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ABSTRACT

The ability to simulate the world in a spatially consistent manner is a crucial
requirements for effective world models. Such a model enables high-quality vi-
sual generation, and also ensures the reliability of world models for downstream
tasks such as simulation and planning. Designing a memory module is a crucial
component for addressing spatial consistency: such a model must not only retain
long-horizon observational information, but also enables the construction of ex-
plicit or implicit internal spatial representations. However, there are no dataset
designed to promote the development of memory modules by explicitly enforcing
spatial consistency constraints. Furthermore, most existing benchmarks primarily
emphasize visual coherence or generation quality, neglecting the requirement of
long-range spatial consistency. To bridge this gap, we construct a dataset and cor-
responding benchmark by sampling 150 distinct locations within the open-world
environment of Minecraft, collecting about 250 hours (20 million frames) of loop-
based navigation videos with actions. Our dataset follows a curriculum design
of sequence lengths, allowing models to learn spatial consistency on increasingly
complex navigation trajectories. Furthermore, our data collection pipeline is easily
extensible to new Minecraft environments and modules. Four representative world
model baselines are evaluated on our benchmark. Dataset, benchmark, and code
are open-sourced to support future research.

1 INTRODUCTION

Although recent advances in world models have significantly improved the visual quality of generated
observations (Zhu et al.l 2024; Ding et al.|, |2024; [Brooks et al.,[2024), these models often struggle to
preserve spatial consistency over extended rollouts (Decart et al., [2024; |Guo et al., [2025). Spatial
consistency, the ability to preserve coherent and stable spatial structures across time, is essential
for the reliability of world models in downstream applications such as model-based reinforcement
learning (Bar et al., 2024; |Alonso et al., |2024; |Valevski et al., 2024)), autonomous driving (Wang
et al.} 2023a}; |Gao et al., |2024), and model predictive control (Du et al.,|2023; |[Hafner et al., [2020;
2024; |Yang et al., |2023];|2024c). When violated, it can lead to severe failure modes: hallucinated
structures, contradictions with prior observations, and visually incoherent scenes. For instance, in
a world model guided navigation task, inconsistent rendering of revisited locations impedes global
planning and loop closure.

The memory module plays a critical role in addressing spatial inconsistency. Due to the high
dimensionality of image data, mainstream Transformer-based networks are typically limited to
memorizing only a few or a dozen past frames. This is because the attention mechanism (Vaswani
et al.,[2017) incurs quadratic growth in computational and memory costs with respect to the context
length, which quickly makes training and inference prohibitively expensive. However, real-world
exploration trajectories often span hundreds or thousands of frames, and reconstructing an observation
at a specific location may require access to information from hundreds of steps earlier. This makes it
impractical to encode all historical observations directly into the model’s context. To overcome this
limitation, memory modules are typically designed as independent components that interact with the
main model through read and write mechanisms (Graves et al.,|2014)), enabling long-term information
retention. Additionally, a well-designed memory module should possess the capability to model
spatial structures. This modeling can be explicit, such as through maps (Gupta et al.,2019;|Yang et al.|
2025)), coordinate systems (Wang et al., 2023b), or graph-based representations that encode spatial
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Figure 1: The Loop-Style Trajectory Data for Training and Benchmarking. To be able to
explicitly enforce spatial consistency, our dataset follows a loop-style navigation trajectory, including
both ABA and ABCA types. Our benchmark design explicitly separates the generation phase from
the exploration phase and only evaluates the video quality of the generation part.

relationships directly (Savinov et al, 2018}, [Kim et al.} [2022)). Alternatively, it can be implicit, using
high-dimensional embeddings or attention mechanisms to capture relative spatial relationships and
similarity across observations (Parisotto & Salakhutdinov, 2017; Wang* et al.} [2025)). Regardless of
the form, the central goal of spatial modeling within memory is to maintain a coherent representation
of space over time.

Although memory modules are essential for enabling world models to maintain spatial consistency,
their design, training, and evaluation remain underexplored. A major reason for this gap is the
absence of datasets that explicitly demand spatial consistency. Most existing datasets are designed
for open-ended exploration, where agents continually encounter novel structures and objects while
rarely revisiting previously seen locations. As a result, world models trained on such data tend
to rely on global environmental priors to hallucinate plausible next frames, rather than leveraging
episodic memory to reconstruct previously observed content. Meanwhile, evaluation metrics often
prioritize visual fidelity and short-term temporal smoothness over long-term spatial coherence or
logical consistency. This leads to models that function more as visually impressive but impractical
“dream machines”, lacking reliability for downstream decision-making tasks.

Therefore, we argue that the dataset must feature looped trajectories that revisit the same locations
and objects from diverse viewpoints. We construct such a dataset, LOOPNAV, in the open-world
environment of Minecraft, chosen for its rich environmental diversity, extensive community support,
and growing research interest (Baker et al.} 2022} [Cai et al., 2023} [2025b} [Lifshitz et al.,[2024}; [Decart]
2024). The dataset comprises over 250 hours of loop-style navigation trajectories across
147 diverse locations. Each trajectory follows a loop exploration pattern (e.g., A - B — A or
A — B — C — A, where A, B, C denote different locations), ensuring that the same locations and
layouts are revisited from varying camera views and times. This loop-based data structure naturally
incentivizes models to learn long-horizon spatial consistency. Besides, we carefully select spawning
positions (e.g., villages) with diverse landmark objects to ensure that observations from different
locations are visually distinguishable. To support progressive learning, the dataset also includes a
curriculum of sequence lengths, enabling models to transition from short-term to long-term tasks.
As for the benchmarking, we propose a explore-then-generate approach to evaluate the spatial
consistency of world models. Specifically, we sample a closed-loop trajectory (e.g., A — B — A)
from the test set, where the first half (e.g., A — B) serves as the context input to the world model,
and the second half (e.g., B — A) is used as the generation target. By evaluating four representative
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baseline world models, we find that their performance on spatial consistency remains far from
satisfactory, highlighting the urgent need for dedicated datasets and advanced model architectures.

2 RELATED WORK

2.1 WORLD MODELS

The goal of a world model is to simulate the environment: Given the current state and action, it
predicts the next state and the corresponding reward. World models were originally proposed to
improve sample efficiency in reinforcement learning(Oh et al., |2015; Ha & Schmidhuber;, 2018).
In the context of model-based reinforcement learning, numerous studies have explored various
architectural designs of world models. Dreamer (Hafner et al.| 20205 2022} [2024) uses a Recurrent
State Space Model (RSSM) and achieves human-level performance on Atari games. TWM (Robine
et al., 2023)) adapts DreamerV2’s RSSM to use a transformer architecture. IRIS (Micheli et al.| [2023)
builds image tokens with discrete autoencoder and adopts an autoregressive transformer. DIAMOND
(Alonso et al2024) leverages diffusion models to generate future frames. These architectures, to
varying degrees, retain information from the past to aid in future image prediction; however, they still
lack an effective memory design capable of maintaining long-horizon spatial consistency.

Beyond model-based reinforcement learning, the potential of world models has also been increasingly
explored in other domains. Playable Video Generation (Menapace et al., [2021]), gameNGen (Valevski
et al.| |2024)), Oasis (Decart et al.| [2024)) investigate the potential of using world models as game
engines. GAIA (Hu et al.| 2023), DriveDreamer |Wang et al.|(2023a), vista (Gao et al.|[2024) explores
their application in autonomous driving. In robotics, two of the most significant challenges are the
scarcity of training data and the high cost of model training. The emergence of world models offers a
promising direction for addressing these two major challenges. UniSim (Yang et al.| 2023) learns
a universal simulator for robot manipulation. DayDreamer (Wu et al., 2022) employs world model
for real-world robot learning. NWM (Bar et al., 2024) investigates visual navigation problem in
world model. In almost all downstream tasks—especially those involving decision-making such as
autonomous driving and navigation—maintaining spatial consistency is a critical requirement.

From a more unified perspective, world models can be viewed as action-conditioned video generation
models. In computer vision, generating videos has been a long standing challenge (Yang et al., [2024c).
Recent approaches leverage transformers , and diffusion models (Chen et al.| 2024} Song et al.,
2025) to generate longer, more coherent video sequences. From the perspective of video modeling,
maintaining spatial consistency across frames—especially over long temporal horizons—remains a
critical and unsolved challenge.

2.2 MINECRAFT AS AN Al TESTBED

Minecraft is an open-world environment characterized by diverse terrains and rich interaction dynam-
ics. As one of the most popular games globally, it benefits from extensive community-driven resources
and an active user base. Recent research has increasingly adopted Minecraft as a platform for training
generative agents (Baker et al.| 2022} [Lifshitz et al., 2024; (Cai et al.} [2023} 2024; 2025bja; Zhao
et al.}2024) and constructing digital world models (Guo et al., [2025; Decart et al., 2024; |Hong et al.,
2024;Song et al.,[2025)). Several Minecraft-based datasets and benchmarks have been introduced,
including MineDoJo (Fan et al.| 2022), which provides multimodal knowledge and human gameplay
videos sourced from YouTube; VPT (Baker et al.,[2022), which releases large-scale trajectories of
human players engaged in building and mining; and MineRL (Guss et al., |2019), which focuses
on trajectories related to cave exploration. However, these efforts primarily emphasize prospective
exploration and object interaction, with limited attention to the role of historical context. In contrast,
our proposed dataset and benchmark are designed to promote and assess models’ abilities to leverage
past observations and perform spatial reasoning. Our data collection pipeline is built on top of
Mineflayer (Contributors, 2013-2024)), a widely used rule-based Minecraft automation framework.
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Figure 2: Overview of the Minecraft Elements. Top row, left to right: Examples of villages, biomes,
and structures in Minecraft. Bottom row, left to right: composition of sampling locations in our
dataset; a bird-eye view of real ABA-type exploration trajectories (display steps 5, 15, and 30 for
simplicity); Simplified Action Space used for data collection and agent interaction.

3 LoOOPNAV DATASET

3.1 ENVIRONMENT
We collect data in the open-world environment of Minecraft, selected for the following reasons:

* Rich environmental diversity: Minecraft worlds are procedurally generated using random
seeds, featuring a wide range of biomes and uniquely structured villages, enabling diverse
and non-repetitive environments.

* Extensive community resources: Minecraft has a mature modding ecosystem that allows
us to incorporate a wide variety of custom elements and tasks. In addition, there is a large
amount of publicly available Minecraft gameplay footage on platforms like YouTube, which
could be leveraged for future large-scale pretraining.

* Rising research interest: An increasing number of recent works have begun to study world
modeling and agent learning in Minecraft, making it a timely and relevant platform for
evaluating spatial consistency and memory mechanisms.

* Efficient simulation: Compared to real-world data collection, Minecraft enables faster,
cheaper, and highly parallelizable simulation, making it well-suited for large-scale controlled
data generation.

3.2 COLLECTION PIPELINE

We propose three principles for trajectory data collection: visual discriminability, loop closure, and
curriculum-based progression. Below, we detail each principle, followed by our implementation.

Principle 1: Visual Discriminability ]

The sequence of observations along the trajectory should be visually distinguishable over
time to capture meaningful scene variation.
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Within this procedurally generated world, we identify 6 categories that encompass a total of 120
distinct villages, offering a wide range of terrain and architectural layouts. As players explore a
village, visual elements such as houses and farmlands, distinguished by their shapes and spatial
arrangements, serve as salient landmarks that help construct a cognitive map of the environment.
In addition to the villages, we also collect trajectories from 18 different biome types and 8 unique
Minecraft-specific structures (e.g., desert temples, ruined portals), resulting in 146 distinct spatial
locations in total. Examples of villages, biomes, and structures are shown in Figure 2] and detailed
descriptions can be found in Appendix |B| This diverse selection ensures variation in both visual
appearance and spatial layout, which is critical for evaluating long-horizon spatial consistency.

Principle 2: Loop Closure ]

The generated trajectories must form at least one spatial loop, ensuring repeated visits to the
same locations.

We propose two types of trajectory structures: A - B — Aand A - B — C — A, where A,
B, and C denote distinct locations within the environment. Without loss of generality, we use the
A — B — A trajectory as a representative case to illustrate our data collection process. As detailed
in Algorithm[I} we first select a location S from one of our collected sites (visually distinguishable).
Then, we randomly sample a starting point A within the start range of .S, and teleport the agent to A.
This is done to ensure diversity in the starting positions within the same location. Start range was
set to 20 blocks in practice. Once at location A, a target location B is sampled within a specified
navigation range. At this location, trajectory recording begins: the agent performs a full 360-degree
rotation at location A to observe the surrounding environment and establish spatial context. It then
navigates from A to B using the A* algorithm, and subsequently returns from B to A. The recording
ends upon the agent’s return to location A, completing the loop. We put visualization of our dataset,
including frames and bird-eye view in Appendix

Algorithm 1 A — B — A Navigation Data Collection in Location S

Require: Start Range R, Navigation Range R, location S
Ensure: A navigation trajectory 7" from point A to point B and back to A
1: A < SAMPLEPOINT(S, Rst)

2: B < SAMPLEPOINT(A, Ryav)

3: Trajectory T « ||

4: Teleport the agent to location A

5: Agent performs a 360° rotation at point A to observe surroundings

6: T < NAVIGATE(A, B, T)

7: T < NAVIGATE(B, A, T)

8: return Trajectory T'

1: function SAMPLEPOINT(A = (z,y), ) 1: function NAVIGATE(A, B, T)

2: while True do 2 S+ A

3: Sample Az ~ Uniform(—r,r) 3 while S # B do

4: Sample Ay ~ Uniform(—r, 1) 4: P <+ ASTARPLAN(S, B)

5. d + /(Az)2 + (Ay)? 5: for all P; € PP do

6: if d < 0.8 - r then 6: a < GETACTION(S, P;)
7 continue 7 S < PERFORMACTION(S, a)
8: end if 8: Append (S;a)to T

9: B+ (x4 Az,y + Ay) 9: end for
10: if ISVALIDBLOCK (B) then 10: end while
11: return B 11: return 7'
12: end if 12: end function

13: end while
14: end function
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Principle 3: Curriculum-based Progression |

The trajectories follow a curriculum design, gradually expanding the spatial exploration
radius to support progressive learning and evaluation.

According to the exploration radius, we define four difficulty levels: 5, 15, 30, and 50 blocks. To
improve training robustness and introduce variability, the target location B is not sampled at a
fixed distance. Instead, for a difficulty level x, we sample distances within the interval [0.8z, ﬁa:],
ensuring diverse trajectory lengths while minimizing overlap between different difficulty levels. The
full sampling procedure is also detailed in Algorithm 1]

We collect 20 trajectories for each combination of location and exploration radius. The final dataset
contains approximately 20 million frames, amounting to roughly 250 hours of navigation trajectories.

3.3 IMPLEMENTATION DETAILS

We set up a local Minecraft server and use the Mineflayer platform to control the agent and collect
trajectory data. For path planning, we employ the Mineflayer Pathﬁnde plugin, which computes
shortest paths between waypoints using the A* algorithm. We use the Prismarine Viewer|to render
and visualize the agent’s behavior and collected observations. To better support learning from the
collected data and simulate human-like control dynamics, we make several key modifications to the
default behavior of these plugins. These choices define some of the core characteristics of our dataset:

Restricted action space: The agent is limited to using only three actions during navigation —
forward, jump, and camera rotation — closely matching the action primitives of a human player in
Minecraft.

Sequential action execution: At any given time step, only a single action is allowed. That is, the
agent cannot rotate the camera and move forward simultaneously. This avoids entangled motion
patterns and improves the clarity of spatial transitions in the data.

Smooth camera control: We impose a maximum angular velocity on camera rotations to prevent
abrupt viewpoint changes between frames, ensuring more stable visual continuity for training.

Removal of irrelevant elements: To focus the dataset on pure navigation, we disabled all entity
spawning (e.g., mobs), and removed Ul elements such as the hotbar and hands, eliminating visual
distractions and ensuring task purity.

We introduce the details of these plugins and our modification in Appendix [A]

For each recorded frame, we store the following information (S, A¢, P;, Ct, G):

* The current RGB image observation S; rendered from the agent’s first-person view.
* The action executed at this timestep A; = (forward, jump, Ayaw, Apitch).

* The agent’s current position P; = (x¢, y¢, 2t)-

* The camera orientation C; = (yaw, pitch).

* The current navigation target’s coordinates G = (x¢, ya, 2G)-

The format of the collected data are detailed in the Appendix [B.2] Importantly, the recorded action
corresponds to the action executed at time ¢, i.e.,A;. Its effects are reflected in the next state
St+1 and beyond. Data is recorded at 20 Hz, meaning a time interval of 0.05 seconds between
two consecutive frames. This frequency aligns with the physical tick rate of Minecraft, ensuring
consistent synchronization between control and simulation.

4 BENCHMARK

Our benchmark is designed around A — B — A loop trajectories. In this setting, we treat the
A — B segment as an exploration phase, which serves as the contextual input to the model, and the

"https://github.com/Prismarine]S/mineflayer-pathfinder
*https://github.com/PrismarineJS/prismarine-viewer
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B — A segment as a reconstruction phase, where the agent returns to a previously visited location.
We provide an illustration of these phases in Figure|ll As such, we evaluate model performance
only on the B — A segment, as it provides a clear test of the model’s ability to maintain spatial
consistency during long-horizon rollouts. We compute three widely used video generation metrics:

Fréchet Video Distance (FVD) We adopt Fréchet Video Distance (FVD) (Unterthiner et al.,[2019)
as a primary metric. FVD computes the distance between the distribution of real and generated video
features extracted by an Inflated 3D ConvNet (I3D) (Carreira & Zisserman, |2018)), capturing both
spatial and temporal statistics at a high level.

Learned Perceptual Image Patch Similarity (LPIPS) We use LPIPS (Zhang et al.||2018)) to evaluate
the perceptual similarity between generated and ground truth frames. LPIPS leverages deep features
from pretrained networks (e.g., VGG) to assess semantic-level differences, which aligns better with
human judgment than pixel-wise metrics. It is robust to minor texture or color variations while
remaining sensitive to object structure and layout.

Structural Similarity Index Measure (SSIM) SSIM is employed to complement LPIPS by quanti-
fying structural fidelity and luminance similarity between generated and reference frames. While it
is more sensitive to low-level details than LPIPS, it still emphasizes perceptual structure over exact
pixel match.

In addition to the above quantitative metrics, we argue that qualitative evaluation plays an equally
critical role in assessing world model performance. Human visual inspection remains the most
straightforward and effective way to determine whether the model accurately reconstructs previously
seen environments and preserves spatial consistency during long-horizon rollouts. This is especially
important as no single quantitative metric fully captures the semantic fidelity or spatial coherence of
the generated trajectories.

Similarly, for longer A — B — C' — A trajectories, we evaluate only the C' — A segment, treating
A — B — (' as the exploration context. This evaluation strategy emphasizes the model’s capacity
to reconstruct previously visited locations after long-horizon exploration. It is worth noting that in
A — B — C — A trajectories, the return path from C' to A is not guaranteed to be fully covered by
the earlier observations from exploration context A — B — C'. This discrepancy can theoretically
occur, particularly in open-world environments. However, in practice, we constrain the exploration
range such that the majority of C' — A trajectories traverse areas that have been previously observed,
albeit from different viewpoints or at different times. As a result, the model typically has access
to sufficient contextual information to support the reconstruction of the return path, making our
evaluation of spatial consistency both practical and meaningful.

5 EXPERIMENTS

5.1 BASELINES

We evaluate the following baselines on our dataset and benchmark.

Qasis Oasis (Decart et al., [2024])) is a world model with a ViT (Dosovitskiy et al.,[2021) model as
spatial autoencoder, and a DiT (Peebles & Xiel, [2022) model as latent diffusion backbone. Oasis
generates frames autoregressively, with the ability to condition each frame on user input. The model
was trained using Diffusion Forcing (Chen et al., 2024). We use the publicly available Oasis-500M
model, with the context length set to 32. Since the training code for Oasis is not publicly available,
we directly evaluate the pretrained model provided by the authors. As the model is pretrained on
Minecraft data, we consider this evaluation setting to be reasonable and representative for our task
domain.

Mineworld Mineworld (Guo et al.,2025) is another interactive world model pretrained on Minecraft
data. Different from oasis, MineWorld base on pure transformer structure. It is driven by a visual-
action autoregressive Transformer, which takes paired game scenes and corresponding actions as
input, and generates consequent new scenes following the actions. We also directly evaluated the
largest available pretrained checkpoint 1200M-32f. The context length of Mineworld is 32.

DIAMOND DIAMOND (Alonso et al.,[2024) is a diffusion-based world model built upon the UNet
architecture (Ronneberger et al.l 2015)). It generates video frames autoregressively, conditioning on
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Figure 3: Qualitative Result of Four Baselines. Top to buttom: Ground Truth(GT), Oasis,
MineworldMW), DIAMOND(DIA), Navigation World Model(NWM). Leftmost label “t=...” in-
dicates the start context range accepted by each model. For example, for the Oasis model, “t=52"
means frames 52 to 83 are used as context. All models begin rollout from frame 84.

both past observations and actions, allowing it to model complex temporal dynamics in sequential
decision-making environments. In its original design, DIAMOND is used as part of a model-
based reinforcement learning pipeline, where the learned world model is used to train an RL agent
and evaluated on the Atari 100k benchmark. And in CS:GO branch, DIAMOND also exhibits
extraordinary ability to modeling dynamics. In our experiments, we follow the default setting on
CS:GO experiment of DIAMOND. We pretrain a model using our dataset from scratch. The context
length set to 32, aligning with oasis and Mineworld.

Navigation World Model NWM is a controllable video generation model that
predicts future visual observations conditioned on past observations and navigation actions. It enables
trajectory planning by simulating possible navigations and evaluating their success in reaching the
goal. NWM introduces a novel Conditional Diffusion Transformer (CDiT) trained using a diffusion-
based framework. Unlike aformention models, Navigation World Model did not use actions as
condition, but use (z, z) position and absolute yaw value as condition. We pretrained CDiT-B/2
model from scratch with context length set to 4, due to limitation of computational resources.

The implementation details and additional results of the four baselines are provided in the Appendix

5.2 EXPERIMENT SETTINGS

Although our dataset includes data from villages, biomes, and structures, we focus solely on village
environments for training and evaluation. This decision is based on the large number of villages in
Minecraft and the inherent diversity of them. Our dataset includes six distinct village types, with 20
unique villages collected for each type. Villages 1-16 are used for training set, village 17 and 18 is
used as the validation set, and village 19 and 20 serves as the test set. That is, the training set contains
15,360 trajectories (approximately 15 million frames), while the validation and test sets include 1920
trajectories (around 2 million frames). We provide the training and evaluation splits as part of our
released dataset.

Evaluation We evaluate each model across all navigation ranges. Due to the large scale of the test
dataset, we do not perform evaluation on the entire set. Instead, we sample the first three trajectories
in lexicographic order from each of the 6 villages with index 20, resulting in 18 evaluation trajectories
per navigation range. Each trajectory is assessed using the metrics described in the benchmark section.
We report the average performance across all 18 trajectories, as shown in Table[I] In addition, we
randomly select one trajectory to present qualitative results, shown in Figure[3]
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5.3 ANALYSIS

Overall Performance. The results of all baseline models are far from satisfactory, none of the four
models achieve strong performance. A key limitation lies in the absence of explicit memory modules
across all baselines. Most models operate with a context length of 32 frames, whereas even the
simplest evaluation tasks with a navigation range of 5 typically involve 6070 frames. As such, the
models understandably fail to demonstrate spatial consistency over longer sequences. However, we
believe that our dataset can serve as a valuable resource for developing and evaluating more advanced
models with improved memory mechanisms in the future.

Model Collapse A significant issue observed in both DIAMOND and OASIS is model collapse,
especially as the prediction horizon increases(Figure [3). In these cases, the models gradually
degenerate from minor imperfections to complete visual failure over time. This degradation is
reflected in the high FVD score. The progressive nature of this collapse emphasizes the limitations of
these models in maintaining stability over longer rollouts.

Minor Differences Across Ranges We find that, our result do not show a consistent decline with
increasing navigation range. This suggests that the models are unable to effectively handle even the
simplest case (navigation range of 5), and thus further increases in difficulty do not significantly
impact the results.

Table 1: Evaluation Results of Four Baselines under Different Navigation Ranges. The @ icon
indicates that the model was trained on our dataset, while @ indicates using a pretrained checkpoint.

Model Train Context SSIM 1 LPIPS | FVD |
ABA ABCA ABA ABCA ABA ABCA

Oasis-5 (] 32 0.36+0.13 0.34+0.12 0.76+0.09 0.82+0.11 2615+1067 2583+647
Oasis-15 (] 32 0.37+0.12 0.38+0.14 0.82+0.08 0.81+0.10 25164567 3146=+1055
Oasis-30 (] 32 0.33+0.11 0.35+0.11 0.86+0.08 0.85+0.09 3131+713 3199+1000
Oasis-50 (] 32 0.36+0.12 0.36+0.11 0.86+0.09 0.83+0.07 3334+658 3162+1245
Mineworld-5 {x] 32 0.314+0.09 0.32+0.10 0.73+0.05 0.72+0.07 2089+1007 19144660
Mineworld-15 (] 32 0.34+0.13 0.32+0.11 0.74+0.08 0.74+0.07 2367+770 20094921
Mineworld-30 {x] 32 0.33+0.13 0.28+0.09 0.77+0.08 0.77+0.08 2316+945 2094+1047
Mineworld-50 {x] 32 0.31+0.16 0.32+0.12 0.78+0.12 0.75+0.10 2077+632 21444898
DIAMOND-5 V] 32 0.40+0.10 0.37+0.09 0.75+0.09 0.79+0.00 3353+1242 3336+1392
DIAMOND-15 o 32 0.38+0.10 0.39+0.10 0.78+0.08 0.79+0.09 3691+937 3302+1191
DIAMOND-30 @ 32 0.37+0.10 0.35+0.10 0.81+0.07 0.81+0.08 3708+1243 3473+1355
DIAMOND-50 @ 32 0.37+0.10 0.38+0.09 0.83+0.09 0.81+0.08 32494833 29944906
NWM-5 V] 4 0.33+0.11 0.31+0.09 0.64+0.05 0.67+0.05 1950+380 2240+664
NWM-15 V] 4 0.30+0.12 0.33+0.12 0.67+0.03 0.65+0.05 2132+916 2338+1010
NWM-30 V] 4 0.324+0.11 0.30+0.11 0.69+0.04 0.71+0.03 1893+1047 24374429
NWM-50 o 4 0.28+0.13 0.33+0.11 0.72+0.08 0.65+0.04 27154883 1537+415

6 LIMITATIONS

Lack of depth data: Many navigation and 3D modeling tasks require depth information to assist
with memory modeling. While recent works like Depth Anything (Yang et al., [2024azb)) can generate
synthetic depth data, there is still a gap between these synthetic depth maps and ground truth 3D
data. We believe that real-time depth acquisition from the Minecraft server using scanning techniques
could address this, but it would introduce substantial computational overhead.

Static structures in the dataset: The structures in our dataset (such as houses and terrain) are static,
and we intentionally excluded moving objects like mobs. This decision was made to simplify the
task of modeling spatial consistency. However, in real-world environments, the positions of vehicles,
people, and other dynamic objects change over time. Maintaining spatial consistency in such dynamic
environments is a more challenging task and a promising direction for future exploration. We leave
this task for future work.
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APPENDIX OVERVIEW

Our appendix is organized as follows:

* Appendix [A]describes the platform setup for our data collection, including the MC envi-
ronment setup and three javascript plugins we modified to manipulate the bot and collect
data.

* Appendix B] presents detials of our dataset, including [B.2]data storage format, [B.3] statistical
information and [B.4] visualization of our LOOPNAV dataset.

* Appendix|C|presents the detailed baseline experimental settings and additional experimental
results:

[C.1} Open-oasis, [C.2t Mineworld,[C.3} DIAMOND, [C.4t Navigation World Model.

A  PLATFORM SETUP

A.1 MINECRAFT

Minecraft is an open-world environment characterized by diverse terrains and rich interaction dynam-
ics. We established a local Mineworld server running Java Edition version 1.16.5, utilizing the seed
value of 42. The server was configured in survival mode with the difficulty set to peaceful, and mob
spawning was disabled to eliminate the presence of animals. This configuration was implemented to
prevent interference from mobs during trajectory-related experiments.

We utilized the Chunkbase Websiteto locate various villages and biomes. A total of 120 villages
were collected—comprising 6 types, with 20 samples each—along with locations of 18 distinct
biomes and 8 structures. The agent was teleported to each initial position using Minecraft’s teleport
command before commencing navigation.

A.2 MINEFLAYER

Minefayerﬂis a powerful open-source JavaScript API designed for flexibly controlling in-game bots
within Minecraft. It interacts with the Minecraft server by continuously reading block information
around the bot based on its current X, y, and z coordinates, which is loaded locally. Users are
allowed to specify actions for the bot to perform. Mineflayer simulates the bot’s movement physically,
computes its resulting state and position after each action, and subsequently sends updated coordinates
(x, y, z), yaw, and pitch values to the server. Benefiting from this flexible interaction mechanism,
diverse action policies can be developed to enable the agent to accomplish various tasks.

We introduced a modification to Mineflayer by constraining the horizontal rotation speed per time
step, such that each action can result in a maximum rotation of 0.1 radians. This adjustment ensures
smoother and more gradual viewpoint transitions.

A.3 MINEFLAYER-PATHFINDER

The Mineflayer PathﬁnderE]is an application built on top of Mineflayer. It is capable of planning a
path from the bot’s current position to a target coordinate (X, y, z) using the A* algorithm. The bot is
then controlled through a series of actions to navigate toward the destination.

3http://www.chunkbase.com/
*https://github.com/Prismarine]S/mineflayer
>https://github.com/Prismarine] S/mineflayer-pathfinder
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In the original implementation, camera rotation and movement were coupled within the same action.
In our modified version, at any given time step, only a single action is allowed. That is, the agent
cannot rotate the camera and move forward simultaneously. This avoids entangled motion patterns
and improves the clarity of spatial transitions in the data.

Furthermore, the original Mineflayer Pathfinder often exhibited sharp turns and other non-smooth
behaviors during navigation, particularly causing rapid camera jitter near jagged block edges. To
mitigate this issue, we prevent the bot from moving along the edges of 1x1 blocks, thereby eliminating
such undesirable motion artifacts.

A.4 PRISMARINE-VIEWER

Prismarine Viewer E] is a complementary plugin designed to work alongside Mineflayer, capable
of rendering the Minecraft environment from either a first-person or third-person perspective. In
this sense, the combination of Mineflayer and Prismarine Viewer effectively constitutes a functional
Minecraft client. We employed Prismarine Viewer to render and generate gameplay visuals.

The rendering logic of the viewer operates by periodically capturing the current coordinates (X, y, z)
yaw pitch and rendering the scene at a fixed time interval. We set this sampling frequency to 50 Hz,
matching both Minecraft’s default refresh rate and the action-sending frequency. As a result, each
frame is rendered every 0.02 seconds, synchronized with the execution of a new action.

B DATASET DETAILS AND VISUALIZATION

B.1 OVERVIEW

A total of 120 distinct villages were collected, comprising 6 types with 20 instances each. Our
experiments were primarily conducted on this dataset of 120 villages. In addition, 18 different biomes
and 8 types of locations were also gathered. Detailed information regarding the specific types of
villages, biomes, and locations is provided in the table E] below.

Table 2: Minecraft locations: Villages, Biomes, and Structures

Village Biome Structure
Plains Village Badlands Plains Woodland Mansion
Savanna Village Beach River Ruined Portal
Snowy Village Dark Forest Savanna Desert Temple
Taiga Village Desert Snowy Plains Stronghold
Desert Village Desert Hills Snowy Mountains Nether Bastion
Forest Village Forest Stony Shore Nether Fortress
Zombie Village Ice Spikes Swamp End Mainland
Jungle Taiga End City
Mushroom Fields Mountains

For each location, we collected two types of trajectories: {ABA, ABCA}. For each type, trajectories
were generated with four different navigation ranges: §, 15, 30, and 50. Each length comprises 20
distinct trajectories with varied start and end points.

This resulted in a total of 19,200 trajectories collected across all villages. With an average length of
approximately 1,000 frames per trajectory, the dataset contains around 19.2 million frames, equivalent
to roughly 250 hours of gameplay.

For experimental purposes, the villages were partitioned into training, validation, and test sets as
follows: villages 1-16 were used for training, villages 17—18 for validation, and villages 19-20
for testing. The trajectories were not shuffled randomly across splits to prevent the model from
memorizing structural features seen during training. Instead, this partitioning strategy encourages
the model to reconstruct environmental structures from contextual information, as each village has a
unique layout.

Shttps://github.com/PrismarineJS/prismarine-viewer
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B.2 DATA FORMAT

The smallest unit in our dataset consists of a pair of files: an .avi video file and a corresponding .json
file, both of equal length. The .avi file stores the visual observations, while the .json file contains
the associated state and action data. To avoid introducing inter-frame dependencies, we use MJIPG
(Motion JPEG) compression instead of H.264. Each frame is stored independently, and the resolution
of the images is 640x360 at BGR format. The value of each BRG pixel is from [0,255]. The videos
are recorded at 20 frames per second (FPS).

One step of recoreded trajectories in .json have following keys:

* x: current X coordinate, rounded to three decimal places.
* y: current y coordinate, namely hight, rounded to three decimal places.
* z: current z coordinate, rounded to three decimal places.

» yaw: the agent’s horizontal viewing angle, measured in radians, ranging from —7 to 7,
where 0 indicates the agent is facing the positive z-axis.

* pitch: the agent’s vertical viewing angle, measured in radians, ranging from —7 /2 to 7 /2,
where 0 indicates the agent is looking straight ahead (parallel to the ground plane).

* action: a dictionary with three possible keys: forward, jump, and camera. The values of
forward and jump are booleans indicating whether the corresponding action is executed.
The camera key holds a tuple [ yaw, pitch ], representing the change in the agent’s viewing
angle. Our sampling strategy ensures that these three actions do not occur simultaneously.

* goal: a dictionary containing the target’s coordinates, with keys x and z representing the
target position on the x- and z-axes, respectively.

 frame count: the index of the current frame. Due to rendering initialization, the first 20
frames are skipped, so frame count starts at 20. Since we ensure that the entire trajectory is
recorded properly, the actual frame index within the trajectory can be obtained by simply
subtracting 20.

* extra info: seed, location, navigation type € {ABA, ABCA}, navigation range €
{5,15,30,50}.

B.3 STATISTICAL INFORMATION
B.3.1 TRAJECTORY LENGTH

To better illustrate the scale and difficulty gradient of the dataset, the distribution of trajectory lengths
is presented in the Figure [ and Table below.

From the perspective of sequence length, even for the shortest navigation range (i.e., range = 5), the
average trajectory length reaches as high as 180 frames. This implies that during evaluation, models
must be capable of attending to visual inputs from over 100 frames ago. However, most current
world models are limited to a history (context window) of only 32 frames, indicating that the required
temporal context in our setting substantially exceeds the capacity of existing models.

In terms of distribution, different navigation ranges exhibit minimal overlap in their length distribu-
tions, which supports the validity of our difficulty curriculum design.

Table 3: Mean Trajectory Frames (&£ Std) for Different Trajectory Types

Trajectory Type \ Range 5 Range 15 Range 30 Range 50
ABA 180.5£30.4 356.5+71.6 627.1+130.3 967.8+195.4
ABCA 251.0+£47.1 544.7+113.1 968.1 £203.7 1362.6 £ 260.1

B.3.2 TRAJECTORY VARIANCE

Since both the A — B and B — A paths are generated using A* search, a natural question arises:
Are the forward (A — B) and backward (B — A) paths different? If so, how significant is the
discrepancy?
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Trajectory Frame Distributions for ABA and ABCA
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Figure 4: Trajectory Frame Distribution of Navgation Type ABA and ABCA

To quantify this difference, we compute the area enclosed by this loop to measure the spatial deviation
between the two paths. Additionally, we normalize this area by the trajectory length to obtain a
per-step deviation metric, which reflects the average divergence between forward and backward paths.
The results are in the Table[B.3.2]

Table 4: Deviation Between A — B and B — A Paths
Metric | Range5 Range 15 Range 30 Range 50

Enclosed Area 1.83+2.20 10.95+12.91 39.20£45.20 &87.59+97.77
Normalized Deviation | 0.35£0.07  0.67 £ 0.13 1.19 +0.17 1.62 +£0.20

The results indicate that the A — B and B — A paths are not perfectly identical, but the deviation
remains within an acceptable range. For the longest navigation distance of 50 grids, the average
enclosed area between the two paths is 87.59, while the average total trajectory length is 108.39. If
we approximate the path as forming a rectangle, this translates to about 1.62 grid units of deviation
per unit path length on average. For shorter navigation distances (5, 15, 30 grids), the deviation is
smaller.

Given that the navigation is driven by the A* algorithm, we believe this level of deviation is acceptable
and does not significantly compromise spatial consistency or view reconstruction. Moreover, our
bird’s-eye visualizations that qualitatively illustrate forward and return paths.

B.4 DATASET VISUALIZATION

We illustrate in Figure [5|two trajectories extracted from datasets with a navigation type of ABA and a
navigation range of 5. The upper subfigure corresponds to plains village (village ID:20, trajectory
ID:05-10_14-09-44), while the lower subfigure is taken from snowy village (village ID:20, trajectory
ID:05-10_17-46-35).

In the plains village, we observe that frame 1 is visually similar to frame 129, and frame 41 is
similar to frame 153. In the snowy village, frame 17 resembles frame 129, and frame 25 is
similar to frame 153. These observations suggest that, in order for a world model to accurately
reconstruct future scenes, it must retain information from more than 100 frames earlier, and be
capable of leveraging spatial context to infer and restore visual content.

To provide an intuitive visualization of the trajectories in our dataset, we present bird’s-eye views
of real trajectories. In Figure[6] the location is taken from plains village (village ID: 2). The left
panel shows a trajectory of type ABA, while the right panel displays a trajectory of type ABCA.
Yellow, blue, and green indicate navigation ranges of 5, 15, and 30, respectively. For visual clarity,
trajectories with a navigation range of 50 are omitted.
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Figure 5: Demonstration of two LOOPNAV Trajectories. Upper half: Plains village. Lower Half:
Snowy village. Black number indicates coresponding frame number.

Figure 6: Demonstration of bird eye views for real dataset. Left: ABA type trajectories. Right:
ABCA type trajectories. Yellow, blue, green indicate range 5, 15, 30 respectively.

C EXPERIMENT SETTINGS AND RESULTS

We provide a detailed description of the experimental settings to facilitate reproduction. All inference
and training experiments were conducted on NVIDIA GeForce RTX 4090 GPUs and A800-80GB,
with a total compute time of approximately 1000 GPU hours respectively.

C.1 OPEN OASIS

C.1.1 OASIS SETTINGS

We use the open-sourced Oasis-500M model for inference only. We do not train the Oasis model
ourselves, as it is already pretrained on Minecraft VPT contractor data, and the official training code
has not been released. We use 32 frames as the conditioning input, wthich is the maximum supported
context length, and perform inference in an auto-regressive manner.

Their observation space is defined as (640, 360, 3), which is fully consistent with our dataset and
thus requires no additional modifications. Their action space follows VPT’s CameraQuantizer, with
a maximum value of 20 and a bin size of 0.5, resulting in 40 discrete buckets that are normalized
to the range [-1, 1]. In contrast, our actions are defined in radians within the range [-0.1, 0.1], and
we directly use the raw values as actions. Additionally, their definitions of cameraX and cameraY
are reversed compared to ours(and VPT’s). Other actions, such as forward and jump, are consistent
between the two settings. Inference hyperparameters are shown in Table[3]
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Table 5: Oasis Inference Hyperparameters

Model Video Encoder Sampling
Model: casis-500M Model: ViT-VAE-L/20 DDIM steps: 10
Structure: DiT-S/2 VAE patch size: 20 Max noise level: 1000

Model.max_frames: 32 # Prompt frames: 32  Noise absolute max: 20
Stabilization level: 15
Beta schedule: Sigmoid

Figure 7: Results of Oasis. The first row corresponds to plains village, the second row to taiga village,
and the third row shows the official inference demo. All three cases exhibit increasing blurriness.

C.1.2 OASIS RESULTS

However, the results fall short of expectations. As shown in Figure[7] we observe that errors compound
over time: small imperfections quickly snowball into collapsed frames. After approximately 30
frames, the generated images become increasingly blurred and fail to recover. We include a sample
from plains village and a sample from taiga village. To demonstrate that the blurriness is not
caused by our dataset or action configuration, we additionally include the official inference demo
(Player729-f153ac423f61-20210806-224813, 256 frames) in line 3 for comparison.

C.2 MINEWORLD
C.2.1 MINEWORLD SETTINGS

Mineworld is also a model pretrained on Minecraft VPT contractor data, and its official training code
has not been released. For the same reason, we directly evaluate Mineworld on our benchmark without
further training. Specifically, we evaluate the largest publicly available model, Mineworld-1200M-16f
and Mineworld-1200M-32f, which support 16 frames and 32 frames as context respectively.

Mineworld supports up to 32 frames of total context, which includes both historical and previously
generated frames. Its generation process is chunk-based. We experiment using sliding window
strategies: using 31 frames as context to autoregressively generate the remaining frames.

Mineworld defines its observation space as 384x224. To align with this, we resize our original
640x360 frames to 384x224 using an area-based interpolation method, and apply standard normal-
ization to the pixel values. In Mineworld, visual observations are further compressed by a VAE
into a latent representation of size 24x14. As for the action space, since Mineworld uses degrees to
represent camera rotations, we convert our radian-based actions into degrees before passing them to
the model.

C.2.2 MINEWORLD RESULTS

To qualitatively evaluate the model’s predictions, we visualize rollout results alongside ground truth
frames in Figure[8] The first and third rows show rollouts for plains village (village ID:20, trajectory
ID: 05-10_14-09-18) and desert village(village ID:20, trajectory ID: 05-10_14-11-32), respectively,
while the second and fourth rows present their corresponding ground truth trajectories. We observe
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that, unlike Oasis, Mineworld does not exhibit visual collapse. However, it similarly lacks spatial
consistency and fails to reconstruct the corresponding scene structure.

Figure 8: Results of Mineworld.The first and second rows show the rollout and ground truth for plains
village, respectively; the third and fourth rows show the same for desert village.

C.3 DIAMOND
C.3.1 DIAMOND SETTINGS

DIAMOND is a diffusion-based world model. We follow the CS : GO configuration and focus solely
on training the world model, omitting the reinforcement learning (RL) agent training phase. For
the observation space, following the default settings of the CS:GO branch in DIAMOND, we first
resize the input images from 640 x 360 to 320 x 180, and then further downscale them to 64 x 36.
Diffusion is performed on the 64 x 36 images, and an additional upsampler is trained to reconstruct
the images back to 320 x 180.

For the action space, we adopt VPT-style camera quantization with a maximum value of 0.1 and a bin
size of 0.02, resulting in 11 discrete bins for both yaw and pitch. Combined with forward and jump
actions, the total action dimension is 24. The training hyperparameters are summarized in Table 6]

C.3.2 DIAMOND RESULTS

In Figure we present the rollout results of DIAMOND. We observe that DIAMOND does
not suffer from visual collapse and is able to reconstruct the initial frames relatively accurately,
which aligns with its context window of length 32. However, as the rollout progresses, the generated
scenes gradually converge to empty grasslands, indicating that the model forgets previously observed
structures. This suggests that DIAMOND, like others, fails to maintain spatial consistency over long
horizons.

Figure 9: Results of Mineworld. First row: Rollout results. Second row: Ground truth.

19



Under review as a conference paper at ICLR 2026

Table 6: Model Configuration Parameters

Category Parameter Denoiser Upsampler
sigma_data 0.5 0.5
G sigma_offset_noise 0.1 0.1
eneral > .
noise_previous_obs true false
upsampling_factor null 5
img_channels 3 3
Inner Model num_steps_conditioning 4 1
cond_channels 2048 2048
num_autoregressive_steps 4 1
start_after_epochs 0 0
steps_first_epoch 400 400
steps_per_epoch 400 400
Training sample_weights null null
batch_size 64 16
grad_acc_steps 2 2
Ir_-warmup_steps 100 100
max_grad_norm 10.0 10.0
Ir le-4 le-4
Optimizer weight_decay le-2 le-2
eps le-8 le-8
num_steps_denoising 3 10
sigma_min 2e-3 1
sigma_max 20.0 5.0
rho 7 7
o order 1 1
Diffusion Sampler s churn 0.0 10.0
s_tmin 0.0 1
S_tmax o)
s_noise 1.0 0.9
s_cond 0.005 0

C.4 NAVIGATION WORLD MODEL
C.4.1 NWM SETTINGS

Navigation World Model (NWM) proposes a world model based on the Conditioned Diffusion
Transformer (CDiT). Regarding the observation space, we first align with NWM’s input format by
decomposing trajectory videos into individual images. Following the official setting, each image is
resized to 224x224, normalized, and then compressed into a 32x32 latent representation using the
Stable Diffusion VAE.

For the action space, NWM differs from prior models in that it conditions on the agent’s (z, z)
position and yaw angle, using absolute location and orientation to reconstruct future observations.
Since our dataset records the (x, z) coordinates and yaw at each step, we can directly adopt this
format. Note that pitch information is omitted here. Empirically, we find that for navigation tasks,
pitch tends to be less critical than yaw.

We train a CDiT-L/2 model with a context window of 4 frames. Detailed training hyperparameters
are provided in Table[C.4.1]

C.4.2 NWM RESULTS

In Figure we present the rollout results of Navigation World Model. We observe that NWM
retains a considerable amount of memory in the initial frames. However, the generated frames are
noticeably blurry and distorted, suggesting that the model is unable to faithfully reconstruct spatial
details or maintain long-range spatial consistency.
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Table 7: NWM Training Configuration

Parameter Value
Batch size 8
Number of workers 12
Model CDiT-L/2
Learning rate 8 x 107°
Normalize action space True
Gradient clipping value 10.0
Context size 4
Distance Prediction

Min distance category —64
Max distance category 64

Action Output
Predicted trajectory length 64

Dataset Settings
Image size 224
Goals per observation 4

Figure 10: Results of NWM. First row: Rollout results. Second row: Ground truth.
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