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Figure 1. RF-Solver for downstream tasks in image and video. We propose RF-Solver to solve the rectified flow ODE with reduced
error, thereby enhancing both sampling quality and inversion-reconstruction accuracy for rectified-flow-based generative models (Black-
Forest-Labs, 2024; Zheng et al., 2024). Furthermore, we propose RF-Edit, which utilizes the RF-Solver for editing. Our methods
demonstrate impressive performance across generation, inversion, and editing tasks in both image and video modalities.

Abstract
Rectified-flow-based diffusion transformers
like FLUX and OpenSora have demonstrated
outstanding performance in the field of image and
video generation. Despite their robust generative
capabilities, these models often struggle with
inversion inaccuracies, which could further limit
their effectiveness in downstream tasks such as
image and video editing. To address this issue, we
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propose RF-Solver, a novel training-free sampler
that effectively enhances inversion precision by
mitigating the errors in the ODE-solving process
of rectified flow. Specifically, we derive the exact
formulation of the rectified flow ODE and apply
the high-order Taylor expansion to estimate its
nonlinear components, significantly enhancing
the precision of ODE solutions at each timestep.
Building upon RF-Solver, we further propose RF-
Edit, a general feature-sharing-based framework
for image and video editing. By incorporating
self-attention features from the inversion process
into the editing process, RF-Edit effectively
preserves the structural information of the source
image or video while achieving high-quality
editing results. Our approach is compatible with
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any pre-trained rectified-flow-based models for
image and video tasks, requiring no additional
training or optimization. Extensive experiments
across generation, inversion, and editing tasks in
both image and video modalities demonstrate the
superiority and versatility of our method. Code is
available at this URL .

1. Introduction
Recent advancements of generation methods based on Rec-
tified Flow (RF) (Liu et al., 2022a; Lee et al., 2024; Wang
et al., 2024b) have demonstrated exceptional performance
in synthesizing high-quality images and videos. Different
from traditional approaches represented by Stable Diffusion
(Ho et al., 2020; Rombach et al., 2022), these methods lever-
age the Diffusion Transformer (Peebles & Xie, 2023; Yang
et al., 2024c; Xie et al., 2024; Tang et al., 2024) architecture
and implement a straight-line motion system to produce
the desired data distribution. With these effective designs,
FLUX (Black-Forest-Labs, 2024) and OpenSora (Zheng
et al., 2024) have respectively emerged as one of the state-
of-the-art (SOTA) methods in the field of Text-to-Image
(T2I) and Text-to-Video (T2V) generation.

Despite the remarkable success in the fundamental T2I
and T2V generation tasks, few studies have explored the
performance of RF-based models on various downstream
tasks such as inversion-reconstruction (Song et al., 2021a;
Mokady et al., 2023; Guo et al., 2024; Wang et al., 2023c)
and editing (Hertz et al., 2022; Meng et al., 2022). When
directly applying the vanilla RF for inversion, we observe
that it fails to faithfully reconstruct the image or video from
the source. Examples are shown in Figure 1 Task 1 and Task
2 (the third row). For image inversion, the positions of ob-
jects (e.g., the cake) and the appearance of individuals (e.g.,
the child) in the reconstructed image significantly diverge
from the source image. The performance of video inver-
sion is even worse, with noticeable distortions present in
the reconstructed video. The inaccuracies of inversion and
reconstruction would severely constrain the performance of
RF models on other inversion-based downstream tasks such
as image editing (Hertz et al., 2022; Tumanyan et al., 2023;
Nguyen et al., 2024; Duan et al., 2024; Ju et al., 2024) and
video editing (Liu et al., 2024; Ku et al., 2024; Fan et al.,
2024; Shin et al., 2024).

In this work, we investigate the aforementioned problem
by delving into the inversion and reconstruction process of
the RF. Specifically, we track the latent at each intermediate
timestep during inversion and reconstruction, calculating the
Mean Square Error (MSE) between them at corresponding
timesteps. We observe that significant errors are introduced
at each timestep throughout the whole reconstruction pro-
cess, and their accumulation ultimately results in a consid-
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Figure 2. Analysis of the inversion-reconstruction process. In-
version takes the source image latent Z̃t0 as the input and pro-
gressively add noise for N timesteps, obtaining Z̃tN ∈ N (0, I).
Z̃tN is then denoised for N timesteps to obtain the reconstruction
Zt0 . During this process, we store the latent Z̃ti and Zti at each
timestep respectively in inversion and denoising processes. Then
we calculate the Mean Squared Error (MSE) between them. The
red curve represents the vanilla Rectified Flow inversion and the
green curve represents RF-Solver inversion.

erably deviated output (the red curve in Figure 2). Based
on the definition and inference process of RF (Liu, 2022;
Liu et al., 2022a), we identify that these errors stem from
the Ordinary Differential Equation (ODE) solving process
(Zhang et al., 2024; Wang et al., 2024a; Hong et al., 2024;
Peng et al., 2024). Specifically, the essence of the inver-
sion and generation process for RF is to derive the solution
of RF ODE (Liu et al., 2022a). Since this ODE includes
terms involving complex neural networks, the solution can
only be coarsely approximated by a sampler. However, the
experiment in Figure 2 indicates that the sampler adopted
in existing models (Black-Forest-Labs, 2024; Zheng et al.,
2024) lacks sufficient precision for the inversion task, caus-
ing notable errors to accumulate at each timestep, finally
leading to unsatisfactory reconstruction results.

Based on the analysis, we aim to improve inversion accu-
racy by introducing a more effective sampler, which is more
general and fundamental than designing a specific inversion
method. To this end, we propose RF-Solver. Specifically,
we note that the exact formulation of the RF ODE solu-
tion can be directly derived using the variation of constants
method. For the nonlinear component of this solution (i.e.,,
the integral of the neural network), we utilize Taylor expan-
sion for estimation. By employing higher-order Taylor ex-
pansion, the ODE can be solved with reduced error, thereby
enhancing the performance of RF models. RF-Solver is a
generic sampler that can be seamlessly integrated into any
rectified flow model without additional training or optimiza-
tion. Experimental results demonstrate that RF-Solver not
only significantly enhances the accuracy of inversion and re-
construction (the green curve in Figure 2), but also improves
performance on fundamental tasks such as T2I generation.

Building upon this, we propose RF-Edit to leverage RF-
Solver in editing tasks. Real-world image and video edit-
ing require the model to make precise modifications to a
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source image/video while maintaining its overall structure
unchanged, presenting greater challenges than reconstruc-
tion. In this scenario, it is inadequate to solely rely on the
inverted noises as prior knowledge for editing, which could
lead to edited results being excessively influenced by the tar-
get prompt, diverging significantly from the original source
(Hertz et al., 2022; Tumanyan et al., 2023). Addressing
this problem, RF-Edit stores the V (value) feature in the
self-attention layers at several timesteps during inversion.
These features are used to replace the corresponding fea-
tures in the denoising process. Practically, we design two
specific sub-modules for RF-Edit, respectively leveraging
the DiT structure of FLUX (Black-Forest-Labs, 2024) and
OpenSora (Zheng et al., 2024) as the backbones for image
and video editing. With the effective design of RF-Edit, it
demonstrates superior performance in both image and video
domains, outperforming various SOTA methods.

2. Related Work
2.1. Inversion
Inversion maps the real visual data, i.e., image and video, to
representations in noise space, which is the reverse process
of generation. The representative method, DDIM inver-
sion (Song et al., 2021a;b), adds predicted noise recursively
at each forward step. Many efforts (Elarabawy et al., 2022;
Wallace et al., 2023; Mokady et al., 2023; Rout et al., 2024a;
Miyake et al., 2023; Lu et al., 2022) have been made to
mitigate the discretization error in DDIM inversion. Despite
the effectiveness of inversion in diffusion models, the explo-
ration of inversion in SOTA rectified flow models like FLUX
and OpenSora is limited. RF-prior (Yang et al., 2024b)
uses the score distillation to invert the image while it re-
quires many optimizing steps. More recently, (Rout et al.,
2024b) introduces an additional vector field conditioned on
the source image to improve the inversion. However, the
error from the original vector field of rectified flow still
persists, which would limit the performance of such method
on various downstream tasks. In contrast, we aim to directly
mitigate the error from the original vector field in this work.

2.2. Image and Video Editing
Training-free methods for image and video editing (Huang
et al., 2024a; Sun et al., 2024) have gained increasing popu-
larity for their efficiency and effectiveness. Existing image
editing methods focus on prompt refinement (Ravi et al.,
2023; Wang et al., 2023a), attention-sharing mechanism
(Hertz et al., 2022; Parmar et al., 2023; Cao et al., 2023;
Tumanyan et al., 2023), mask guidance (Avrahami et al.,
2023; Couairon et al., 2022; Huang et al., 2023), and noise
initialization (Brack et al., 2023; Yang et al., 2023b). Video
editing introduces additional complexities in maintaining
temporal consistency, making it a more challenging task.
Existing video editing methods focus on attention injection

(Qi et al., 2023; Wang et al., 2023b; Liu et al., 2024), motion
guidance (Cong et al., 2023; Geyer et al., 2023; Yang et al.,
2024a; Wang et al., 2024c), latent manipulation (Zhang
et al., 2023; Yang et al., 2023a; Kara et al., 2024; Chen et al.,
2023), and canonical representation (Chai et al., 2023; Lee
et al., 2023; Ouyang et al., 2024; Kasten et al., 2021). To
date, the editing performance of RF-based diffusion trans-
formers has remained largely under-explored. Although
(Rout et al., 2024b) employs FLUX (Black-Forest-Labs,
2024) for image editing, its performance is limited to simple
tasks such as stylization and face editing while often failing
to effectively maintain the structural information of source
images. Moreover, currently there is no research exploring
the video editing capabilities of RF-based models.

3. Method
In this section, we present our method in detail. First, we
introduce RF-Solver, which significantly enhances the pre-
cision of inversion and reconstruction. Subsequently, we
present RF-Edit, an extension of RF-Solver designed to
enable high-quality image and video editing.

3.1. Preliminaries
Rectified Flow (RF) (Liu et al., 2022b) facilitates the tran-
sition between the real data distribution π0 and Gaussian
Noises distribution π1 along a straight path. This is achieved
by learning a forward-simulating system defined by the
ODE: dZt = v(Zt, t)dt, t ∈ [0, 1], which maps Z1 ∈ π1

to Z0 ∈ π0.

In practice, the velocity field v is parameterized by a neural
network vθ. During training, given empirical observations
of two distributions X0 ∼ π0, X1 ∼ π1 and t ∈ [0, 1],
the forward process (i.e., adding noise) of rectified flow
is defined by a simple linear combination: Xt = tX1 +
(1 − t)X0. The differential form of the equation is given
by: dXt = (X1 − X0)dt. Consequently, the training
process optimizes the network by solving the least squares
regression problem, which fits the vθ with (X1 −X0):

min
θ

∫ 1

0

E
[
∥(X1 −X0)− vθ (Xt, t)∥2

]
dt. (1)

In the sampling process, the ODE is discretized and solved
using the Euler method. Specifically, the rectified flow
model starts with a Gaussian noise sample ZtN ∈ N (0, I).
Given a series of N discrete timesteps t = {tN , ..., t0}, the
model iteratively predicts vθ(Zti , ti) for i ∈ {N, · · · , 1}
and then takes a step forward until generating the images
Zt0 , with the following recurrence relation:

Zti−1
= Zti + (ti−1 − ti)vθ(Zti , ti). (2)

The RF model can generate high-quality images in much
fewer timesteps compared to DDPM (Ho et al., 2020), owing
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to the nearly linear transition trajectory established during
training. With these effective designs, RF model illustrates
great potential in the field of T2I and T2V generation (Black-
Forest-Labs, 2024; Zheng et al., 2024).

3.2. RF-Solver
The vanilla RF sampler demonstrates strong performance
in image and video generation. However, when applied
to inversion and reconstruction tasks, we observe signifi-
cant error accumulation at each timestep. This results in
reconstructions that diverge notably from the original im-
age (see Figure 2). This severely limits the performance
of RF models in various inversion-based downstream tasks
(Hertz et al., 2022; Wang et al., 2024a). Delving into this
problem, we identify that the errors stem from the process
of estimating the approximate solution for the rectified flow
ODE (Wang et al., 2024b; Liu, 2022), which is formulated
by Equation (2) in existing methods (Black-Forest-Labs,
2024; Zheng et al., 2024). Consequently, obtaining more
precise solutions for the ODE would effectively mitigate
these errors, leading to improved performance.

Based on this analysis, we start by carefully examining the
differential form of the Rectified flow: dZt = vθ(Zt, t)dt.
This ODE is discretized in the sampling process. Given the
initial value Zti , the ODE can be exactly formulated using
the variant of constant method:

Zti−1
= Zti +

∫ ti−1

ti

vθ(Zτ , τ)dτ. (3)

In the above formula, vθ(Zτ , τ) is the non-linear compo-
nent parameterized by the complex neural network, which
is difficult to approximate directly. As an alternative, we
employ the Taylor expansion at ti to approximate this term:

vθ(Zτ , τ) =

n−1∑
k=0

(τ − ti)
k

k!
v
(k)
θ (Zti , ti) +O

(
(τ − ti)

n
)
,

(4)
where v

(k)
θ (Zti , ti) =

dkvθ(Zti
,ti)

dtk , denoting the k-order
derivative of vθ and O denotes higher-order infinitesimals.
Substituting Equation (4) into the integral term yields:∫ ti−1

ti

vθ(Zτ , τ) dτ =

n−1∑
k=0

v
(k)
θ (Zti , ti)

∫ ti−1

ti

(τ − ti)
k

k!
dτ

+O
(
(τ − ti)

n
)
. (5)

Through the above process, the network prediction term and
its higher-order derivatives are separated from the integral.
Then we notice that the remaining component in the integral
can be computed analytically:∫ ti−1

ti

(τ − ti)
k

k!
dτ =

[
(τ − ti)

k+1

(k + 1)!

]ti−1

ti

=
(ti−1 − ti)

k+1

(k + 1)!
.

(6)

Substituting Equation (6) and Equation (5) into Equation (3),
we derive the n-th order solution of Rectified flow ODE:

Zti−1
= Zti +

n−1∑
k=0

(ti−1 − ti)
k+1

(k + 1)!
v
(k)
θ (Zti , ti)

+O
(
hn+1
i

)
, (7)

where hi := ti−1 − ti. Equation (7) indicates that to es-
timate Zti−1

, we need to obtain the k-th order derivatives
{v(k)

θ (Zti , ti)} for k ∈ {0, · · · , n− 1}.

Considering n = 1, the formula reduces to the standard rec-
tified flow (i.e.,, Equation (2)). In our experiments, we find
that setting n = 2 effectively mitigates the errors, yielding:

Zti−1
= Zti + (ti−1 − ti)vθ(Zti , ti)

+
1

2
(ti−1 − ti)

2v
(1)
θ (Zti , ti). (8)

Note that v(1)
θ in Equation (8) is the first-order derivative

of the network prediction term vθ, which cannot be analyti-
cally derived due to the complex architecture of the neural
network. To estimate this term, we first obtain the network
prediction v̂ti at the timestep ti, i.e., v̂ti = vθ(Zti , ti).
Then we step forward a small timestep ∆t (which is set
to 0.01 in experiments), and update the latents to obtain
Zti+∆t = Zti + ∆t · v̂ti . Subsequently, we calculate an
additional prediction of the network at the timestep ti +∆t,
i.e., v̂ti+∆t = vθ(Zti+∆t, ti +∆t). With v̂ti and v̂ti+∆t,
the first-order derivative of vθ at the timestep ti can be es-
timated as: v

(1)
θ (Zti , ti) =

v̂ti+∆t−v̂ti

∆t . Substituting this
formulation into Equation (8) results in the practical im-
plementation of the RF-Solver algorithm. The complete
sampling process for RF-Solver is presented in Algorithm 1.

Obtaining the sampling form of RF-Solver, we further derive
its inversion form. Inversion maps data back into noise,
which reverses the sampling process. Following previous
methods for DDIM inversion (Song et al., 2021a; Dhariwal
& Nichol, 2021), the ODE process can be directly reversed
in the limit of small steps. Based on this assumption, the
inversion process of RF-Solver can be derived as:

Z̃ti+1
= Z̃ti + (ti+1 − ti)vθ(Z̃ti , ti)

+
1

2
(ti+1 − ti)

2v
(1)
θ (Z̃ti , ti), (9)

where Z̃ti and Z̃ti+1 denotes the latents during inversion.
Through the high order expansion, the error of the ODE solu-
tion in each timestep is reduced from O

(
(hi)

2
)

to O
(
(hi)

3
)
,

significantly facilitating inversion and reconstruction pro-
cess (see Figure 2). Beyond this, RF-Solver can also be
applied to any RF-based model (such as FLUX (Black-
Forest-Labs, 2024) and OpenSora (Zheng et al., 2024)) for
other tasks such as sampling and editing, enhancing perfor-
mance without requiring additional training.
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Figure 3. RF-Edit pipelines for image editing and video editing. We design two sub-modules for applying RF-Edit to (a). Image editing
with FLUX (Black-Forest-Labs, 2024) and (b). Video editing with OpenSora (Zheng et al., 2024). Note that for FLUX, there are multiple
Double Blocks, followed by multiple Single Blocks. For OpenSora, there are multiple OpenSora DiT blocks. For simplicity, only one
block of each type is depicted in the figure.

3.3. RF-Edit
Incorporating higher-order terms enables RF-Solver to sig-
nificantly reduce errors in the ODE-solving process, thereby
enhancing both sampling quality and inversion accuracy.
Furthermore, we extend the application of RF-Solver to the
more complex real-world image and video editing tasks,
which present greater challenges than reconstruction. In
such scenarios, preserving the content and structure of the
original image is crucial. For example, when replacing an
object in a source image with another one, regions unrelated
to the object in this image are expected to remain unaf-
fected by the editing process. However, directly applying
RF-Solver during the inversion and denoising stages may
cause the model to be overly influenced by the target prompt,
resulting in unintended modifications in other regions of the
source image or video. Similar issues are common across
various existing editing methods (Rout et al., 2024b; Hertz
et al., 2022; Tumanyan et al., 2023).

To address this problem, we propose RF-Edit, which builds
upon the diffusion transformer architecture. Specifically, we
focus on the self-attention layer in the last M transformer
blocks of vθ at the last n timesteps during inversion. The
self-attention operation can be formulated by:

F̃
m

tk
= Attention(Q̃m

tk
, K̃m

tk
, Ṽm

tk
). (10)

Here, k ∈ {N − n, · · · , N}, and m ∈ {1, · · · ,M}, F̃
m

tk
denotes the output feature of the self-attention module and
Q̃m

tk
, K̃m

tk
, Ṽm

tk
represent query, key and value for attention

during the inversion process, respectively. We extract and
store the Value feature {Ṽm

tk
} and {Ṽm

tk+∆tk
} in the process

of RF-Solver algorithm (Algorithm 1):

{Ṽm
tk
} = Extract

(
vθ(Z̃tk , tk)

)
(11)

{Ṽm
tk+∆tk

} = Extract
(
vθ(Z̃tk+∆tk , tk +∆tk)

)
. (12)

During the first n timesteps of denoising, considering the
mth transformer block at the timestep k, the original self-
attention can be formulated as:

Fm
tk

= Attention(Qm
tk
,Km

tk
,Vm

tk
), (13)

where Fm
tk

denotes the output feature of the self-attention
module and Qm

tk
,Km

tk
,Vm

tk
represent query, key and value

for attention during the denoising process, respectively.

In RF-Edit, the above self-attention mechanism is modified
to cross-attention where Vm

tk
is replaced by Ṽm

tk
,

Fm
tk

′ = Attention(Qm
tk
,Km

tk
, Ṽm

tk
). (14)

The modified output feature Fm
tk

′ is then passed to the sub-
sequent modules for further processing.

Similarly, this feature-sharing process is also adopted in the
derivative calculation process of RF-Solver:

Fm′
tk+∆tk

= Attention(Qm
tk+∆tk

,Km
k+∆tk

, Ṽm
k+∆tk

). (15)

The proposed RF-Edit framework enables high-quality edit-
ing while effectively preserving the structural information
of the source image/video. Building on this concept, we
design two sub-modules for RF-Edit, specifically tailored
for image editing and video editing (Figure 3). For image
editing, RF-Edit employs FLUX (Black-Forest-Labs, 2024)
as the backbone, which comprises several double blocks
and single blocks. Double blocks independently modulate
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Figure 4. Qualitative results of image and video reconstruction. Our method (the second row) demonstrates superior performance
compared to the vanilla rectified flow baselines (the third row).

Table 1. Quantitative results on text-to-image generation. RF-
Solver outperforms several baselines.

DPMSolver++ RF RF-Heun Ours

FID (↓) 24.63 25.33 24.40 23.98
CLIP Score (↑) 30.62 31.01 31.03 31.09

text and image features, while single blocks concatenate
these features for unified modulation. In this architecture,
RF-Edit shares features within the single blocks, as they cap-
ture information from both the source image and the source
prompt, enhancing the ability of the model to preserve the
structural information of the source image. For video edit-
ing, RF-Edit mainly employs OpenSora (Zheng et al., 2024)
as the backbone. The DiT blocks in OpenSora include spa-
tial attention, temporal attention, and text cross-attention.
Within this architecture, the structural information of the
source video is captured in the spatial attention module,
where we implement feature sharing.

4. Experiment
4.1. Setup
We implement our method respectively on FLUX (Black-
Forest-Labs, 2024) and OpenSora (Zheng et al., 2024). In
the experiment, we adopt the guidance-distilled variant of
FLUX (Black-Forest-Labs, 2024) for image tasks and Open-
Sora (Zheng et al., 2024) for video tasks. The derivative
computation in RF-Solver requires an additional forward
pass, resulting in the network needing to forward twice at
each timestep. As a result, when comparing our method
with the Rectified Flow baselines, we set the number of
timesteps for the vanilla Rectified Flow to be twice that
of our method to ensure a fair comparison under the same
number of function evaluations (NFE). More detailed infor-
mation for experiment setup is provided in Appendix B.

4.2. Text-to-image Sampling
We compare the performance of our method with DPM-
Solver++ (Lu et al., 2022), the vanilla RF sampler, and
Heun sampler on the text-to-image generation task. Both the

Table 2. Quantitative results on inversion and reconstruction.
Our method significantly improves the accuracy of reconstruction
for both images and videos.

Method MSE (↓) LPIPS (↓) SSIM (↑) PSNR (↑)

image
RF 0.0268 0.6253 0.7626 28.28

RF-Heun 0.0117 0.4696 0.8924 29.67
Ours 0.0092 0.4239 0.9276 29.89

video
RF 0.0206 0.4159 0.8134 18.12

RF-Heun 0.0156 0.3554 0.8711 18.29
Ours 0.0134 0.3287 0.8812 18.41

quantitative (Section 4.1) and qualitative results (Figure 10)
demonstrate the superior performance of RF-Solver in fun-
damental T2I generation tasks, producing higher-quality
images that align more closely with human cognition.

4.3. Inversion and Reconstruction
We conduct experiments on inversion and reconstruction for
both image and video modalities, comparing our method
with the vanilla RF sampler and the Heun sampler.

Quantitative Comparison. The quantitative comparisons
(Section 4.3) are conducted to reflect the similarity between
the source and reconstruction results. Our method demon-
strates superior performance across all four metrics com-
pared with the vanilla RF sampler and Heun sampler.

Qualitative Comparison. RF-Solver effectively reduces
the error in the solution of RF ODE, thereby increasing the
accuracy of the reconstruction. As illustrated in Figure 4(a),
the image reconstruction results using vanilla rectified flow
exhibit noticeable drift from the source image, with signifi-
cant alterations to the appearance of subjects in the image.
For video reconstruction, as shown in Figure 4(b), the base-
line reconstruction results suffer from distortion. In contrast,
RF-Solver significantly alleviates these issues, achieving
more satisfactory results.

4.4. Editing
We conduct experiments to evaluate the image and video
editing performance of our method. For image editing, we
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P2P

DiffEdit

SDEdit

PnP

Ours

Source 

Image

rose   sunflowers    horse    camel car   motorbike+ dog + hiking stick couple   family violin    cello cartoon style

Instruct 

pix2pix

RF 

Inversion

Figure 5. Qualitative comparison of image editing. With RF-Solver and feature-sharing mechanism in RF-Edit, our method can
successfully handle various kinds of image editing cases, outperforming the previous SOTA methods.

Table 3. Quantitative results of image editing. RF-Edit effec-
tively edits the images according to the prompts while preserving
the integrity of unrelated regions.

P2P DiffEdit SDEdit PnP Pix2Pix RF-Inv Ours

LPIPS (↓) 0.419 0.157 0.394 0.080 0.155 0.318 0.149
CLIP Score (↑) 30.70 32.68 31.61 30.58 32.33 33.02 33.66

compare our method with P2P (Hertz et al., 2022), DiffEdit
(Couairon et al., 2023), SDEdit (Meng et al., 2022), PnP
(Tumanyan et al., 2023), Pix2pix (Parmar et al., 2023) and
RF-Inversion (Rout et al., 2024b). For video editing tasks,
we compare our method with FateZero (Qi et al., 2023),
FLATTEN (Cong et al., 2023), COVE (Wang et al., 2024c),
RAVE (Kara et al., 2024), Tokenflow (Geyer et al., 2023).

Quantitative Comparison. In image editing, Our method
outperforms all other methods in CLIP score (Section 4.4),
indicating that the edited images align well with the user-
provided prompts. For LPIPS, it is noted that PnP (Tu-
manyan et al., 2023) has a much lower value than all other
methods. Based on the qualitative results (Figure 5), it can
be seen that PnP is only suitable for editing cases that do
not significantly modify the structure or shape of the source
image (such as changing red roses into yellow sunflowers).
It fails in the case of shape editing, resulting in an image
very similar to the source. Consequently, although PnP has
the lowest LPIPS score, its CLIP score is the lowest. For
video editing, RF-Edit achieves higher scores on VBench
(Huang et al., 2024b) metrics (Section 4.4). The results
illustrate that our method successfully maintains temporal

Table 4. Quantitative results of video editing. RF-Edit outper-
forms several previous SOTA video editing methods.

FateZero Flatten COVE RAVE Tokenflow Ours

SC (↑) 0.9382 0.9420 0.9433 0.9292 0.9439 0.9501
MS (↑) 0.9611 0.9528 0.9697 0.9519 0.9632 0.9712
AQ (↑) 0.6092 0.6329 0.6717 0.6586 0.6742 0.6796
IQ (↑) 0.6898 0.7024 0.7163 0.6917 0.7128 0.7207

consistency while demonstrating superior quality.

Qualitative Comparison. For image editing, we compare
the performance of our method with several baselines across
different types of editing requirements including adding,
replacing, and stylization (Figure 5 and Figure 8). The
baseline methods often suffer from background changes or
fail to perform the desired edits. In contrast, our method
demonstrates satisfying performance, effectively achieving
a balanced trade-off between the fidelity to the target prompt
and the preservation of the source image.

The qualitative results for video editing are shown in Fig-
ure 6. RF-Edit illustrates impressive performance in han-
dling complicated editing cases (e.g., modifying the leftmost
lion among three lions into a white polar bear and changing
the other two small lions into orange tiger cubs), whereas
all other baseline methods fail in this scenario.

Besides, HunyuanVideo (Kong et al., 2024) has recently
demonstrated strong performance in text-to-video gener-
ation. Thanks to the generality of our method, it can be
implemented on HunyuanVideo for video editing. More
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COVEFateZero Flatten RAVE TokenFlow

3 lions   left: 2 tiger cubs; right: 1 polar bear autumn

Source Video Ours COVEFateZero Flatten RAVE TokenFlowSource Video Ours

Figure 6. Qualitative comparison of video editing. The first video comprises 200 frames with a resolution of 512 × 512, while the
second video contains 60 frames with a resolution of 1024× 768 (frames are compressed for a neat layout).

qualitative results are shown in Figure 9.

4.5. Ablation Study
We conduct ablation studies to illustrate the effectiveness of
RF-Solver and RF-Edit. Without loss of generality, these
ablation studies are performed on the image tasks using
FLUX (Black-Forest-Labs, 2024) as the base model.

Taylor Expansion Order of RF-Solver. We investigated
the impact of the Taylor expansion order in RF-Solver (Sec-
tion 4.5) under the same NFE across different orders. Com-
pared to the first-order expansion (i.e., the vanilla rectified
flow), the second-order expansion demonstrates a significant
improvement across various tasks. However, higher-order
expansions do not yield further enhancements. We speculate
that this is primarily due to higher-order Taylor expansions
requiring more inference steps per timestep. With a fixed
NFE, this results in a reduced overall number of timesteps
compared to lower-order expansions, leading to suboptimal
performance. Moreover, computing the higher-order deriva-
tives of vθ(Zti , ti) substantially increases the complexity
of the algorithm, posing challenges for practical applica-
tions. Consequently, we employ second-order expansion
(i.e., RF-Solver-2 in Section 4.5) for various downstream
tasks due to its effectiveness and simplicity.

Table 5. Ablation study on the Taylor Expansion order. Here,
RF implies the vanilla Rectified Flow without the proposed RF-
Solver algorithm. All of the experiments for editing in the table
apply the proposed feature-sharing mechanism for better results.

Metric RF RF-Solver-2 RF-Solver-3

Sampling FID (↓) 25.33 23.98 23.94
CLIP Score (↑) 31.01 31.09 31.09

Inversion MSE (↓) 0.0268 0.0092 0.0131
LPIPS (↓) 0.6253 0.4239 0.4817

Editing LPIPS (↓) 0.1524 0.1494 0.1503
CLIP Score (↑) 32.97 33.66 33.18

Feature Sharing Steps of RF-Edit. RF-Edit leverages fea-
ture sharing to maintain the structural consistency between
original images and edited images. However, an excessive
number of feature-sharing steps may result in the edited

output being overly similar to the source image, ultimately
undermining the intended editing objectives (Figure 7). To
investigate the impact of feature-sharing steps on editing
results, we incrementally increase the number of feature-
sharing steps applied to the same image. Due to the vary-
ing levels of difficulty that different images presented to
the model, the optimal number of sharing steps may differ
across cases. Experimental results reveal that setting the
sharing step to 5 effectively meets the editing requirements
for most images. Additionally, we can customize the sharing
step for each image to identify the most satisfying outcome.

golden retriever   dalmatian school bus    fire truck 

Source 

Image

+ swan + glasses
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+

Figure 7. Ablation study of feature-sharing step in RF-Edit.
The second row is the results produced solely by RF-Solver, with-
out the proposed feature-sharing mechanism. Feature-sharing can
significantly enhance the consistency between source and target
images, while a too-large feature-sharing step may lead to the
failure of editing.

5. Conclusion
In this paper, we propose RF-Solver, a versatile sampler for
the rectified flow model that solves the rectified flow ODE
with reduced error, thus enhancing the image and video
generation quality across various tasks such as sampling and
reconstruction. Based on RF-Solver, we further propose RF-
Edit, which achieves high-quality editing performance while
effectively preserving the structural information in source
images or videos. Extensive experiments demonstrate the
versatility and effectiveness of our method.
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Appendix

A. Pesudo Code of RF-Solver Algorithm.

Algorithm 1 Sampling process of RF-Solver
Input:

vθ ▷ Velocity function
t = [tN , . . . , t0] ▷ Time steps
ZtN ∼ N (0, I) ▷ Initial Gaussian Noise

For i = N to 1 do
v̂ti ← vθ(Zti , ti)
Zti+∆ti ← Zti +∆tiv̂ti

v̂ti+∆ti ← vθ(Zti+∆ti , ti +∆ti)

v
(1)
ti
← (v̂ti+∆ti − v̂ti)/∆ti ▷ Calculating the Derivatives

Zti−1 ← Zti + (ti−1 − ti)v̂ti +
1
2
(ti−1 − ti)

2v
(1)
ti

Output: Z0

B. Experimental Settings
B.1. Baselines and Implementation Details

Text-to-Image Generation. We compare our methods with
the following baselines: FLUX with the vanilla sampler,
Heun Solver, and DPM-Solver. The Heun Solver is a second-
order ODE solver that can be applied to pretrained rectified
flow to solve the ODE more precisely. DPM-Solver is a
high-order sampler for diffusion ODE, which is not suitable
for RF-based models like FLUX. As an alternative, we
apply the DPM-Solver on Stable Diffusion to evaluate its
performance. For FLUX with the vanilla sampler and the
Heun Solver, we randomly select 10000 images from the
MS-COCO validation dataset and use their caption as the
prompt for generation. The resolution of generated images is
1024×1024. For DPM-Solver, we adopt the implementation
from the diffuser, adopting its default setting to generate
images. The total NFE for generating one image is set to 10
for both our method and baselines.

Inversion. We compare the performance of our methods
among RF with the vanilla sampler and the Heun sampler.
For image inversion, similar to Text-to-Image generation,
we use images and captions from the MS-COCO valida-
tion set. For video inversion, we select about 40 videos
from social media platforms such as TikTok and other pub-
licly available sources. We have observed the quality of
the text prompts significantly influences the quality of inver-
sion. Consequently, we employ GPT-4o to generate detailed
captions for both images and videos, which are then used
in the inversion tasks. The total NFE for generating one
image/video is set to 50 for both our method and baselines.

Editing. For image editing, we share the features of the last
19 single blocks in FLUX. For video editing, we share the
features of the last 14 blocks in Open-Sora. We adjust the
hyper-parameter of feature-sharing steps to achieve better
results for both image and video editing. For image edit-

ing, we use over 300 images for quantitative comparison,
which both include real images (obtained from public social
media and the DIV2K dataset) and generated images. For
each image, we use GPT-4o to generate the source prompt
and manually refine the generated prompt. There are 2
3̃ target prompts for different requirements of editing in-
cluding adding, replacing, and stylization for each source
image. We compare our methods with RF-inversion and
several diffusion-based editing methods. For RF-inversion,
we adopt the implementation in ComfyUI (com). For other
baselines, we use their implementation from diffuser and
adjust the relevant hyper-parameters to achieve optimal re-
sults. For video editing, the data preparation mainly follows
previous works COVE (Wang et al., 2024c). We use the
official codes of all the baseline methods and tune the hyper-
parameters to achieve satisfactory results.

B.2. Evaluation Metrics

For text-to-image sampling, we report Fréchet Inception
Distance (FID) and CLIP Scores. The FID is a metric used
to evaluate the quality of generated images by assessing the
similarity between the distributions of real and generated
image features, typically extracted using a pre-trained In-
ception network. The CLIP Score evaluates the alignment
between generated images and textual descriptions by mea-
suring the similarity of their embeddings within a shared
multimodal space using the CLIP model.

For Inversion tasks, our evaluation metrics include MSE,
LPIPS, SSIM, and PSNR. MSE measures the average
squared difference between predicted and ground-truth val-
ues, quantifying the overall error in pixel intensity. LPIPS
assesses perceptual similarity between images by comparing
deep feature representations extracted from neural networks,
aligning with human perception. SSIM evaluates image
quality by comparing luminance, contrast, and structure
to measure the similarity between the reference and recon-
structed images. PSNR quantifies the ratio between the
maximum possible signal value and the power of noise,
commonly used to assess image reconstruction quality.

For video editing, we adopt the VBench Metrics. The evalu-
ation criteria include Subject Consistency, Motion Smooth-
ness, Aesthetic Quality, and Imaging Quality. Subject Con-
sistency measures whether the subject (e.g., a person) re-
mains consistent throughout the video by computing the
similarity of DINO features (Caron et al., 2021) across
frames, which is similar to the CLIP Score for images. Mo-
tion Smoothness assesses the smoothness of motion in the
generated video using motion priors from the video frame
interpolation model (Li et al., 2023). Aesthetic Quality
evaluates the artistic and visual appeal of each frame as
perceived by humans, leveraging the LAION aesthetic pre-
dictor (LAION-AI, 2022). Imaging Quality examines the
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Figure 8. Stylized Generation.

level of distortion in the generated frames (e.g., blurring or
flickering) based on the MUSIQ image quality predictor (Ke
et al., 2021).

C. Qualitative Results for Text-to-image
Sampling

Qualitative results for Text-to-image Sampling are shown
in Figure 10. Experimental results demonstrate that com-
pared to vanilla Rectified Flow, the RF-Solver sampler can
generate higher-quality images that better align with human
perception.

D. More Qualitative Results for Image Editing
Here we provide more qualitative results for image editing
and stylization (Figure 8).

E. More Qualitative Results for Video Editing
HunyuanVideo (Kong et al., 2024) has recently demon-
strated strong performance in text-to-video generation. The
backbone of HunyuanVideo is similar to FLUX, which also
contains several double-stream blocks, followed by single-

stream blocks. We implement the RF-Solver and RF-Edit
on HunyuanVideo, where the RF-Edit shares the feature in
the single-stream block. The results are shown in Figure 9.

F. More Potential Applications
RF-Solver is a universal sampler for rectified flow. Besides
image and video editing, it is also potential on image or
video generation (Xiao et al., 2025; Ma et al., 2024b;a;
Lin et al., 2025) and other diffusion-based tasks (He et al.,
2024; Fang et al., 2024; Guo et al., 2022). Furthermore,
our proposed feature-sharing method in RF-Edit can also
be applied in other image and video editing methods (Zhu
et al., 2024b;a).
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Figure 10. Qualitative results of text-to-image generation. By
employing the RF-Solver, the model is able to generate images
with higher quality than baselines.
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