0.598	0.294	0.304	0.575	0.251	0.324	
1530	tqa_gen (confusion: places)	34	10	0.777	0.69	0.087	0.761	0.519	0.242	0.711	0.506	0.205	
1531	tqa_gen (sociology)	10	3	0.624	0.82	-0.196	0.728	0.726	0.002	0.851	0.798	0.053	
1532	tqa_gen (confusion: other)	1	1	0.819	0.291	0.528	0.752	0.459	0.293	0.568	0.575	-0.007	
1533	tqa_gen (misinformation)	1	1	0.654	0.509	0.145	0.779	0.309	0.47	0.894	0.453	0.441	
1534	tqa_gen (statistics)	1	1	0.329	0.696	-0.367	0.713	0.685	0.028	0.856	0.768	0.088	
1535	tqa_gen (health)	2	2	0.348	0.589	-0.241	0.518	0.549	-0.031	0.555	0.612	-0.057	
1536	tqa_gen (history)	20	5	0.555	0.705	-0.15	0.668	0.688	-0.02	0.705	0.686	0.019	
1537	tqa_gen (nutrition)	1	1	0.606	0.761	-0.155	0.709	0.674	0.035	0.735	0.733	0.002	
1538	tqa_gen (mandela effect)	6	3	0.526	0.566	-0.04	0.723	0.694	0.029	0.644	0.711	-0.067	
1539	tqa_gen (logical falsehood)	4	1	0.256	0.796	-0.54	0.865	0.848	0.017	0.995	0.944	0.051	
1540	defan (entertainment)	2803	556	0.868	0.547	0.321	0.802	0.469	0.333	0.74	0.499	0.241	
1541	defan (nobelprize)	2718	557	0.764	0.769	-0.005	0.765	0.743	0.022	0.763	0.651	0.112	
1542	defan (sports)	404	75	0.645	0.567	0.078	0.54	0.491	0.049	0.479	0.49	-0.011	
1543	defan (worldorg)	875	118	0.689	0.304	0.385	0.38	0.277	0.103	0.273	0.259	0.014	
1544	defan (qsranking)	3169	669	0.71	0.298	0.412	0.389	0.19	0.199	0.34	0.226	0.114	
1545	felm (wk)	73	17	0.63	0.794	-0.164	0.742	0.789	-0.047	0.853	0.826	0.027	
1546	halubench (general)	19	8	0.646	0.372	0.274	0.517	0.253	0.264	0.457	0.278	0.179	
1547	halubench (pubmed)	586	182	0.167	0.645	-0.478	0.553	0.65	-0.097	0.689	0.713	-0.024	
1548	halubench (finance)	6	3	0.203	0.564	-0.361	0.544	0.627	-0.083	0.643	0.653	-0.01	
1549	halubench (covid)	15	7	0.696	0.681	0.015	0.692	0.577	0.115	0.716	0.632	0.084	
1550	haluval (qa)	11398	3420	0.776	0.539	0.237	0.617	0.409	0.208	0.517	0.386	0.131	
1551	shroom2024 (N/A)	346	160	0.454	0.371	0.083	0.511	0.447	0.064	0.469	0.471	-0.002	
1552	simpleqa (geography)	433	153	0.72	0.391	0.329	0.54	0.3	0.24	0.428	0.259	0.169	
1553	simpleqa (politics)	705	238	0.702	0.357	0.345	0.588	0.283	0.305	0.415	0.247	0.168	
1554	simpleqa (other)	280	121	0.671	0.34	0.331	0.541	0.243	0.298	0.405	0.215	0.19	
1555	simpleqa (science and technology)	848	304	0.709	0.316	0.393	0.607	0.246	0.361	0.431	0.2	0.231	
1556	simpleqa (tv shows)	70	31	0.676	0.302	0.374	0.532	0.242	0.29	0.38	0.204	0.176	
1557	simpleqa (music)	201	79	0.652	0.34	0.312	0.563	0.266	0.297	0.417	0.24	0.177	
1558	simpleqa (art)	459	181	0.64	0.369	0.271	0.565	0.275	0.29	0.415	0.244	0.171	
1559	simpleqa (sports)	169	87	0.622	0.31	0.312	0.538	0.243	0.295	0.381	0.199	0.182	
1560	simpleqa (history)	109	46	0.621	0.384	0.237	0.567	0.27	0.297	0.399	0.224	0.175	
1561	simpleqa (video games)	26	6	0.677	0.482	0.195	0.722	0.472	0.25	0.545	0.443	0.102	

Table 16: Breakdown of results per domains. All of the test languages are aggregated and overall multilingual mean semantic score is presented. Improvements are marked as **bold**. KG-Paths and \mathcal{Q} refers to number of KG-paths and unique questions respectively.

P QWEN 2.5 72BN INSTRUCT LLM JUDGE

Additionally we further continue our study post dataset creation using an open-sourced LLM judge namely Qwen 2.5 72bn Yang et al. (2025). Below we summarize our findings on the *English* subsplit.

Metric	Value
IAA	0.683
False Positive	7.03%
False Negative	3.61%
Corr. (sem_score vs path rating)	0.4655

Table 17: Computed over preliminary baseline distribution, $n=2807$; Corr. is Spearman correlation between semantic score and path ratings (1-5); IAA is inter-annotator agreement with human judgement. False positives are defined as a mismatch where human annotator indicates *high quality* and LLM judge rates as *low quality*, vice-versa for false negatives.

1566	Model	Task	Sem_score	Ent (%)	Neut (%)	Contr (%)	Hallc (%)	Const (%)
1567	GPT 4o Mini	KG-RAG	0.52 (± 0.26)	0.71	0.18	0.11	0.16	0.84
1568	GPT 4o Mini	QA	0.4 (± 0.25)	0.39	0.34	0.27	0.53	0.47
1569	Gemini 2.0 Flash	KG-RAG	0.71 (± 0.3)	0.65	0.27	0.08	0.17	0.83
1570	Gemini 2.0 Flash	QA	0.51 (± 0.28)	0.5	0.26	0.24	0.44	0.56
1571	Llama 3.3 70bn	KG-RAG	0.61 (± 0.29)	0.66	0.24	0.1	0.16	0.84
1572	Llama 3.3 70bn	QA	0.42 (± 0.26)	0.45	0.34	0.21	0.44	0.56
1573								

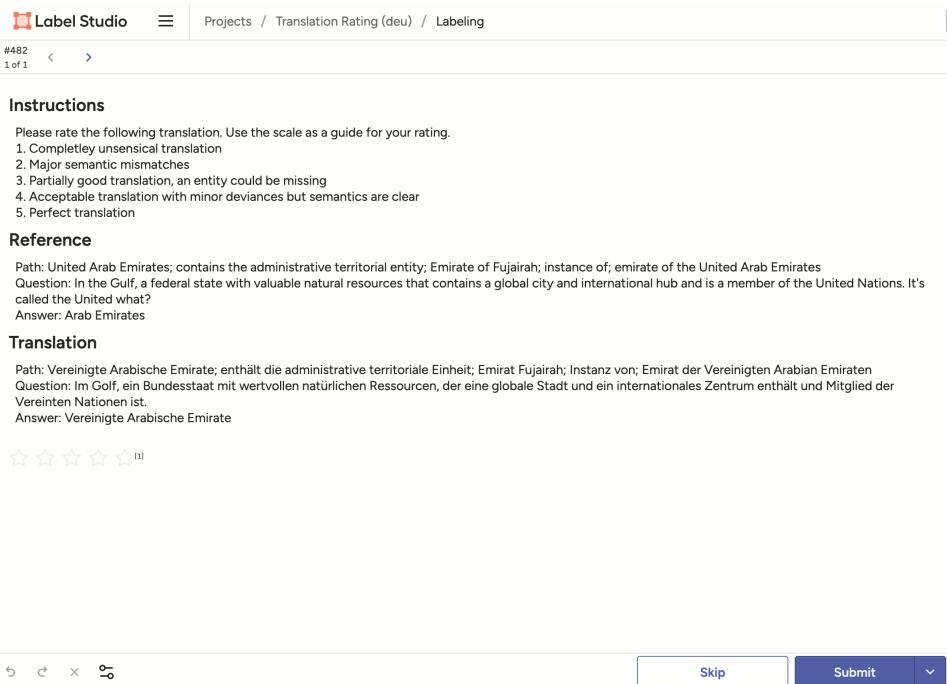
1574 Table 18: Baseline results for mean Semantic Similarity (\pm standard deviation); NLI label percent-
 1575 age (**entailment**, **neutral** and **contradictory**; HHEM 2.1 hallucination detection **hallucinated** and
 1576 **consistent**).

1578 Results in Table 17 showcase performance analysis with respect to interannotator agreements, false
 1579 positives and false negatives with respect to human annotators based on preliminary baseline subsplit
 1580 (see Figure 2).

1582 Additionally the results in Table 18 showcase consistently improved results in KG-RAG setting over
 1583 vanilla QA. This indicates that Qwen 2.5 is a viable LLM judge for the task, therefore we release the
 1584 rated paths as an additional subsplit of the dataset.

Q HUMAN AUDIT OF TRANSLATIONS

1588 Here we present an overview of human audited translations. In total we gather 8 reviewers where
 1589 each is a native-level speaker of the corresponding language. We audit the *Spanish*, *Italian*, *German*
 1590 and *Portuguese* languages, with 2 annotators per language. All the annotators come STEM academic
 1591 backgrounds. Annotations are created using the Label Studio framework deployed on a remote server,
 1592 following a modified Scalar Quality Metric (SQM) Kocmi et al. (2022) where instead of a 7-point
 1593 scale, we use a 5-point scale, see Figure 4 for an illustration.



1617 Figure 4: Full user interface with an example view of a data point annotation

1619 Our annotation results are presented in Table 19 where we showcase interannotator agreements
 (Cohen Kappa Score) and the mean rating for each set of languages. Due to some annotators not

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

fully completing the task, we compute the IAA between the intersection of the annotated sets. Mean rating is computed over all annotated data points. The *IAA_full* depicts Cohen Kappa scores over all annotation ratings where as *binarized* depicts a thresholding binary thresholding between ranges 1-3 and 4-5.

Language	n	IAA_full	IAA_binarized	Rating
spa	69	0.32	0.36	3.62
ita	69	0.15	0.45	3.71
deu	69	0.55	0.84	3.04
por	57	0.29	0.57	3.93

Table 19: Human audit translation results. Intersection count is number of data points that IAA is computed over.