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Abstract
While overparameterization in machine learning
models offers great benefits in terms of optimiza-
tion and generalization, it also leads to increased
computational requirements as model sizes grow.
In this work, we show that by leveraging the
inherent low-dimensional structures of data and
compressible dynamics within the model param-
eters, we can reap the benefits of overparameter-
ization without the computational burdens. In
practice, we demonstrate the effectiveness of this
approach for deep low-rank matrix completion
as well as fine-tuning language models. Our
approach is grounded in theoretical findings for
deep overparameterized low-rank matrix recovery,
where we show that the learning dynamics of each
weight matrix are confined to an invariant low-
dimensional subspace. Consequently, we can con-
struct and train compact, highly compressed fac-
torizations possessing the same benefits as their
overparameterized counterparts. In the context
of deep matrix completion, our technique sub-
stantially improves training efficiency while re-
taining the advantages of overparameterization.
For language model fine-tuning, we propose a
method called “Deep LoRA”, which improves the
existing low-rank adaptation (LoRA) technique,
leading to reduced overfitting and a simplified
hyperparameter setup, while maintaining compa-
rable efficiency. We validate the effectiveness of
Deep LoRA on natural language tasks, particu-
larly when fine-tuning with limited data.

1. Introduction
In recent years, there has been a growing interest within
the realm of deep learning in overparameterization, which
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Figure 1. Benefits of depth & width in overparameterized ma-
trix completion with d = 100, r∗ = 5, ϵl = 10−3 and 30% of
entries observed. Left: Recovery error vs. width for shallow and
deep factorizations. Right: Number of GD iterations to converge to
10−10 error vs. width. We observe that depth prevents overfitting,
while width improves convergence.

refers to employing a greater number of model parameters
than necessary to interpolate the training data. While this
may appear counterintuitive initially due to the risk of over-
fitting, it has been demonstrated to be an effective modeling
approach (Zhang et al., 2021; Wu et al., 2017; Allen-Zhu
et al., 2019a; Buhai et al., 2020; Xu et al., 2018), primarily
attributed to improved optimization landscape and implicit
algorithmic regularization. In the context of large language
models (LLMs) (Radford et al., 2019; Brown et al., 2020),
empirical scaling laws (Kaplan et al., 2020) suggest that
larger models are more sample efficient, often requiring
fewer samples to reach the same test loss.

Taking the problem of low-rank matrix recovery as an il-
lustrative example, the seminal work of Arora et al. (2019)
showed that deeper factorizations better promote low-rank
solutions as a function of depth, consequently mitigating
overfitting in the overparameterized regime compared to
a classical two-layer factorization approach; see Figure 1
(left). On the other hand, increasing the width of each layer
substantially reduces the number of iterations to reach the
same training error; see Figure 1 (right).

While overparameterization offers remarkable benefits, it
also comes with its computational challenges. The signif-
icantly increased number of parameters inevitably results
in dramatically higher computational costs. This naturally
raises a fundamental question: can we attain the benefits of
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Figure 2. Invariant low-dimensional subspaces in deep overparameterized adaptation of language models. Fine-tuning BERT
(Devlin et al., 2019) with deep overparameterized adaptation on the STS-B dataset (Cer et al., 2017). Left: Singular value spectra across
all adapted layers at the end of fine-tuning. Middle: Alignment of subspaces formed by top 8 right singular vectors between current
adapted weights and final adapted weights throughout training. Right: Training loss continues to decrease in iterations after subspace
alignment with final adapted weights. See Section 4 for more details.

overparameterization with a substantial reduction in compu-
tational costs?

In this work, we show that we can achieve this by exploit-
ing low-dimensional structures of data and compressible
learning dynamics in the model weights. In the context
of low-rank matrix recovery via deep overparameterized
factorizations, we discover an interesting phenomenon that
for each weight matrix, the learning dynamics only happen
within an approximately invariant low-dimensional sub-
space throughout all iterations. We rigorously prove this
for deep matrix factorization, which also allows us to com-
press the number of training parameters significantly when
dealing with deep matrix completion. Consequently, we can
construct and train a nearly equivalent, yet much smaller,
compressed factorization without sacrificing the advantages
of its overparameterized counterpart.

Interestingly, we empirically find that the above phe-
nomenon can also be observed when employing deep over-
parameterized weight updates for fine-tuning language mod-
els; see Figure 2 for an illustration. Therefore, we can
adapt our idea of compressing deep matrix factorization
to improve language model fine-tuning. For fine-tuning
large-scale pretrained language models, recently low-rank
adaptation (LoRA) stands out as the most commonly-used
technique due to its effectiveness and efficiency (Hu et al.,
2021). The basic idea of LoRA is to freeze the pretrained
weights and adapt each one to new tasks by adding and
optimizing an update in the form of a two-layer low-rank de-
composition. Nonetheless, in practical scenarios, selecting
the optimal rank of the decomposition can pose a significant
challenge. If the rank is not chosen properly, it may lead to
overfitting, particularly when we overestimate the rank or
when there is limited downstream data available.

We deal with this drawback of LoRA by employing a deep
(three-layer) overparameterized factorization for the train-
able update, which is constructed and optimized via the
compression technique used for deep matrix completion.
As such, our new method, which we term as Deep LoRA,
enjoys notable advantages over the original LoRA method,
namely (i) less overfitting by exploiting depth, and (ii)
fewer hyperparameters without rank r and scale α having
to be carefully tuned across all layers, all while having a
comparable parameter efficiency due to compression.

Contributions. We summarize our contributions below.

• Practical contributions. We develop efficient compres-
sion methods by exploring compressible learning dynam-
ics in overparameterized factorizations. Our method en-
joys the benefits of overparameterization while signifi-
cantly improving its efficiency. We demonstrate the effec-
tiveness not only on deep matrix completion, but also for
improving LoRA for language model fine-tuning.

• Theoretical contributions. Our methods are inspired
by our theoretical results for deep matrix factorization.
Mathematically, we rigorously prove the existence of in-
variant low-dimensional subspaces throughout gradient
descent for each weight matrix, and show how they can
constructed in practice.

Related Works There is a great deal of literature on
implicit regularization in the setting of matrix factoriza-
tion/linear networks (Neyshabur et al., 2015; Gunasekar
et al., 2017; Arora et al., 2019; Moroshko et al., 2020; Timor
et al., 2023; Ji & Telgarsky, 2019; Gidel et al., 2019; You
et al., 2020; Liu et al., 2022), as well as low-rank learning in
deep networks (Jaderberg et al., 2014; Sainath et al., 2013;
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Denil et al., 2013; Khodak et al., 2020; Oymak et al., 2019;
Min Kwon et al., 2024; Tarzanagh et al., 2023). Similarly,
there is an abundance of work discussing the benefits of
overparameterization (Du & Hu, 2019; Arora et al., 2018b;
Allen-Zhu et al., 2019b; Arpit & Bengio, 2019).

Following the advent of LoRA (Hu et al., 2021), there have
been many follow-up works (Zhang et al., 2022; Chavan
et al., 2023; Kopiczko et al., 2024). Importantly, no existing
work (to the best of our knowledge) explicitly deals with
overfitting, particularly in the limited sample regime. A
more detailed discussion of related works can be found in
Appendix A.

Notation. Given any L ∈ N, we use [L] to denote the
index set {1, . . . , L}. We use t ∈ Z≥0 to index a countable
set of objects, such as W (t). We denote by In the identity
matrix of size n × n, and by 1n a vector of length n with
all entries equal to 1. We denote by ∥A∥2F the squared
Frobenius norm of matrix A, i.e., the sum of squares of
all entries of A. We denote by N (A) the nullspace of the
matrix A. We denote by Om×n the set of m× n matrices
with either orthogonal rows or columns. We denote by ⊙
the Hadamard product, i.e., entry-wise multiplication. For
convenience, whenever j > i we adopt the abbreviations
Wj:i = Wj · · ·Wi and W⊤

j:i = W⊤
i · · ·W⊤

j , whereas
both are identity if j < i.

2. Warm-up Study: Deep Matrix Factorization
Towards gaining theoretical insights into the phenomena in
Figure 2, we first build some intuition based on the problem
of deep matrix factorization. Under simplified settings, we
rigorously unveil the emergence of low-dimensionality and
compressibility in gradient descent learning dynamics.

2.1. Basic Setup

Given a low-rank matrix Φ ∈ Rdx×dy with rank(Φ) = r∗,
we approximate the matrix Φ by an L-layer deep overpa-
rameterized factorization

f(Θ) := WLWL−1 · · ·W2W1 = WL:1, (1)

where Θ = (Wl)
L
l=1 are the parameters with weights Wl ∈

Rdl×dl−1 for l ∈ [L]. We consider the case where the
weights are all square d0 = d1 = · · · = dL = d, and learn
the parameters Θ by solving

min
Θ

ℓ(Θ) =
1

2
∥f(Θ)−Φ∥2F (2)

via gradient descent (GD) from scaled orthogonal initializa-
tion, i.e., we initialize parameters Θ(0) such that

Wl(0)Wl(0)
⊤ = Wl(0)

⊤Wl(0) = ϵ2l Id, l ∈ [L] (3)

where ϵl > 0. We assume this for ease of analysis, and
believe that our results could hold for arbitrary small initial-

ization. For each weight matrix, the GD iterations can be
written as

Wl(t+1) = (1−ηλ)Wl(t)−η∇Wl
ℓ(Θ(t)), l ∈ [L] (4)

for t = 0, 1, 2, . . . , where η > 0 is the learning rate and
λ ≥ 0 is an optional weight decay parameter.

2.2. Main Theorem

We show that learning only occurs within an invariant low-
dimensional subspace of the weight matrices, whose dimen-
sionality depends on rank(Φ).

Theorem 2.1. Let Wl(t) satisfy the initialization scheme
(3) and updates (4), and suppose Φ ∈ Rd×d is at most rank
r and let m := d− 2r > 0. Then there exist orthogonal ma-
trices (Ul)

L
l=1 ⊂ Od×d and (Vl)

L
l=1 ⊂ Od×d (depending

only on Θ(0) and Φ) satisfying Vl+1 = Ul for l ∈ [L− 1],
such that Wl(t) admits the decomposition

Wl(t) = Ul

[
W̃l(t) 0
0 ρl(t)Im

]
V ⊤
l (5)

for all l ∈ [L] and t ≥ 0, where W̃l(t) ∈ R2r×2r with
W̃l(0) = ϵlI2r, and

ρl(t) = ρl(t− 1) · (1− ηλ− η ·
∏
k ̸=l

ρ2k(t− 1)) (6)

for all l ∈ [L] and t ≥ 1 with ρl(0) = ϵl.

In the following, we discuss several implications of our
result and its relationship to previous work.

• SVD dynamics of weight matrices. The decomposition
(5) is closely related to the singular value decomposi-
tion (SVD) of Wl(t). Specifically, let Ul = [Ul,1 Ul,2],
Vl = [Vl,1 Vl,2], where Ul,1,Vl,1 ∈ Od×2r, Ul,2,Vl,2 ∈
Od×(d−2r). Let W̃l(t) = Ũl(t)Σ̃l(t)Ṽ

⊤
l (t) be an SVD

of W̃l(t), where Ũl(t), Ṽl(t) ∈ O2r and Σ̃l(t) ∈ R2r×2r

is a diagonal matrix. Then, by (5) we can write Wl(t) as[
Ul,1Ũl(t) Ul,2

] [Σ̃l(t) 0
0 ρ(t)Im

] [
Vl,1Ṽl(t) Vl,2

]⊤
which is essentially an SVD of Wl(t) (besides the or-
dering of singular values). According to this, we can
verify that ρ(t) is a (repeated) singular value undergoing
minimal changes across iterations illustrated in Figure 3
(left). Additionally, these repeated singular values corre-
spond to invariant subspaces Ul,2,Vl,2 that are stationary
throughout GD, as seen in Figure 3 (middle and right).

• Low-rank bias. From (6), we can show under mild as-
sumptions that the GD trajectory for each weight matrix
either remains or tends towards a solution with rank at
most 2r. This is true whether we employ implicit or ex-
plicit regularization. Indeed, if we use small initialization
ϵl ≈ 0 with no weight decay λ = 0, then the fact that
ρl is a decreasing sequence (w.r.t. iteration) implies that
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Figure 3. Evolution of SVD of weight matrices. We visualize the SVD dynamics of the first layer weight matrix of an L = 3 layer deep
matrix factorization for a random matrix with d = 30, r∗ = 3, ϵl = 1 throughout GD without weight decay. Left: Magnitude of the i-th
singular value σi(t) at iteration t. Middle: Angle ∠(vi(t),vi(0)) between the i-th right singular vector at iteration t and initialization.
Right: Angle ∠(ui(t),ui(0)) between the i-th left singular vector at iteration t and initialization.

the approximate rank of Wl(t) can be no more than 2r
throughout the entire trajectory. On the other hand, if we
use weight decay with λ > 0, then we have ρl(t) → 0 as
t → ∞. This forces Wl(t) towards a solution of rank at
most 2r when the training converges. See Appendix E.2
for a formal statement and proof. This result is consistent
with previous findings on low-rank and simplicity bias in
deep networks (Huh et al., 2022; Galanti & Poggio, 2022;
Li et al., 2020; Chou et al., 2024).

• Comparison to prior arts. In contrast to existing work
studying implicit bias of GD towards low-rank solutions
(Gunasekar et al., 2017; Arora et al., 2019), our result
explicitly shows how GD finds these solutions. Moreover,
unlike previous work on implicit bias (Min et al., 2021;
Gissin et al., 2019; Arora et al., 2019; Vardi & Shamir,
2021), we also examine the effect of weight decay, which
is commonly employed during the training of deep net-
works. Our analysis is distinct from that of (Saxe et al.,
2014; 2019), which studied continuous time dynamics
under the special (separable) setting WL:1(0) = UV ⊤

with Φ = UΣV ⊤. In comparison, our result applies to
discrete time dynamics and holds for initialization that
is agnostic to the target matrix. It should also be noted
that our result does not depend on balanced initialization
like those in (Arora et al., 2018a), as the initialization
scale ϵl for each layer can be arbitrarily different from
one another.

A sketch of analysis. We now provide a rough sketch for
the beginning of the proof of Theorem 2.1 in the special case
of small initialization ϵl = ϵ ≈ 0 for all l ∈ [L] and λ = 0,
highlighting the construction of the invariant subspace at
initialization. The full proof can be found in Appendix E.1.

Proof sketch. Since ϵL ≈ 0, from the gradient of ℓ(Θ) (see
Appendix E), we have

G1 := ∇W1ℓ(Θ(0)) ≈ −W⊤
L:2(0)Φ (7)

implying that the rank of G1 is (approximately) at most r.
Now consider the subspace S = N (G1) ∩N (G⊤

1 W1(0)),
where we have dim S ≥ d− 2r. Then, there exist orthonor-
mal sets {vi}d−2r

i=1 and {ui}d−2r
i=1 which satisfy G1vi = 0,

ui ∝ W1(0)vi and therefore

G⊤
1 ui ∝ G⊤

1 W1(0)vi = 0

so along with the orthogonality of W1(0), the pairs (ui,vi)
form singular vector pairs of both W1(0) and W1(1) simul-
taneously as they remain unchanged by the gradient update
G1, giving the last d − 2r columns of V1 and U1 respec-
tively. To see that we can take V2 = U1, for instance, we
note that

∇W2ℓ(Θ(0)) · ui ≈ −W⊤
L:3(0)ΦW⊤

1 (0)ui

∝ W⊤
L:3(0)Φvi = 0

by (7), showing that ui are invariant under gradient updates
in the second layer.

2.3. Compression of Overparameterized Factorization

We now show that, as a consequence of Theorem 2.1 and
the proof sketch, we can run GD on dramatically fewer
parameters to achieve a near identical end-to-end trajectory
as the original (full-width) factorization; see Figure 4.

Constructing the “equivalent” compressed factorization.
More specifically, given that Φ is at most rank r and d −
2r > 0, from Theorem 2.1 we observe that

WL:1(t) = UL,1W̃L:1(t)V
⊤
1,1 +

(
L∏

l=1

ρl(t)

)
·UL,2V

⊤
1,2

≈ UL,1W̃L:1(t)V
⊤
1,1︸ ︷︷ ︸

=:fC(Θ̃,UL,1,V1,1)

, ∀ t = 1, 2, . . . , (8)

when we use initialization of small scale (i.e., (ϵl)
L
l=1

are small). Here, W̃L:1 = W̃LW̃L−1 · · · W̃1 with
compressed weights W̃l ∈ R2r×2r. Correspondingly,
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fC(Θ̃,UL,1,V1,1) denotes the compressed function with
compressed parameters Θ̃ = (W̃l)

L
l=1. As such, we can

expect that solving

min
Θ̃

ℓC(Θ̃) =
1

2
∥fC(Θ̃,UL,1,V1,1)−Φ∥2F (9)

will approximately give the same solution as (2).

Constructing the factors (Ul,Vl)
L
l=1. As Theorem 2.1

only showed the existence of (Ul,Vl)
L
l=1, to solve (9) via

GD, we need a practical recipe for constructing (Ul,Vl)
L
l=1

efficiently at initialization of small scale ϵl. This can be
achieved based upon our proof sketch in Section 2.2: we
compute G1 = ∇W1

ℓ(Θ(0)) ∈ Rd×d, find an orthonormal
set {vi}d−2r

i=1 contained in S = N (G1) ∩ N (G⊤
1 W1(0)),

and complete to an orthonormal basis to yield V1. The
remaining Ul,Vl can then be iteratively constructed via

Ul = Wl(0)Vl/ϵl, Vl+1 = Ul, l = 1, · · · , L− 1,

and UL = WL(0)VL/ϵL. Finally, we take the first 2r
columns of UL and V1 to yield UL,1 and V1,1, respectively.
It should be noted that these compressed factors are related
to, yet distinct from, spectral initialization, which is well-
studied in the literature (Chi et al., 2019; Khodak et al.,
2020; Stöger & Soltanolkotabi, 2021). Since Ul,1,Vl,1 are
constructed via orthogonal complements to nullspaces in-
volving the gradient, these directions do indeed correlate
with the top singular subspaces of Φ in the deep matrix fac-
torization case (although we do not use the singular value
information). On the other hand, our approach is more gen-
eral through the lens of compression, as it can be applied to
a given deep overparameterized factorization trained on an
arbitrary loss.

Optimization, complexity, and approximation error. In
summary, we can approximately solve the original problem
by solving (9) via GD for the compressed parameters Θ̃ =

(W̃l)
L
l=1, starting from small initialization (ϵl ≈ 0). The

factors UL,1,V1,1 can be efficiently constructed based upon
an iterative scheme that we discussed above from the initial
weights.

Comparing the parameter counts of the compressed
fC(Θ̃,UL,1,V1,1) vs. the original f(Θ), we only need to
optimize 4L · r2 parameters compared to the original L · d2.
Since r ≪ d, our approach leads to significant improvement
in efficiency during GD; see Figure 4 (right). On the other
hand, compression requires some additional computation to
construct the factors UL,1 and V1,1 prior to training, which
involves taking a gradient of the first weight in the original
factorization followed by an SVD or QR decomposition to
compute an orthonormal basis for S . While this requires an
additional O(d3) compute, this has the same complexity as
a single iteration of GD for the original factorization and is
therefore a negligible overhead when comparing the two.

Figure 4. Network compression for deep matrix factorization.
Comparison of trajectories for optimizing the original problem
(2) vs. the compressed problem (9) with L = 3, d = 1000,
r = r∗ = 5, and ϵl = 10−3. Left: Principal components of
end-to-end GD trajectories. Right: Training loss vs. wall-time
comparison.

Finally, the following result demonstrates that our compres-
sion method can achieve an almost identical end-to-end
trajectory when we use small initializations; see Figure 4
(left).

Proposition 2.2. For r such that m := d − 2r > 0, if we
run GD on the compressed weights Θ̃ as described above
for the loss (9), we have∥∥∥f(Θ(t))− fC(Θ̃(t),UL,1,V1,1)

∥∥∥2
F
≤ m ·

L∏
l=1

ϵ2l

for any iterate t = 0, 1, 2, · · · . Here, ϵl is the initialization
scale for the weight Wl(0).

The key idea of Proposition 2.2 is that GD is invariant under
orthogonal transformations, and each factor W̃l in the end-
to-end factorization in (9) is the result of an orthogonal
transformation of Wl. Then, the approximation error m ·∏L

l=1 ϵ
2
l is only due to the approximation we showed in (8).

We defer the full proof to Appendix E.3.

3. Application I: Deep Matrix Completion
In this section, we show that we can generalize our method
in Section 2 from vanilla matrix factorization to solving
low-rank matrix completion problems (Candes & Recht,
2012; Candès & Tao, 2010; Davenport & Romberg, 2016)
via compressed deep factorizations. Given a ground-truth
Φ ∈ Rd×d with rank r∗ ≪ d, the goal of low-rank matrix
completion is to recover Φ from only a few number of
observations encoded by a mask Ω ∈ {0, 1}d×d. Adopting
a matrix factorization approach, we minimize the objective

ℓmc(Θ) =
1

2
∥Ω⊙ (f(Θ)−Φ)∥2F , (10)

where f(Θ) is the deep overparameterized factorization
introduced in (1). The problem simplifies to deep matrix
factorization (2) that we studied earlier when Ω = 1d1

⊤
d

in the full observation case. Additionally, (10) reduces to
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Figure 5. Network compression for deep matrix completion. Comparison of trajectories for optimizing the original problem (10) vs. the
compressed problem (11) with γ discrepant updates (γ = 0.01) and ablating γ (γ = 0) with L = 3, d = 1000, r = r∗ = 5, ϵl = 10−3

and 20% of entries observed. Left: Principal components of end-to-end trajectories of each factorization. Middle: Recovery error vs.
iteration comparison. Right: Recovery error vs wall-time comparison.

vanilla (shallow) matrix factorization when L = 2, whose
global optimality and convergence have been widely studied
under various settings (Jain et al., 2013; Zheng & Lafferty,
2016; Sun & Luo, 2016; Ge et al., 2016; Bhojanapalli et al.,
2016; Ge et al., 2017; Gunasekar et al., 2017; Li et al., 2019;
Chi et al., 2019; Li et al., 2018b; Soltanolkotabi et al., 2023;
Sun et al., 2018; Zhang et al., 2020; Ding et al., 2021).

A double-edged sword of overparameterization. In
practice, the true rank r∗ is not known – instead, we as-
sume to have an upper bound r of the same order as r∗,
i.e., r∗ ≤ r ≪ d. Surprisingly, overparameterization has
advantages in terms of both depth L and width r:

• Benefits of depth: mitigating overfitting. When r > r∗,
it has been demonstrated (Arora et al., 2019) that optimiz-
ing deeper factorizations (i.e., L ≥ 3) generalize better in
the low sample regime, while their shallow counterparts
overfit; see Figure 1 (left).

• Benefits of width: improving convergence. On the other
hand, increasing the width r of the deep factorization
beyond r∗ results in accelerated convergence in terms of
iterations, see Figure 1 (right).

However, the advantages of overparameterization come with
the challenges of much higher computational costs. For an
L-layer factorization of (full)-width d, we require O(L · d3)
multiplications per iteration to evaluate gradients and need
to store O(L · d2) parameters, where d is often very large.
Using ideas from Section 2, however, we can obtain the
benefits of overparameterization without the extra computa-
tional costs.

Compression for deep matrix completion. Given the
similarity between deep matrix factorization and completion
(i.e., Ω = 1d1

⊤
d vs arbitrary Ω), it seems straightforward

to generalize our compression methods in Section 2.3 to

deep matrix completion. However, as shown by the orange
trace in Figure 5, direct application does not work well, as
the compressed factorization’s trajectory diverges from that
of the original. This is because the compressed subspaces
UL,1,V1,1 ∈ Rd×2r̂ computed at the initialization Θ(0) via
the gradient

∇W1ℓmc(Θ(0)) ≈ −W⊤
L:2(0)[Ω⊙Φ]

can be misaligned with the true subspace due to the pertur-
bation by the mask Ω.

Nonetheless, this issue can be mitigated by slowly updating
UL,1,V1,1 during training. Specifically, compared to (9),
we minimize

min
Θ̃,UL,1,V1,1

1

2
∥Ω⊙ (fC(Θ̃,UL,1,V1,1)−Φ)∥2F (11)

via GD by updating Θ̃,UL,1,V1,1 simultaneously every
iteration, with a learning rate η on Θ̃ along with a dis-
crepant learning rate γη on UL,1,V1,1. Because we update
UL,1,V1,1 slower than updating Θ̃, we generally choose
γ > 0 to be small and tuned accordingly for the given
problem.

As a result, we reduce computational costs to O((L+d) ·r2)
multiplications per iteration for computing gradients, and
O(d · r + L · r2) parameters. Yet still the trajectory of
the deep compressed factorization ultimately aligns with
that of the original, while converging roughly 5× faster
w.r.t. wall-time, as demonstrated in Figure 5. Moreover, the
accelerated convergence induced by the full-width trajectory
results in the compressed factorization being 3× faster than
randomly initialized factorizations of similar width – see
Appendix D.1 for more details.

4. Application II: Model Fine-tuning
In this section, we show that our compression idea can
be further extended to parameter-efficient fine-tuning of
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Figure 6. Deep LoRA shows better perfor-
mance on few shot fine-tuning over vanilla
LoRA, with varying numbers of training
samples. For each case, we draw n samples
at random from STS-B over 20 trials with
different seeds, and measure performance
on the validation split of each method using
the same train set.

Figure 7. Deep LoRA finds lower rank so-
lutions compared to vanilla LoRA. We plot
a histogram of numerical ranks for Deep
LoRA and vanilla LoRA with r = 8 after
adapting to STS-B with 256 samples. The
numerical rank is computed as the number
of singular values σi greater than 10−8 and
dσ1ϵ where ϵ is machine epsilon.

Figure 8. Deep LoRA is more robust to the
choice of rank compared to vanilla LoRA.
For each choice of rank r, we draw 16 sam-
ples at random from STS-B over 5 trials with
different seeds, and measure performance on
the validation split of each method using the
same train set.

pretrained language models, specifically via low-rank adap-
tation (LoRA) (Hu et al., 2021). In particular, inspired by
our approach for deep matrix completion, we propose Deep
Low-Rank Adaptation (Deep LoRA), which consistently
outperforms vanilla LoRA in the limited sample regime.

4.1. Deep Low-Rank Adaptation (Deep LoRA)

Background on LoRA. With the ever-growing size of pre-
trained models and countless downstream tasks, full model
fine-tuning is often computationally infeasible. Given a
pretrained model whose parameters consist of a collection
of dense weight matrices {W0k}mk=1 ⊂ Rd×d (e.g., the
query/key/value projections of a transformer (Vaswani et al.,
2017)), LoRA seeks to adapt each layer to a given task by
freezing the pretrained weight {W0k}mk=1 and optimizing
an extra trainable low-rank factorization on top. In other
words, the fine-tuned weight Wk is given by

Wk = W0k +
α

r
W

(2)
k W

(1)
k

where α > 0 is a tunable scale parameter and W
(2)
k ∈

Rd×r, W (1)
k ∈ Rr×d with r ≪ d, thereby substantially

reducing the number of trainable parameters during fine-
tuning.

Proposed method: Deep LoRA. For vanilla LoRA, if we
view adapting each weight matrix of model as an individ-
ual low-rank factorization problem, we have demonstrated
in previous sections that overparameterization and subse-
quently compressing factorizations improves generalization
with minimal extra computational costs. With this in mind,
we can employ a deep overparameterized adaptation of each

pretrained weight as

Wk = W0k +W
(L)
k · · ·W (2)

k W
(1)
k︸ ︷︷ ︸

=:∆Wk

(12)

where each W
(i)
k is full-width, i.e., W (i)

k ∈ Rd×d. Here,
L > 0 is the depth, and typically we choose L = 3, which
is precisely the setting of Figure 2. From the figure, we can
see that (i) all the converged weights {∆Wk}mk=1 are very
low-rank (left panel), (ii) the learning dynamics each for
each weight approximately stay within the same invariant
subspace throughout the iterations (middle panel), and (iii)
this happens independent of the training loss decreasing
(right panel).

These observations imply that deep overparameterized fac-
torizations in Deep LoRA are highly compressible, so we
can apply the compression method from deep matrix com-
pletion in Section 3 to compress the learning dynamics for
each individual weight for model fine-tuning. Here, the
major differences of our compression approach for deep
LoRA from that of deep matrix completion is that (i) we
have a separate compressed factorization for each layer to
be adapted, and (ii) the fine-tuned loss function can be tai-
lored for specific tasks (e.g., the cross-entropy) besides the
ℓ2 loss.

Advantages of Deep LoRA. Compared to vanilla LoRA,
Deep LoRA has clear advantages that we highlight below.
More details are provided in Section 4.2.

• Less overfitting in limited data regime. Fine-tuning
overparameterized models using LoRA can still result
in overfitting in few shot or limited data regime (Sebas-
tian Raschka, 2023). In comparison, the extra depth in
(12) of Deep LoRA can help prevent overfitting (see Fig-
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Table 1. Improvement of Deep LoRA over vanilla LoRA for limited data GLUE fine-tuning. For each task, we draw 1024 samples at
random over 10 trials with different seeds, and report the performance gap (with variance) on the validation split between Deep LoRA and
vanilla LoRA using the same train set.

COLA MNLI MRPC QNLI QQP

∆ +0.090±0.002 +0.011±0.0005 +0.0042±0.001 +0.048±0.0009 +0.005±0.0002

RTE SST-2 STS-B OVERALL

∆ +0.029±0.002 +0.019±0.0006 +0.018±0.00006 +0.028±0.002

ure 6), which is similar to deep matrix completion in
Figure 1.

• Robustness to the hyperparameter r. As shown in Fig-
ure 8, by exploiting the intrinsic low-dimensional dynam-
ics in GD via overparameterization in width, our approach
is robust to the choice of the rank r in fine-tuning.

Deep LoRA only requires 3r2 additional trainable param-
eters for each adapted layer compared to vanilla LoRA,
where r is relatively small (e.g., r = 8).

4.2. More Experimental Details

To evaluate our approach, we use a pretrained BERT (Devlin
et al., 2019) base model and apply adaptation on all attention
and feedforward weights in the transformer, resulting in 72
adapted layers in total. Unless stated otherwise, we use
r = 8 for both vanilla and Deep LoRA throughout all
experiments, in which case Deep LoRA has roughly 0.01%
more parameters (with respect to BERT) than vanilla LoRA.
We utilize Adam (Kingma & Ba, 2014) as an optimizer
for both methods. See Appendix B for more details on the
experimental setup.

Advantage I: Better generalization with limited data.
We first evaluate our approach on tasks in the GLUE bench-
mark (Wang et al., 2018), which is a standard benchmark
for natural language understanding. To test the performance
in a limited data setting, for one given trial of a single task,
we randomly sample 1024 examples from the task data for
fine-tuning, and compare the difference in performance on
the same train set between Deep LoRA and vanilla LoRA
on the entire validation split. From the results shown in
Table 1, we can see that Deep LoRA delivers significant
improvements across most tasks compared to vanilla LoRA,
and on average improves performance by nearly 3 points, a
notable margin.

This improvement in performance becomes more pro-
nounced in scenarios with severely limited data, such as
few-shot settings. Applying the same sampling procedure
as in the prior study to the STS-B dataset, we assess both

approaches using only n ∈ {16, 64, 256} training instances.
Experiments in Figure 6 illustrate that Deep LoRA consis-
tently surpasses vanilla LoRA across all sample sizes, with
the most significant difference observed when n = 16.

Deep LoRA finds lower rank solutions. We find that at
the end of fine-tuning, Deep LoRA finds lower rank solu-
tions for ∆Wk than vanilla LoRA, as shown in Figure 7.
In the limited data setting (256 samples), we see that all
adapted layers in the vanilla LoRA saturate the constrained
numerical rank r = 8, while most layers in Deep LoRA
are perturbed by matrices with numerical ranks between 0
and 4.1 This suggests that Deep LoRA can adaptively select
the appropriate rank for each layer depending on the task.
This low-rank bias induces implicit regularization during
the fine-tuning process and ultimately prevents overfitting
to the task, particularly when only few training samples are
available. As a practical consideration, Deep LoRA also
requires a fraction of the memory cost to store compared to
vanilla LoRA due to the parsimony in adapted weights.

Advantage II: Robustness to choice of rank r. Due to
the scarcity of the target training data, choosing the rank r
in LoRA is a delicate process – it needs to be large enough
to capture the complexity in modeling the downstream task,
while small enough to prevent overfitting. The proposed
Deep LoRA, on the other hand, avoids catastrophic over-
fitting as we increase r, as demonstrated in Figure 8. This
observation mirrors the behavior seen in deep matrix com-
pletion, as illustrated in Figure 1. For shallow factorizations,
an overestimation of rank r leads to an increase in the gen-
eralization error. In contrast, deep factorizations remain
resilient to overfitting.

Finally, we show that Deep LoRA outperforms vanilla
LoRA for few-shot natural language generation fine-tuning
in Appendix C. We also provide an ablation study in Ap-
pendix D.2 on the compression mechanism for Deep LoRA
and show that it is crucial for accelerating training.

1A majority of them are in fact zero, i.e., no change from
pretrained weights.

8



Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation

5. Conclusion & Future Directions
In this work, we have provided an in-depth exploration of
low-dimensionality and compressibility in the dynamics
of deep overparameterized learning, providing theoretical
understandings in the setting of deep matrix factorization
and applications to efficient deep matrix completion and
language model adaptation. Finally, we outline a couple
potential future directions following this work.

Compressibility in non-linear settings. Although the
results on network compression in Section 2 exploit the
specific gradient structure of deep matrix factorizations, we
believe that our analysis can provide meaningful direction
for analyzing the fully non-linear case.

To sketch an idea, consider the setting of Section 2.1 except
with a non-linear factorization, i.e., (1) becomes

f(Θ) := WLσ(WL−1 · · ·σ(W2σ(W1))) (13)

where σ is (for example) the entry-wise ReLU activation.
For concreteness, consider the L = 3 case. The gradient of
the loss with respect to, e.g., W2 in (2) is given by

∇W2
ℓ(Θ) = [h(W2σ(W1))⊙ (W⊤

3 E)]σ(W1)
⊤

where h is the entry-wise unit step function and E =
f(Θ) − Φ. Comparing this to the gradient in the linear
setting (14), there is a great deal of shared structure, with
the two main differences being the non-linearity applied
to W1 in the post factor and a projection on the inner
term via h(W2σ(W1)). However, we still have the low-
rank structure of W⊤

3 E, and the zeroing out of certain
entries preserves approximate spectral properties of the ma-
trix (Chatterjee, 2015). Moreover, this projection is akin
to the masking via Ω as in deep matrix completion from
Section 3, for which we do find compressible dynamics. In
Figure 9, we plot the singular value spectrum of the above
gradient at small initialization, finding that the top r∗ sin-
gular values separate from the rest of the spectrum. This
suggests that we may be able to identify a low-dimensional
subspace along which we can achieve similar dynamics to
the full parameter space.

Extensions to Deep LoRA. We have demonstrated the
efficacy of Deep LoRA for natural language understanding
and generation in Section 4 and Appendix C respectively.
However, it would be meaningful to evaluate Deep LoRA in
other modalities, e.g., diffusion models, where fine-tuning
on limited data is commonplace. Moreover, the high degree
of alignment at initialization to the final adapted subspaces
shown in Figure 2 suggests that SGD (rather than Adam) can
be used for the outer factors of Deep LoRA, further reducing
memory costs. Finally, exploring the use of second-order
methods to accelerate fine-tuning along the rank-r subspace
could be a potential improvement.

Figure 9. Low-rank gradient of non-linear factorizations at ini-
tialization. Singular values spectrum of ∇W2ℓ(Θ) at initializa-
tion for non-linear factorization with L = 3, d = 1000, r∗ = 5,
and ϵl = 10−3. The top 5 singular values separate from the tail of
the spectrum.

Implications for representation learning. The low-rank
bias in the end-to-end features of deep networks may have
important connections to emergent phenomena in represen-
tation learning, such as deep neural collapse (Zhai et al.,
2024; Zhou et al., 2022b; Yaras et al., 2022; Wang et al.,
2022; Zhou et al., 2022a; Zhu et al., 2021; Beaglehole et al.,
2024; Li et al., 2024), whereby the last-layer representa-
tions exhibit surprisingly simple structures. Moreover, by
uncovering the low-rank evolution of individual weights,
we could shed light on more intricate phenomena such as
progressive neural collapse (He & Su, 2023; Wang et al.,
2023).
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Novikova, J., Dušek, O., and Rieser, V. The e2e dataset:
New challenges for end-to-end generation. In Proceed-
ings of the 18th Annual SIGdial Meeting on Discourse
and Dialogue, pp. 201–206, 2017.

Oymak, S., Fabian, Z., Li, M., and Soltanolkotabi, M. Gen-
eralization guarantees for neural networks via harness-
ing the low-rank structure of the jacobian,. In ICML
Workshop on Generalization in Deep Networks, 2019.
Long version at https://arxiv.org/abs/1906.
05392.

Papineni, K., Roukos, S., Ward, T., and jing Zhu, W. Bleu:
a method for automatic evaluation of machine translation.
pp. 311–318, 2002.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E.,
and Ramabhadran, B. Low-rank matrix factorization
for deep neural network training with high-dimensional
output targets. In 2013 IEEE international conference on
acoustics, speech and signal processing, pp. 6655–6659.
IEEE, 2013.

Saxe, A., McClelland, J., and Ganguli, S. Exact solutions to
the nonlinear dynamics of learning in deep linear neural
networks. In Proceedings of the International Confer-
ence on Learning Represenatations 2014. International
Conference on Learning Represenatations 2014, 2014.

Saxe, A. M., McClelland, J. L., and Ganguli, S. A mathe-
matical theory of semantic development in deep neural
networks. Proceedings of the National Academy of Sci-
ences, 116(23):11537–11546, 2019.

Sebastian Raschka, P. Practical tips for finetuning llms us-
ing lora (low-rank adaptation), Nov 2023. URL https:
//magazine.sebastianraschka.com/p/
practical-tips-for-finetuning-llms.
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Appendices

Appendix A Related Works
Appendix B Experimental Details
Appendix C Evaluation on Natural Language Generation
Appendix D Ablating Compression Mechanism
Appendix E Proofs

In Appendix A, we provide an in-depth discussion of related works. In Appendix B, we provide further details for
experiments in Section 4. In Appendix C, we carry out additional experiments for evaluating Deep LoRA for few-shot
natural language generation fine-tuning. In Appendix D, we carry out an ablation study for the compression mechanism
presented in the main paper, for both deep matrix completion and Deep LoRA. In Appendix E, we provide proofs of all
claims from Section 2.

A. Related Works & Future Directions
Implicit regularization. The first work to theoretically justify implicit regularization in matrix factorization (Gunasekar
et al., 2017) was inspired by empirical work that looked into the implicit bias in deep learning (Neyshabur et al., 2015) and
made the connection with factorization approaches as deep nets using linear activations2. Since then a long line of literature
has investigated deep factorizations and their low-rank bias, including (Arora et al., 2019; Moroshko et al., 2020; Timor
et al., 2023); in fact there is so much work in this direction that there is already a survey in the Communications of the ACM
(Vardi, 2023).

Several older works explicitly imposed low-rank factorization in deep networks (Jaderberg et al., 2014; Sainath et al., 2013)
or studied a low-rank factorization of the weights after the learning process (Denil et al., 2013). Newer works along these
lines discuss initialization and relationships to regularization (Khodak et al., 2020).

The work in Oymak et al. (2019) also discusses low-rank learning in deep nets, by studying the singular vectors of the
Jacobian and arguing that the “information space” or top singular vectors of the Jacobian are learned quickly. Very recent
work has shown that the typical factorization of the weights in an attention layer of a transformer into key and query layers
has an implicit bias towards low-rank weights (Tarzanagh et al., 2023).

Overparameterization. There is a sizeable body of work discussing the various benefits of overparameterization in
deep learning settings, of which we discuss a few. Du & Hu (2019) demonstrate that width is provably necessary to
guarantee convergence of deep linear networks. Arora et al. (2018b) show that overparameterization can result in an
implicit acceleration in optimization dynamics for training deep linear networks. Allen-Zhu et al. (2019b) argue that
overparameterization plays a fundamental role in rigorously showing that deep networks find global solutions in polynomial
time. Arpit & Bengio (2019) shows that depth in ReLU networks improves a certain lower bound on the preservation of
variance in information flowing through the network in the form of activations and gradients.

LoRA and its variants. There is a substantial body of existing work in the realm of parameter efficient fine-tuning – see
Xu et al. (2023) for a comprehensive survey. However, the method that has arguably gained the most traction in recent years
is LoRA (Hu et al., 2021), in which trainable rank decomposition matrices are added on top of frozen pretrained weights to
adapt transformers to downstream tasks. Since then, there has been a plethora of variants. Generalized LoRA (Chavan et al.,
2023) proposes a general formulation of LoRA that encapsulates a handful of other parameter efficient adapters. AdaLoRA
(Zhang et al., 2022) parameterizes the updates in an SVD-like form and iteratively prunes the inner factor to dynamically
control the factorization rank. VeRA (Kopiczko et al., 2024) parameterizes the updates via diagonal adapters which are
transformed via random projections that are shared across layers.

The idea of LoRA was initially inspired by the notion of low intrinsic dimension of fine-tuning pretrained models. Intrinsic
dimension for an objective was first proposed in Li et al. (2018a), where it was defined to be the minimum dimensionality

2Of course linear activation has been considered throughout the history of artificial neural nets, but the fact that a multilayer network
with linear activation has an equivalent one-layer network meant this architecture was summarily ignored. This is evidenced in (Dalton &
Deshmane, 1991): “In summary, it makes no sense to use a multilayered neural network when linear activation functions are used.”
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needed for a random subspace to contain a solution to the objective. Using this idea, Aghajanyan et al. (2021) demonstrated
that the objective of fine-tuning a pretrained model has a low intrinsic dimension. Building on this, Zhang et al. (2023)
learns the intrinsic subspace of a given fine-tune task from the original parameter trajectory to investigate transferability
between these task-specific subspaces.

B. Experimental Details
The pretrained BERT and T5 models (and tokenizer) are retrieved from the transformers library (Wolf et al., 2019) as
google-bert/bert-base-cased and google-t5/t5-base respectively. We choose the best learning rate for
each method from η ∈ {10−5, 10−4, 10−3, 10−2} on STS-B with 1024 samples, and find that η = 10−4 and α = 8 works
best for vanilla LoRA, while η = 10−2 with γ = 10−2 works best for Deep LoRA (although γ can be chosen relatively
freely). We tried using a linear decay learning rate but found worse results in the limited data setting for both vanilla and
Deep LoRA. We use a maximum sequence length of 128 tokens for all tasks. Vanilla LoRA is initialized in the same fashion
as the original paper (i.e., W (2)

k is initialized to all zeros, W (1)
k is initialized to be Gaussian with standard deviation 1),

whereas Deep LoRA is compressed from a full-width 3-layer factorization with orthogonal initialization of scale ϵl = 10−3.
We use a train batch size of 16, and train all models until convergence in train loss, and use the final model checkpoint
for evaluation. For generative tasks, we use beam search (Freitag & Al-Onaizan, 2017) with beam size 4 and maximum
generation length of 64. All experiments are carried out on a single NVIDIA Tesla V100 GPU, with time and memory usage
reported in Table 2. The code can be found at https://github.com/cjyaras/deep-lora-transformers.

Table 2. Comparison of step wall-time and memory usage for vanilla and Deep LoRA.

METHOD ITERATION WALL-TIME (MS) MEMORY USAGE (GB)

VANILLA LORA 102 12.526
DEEP LORA 106 12.648

C. Evaluation on Natural Language Generation
In addition to the natural language understanding tasks evaluated in Section 4, we test the effectiveness of Deep LoRA
compared to vanilla LoRA for few-shot fine-tuning for natural language generation (NLG), specifically on the E2E dataset
(Novikova et al., 2017) with the T5 base model (Raffel et al., 2020). All hyperparameters are as reported in Section 4 and
Appendix B. The results are shown in Table 3. We observe significant improvements using Deep LoRA in BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) scores, with marginally worse results with respect to METEOR (Banerjee & Lavie,
2005) score.

Table 3. Improvement of Deep LoRA over vanilla LoRA for few-shot NLG fine-tuning. On the E2E dataset, we draw 16 samples at
random over 10 trials with different seeds, and report the average performance gap on the validation split between Deep LoRA and vanilla
LoRA for various metrics using the same train set.

BLEU ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUM METEOR

∆ +0.033 +0.032 +0.056 +0.061 +0.047 −0.00036

D. Ablating Compression Mechanism
D.1. Deep Matrix Completion

We compare the training efficiency of deep 2r-compressed factorizations (within a wide network of width d ≫ r) with
randomly initialized deep factorizations of width 2r. As depicted in Figure 10 (left), the compressed factorization requires
fewer iterations to reach convergence, and the number of iterations necessary is almost unaffected by r. Consequently,
training compressed factorizations is considerably more time-efficient than training narrow networks of the same size,
provided that r is not significantly larger than r∗. The distinction between compressed and narrow factorizations underscores
the benefits of wide factorizations, as previously demonstrated and discussed in Figure 1 (right), where increasing the width
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Figure 10. Comparing efficiency of compressed networks vs. randomly initialized narrow networks for deep matrix completion
with different overestimated r and L = 3, d = 1000, r∗ = 5, ϵl = 10−3 and 20% of entries observed. Left: Number of iterations to
converge. Right: Wall-time to converge.

results in faster convergence. However, increasing the width alone also increases computational costs – by employing
compression, we can achieve the best of both worlds.

D.2. Deep LoRA

Figure 11. Compression enables faster convergence of Deep LoRA. We compare full-width, compressed, and narrow deep factorizations
for adapting to STS-B with 16 samples. Left: Batch train loss vs. iterations. Right: STS-B evaluation metric (Pearson correlation) vs.
iterations.

We verify that compression is crucial for the efficiency of Deep LoRA. We compare the performance of three different
approaches: (i) Original, where we use a three-layer full-width factorization as in (12), (ii) Compressed, which is the
rank-r compression of (12) (a.k.a. Deep LoRA), and (iii) Random, where the W

(i)
k in (12) are initialized randomly with

W
(2)
k ∈ Rr×r. We can see that via compression, Deep LoRA can achieve similar convergence behavior to the original

overparameterized factorization with much fewer parameters, while the randomly initialized version takes much longer to
train, similar to the result for deep matrix completion in Appendix D.1.

E. Proofs
The analytic form of the gradient ∇Θ ℓ(Θ) is given by

∇Wl
ℓ(Θ) = W⊤

L:l+1EW⊤
l−1:1, l ∈ [L] (14)

where E = f(Θ)−Φ, which when substituted into (4) gives the update rules

Wl(t+ 1) = (1− ηλ)Wl(t)− ηW⊤
L:l+1(t)E(t)W⊤

l−1:1(t), l ∈ [L] (15)
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for t = 0, 1, 2, . . . , where E(t) = f(Θ(t))−Φ.

We first establish the following Lemma E.1 – the claim in Theorem 2.1 then follows in a relatively straightforward manner.
We note that all statements quantified by i in this section implicitly hold for all i ∈ [m] (as defined in Theorem 2.1) for the
sake of notational brevity.

E.1. Proof of Theorem 2.1

Lemma E.1. Under the setting of Theorem 2.1, there exist orthonormal sets {u(l)
i }mi=1 ⊂ Rd and {v(l)

i }mi=1 ⊂ Rd for
l ∈ [L] satisfying v

(l+1)
i = u

(l)
i for all l ∈ [L− 1] such that the following hold for all t ≥ 0:

A(t) : Wl(t)v
(l)
i = ρl(t)u

(l)
i ∀l ∈ [L],

B(t) : W⊤
l (t)u

(l)
i = ρl(t)v

(l)
i ∀l ∈ [L],

C(t) : Φ⊤WL:l+1(t)u
(l)
i = 0 ∀l ∈ [L],

D(t) : ΦW⊤
l−1:1(t)v

(l)
i = 0 ∀l ∈ [L],

where ρl(t) = ρl(t− 1) · (1− ηλ− η ·
∏

k ̸=l ρk(t− 1)2) for all t ≥ 1 with ρl(0) = ϵl > 0.

Proof. Define Ψ := W⊤
L:2(0)Φ. Since the rank of Φ is at most r, we have that the rank of Ψ ∈ Rd×d is at most r, which

implies that dimN (Ψ) = dimN
(
Ψ⊤) ≥ d− r. We define the subspace

S := N (Ψ) ∩N
(
Ψ⊤W1(0)

)
⊂ Rd.

Since W1(0) ∈ Rd×d is nonsingular, we have

dim(S) ≥ 2(d− r)− d = m.

Let {v(1)
i }mi=1 denote an orthonormal set contained in S and set u(1)

i := W1(0)v
(1)
i /ϵ1, where ϵ1 > 0 is the scale of W1(0)

– since W1(0)/ϵ1 is orthogonal, {u(1)
i }mi=1 is also an orthonormal set. Then we trivially have W1(0)v

(1)
i = ϵ1u

(1)
i , which

implies W⊤
1 (0)u

(1)
i = ϵ1v

(1)
i . It follows from v

(1)
i ∈ S that Ψv

(1)
i = 0 and Ψ⊤W1(0)v

(1)
i = 0, which is equivalent to

W⊤
L:2(0)Φv

(1)
i = 0 and Φ⊤WL:2(0)W1(0)v

(1)
i = ϵ1Φ

⊤WL:2(0)u
(1)
i = 0 respectively. Since W⊤

L:2(0) is full column
rank, we further have that Φv

(1)
i = 0.

Now let E(l) denote that we have orthonormal sets {u(l)
i }mi=1 and {v(l)

i }mi=1 satisfying Wl(0)v
(l)
i = ϵlu

(l)
i , W⊤

l (0)u
(l)
i =

ϵlv
(l)
i , Φ⊤WL:l+1(0)u

(l)
i = 0, and ΦW⊤

l−1:1(0)v
(l)
i = 0. From the above arguments, we have that E(1) holds – now

suppose E(k) holds for some 1 ≤ k < L. Set v(k+1)
i := u

(k)
i and u

(k+1)
i := Wk+1(0)v

(k+1)
i /ϵk+1. This implies that

Wk+1(0)v
(k+1)
i = ϵk+1u

(k+1)
i and W⊤

k+1(0)u
(k+1)
i = ϵk+1v

(k+1)
i . Moreover, we have

Φ⊤WL:(k+1)+1(0)u
(k+1)
i = Φ⊤WL:k+1(0)W

⊤
k+1(0)u

(k+1)
i /ϵ2k+1

= Φ⊤WL:k+1(0)v
(k+1)
i /ϵk+1

= Φ⊤WL:k+1(0)u
(k)
i /ϵk+1 = 0,

where the first two equalities follow from orthogonality and u
(k+1)
i = Wk+1(0)v

(k+1)
i /ϵk+1, and the last equality is due to

v
(k+1)
i = u

(k)
i . Similarly, we have

ΦW⊤
(k+1)−1:1(0)v

(k+1)
i = ΦW⊤

k−1:1(0)W
⊤
k (0)v

(k+1)
i

= ΦW⊤
k−1:1(0)W

⊤
k (0)u

(k)
i

= ϵkΦW⊤
k−1:1(0)v

(k)
i = 0,

where the second equality follows from v
(k+1)
i = u

(k)
i and the third equality is due to W⊤

k (0)u
(k)
i = ϵkv

(k)
i . Therefore

E(k + 1) holds, so we have E(l) for all l ∈ [L]. As a result, we have shown the base cases A(0), B(0), C(0), and D(0).

Now we proceed by induction on t ≥ 0. Suppose that A(t), B(t), C(t), and D(t) hold for some t ≥ 0. First, we show
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A(t+ 1) and B(t+ 1). We have

Wl(t+ 1)v
(l)
i =

[
(1− ηλ)Wl(t)− ηW⊤

L:l+1(t)E(t)W⊤
l−1:1(t)

]
v
(l)
i

=
[
(1− ηλ)Wl(t)− ηW⊤

L:l+1(t) (WL:1(t)−Φ)W⊤
l−1:1(t)

]
v
(l)
i

= (1− ηλ)Wl(t)v
(l)
i − ηW⊤

L:l+1(t)WL:1(t)W
⊤
l−1:1(t)v

(l)
i

= (1− ηλ)Wl(t)v
(l)
i − η · (

∏
k ̸=l

ρ2k(t))Wl(t)v
(l)
i

= ρl(t) · (1− ηλ− η ·
∏
k ̸=l

ρ2k(t))u
(l)
i = ρl(t+ 1)u

(l)
i

for all l ∈ [L], where the first equality follows from (15), the second equality follows from definition of E(t), the third
equality follows from D(t), and the fourth equality follows from A(t) and B(t) applied repeatedly along with v

(l+1)
i = u

(l)
i

for all l ∈ [L− 1], proving A(t+ 1). Similarly, we have

W⊤
l (t+ 1)u

(l)
i =

[
(1− ηλ)W⊤

l (t)− ηWl−1:1(t)E
⊤(t)WL:l+1(t)

]
u
(l)
i

=
[
(1− ηλ)W⊤

l (t)− ηWl−1:1(t)
(
W⊤

L:1(t)−Φ⊤)WL:l+1(t)
]
u
(l)
i

= (1− ηλ)W⊤
l (t)u

(l)
i − ηWl−1:1(t)W

⊤
L:1(t)WL:l+1(t)u

(l)
i

= (1− ηλ)W⊤
l (t)u

(l)
i − η · (

∏
k ̸=l

ρ2k(t))W
⊤
l (t)u

(l)
i

= ρl(t) · (1− ηλ− η ·
∏
k ̸=l

ρ2k(t))v
(l)
i = ρl(t+ 1)v

(l)
i

for all l ∈ [L], where the third equality follows from C(t), and the fourth equality follows from A(t) and B(t) applied
repeatedly along with v

(l+1)
i = u

(l)
i for all l ∈ [L− 1], proving B(t+ 1). Now, we show C(t+ 1). For any k ∈ [L− 1], it

follows from v
(k+1)
i = u

(k)
i and A(t+ 1) that

Wk+1(t+ 1)u
(k)
i = Wk+1(t+ 1)v

(k+1)
i = ρk+1(t+ 1)u

(k+1)
i .

Repeatedly applying the above equality for k = l, l + 1, . . . , L− 1, we obtain

Φ⊤WL:l+1(t)u
(l)
i =

[
L−1∏
k=l

ρk+1(t)

]
·Φ⊤u

(L)
i = 0

which follows from C(t), proving C(t + 1). Finally, we show D(t + 1). For any k ∈ {2, . . . , L}, it follows from
v
(k)
i = u

(k−1)
i and B(t+ 1) that

W⊤
k−1(t+ 1)v

(k)
i = W⊤

k−1(t+ 1)u
(k−1)
i = ρk−1(t+ 1)v

(k−1)
i .

Repeatedly applying the above equality for k = l, l − 1, . . . , 2, we obtain

ΦW⊤
l−1:1(t)v

(l)
i =

[
l∏

k=2

ρk−1(t)

]
·Φv

(1)
i = 0

which follows from D(t). Thus we have proven D(t+ 1), concluding the proof.

Proof of Theorem 2.1. By A(t) and B(t) of Lemma E.1, there exists orthonormal matrices {Ul,2}Ll=1 ⊂ Rd×m and
{Vl,2}Ll=1 ⊂ Rd×m for l ∈ [L] satisfying Vl+1,2 = Ul,2 for all l ∈ [L− 1] as well as

Wl(t)Vl,2 = ρl(t)Ul,2 and Wl(t)
⊤Ul,2 = ρl(t)Vl,2 (16)

for all l ∈ [L] and t ≥ 0, where ρl(t) satisfies (6) for t ≥ 1 with ρl(0) = ϵl. First, complete V1,2 to an orthonormal
basis for Rd as V1 = [V1,1 V1,2]. Then for each l ∈ [L − 1], set Ul = [Ul,1 Ul,2] where Ul,1 = Wl(0)Vl,1/ϵl and
Vl+1 = [Vl+1,1 Vl+1,2] where Vl+1,1 = Ul,1, and finally set UL = [UL,1 UL,2] where UL,1 = WL(0)VL,1/ϵL. We note
that Vl+1 = Ul for each l ∈ [L− 1] and Ul,Vl are orthogonal since Wl(0)/ϵl is orthogonal for all l ∈ [L]. Then we have

U⊤
l,1Wl(t)Vl,2 = ρl(t)U

⊤
l,1Ul,2 = 0 (17)
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for all l ∈ [L] and t ≥ 0, where the first equality follows from (16). Similarly, we also have

U⊤
l,2Wl(t)Vl,1 = ρ(t)V ⊤

l,2Vl,1 = 0 (18)

for all l ∈ [L] and t ≥ 0, where the first equality also follows from (16). Therefore, combining (16), (17), and (18) yields

U⊤
l Wl(t)Vl =

[
Ul,1 Ul,2

]⊤
Wl(t)

[
Vl,1 Vl,2

]
=

[
W̃l(t) 0
0 ρl(t)Im

]
for all l ∈ [L], where W̃l(0) = ϵlI2r by construction of Ul,1. This directly implies (5), completing the proof.

E.2. Low-rank bias in Theorem 2.1

Here, we verify the claims following Theorem 2.1 and give a precise characterization of the rate of decay of ρl as given by
(6) and the conditions on learning rate η needed to achieve such behavior. These are given in the following lemma.

Lemma E.2. In the setting of Theorem 2.1, suppose 0 < ϵl = ϵ ≤ 1 for all l ∈ [L] and 0 < η ≤ 1
λ+ϵ . Then for all t ≥ 0,

the updates of ρl(t) in (6) satisfy ρl(t) = ρ(t) for some ρ, and

ϵ · (1− η · (λ+ ϵ))t ≤ ρ(t) ≤ ϵ · (1− ηλ)t. (19)

Since λ and ϵ are often chose to be small, the above lemma implies that a small learning rate is not required to achieve a
low-rank solution. Moreover, by choice of η, when weight decay is employed (i.e., λ > 0) the above inequality implies that
ρ(t) → 0 as t → ∞. When λ = 0, we instead have that ρ is bounded by ϵ.

Proof of Lemma E.2. If ρl(0) = ϵ for all l ∈ [L], it is clear that ρl(t) = ρ(t) for some ρ for all t ≥ 0, and the updates take
the form

ρ(t) = ρ(t− 1) ·
[
1− η ·

(
λ+ ρ(t− 1)2(L−1)

)]
for each t ≥ 0. We proceed by induction. For t = 0, since ρ(0) = ϵ, the claim holds trivially. Now suppose (19) holds for
some t ≥ 0. By choice of η, we have that 1− η · (λ+ ϵ) ≥ 0, so ρ(t) ≥ 0. It then follows that

ρ(t+ 1) = ρ(t) ·
[
1− η ·

(
λ+ ρ(t)2(L−1)

)]
≤ ρ(t) · (1− ηλ) ≤ ϵ · (1− ηλ)t+1

by the fact that ρ(t) ≤ ϵ · (1− ηλ)t. Next, by choice of η and initial condition, we have that ρ(t) ≤ ϵ, so that

ρ(t+ 1) = ρ(t) ·
[
1− η ·

(
λ+ ρ(t)2(L−1)

)]
≥ ρ(t) · (1− η · (λ+ ϵ)) ≥ ϵ · (1− η · (λ+ ϵ))t+1

since ϵ2(L−1) ≤ ϵ by ϵ ≤ 1. The claim follows.

E.3. Proof of Proposition 2.2

Proof. First, it follows from Theorem 2.1 that for any 1 ≤ i ≤ j ≤ L we have

Wj:i(t) = Uj,1W̃j:i(t)V
⊤
i,1 + (

j∏
k=i

ρk(t)) ·Uj,2V
⊤
i,2 (20)

for all t ≥ 0, where Ul,1,Vl,1 ∈ Rd×2r and Ul,2,Vl,2 ∈ Rd×m are the first 2r and last m columns of Ul,Vl ∈ Rd×d

respectively.

The key claim to be shown here is that Ŵl(t) = W̃l(t) for all l ∈ [L] and t ≥ 0. Afterwards, it follows straightforwardly
from (20) that∥∥∥f(Θ(t))− f̂(Θ̂(t),UL,1,V1,1)

∥∥∥2
F

=

∥∥∥∥∥UL,1W̃L:1(t)V
⊤
1,1 + (

L∏
l=1

ρl(t)) ·UL,2V
⊤
1,2 −UL,1ŴL:1(t)V

⊤
L,1

∥∥∥∥∥
2

F

=

∥∥∥∥∥UL,1(W̃L:1(t)− ŴL:1(t))V
⊤
1,1 + (

L∏
l=1

ρl(t)) ·UL,2V
⊤
1,2

∥∥∥∥∥
2

F

=

∥∥∥∥∥(
L∏

l=1

ρl(t)) ·UL,2V
⊤
1,2

∥∥∥∥∥
2

F

≤ m ·
L∏

l=1

ϵ2l .
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We proceed by induction. For t = 0, we have that

Ŵl(0) = U⊤
l,1Wl(0)Vl,1 = W̃l(0)

for all l ∈ [L] by (20) and choice of initialization.

Now suppose Ŵl(t) = W̃l(t) for all l ∈ [L]. Comparing

Ŵl(t+ 1) = (1− ηλ)Ŵl(t)− η∇
Ŵl

ℓ̂(Θ̂(t))

with

W̃l(t+ 1) = U⊤
l,1Wl(t+ 1)Vl,1

= U⊤
l,1 [(1− ηλ)Wl(t)− η∇Wl

ℓ(Θ(t))]Vl,1

= (1− ηλ)W̃l(t)− ηU⊤
l,1∇Wl

ℓ(Θ(t))Vl,1

it suffices to show that
∇

Ŵl
ℓ̂(Θ̂(t)) = U⊤

l,1∇Wl
ℓ(Θ(t))Vl,1, ∀l ∈ [L] (21)

to yield Ŵl(t+ 1) = W̃l(t+ 1) for all l ∈ [L]. Computing the right hand side of (21), we have

U⊤
l,1∇Wl

ℓ(Θ(t))Vl,1 = U⊤
l,1W

⊤
L:l+1(t)(WL:1(t)−Φ)W⊤

l−1:1(t)Vl,1

= (WL:l+1(t)Ul,1)
⊤(WL:1(t)−Φ)(V ⊤

l,1Wl−1:1(t))
⊤

where

WL:l+1(t)Ul,1 =

(
UL,1W̃L:l+1(t)V

⊤
l+1,1 + (

L∏
k=l+1

ρk(t)) ·UL,2V
⊤
l+1,2

)
Ul,1 = UL,1W̃L:l+1(t)

by (20) and the fact that Ul = Vl+1, and similarly

V ⊤
l,1Wl−1:1(t) = V ⊤

l,1

(
Ul−1,1W̃l−1:1(t)V

⊤
1,1 + (

l−1∏
k=1

ρk(t)) ·Ul−1,2V
⊤
1,2

)
= W̃l−1:1(t)V

⊤
1,1.

We also have that

U⊤
L,1(WL:1(t)−Φ)V1,1 = U⊤

L,1

(
UL,1W̃L:1(t)V

⊤
1,1 + (

L∏
k=1

ρk(t)) ·UL,2V
⊤
1,2 −Φ

)
V1,1

= W̃L:1(t)−U⊤
L,1ΦV1,1

so putting together the previous four equalities yields

U⊤
l,1∇Wl

ℓ(Θ(t))Vl,1 = (WL:l+1(t)Ul,1)
⊤(WL:1(t)−Φ)(V ⊤

l,1Wl−1:1(t))
⊤

= W̃⊤
L:l+1(t)U

⊤
L,1(WL:1(t)−Φ)V1,1W̃

⊤
l−1:1(t)

= W̃⊤
L:l+1(t)(W̃L:1(t)−U⊤

L,1ΦV1,1)W̃
⊤
l−1:1(t).

On the other hand, the left hand side of (21) gives

∇
Ŵl

ℓ̂(Θ̂(t)) = ŴL:l+1(t)
⊤U⊤

L,1(UL,1ŴL:1(t)V
⊤
1,1 −Φ)V1,1Ŵl−1:1(t)

⊤

= ŴL:l+1(t)
⊤(ŴL:1(t)−U⊤

L,1ΦV1,1)Ŵl−1:1(t)
⊤

so (21) holds by the fact that Ŵl(t) = W̃l(t) for all l ∈ [L], completing the proof.
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