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ABSTRACT

Manipulating objects is a hallmark of human intelligence, and an important task
in domains such as robotics. In principle, Reinforcement Learning (RL) offers
a general approach to learn object manipulation. In practice, however, domains
with more than a few objects are difficult for RL agents due to the curse of dimen-
sionality, especially when learning from raw image observations. In this work
we propose a structured approach for visual RL that is suitable for represent-
ing multiple objects and their interaction, and use it to learn goal-conditioned
manipulation of several objects. Key to our method is the ability to handle
goals with dependencies between the objects (e.g., moving objects in a cer-
tain order). We further relate our architecture to the generalization capability
of the trained agent, based on a theoretical result for compositional generaliza-
tion, and demonstrate agents that learn with 3 objects but generalize to similar
tasks with over 10 objects. Videos and code are available on the project website:
https://sites.google.com/view/entity-centric-rl

1 INTRODUCTION

Deep Reinforcement Learning (RL) has been successfully applied to various domains such as video
games (Mnih et al., 2013) and robotic manipulation (Kalashnikov et al., 2018). While some studies
focus on developing general agents that can solve a wide range of tasks (Schulman et al., 2017), the
difficulty of particular problems has motivated studying agents that incorporate structure into the
learning algorithm (Mohan et al., 2023). Object manipulation – our focus in this work – is a clear
example for the necessity of structure: as the number of degrees of freedom of the system grows
exponentially with the number of objects, the curse of dimensionality inhibits standard approaches
from learning. Indeed, off-the shelf RL algorithms struggle with learning to manipulate even a
modest number of objects (Zhou et al., 2022).

The factored Markov decision process formulation (factored MDP, Guestrin et al. 2003) factorizes
the full state of the environment S into the individual states of each object, or entity, in the system Si:
S = S1⊗S2⊗ ...⊗SN . A key observation is that if the state transition depends only on a subset of
the entities (e.g., only objects that are physically near by), this structure can be exploited to simplify
learning. In the context of deep RL, several studies suggested structured representations based on
permutation invariant neural network architectures for the policy and Q-value functions (Li et al.,
2020; Zhou et al., 2022). These approaches require access to the true factored state of the system.

For problems such as robotic manipulation with image inputs, however, how to factor the state
(images of robot and objects) into individual entities and their attributes (positions, orientation, etc.)
is not trivial. Even the knowledge of which attributes exist and are relevant to the task is typically not
given in advance. This problem setting therefore calls for a learning-based approach that can pick up
the relevant structure from data. As with any learning-based method, the main performance indicator
is generalization. In our setting, generalization may be measured with respect to 3 different factors
of variation: (1) the states of the objects in the system, (2) different types of objects, and (3) different
number of objects than in training, known as compositional generalization (Lin et al., 2023).

Our main contribution in this work is a goal-conditioned RL framework for multi-object manipu-
lation from pixels. Our approach consists of two components. The first is an unsupervised object-
centric image representation (OCR), which extracts entities and their attributes from image data.
The second and key component is a Transformer-based architecture for the policy and Q-function
neural networks that we name Entity Interaction Transformer (EIT). Different from previous work
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such as Zadaianchuk et al. (2020), our EIT is structured such that it can easily model not only re-
lations between goal and state entities, but also entity-entity interactions in the current state. This
allows us to learn tasks where interactions between objects are important for achieving the goal, for
example, moving objects in a particular order.

Furthermore, the EIT does not require explicit matching between entities in different images, and
can therefore handle multiple images from different viewpoints seamlessly. As we find out, multi-
view perception is crucial to the RL agent for constructing an internal “understanding” of the 3D
scene dynamics from 2D observations in a sample efficient manner. Combined with our choice of
Deep Latent Particles (DLP, Daniel & Tamar 2022) image representations, we demonstrate what is,
to the best of our knowledge, the most accurate object manipulation from pixels involving more than
two objects, or with goals that require interactions between objects.

Finally, we investigate the generalization ability of our proposed framework. Starting with a formal
definition of compositional generalization in RL, we show that self-attention based Q-value func-
tions have a fundamental capability to generalize, under suitable conditions on the task structure.
This result provides a sound basis for our Transformer-based approach. Empirically, we demon-
strate that an EIT trained on manipulating up to 3 objects can perform well on tasks with up to 6
objects, and in certain tasks we show generalization to over 10 objects.

Figure 1: The environment we used for our experiments (left) and how the agent perceives it (middle,
right), colored keypoints are the position attribute zp of particles from the DLP representation.

2 RELATED WORK
Latent-based Visual RL: Unstructured latent representations consisting of a single latent vector
have been widely employed, both in model-free (Levine et al., 2016; Nair et al., 2018; Pong et al.,
2019; Yarats et al., 2021) and model-based (Hafner et al., 2023; Mendonca et al., 2021) settings.
However, in manipulation tasks involving multiple objects, this approach falls short compared to
models based on structured representations (Gmelin et al., 2023; Zadaianchuk et al., 2020).
Object-centric RL: Several recent works explored network architectures for a structured representa-
tion of the state in model free (Li et al., 2020; Zhou et al., 2022; Mambelli et al., 2022; Zadaianchuk
et al., 2022) and model-based (Sanchez-Gonzalez et al., 2018) RL as well as model-based planning
methods (Sancaktar et al., 2022). Compared to our approach, the aforementioned methods assume
access to ground-truth states, while we learn representations from images.
Object-centric RL from Pixels: Several works have explored adopting ideas from state-based
structured representation methods to learning from visual inputs. COBRA (Watters et al., 2019),
STOVE (Kossen et al., 2019), NCS (Chang et al., 2023), FOCUS (Ferraro et al., 2023), DAFT-
RL (Feng & Magliacane, 2023), HOWM (Zhao et al., 2022) and Driess et al. (2023) learn object-
centric world models which they use for planning or policy learning to solve multi-object tasks.
In contrast to these methods, our method is trained in a model-free setting, makes less assump-
tions on the problem and is less complex, allowing simple integration with various object-centric
representation models and standard online or offline Q-learning algorithms. OCRL (Yoon et al.,
2023), Heravi et al. (2023) and van Bergen & Lanillos (2022) have investigated slot-based rep-
resentations (Greff et al., 2019; Locatello et al., 2020; Singh et al., 2022; Traub et al., 2022) for
manipulation tasks in model-free, imitation learning and active inference settings, respectively. The
above methods have demonstrated the clear advantages of object-centric representations over non-
object-centric alternatives. In this work, we utilize particle-based image representations (Daniel &
Tamar, 2022) and extend these findings by tackling more complex manipulation tasks and show-
casing generalization capabilities. Closely related to our work, SMORL (Zadaianchuk et al., 2020)
employs SCALOR (Jiang et al., 2020), a patch-based image representation for goal-conditioned
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manipulation tasks. The key assumption in SMORL is that goal-conditioned multi-object tasks can
be addressed sequentially (object by object) and independently, overlooking potential interactions
among objects that might influence reaching goals. Our model, on the other hand, considers inter-
action between entities, leading to improved performance and generalization, as we demonstrate in
a thorough comparison with SMORL (see Section 5).

3 BACKGROUND

Goal-Conditioned Reinforcement Learning (GCRL): RL considers a Markov Decision Process
(MDP, Puterman (2014)) defined as M = (S,A, P, r, γ, ρ0), where S represents the state space,
A the action space, P the environment transition dynamics, r the reward function, γ the discount
factor and ρ0 the initial state distribution. GCRL additionally includes a goal space G. The agent
seeks to learn a policy π∗ : S × G → A that maximizes the expected return Eπ[

∑∞
t=0 γ

trt], where
rt = r (st, g) : S × G → R is the immediate reward at time t when the state and goal are st and g.

Deep Latent Particles (DLP): DLP (Daniel & Tamar, 2022; 2023) is an unsupervised object-centric
model for image representation. DLP provides a disentangled latent space structured as a set of
particles z = {(zp, zs, zd, zt, zf )i}K−1

i=0 ∈ RK×(6+l), where K is the number of particles, zp ∈ R2

is the position of the particle as (x, y) coordinates in Euclidean pixel space, zs ∈ R2 is a scale
attribute containing the (x, y) dimensions of the bounding-box around the particle, zd ∈ R is a
pixel space ”depth” attribute used to signify which particle is in front of the other in case there is an
overlap, zt ∈ R is a transparency attribute and zf ∈ Rl are the latent features that encode the visual
appearance of a region surrounding the particle, where l is the dimension of learned visual features.
See Appendix A for an extended background.

4 METHOD

We propose an approach to solving goal-conditioned multi-object manipulation tasks from images.
Our approach is entity-centric – it is structured to decompose the input into individual entities,
each represented by a latent feature vector, and learn the relationships between them. Our method
consists of the following 2 components: (1) Object-Centric Representation (OCR) of Images 4.1
– We extract a representation of state and goal images consisting of a set of latent vectors using
a pretrained model; (2) Entity Interaction Transformer (EIT) 4.2 – We feed the sets of latent
vectors, extracted from multiple viewpoints, to a Transformer-based architecture for the RL policy
and Q-function neural networks. These two components can be used with standard RL algorithms to
optimize a given reward function. We additionally propose a novel image-based reward that is based
on the OCR and the Chamfer distance, and corresponds to moving objects to goal configurations. We
term this Chamfer Reward, and it enables learning entirely from pixels. We begin with a general
reasoning that underlies our approach.

The complexity tradeoff between representation learning and decision making: An important
observation is that the representation learning (OCR) and decision making (EIT) problems are de-
pendent. Consider for example the task of moving objects with a robot arm, as in our experiments.
Ideally, the OCR should output the physical state of the robot and each object, which is sufficient for
optimal control. However, identifying that the robot is a single entity with several degrees of free-
dom, while the objects are separate entities, is difficult to learn just from image data, as it pertains to
the dynamics of the system. The relevant properties of each object can also be task dependent – for
example, the color of the objects may only matter if the task’s goal depends on it. Alternatively, one
may settle for a much leaner OCR component that does not understand the dynamics of the objects
nor their relevance to the task, and delegate the learning of this information to the EIT. Our design
choice in this paper is the latter, i.e., a lean OCR and an expressive EIT. We posit that this design
allows to (1) easily acquire an OCR, and (2) handle multiple views and mismatches between the
visible objects in the current state and the goal seamlessly. We next detail our design.

4.1 OBJECT-CENTRIC REPRESENTATION OF IMAGES

The first step in our method requires extracting a compact disentangled OCR from raw pixel obser-
vations. Given a tuple of image observations from K different viewpoints of the state (Is1 , . . . , I

s
K)

and goal (Ig1 , . . . , I
g
K), we process each image separately using a pretrained Deep Latent Particles

(DLP) (Daniel & Tamar, 2022; 2023) model, extracting a set of M vectors {pkm}Mm=1, k indexing
the viewpoint of the source image, which we will refer to as (latent) particles. We denote particle
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m of state image Isk by pkm and of goal image Igk by qkm. We emphasize that there is no alignment
between particles from different views (e.g., p1m, p2m can correspond to different objects) or between
state and goal of the same view (e.g., between p1m and q1m). The vectors pkm, qkm ∈ R6+l contain
different attributes detailed in the DLP section of the Background 3. In contrast to previous object-
centric approaches that utilize patch-based (Zadaianchuk et al., 2020) or slot-based (Yoon et al.,
2023) representations, we adopt DLP, which has recently demonstrated state-of-the-art performance
in single-image decomposition and various downstream tasks. The input to the goal-conditioned
policy is a tuple of the 2K sets:

(
{p1m}Mm=1, . . . , {pKm}Mm=1, {q1m}Mm=1 . . . , {qKm}Mm=1

)
. For the

Q-function, Q(s, a, g), an action particle pa ∈ R6+l is added to the input, obtained by learning a
projection from the action dimension da to the latent particle dimension.

Pretraining the DLP: In this work, we pretrain the DLP from a dataset of images collected by a
random policy. We found that in all our experiments, this simple pretraining was sufficient to obtain
well performing policies even though the image trajectories in the pretraining data are different from
trajectories collected by an optimal policy. We attribute this to the tradeoff described above – the
lean single-image based DLP OCR is complemented by a strong EIT that can account for dynamics
necessary to solve the task.

4.2 ENTITY-CENTRIC ARCHITECTURE

We next describe the EIT, which processes the OCR entities into an action or Q-value. As men-
tioned above, our choice of a lean OCR requires the EIT to account for the dynamics of the entities
and their relation to the task. In particular, we have the following desiderata from the EIT: (1) Per-
mutation Invariance; (2) Handle goal-based RL; (3) Handle multiple views; (4) Compositional
generalization. Proper use of the attention mechanism1 provides us with (1). The main difficulty
in (2) and (3) is that particles in different views and the goal are not necessarily matched. Thus,
we designed our EIT to seamlessly handle unmatched entities. For (4), we compose the EIT using
Transformer (Vaswani et al., 2017) blocks. As we shall show in Section 4.4, this architecture has a
fundamental capacity to generalize. An outline of the architecture is presented in Figure 2. Com-
pared to previous goal-conditioned methods’ use of the attention mechanism, we use it to explicitly
model relationships between entities from both state and goal across multiple viewpoints and do not
assume privileged entity-entity matching information. A more detailed comparison can be found in
Appendix E. We now describe the EIT in detail:

Input - The EIT policy receives the latent particles extracted from both the current state images and
the goal images as input. We inject information on the source viewpoint of each state and goal parti-
cle with an additive encoding which is learned concurrently with the rest of the network parameters.
Forward - State particles

(
{p1j}Mj=1, . . . , {pNj }Mj=1

)
are processed by a sequence of Transformer

blocks: SA → CA → SA → AA, denoting Self-Attention SA, Cross-Attention CA, and
Aggregation-Attention AA, followed by an MLP.
Goal-conditioning - We condition on the goal particles

(
{q1k}Mk=1, . . . , {qNk }Mk=1

)
using the CA

block between the state (provide the queries) and goal (provide the keys and values) particles.
Permutation Invariant Output - The AA block reduces the set to a single-vector output and is
implemented with a CA block between a single particle with learned features (provides the query)
and the output particles from the previous block (provide the keys and values). This permutation in-
variant operation on the processed state particles, preceded by permutation equivariant Transformer
blocks, results in an output that is invariant to permutations of the particles in each set. The aggre-
gated particle is input to an MLP, producing the final output (action/value).
Action Entity - The EIT Q-function, in addition to the state and goal particles, receives an action as
input. The action is projected to the dimension of the particles and added to the input set. Treating
the action as an individual entity proved to be a significant design choice, see ablation study in C.4.

4.3 CHAMFER REWARD

We define an image-based reward from the DLP representations of images as the Generalized
Density-Aware Chamfer (GDAC) distance between state and goal particles, which we term Cham-
fer reward. The standard Chamfer distance is defined between two sets and measures the average

1We provide a detailed exposition to attention in Appendix A.3.
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Figure 2: Outline of the Entity Interaction Transformer (EIT) - Sets of state and goal particles from
multiple views with an additive view encoding are input to a sequence of Transformer blocks. For the
Q-function, an action particle is added. We condition on goals with cross-attention. Attention-based
aggregation reduces the set to a single vector, followed by an MLP that produces the final output.

distance between each entity in one set to the closest entity in the other. The Density-Aware Cham-
fer distance (Wu et al., 2021) takes into account the fact that multiple entities from one set can be
mapped to the same entity in the other set by reweighing their contribution to the overall distance
accordingly. The Generalized Density-Aware Chamfer distance, decouples the distance function
that is used to match between entities and the one used to calculate the distance between them. For
space considerations, we elaborate on the Chamfer reward in Appendix B.

4.4 COMPOSITIONAL GENERALIZATION

In our context, Compositional Generalization (CG) refers to the ability of a policy to perform a
multi-object task with a different number of objects than it was trained on. In this section, we
formally define a notion of CG for RL, and show that under sufficient conditions, a self-attention
based Q-function architecture can obtain it. This result motivates our choice of the Transformer-
based EIT, and we shall investigate it further in our experiments. We give our main result here, and
provide an in-depth discussion and full proofs in Appendix F.

Let S̃ denote the state space of a single object, and consider an N -object MDP as an MDP with a
factored state space SN = S1 ⊗ S2 ⊗ ...⊗ SN ,∀i : Si ∈ S̃, action space A, reward function r and
discount factor γ. Without loss of generality, assume that 0 ≤ r ≤ Rmax = 1.

Naturally, tasks which are completely different for every N would not be amenable for CG. We
constrain the set of tasks by assuming a certain structure of the optimal Q-function. We say that a
class of functions admits compositional generalization if, after training a Q-function from this class
on M objects, the test error on M + k objects grows at most linearly in k. The more expressive the
function class that admits CG is, the greater the chance that it would apply for the task at hand. In
the following, we prove our main result – CG for the class of self-attention functions. This class is
suitable for tasks where the optimal policy involves a similar procedure that must be applied to each
object, such as the tasks we consider in Section 5.

Assumption 1. ∀S ∈ SN , ∀a ∈ A, ∀N ∈ N we have:
Q∗ (s1, ..., sN , a) = 1

N

∑N
i=1 Q̃

∗
i (s1, ..., sN , a), where

Q̃∗
i (s1, ..., sN , a) = 1∑N

j=1 α∗(si,sj ,a)

∑N
j=1 α

∗ (si, sj , a) v
∗ (sj , a) , α∗ (·) ∈ R+.

The following result shows that when obtaining an ε-optimal Q-function for up to M objects where
the attention weights are δ-optimal, the sub-optimality w.r.t. M + k objects grows at most linearly
in k.
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Theorem 2. Let Assumption 1 hold. Let Q̂ be an approximation of Q∗ with the same structure.
Assume that ∀s ∈ SN , ∀a ∈ A, ∀N ∈ [1,M ] we have

∣∣∣Q̂ (s1, ..., sN , a)−Q∗ (s1, ..., sN , a)
∣∣∣ < ε,

and
∣∣∣∣ α(si,sj ,a)∑N

j=1 α(si,sj ,a)
− α∗(si,sj ,a)∑N

j=1 α∗(si,sj ,a)

∣∣∣∣ < δ. Then, ∀s ∈ SM+k, ∀a ∈ A, ∀k ∈ [1,M − 1]:∣∣∣Q̂ (s1, ..., sM+k, a)−Q∗ (s1, ..., sM+k, a)
∣∣∣ ≤ 3ε+

3 (M + k) + 2

1− γ
δ.

4.5 TRAINING AND IMPLEMENTATION DETAILS

We developed our method with the off-policy algorithm TD3 (Fujimoto et al., 2018) along with hind-
sight experience replay (HER, Andrychowicz et al. 2017). In principal, our approach is not limited to
actor-critic algorithms or to the online setting, and can be used with any deep Q-learning algorithm,
online or offline. We pre-train a single DLP model on images from multiple viewpoints of rollouts
collected with a random policy. We convert state and goal images to object-centric latent represen-
tations with the DLP encoder before inserting them to the replay buffer. We use our EIT architecture
for all policy and Q-function neural networks. Further details and hyper-parameters can be found in
Appendix D. Our code is publicly available on https://github.com/DanHrmti/ECRL.

5 EXPERIMENTS

We design our experimental setup to address the following aspects: (1) benchmarking our method on
multi-object manipulation tasks from pixels; (2) assessing the significance of accounting for interac-
tions between entities for the RL agent’s performance; (3) evaluating the scalability of our approach
to increasing number of objects; (4) analyzing the generalization capabilities of our method.

Environments We evaluate our method on several simulated tabletop robotic object manipulation
environments implemented with IsaacGym (Makoviychuk et al., 2021). The environment includes
a robotic arm set in front of a table with a varying number of cubes in different colors. The agent
observes the state of the system through a number of cameras in fixed locations, and performs actions
in the form of deltas in the end effector coordinates a = (∆xee,∆yee,∆zee). At the beginning of
each episode, the cube positions are randomly initialized on the table, and a goal configuration is
sampled similarly. The goal of the agent is to push the cubes to match the goal configuration. We
categorize a suite of tasks as follows (see Figure 3):
N-Cubes: Push N different-colored cubes to their goal location.
Adjacent-Goals: A 3-Cubes setting where goals are sampled randomly on the table such that
all cubes are adjacent. This task requires accounting for interactions between objects.
Small-Table: A 3-Cubes setting where the table is substantially smaller. This task requires to
accurately account for all objects in the scene at all times, to avoid pushing blocks off the table.
Ordered-Push: A 2-Cubes setting where a narrow corridor is set on top of the table such that
its width can only fit a single cube. We consider two possible goal configurations: red cube in the
rear of the corridor and green cube in the front, or vice versa. This task requires to fulfill the goals
in a certain order, otherwise the agent fails (pulling a block out of the corridor is not possible).
Push-2T: Push 2 T-shaped blocks to a single goal orientation.

Figure 3: The simulated environments used for experiments in this work.

Reward The reward calculated from the ground-truth state of the system, which we refer to as
the ground-truth (GT) reward, is the mean negative L2 distance between each cube and its desired
goal position on the table. The image-based reward calculated from the DLP OCR for our method
is the negative GDAC distance (see Eq. 1) between state and goal sets of particles, averaged over
viewpoints. Further reward details can be found in the Appendix D.1.

Evaluation Metrics We evaluate the performance of the agents on several metrics. In this environ-
ment, we define an episode a success if all N objects are at a threshold distance from their desired
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goal. The metric most closely captures task success, but does not capture intermediate success or
timestep efficiency. To this end, we additionally evaluate based on success fraction, maximum object
distance, average object distance and average return. For a formal definition of these metrics see
Appendix D.1. All results show means and standard deviations across 3 random seeds.

Baselines We compare our method with the following baselines:
Unstructured – A single-vector latent representation of images using a pre-trained VAE is ex-
tracted from multiple viewpoints from both state and goal images and then concatenated and fed to
an MLP architecture for the policy and Q-function neural networks. This baseline corresponds to
methods such as Nair et al. (2018), with the additional multi-view data as in our method.
SMORL – We re-implement SMORL (Zadaianchuk et al., 2020), extending it to multiview inputs and
tune its hyper-parameters for the environments in this work. Re-implementation details are available
in Appendix D.4. We use DLP as the pre-trained OCR for this method for a fair comparison. Note
that image-based SMORL cannot utilize GT reward since it requires matching the particle selected
from the goal image at the beginning of each training episode to the corresponding object in the
environment. We therefore do not present such experiments.

Object-centric Pretraining All image-based methods in this work utilize pre-trained unsupervised
image representations trained on data collected with a random policy. For the object-centric meth-
ods, we train a single DLP model on data collected from the 6-Cubes environment. We found it
generalizes well to fewer objects and changing backgrounds (e.g., smaller table). For the Push-2T
environment we trained DLP on data collected from Push-T (single block) which generalized well
to 2 blocks. Figure 14 illustrates the DLP decomposition of a single training image. For the non-
OCR baselines, we use a mixture of data from the 1/2/3-Cubes environments to learn a latent
representation with a β-VAE (Higgins et al., 2017). More information on the architectures and
hyper-parameters is available in Appendix D.3.

Experiment Outline We separate our investigation into 3 parts. In the first part, we focus on the
design of our OCR and EIT, and how it handles complex interactions between objects. We study
this using the GT reward, to concentrate on the representation learning question. When comparing
with baselines, we experiment with both the OCR and a ground-truth state representation2. To prove
that our method indeed handles complex interactions, we shall show that our method with the OCR
outperforms baselines with GT state on complex tasks. In the second part, we study compositional
generalization. In this case we also use the GT reward, with similar motivation as above. Finally, in
the third part we evaluate our method using the Chamfer reward. The Chamfer reward is calculated
by filtering out particles that do not correspond to objects of interest such as the agent. Due to lack
of space this part is detailed in Appendix B.1. An ablation study of key design choices such as
incorporating multi-view inputs can be found in Appendix C.4.

5.1 MULTI-OBJECT MANIPULATION

We evaluate the different methods with GT rewards on the environments detailed above. Results are
presented in Figure 4 and Table 1. We observe that with a single object, all methods succeed, yet the
unstructured baselines are less sample efficient. With more than 1 object, the image-based unstruc-
tured baseline is not able to learn at all, while the unstructured state-based baseline is significantly
outperformed by the structured methods. Our method and SMORL reach similar performance in the
state-based setting, SMORL being more sample efficient. This is expected as SMORL essentially
learns single object manipulation, regardless of the number of cubes in the environment. Notably,
on 3-Cubes, our image-based method surpasses the unstructured state-based method.

In environments that require interaction between objects – Adjacent-Goals, Small-Table
and Ordered-Push – our method outperforms SMORL using state input. Moreover, with image
inputs our method outperforms SMORL with state inputs (significantly on Ordered-Push, yet
marginally on Small-Table, Adjacent-Goals), demonstrating that SMORL is fundamen-
tally limited in performing these more complex tasks.

We present preliminary results on the Push-2T environment. For a visualization of the task and
performance results see Figure 5. The success in this task demonstrates the following additional ca-
pabilities of our proposed method: (1) Handling objects that have more complex physical properties

2The ground truth state is si = (xi, yi), gi = (xg
i , y

g
i ) the (x, y) coordinates of the state and goal of entity

i respectively. We detail how this state is input to the networks in Appendix D.1
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(a) 1-Cube (b) 2-Cubes (c) 3-Cubes

(d) Ordered-Push (e) Legend (f) Small-Table

Figure 4: Success Rate vs. Environment Timesteps – Values calculated on 96 randomly sampled
goals. Methods with input type ’State’ are presented in dashed lines and learn from GT state ob-
servations, otherwise, from images. Our method performs better than or equivalently to the best
performing baseline in each category (state/image-based). In the environments requiring object in-
teraction ((d), (f)), our method achieves significantly better performance than SMORL. Notably, our
image-based method matches/surpasses state-based SMORL.

Method Success Rate Success Fraction Max Obj Dist Avg Obj Dist Avg Return

Ours (State) 0.963 ± 0.005 0.982 ± 0.005 0.022 ± 0.002 0.014 ± 0.002 -0.140 ± 0.008
SMORL (State) 0.716 ± 0.006 0.863 ± 0.005 0.063 ± 0.003 0.031 ± 0.001 -0.233 ± 0.004
Ours (Image) 0.710 ± 0.016 0.883 ± 0.005 0.044 ± 0.003 0.027 ± 0.001 -0.202 ± 0.007

Table 1: Performance Metrics for Adjacent-Goals – Methods trained on 3-Cubes and eval-
uated on Adjacent-Goals. Values calculated on 400 random goals per random seed.

which affect dynamics. (2) The ability of the EIT to infer object properties that are not explicit
in the latent representation (i.e. inferring orientation from latent particle visual attributes), and
accurately manipulate them in order to achieve desired goals.

Figure 5: Left – Rollout of an agent trained on the Push-2T task. Right – Distribution of object
angle difference (radians) from goal. Values of 400 episodes with randomly initialized goal and
initial configurations.

5.2 COMPOSITIONAL GENERALIZATION

In this section, we investigate our method’s ability to achieve zero-shot compositional generalization.
Agents were trained from images with our method using GT rewards and require purely image inputs
during inference. We present several inference scenarios requiring compositional generalization:

Different Number of Cubes than in Training - We train an agent on the 3-Cubes environment
and deploy the obtained policy on the N-Cubes environment for N ∈ [1, 6]. Colors are sampled
uniformly out of 6 options and are distinct for each cube. Visual results on 6 cubes are presented
in Figure 6 (left) and evaluation metrics in Table 4 (Appendix). We see that our agent generalizes

8



Published as a conference paper at ICLR 2024

Figure 6: Left – Rollout of an agent trained on 3 cubes generalizing to 6 cubes. Right – The average
return of an agent trained on 3 cubes vs. the number of cubes in the environment it was deployed in
during inference. Values are averaged over 400 episodes with randomly initialized goal and initial
configurations. Note that the graph is approximately linear, corresponding with Theorem 2.

to a changing number of objects with some decay in performance as the number of objects grows.
Notably, the decay in the average return, plotted in Figure 6 (right), is approximately linear in the
number of cubes, which corresponds with Theorem 2.

Cube Sorting - We train an agent on the 3-Cubes environment with constant cube colors (red,
green, blue). During inference, we provide a goal image containing X ≤ 3 cubes of different colors
and then deploy the policy on an environment containing 4X cubes, 4 of each color. The agent sorts
the cubes around each goal cube position with matching color, and is also able to perform the task
with cube colors unseen during RL training. Visual results on 12 cubes in 3 colors are presented in
Figure 7. We find these results exceptional, as they require compositional generalization from both
the EIT policy (trained on 3 cubes) and the DLP model (trained on 6 cubes) to significantly more
cubes, occupying a large portion of the table’s surface.

Figure 7: Rollout of an agent trained on 3 cubes, then provided a goal image containing 3 different
colored cubes and deployed in an environment with 12 cubes, 4 of each color. The agent sorts the
cubes around each goal position with matching color.

Further results and analysis of our agent’s generalization capabilities such as generalizing to cube
properties not seen during training are detailed in Appendix C. Videos are available on our website.

6 CONCLUSION AND FUTURE WORK

In this work we proposed an RL framework for object manipulation from images, composed of an
off-the-shelf object-centric image representation, and a novel Transformer-based policy architecture
that can account for multiple viewpoints and interactions between entities. We have also investigated
compositional generalization, starting with a formal motivation, and concluding with experiments
that demonstrate non-trivial generalization behavior of our trained policies.

Limitations: Our approach requires a pretrained DLP. In this work, our DLP was pretrained from
data collected using a random policy, which worked well on all of our domains. However, more
complex tasks may require more sophisticated pretraining, or an online approach that mixes training
the DLP with the policy. Our results with Chamfer rewards show worse performance than with
ground truth reward. This hints that directly running our method on real robots may be more difficult
than in simulation due to the challenges of reward design.

Future work: One interesting direction is understanding what environments are solvable using our
approach. While the environments we investigated here are more complex than in previous studies,
environments with more complex interactions between objects, such as with interlocking objects or
articulated objects, may be difficult to solve due to exploration challenges. Other interesting direc-
tions include multi-modal goal specification (e.g., language), and more expressive sensing (depth
cameras, force sensors, etc.), which could be integrated as additional input entities to the EIT.

9
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7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work and have taken several measures to
facilitate this. Appendix D contains detailed implementation notes and hyper-parameters used in
our experiments. Furthermore, we make our code openly available to the community to facilitate
further research in the following repository: https://github.com/DanHrmti/ECRL. The
codebase includes the implementation of the environments and our proposed method, as well as
scripts for reproducing the experiments reported in this paper. In addition, Appendix F contains in
depth details of the theoretical portion of this paper which include the full proof for Theorem 2.
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A EXTENDED BACKGROUND

A.1 DEEP Q-LEARNING

Goal-conditioned Deep Q-learning approaches learn a Q-function Qπ (s, a, g) : S × A ×
G → R parameterized by a deep neural network Qθ (s, a, g) with parameters θ, which ap-
proximates the expected return given goal g when taking action a at state s and then follow-
ing the policy π. Qθ (s, a, g) is learned via minimization of the temporal difference (TD, Sut-
ton (1988)) objective given a state, action, next state, goal tuple (s, a, s′, g): LTD(θ) =

[r(s, g) + γQθ̄ (s
′, π(s′, g), g)−Qθ (s, a, g)]

2, where Qθ̄ (s
′, a′, g) is a target network with pa-

rameters θ̄ which are constant under the TD objective. Specifically in off-policy actor-critic al-
gorithms (Fujimoto et al., 2018), a policy network πϕ (s, g) (actor) with parameters ϕ is learned
concurrently with the Q-function network (critic) with the objective of maximizing it with respect
to the action: Lπ(ϕ) = −Qθ (s, πϕ (s, g) , g). Alternating between data collection via deploying πϕ

in the environment and updating Qθ, πϕ with this data is expected to converge to an approximately
optimal Q-function Qθ ≈ Q∗ and policy πϕ ≈ π∗.

A.2 DEEP LATENT PARTICLES (DLP)

DLP (Daniel & Tamar, 2022) is a VAE-based unsupervised object-centric model for images. The
key idea in DLP is that the latent space of the VAE is structured as a set of K particles z = [zf , zp] ∈
RK×(l+2), where zf ∈ RK×l is a latent feature vector that encodes the visual appearance of each
particle, and zp ∈ RK×2 encodes the position of each particle as (x, y) coordinates in Euclidean
pixel-space. This requires several structural modifications to the standard VAE as described below.

Prior Modeling: The prior p(z|x) in DLP is conditioned on the image x, and has a different struc-
ture for zf and zp. p(zf |x) = p(zf ) is modeled by a set of standard zero-mean Gaussians. p(zp|x)
consists of Gaussians centered on a set of keypoint proposals which are produced by a CNN applied
to individual patches of the image, followed by a spatial-softmax (SSM, Jakab et al. 2018; Finn et al.
2016).
Encoder: DLP employs a CNN-based encoder that maps the image to a set of means and log-
variances for the keypoint positions zp. The appearance features zf are encoded from a region
around each keypoint (termed glimpse) using a Spatial Transformer Network (Jaderberg et al. 2015).
KL Loss Term: As the posterior keypoints S1 and the prior keypoint proposals S2 are unordered
sets of Gaussian distributions, the KL term for the position latents is replaced with the Chamfer-KL:
dCH−KL(S1,S2)=

∑
zp∈S1

minz′
p∈S2

KL(zp∥z′p) +
∑

z′
p∈S2

minzp∈S1
KL(zp∥z′p).

Decoder: Each particle is decoded separately to reconstruct its glimpse RGBA patch. The glimpses
are then composed with respect to their encoded positions to stitch the final image.

All components of the DLP model are learned end-to-end in an unsupervised fashion, by maximizing
the ELBO (i.e., minimizing the reconstruction loss and the (Chamfer) KL-divergence between the
posterior and prior distributions).

DLPv2: Daniel & Tamar (2023) expands upon the original DLP’s definition of a latent particle, as
described above, by incorporating additional attributes. DLPv2 provides a disentangled latent space
structured as a set of K foreground particles z = {(zp, zs, zd, zt, zf )i}K−1

i=0 ∈ RK×(6+l). zp ∈ R2

and zf ∈ Rl remain unchanged. zs ∈ R2 is a scale attribute containing the (x, y) dimensions of the
bounding-box around the particle, zd ∈ R is a pixel space ”depth” attribute used to signify which
particle is in front of the other in case there is an overlap and zt ∈ R is a transparency attribute.
Moreover, it assigns a single abstract particle for the background that is always located in the center
of the image and described only by mbg latent background visual features, zbg ∼ N (µbg, σ

2
bg) ∈

Rmbg . We discard the background particle from the latent representation after pre-training
the DLP for RL purposes. Training of DLPv2 is similar to the standard DLP with modifications
to the encoding and decoding that take into account the finer control over inference and generation
due to the additional attributes.
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A.3 THE ATTENTION MECHANISM

Attention (Bahdanau et al., 2015; Vaswani et al., 2017) denoted A(·, ·) is an operator between two
sets of vectors, X = {xi}Ni=1 and Y = {yj}Mj=1, producing a third set of vectors Z = {zi}Ni=1. For
simplicity, we describe the case were all input, output and intermediate vectors are in Rd. Denote
the key, query and value projection functions q(·), k(·), v(·) : Rd → Rd respectively. The attention
operator is defined as A(X,Y ) = Z where:

zi =

N∑
j=1

α (xi, yj) v (yj) , α (xi, yj) = softmaxj

(
q (xi) · k (yj)√

d

)
∈ R.

Namely, each element of the output set Z is a weighted average of the projected input set Y :
{v(yj)}Mj=1, where the attention weights αij = α (xi, yj) express the “relevance” of yj for com-
puting output zi corresponding to xi. An important property of A(X,Y ) is that it is equivariant
to permutations of X (permutation of elements in X results in the same permutation in the output
elements in Z, with no change in individual elements’ values) and invariant to permutations of Y
(permutation of elements in Y does not change the output Z). In the special case where X = Y , the
operation is termed self-attention (SA), and otherwise, cross-attention (CA).

B CHAMFER REWARD

We desire a reward that captures the task of moving objects to goal configurations. However, because
particles in different images are not aligned, and some particles may be occluded or missing, we
cannot directly construct a reward based on distances between the particles. Instead, we define a
reward from the DLP representations of images as the Generalized Density-Aware Chamfer (GDAC)
distance between state and goal particles, which we term Chamfer reward. The GDAC distance is
defined between two sets X = {xi}Ni=1, Y = {yj}Mj=1, xi, yi ∈ Rd in the following manner:

DistGDAC (X,Y )=
1∑

jI(|Xj |>0)

∑
j

1

|Xj |+ε

∑
x∈Xj

D1(x, yj)+
1∑

iI(|Yi|>0)

∑
i

1

|Yi|+ε

∑
y∈Yi

D1(y, xi)

(1)

where Xj =
{
xi| argminyk∈Y (D2 (x, yk)) = j

}
, Yi =

{
yj | argminxk∈X (D2 (y, xk)) = i

}
D1(x, y) and D2(x, y) are two distance functions between entities. The standard Chamfer distance
is obtained by setting D1(x, y) = D2(x, y) = ∥x− y∥22 and substituting 1∑

j I(|Xj |>0) · 1
|Xj |+ε ,

1∑
i I(|Yi|>0) ·

1
|Yi|+ε with 1

|X| ,
1

|Y | respectively, removing the inner sums in both terms.

The Chamfer distance measures the average distance between each entity in X and the closest en-
tity to it in Y and vice versa. The Density-Aware Chamfer distance (Wu et al., 2021) takes into
account the fact that multiple entities from one set can be mapped to the same entity in the other
set, and re-weights their contribution to the overall distance accordingly. The Generalized Density-
Aware Chamfer distance, decouples the distance function that is used to match between entities
D2(x, y) and the one used to calculate the distance between them D1(x, y). Decoupling these two
allows using entity-identifying attributes for matching while calculating the actual distances between
matching entities based on localization features. For example, we can use the DLP visual features
zf to match between objects in the current and goal images, and then measure their distance using
the (x, y) coordinate attributes zp.

B.1 FOCUSED CHAMFER REWARD

In many robotic object manipulation settings, we do not care about the robot in our goal specification
as long as the objects reach the desired configuration. In order to consider only a subset of the
entities for the image-based reward (e.g. particles corresponding to objects and not the agent), we
train a simple multi-layer perceptron (MLP) binary classifier on the latent visual features of the
DLP representation, differentiating objects of interest from the rest of the particles. We train this
classifier on annotated particles extracted from 20 images of the environment. Annotation required
5 minutes of our time and training the classifier itself took just a few seconds. We then filter out
particles based on the classifier output before inputting them to the Chamfer reward. We emphasize
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(a) 1-Cube (b) 2-Cubes (c) 3-Cubes

Figure 8: Success Rate vs. Environment Timesteps (Image-Based Rewards) – Values calculated
based on 96 randomly sampled goals.

that this supervision is only required for training the classifier which is used for the image-based
reward exclusively during RL training, and is very simple to acquire both in simulation and the real
world.

B.2 TRAINING WITH THE CHAMFER REWARD

We compare our method to SMORL, trained entirely from images. Results on N-Cubes for N ∈
{1, 2, 3} are presented in Figure 8 and Table 2. Training our method with the image-based reward
obtains lower success rates compared to training with the GT reward. While this is expected, we
believe the large differences are due to noise originated in the DLP representation and occlusions,
which make the reward signal less consistent and harder to learn from. This is especially hard with
increasing number of objects, as the chances of at least one object being occluded are very high. This
is highlighted by the drop in performance from 1 to 2 cubes, compared to the GT reward. Image-
based reward calculation for single object manipulation, as in SMORL, is slightly more consistent
as occlusions in a single view will not affect the overall reward as much. Adding more viewpoints
for the reward calculation might improve these results without increasing inference complexity. We
see that in the 3-Cubes environment, our method surpasses SMORL, although SMORL’s reward
is based on a single object regardless of the number of objects in the environment. This could be as
a result of object-object interactions being more significant in this case.

Method Success Rate Success Fraction Max Obj Dist Avg Obj Dist Avg Return

Ours 0.765 ± 0.025 0.875 ± 0.015 0.037 ± 0.002 0.026 ± 0.001 -0.210 ± 0.009
SMORL 0.838 ± 0.016 0.911 ± 0.008 0.038 ± 0.004 0.025 ± 0.002 -0.320 ± 0.007

Ours 0.580 ± 0.093 0.822 ± 0.052 0.063 ± 0.008 0.035 ± 0.005 -0.251 ± 0.022
SMORL 0.509 ± 0.044 0.794 ± 0.024 0.092 ± 0.006 0.047 ± 0.004 -0.451 ± 0.031

Table 2: Performance Metrics: Image-Based Rewards Methods trained and evaluated on the
2-Cubes (top) and 3-Cubes (bottom) environments. Values calculated on 400 random goals
per random seed.

C ADDITIONAL RESULTS

C.1 MULTI-OBJECT MANIPULATION

Performance metrics for the 2-Cubes and 3-Cubes are presented in Table 3

Method Success Rate Success Fraction Max Obj Dist Avg Obj Dist Avg Return

Ours (State) 0.991 ± 0.004 0.995 ± 0.003 0.014 ± 0.001 0.010 ± 0.001 -0.129 ± 0.006
SMORL (State) 0.980 ± 0.006 0.989 ± 0.005 0.014 ± 0.002 0.009 ± 0.002 -0.142 ± 0.016
Ours (Image) 0.968 ± 0.019 0.983 ± 0.009 0.020 ± 0.002 0.015 ± 0.001 -0.150 ± 0.008

Ours (State) 0.978 ± 0.006 0.991 ± 0.002 0.016 ± 0.001 0.010 ± 0.001 -0.124 ± 0.007
SMORL (State) 0.932 ± 0.022 0.974 ± 0.009 0.028 ± 0.005 0.015 ± 0.002 -0.201 ± 0.011
Ours (Image) 0.919 ± 0.008 0.969 ± 0.004 0.026 ± 0.002 0.016 ± 0.001 -0.157 ± 0.007

Table 3: Performance Metrics: GT Reward Methods trained and evaluated on the 2-Cubes (top)
and 3-Cubes (bottom) environments. Values calculated on 400 random goals per random seed.
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C.2 GENERALIZATION

Number of Objects: Performance metrics for the compositional generalization to different numbers
of objects of an agent trained on the 3-Cubes environment are presented in Table 4. Additionally,
we compare compositional generalization performance with respect to the number of objects seen
during training in Table 5. We see that when learning with 3 objects our agent is able to generalize
reasonably well to a larger amount of objects. This is not the case with agents trained on 1 or 2
objects, where there is a sharp decay in performance starting from a single additional object. When
training on 1 object, the policy lacks the need to perform reasoning between multiple objects in the
state, thus it is not surprising it does not generalize to more than a single object. While training on 2
objects does require this type of reasoning, we believe training on 3 objects has such an increase in
generalization abilities because the agent encounters more scenarios during training where modeling
object interaction and interference is necessary.

Number of Cubes Success Rate Success Fraction Max Obj Dist Avg Obj Dist Avg Return

1 0.973 0.973 0.016 0.016 -0.162
2 0.963 0.981 0.023 0.017 -0.154
3 0.838 0.942 0.034 0.02 -0.175
4 0.723 0.912 0.051 0.027 -0.213
5 0.57 0.876 0.068 0.031 -0.245
6 0.398 0.826 0.09 0.036 -0.294

Table 4: Performance Metrics for Different Number of Cubes than in Training – Our method’s
performance on different numbers of cubes in the N-cubes environment, trained on the 3-cubes
environment (results in bold) with cubes of 6 different colors. Values are averaged over 400 episodes
with randomly initialized goal and initial configurations.

Cubes in Test ↓ / Train → 3 2 1

1 0.016 0.013 0.017
2 0.023 0.024 0.256
3 0.034 0.091 0.287
4 0.051 0.149 0.311
5 0.068 0.276 0.320
6 0.09 0.292 0.328

Table 5: Maximum Object Distance Comparison for Different Number of Cubes than in Training
– Our method’s performance on different numbers of cubes in the N-cubes environment. We
compare agents trained on the 1, 2, 3-cubes environments with cubes of 6 different colors. Values
are averaged over 400 episodes with randomly initialized goal and initial configurations.
Distracters: An additional scenario we consider is providing the agent a goal image which contains
some cube colors that are not present in the environment. We term these cubes distracters. The
agent is able to disregard the distracters in the goal image while successfully manipulating the other
cubes to their goal locations. A demonstration of these capabilities are available on our website.

Object Properties: While we designed our algorithm to facilitate compositional generalization, it
is interesting to study its generalization to different object properties. Dealing with novel objects
would require generalization from both the DLP and the EIT. We would expect our method to zero-
shot generalize to novel objects in case: (1) They are visually similar to objects seen during training.
(2) Their physical dynamics are similar to the objects seen during training. To test our hypothesis,
we deploy our trained agent in environments including the following modifications: (I) Cuboids
obtained by enlarging either the x dimension or both x and y dimensions of the cube. (II) Star
shaped objects with the same effective radius of the cubes seen during training. (III) Cubes with
different masses than in training. (IV) Cubes in colors not seen in RL training. (V) Cubes in colors
not seen in RL training or DLP pre-training. Performance metrics for these cases are presented in
Table 6. Visualizations of the modified object environments and how the DLP model perceives them
are available in Figure 9.
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Change in Shape - Based on our study, the DLP model is able to capture the different shaped objects
and their location. Observing the reconstruction of the scene, DLP models the objects using the
building blocks it knows, which are cubes. Stars are mapped to cubes and cuboids are mapped
to a composition of multiple cubes. While this is an interesting form of generalization for image
reconstruction, it is not sufficient for inferring changes in dynamics. In cases where the shape does
not strongly affect dynamics such as the star and the slightly modified cuboid, the EIT agent still
achieves strong performance. When this is not the case there is a significant performance drop, as
expected.
Change in Color - With a similar study of the DLP reconstruction we witnessed an interesting yet
not surprising phenomenon: colors not seen in DLP pretraining are mapped to the closest known
color in the latent space. For example brown is mapped to green and orange to yellow, pink to purple.
Judging by the non-negligible success rates we hypothesize that EIT generalizes to both control and
matching of colors it has not seen in RL training via the DLP latent space. We believe the reason
for the drop in performance originates in ambiguity caused by inconsistent mapping of colors. One
failure scenario is when the goal object is mapped to a different color than the corresponding state
object, due to differences originating in shading or other factors. Another failure scenario is two
different objects being mapped to the same color, causing ambiguity in goal specification which the
agent is not expected to generalize to. The above could provide an explanation to the fact that our
agent performs better with colors not seen in both DLP and RL training than with colors only seen
by DLP: the performance more strongly depends on the combination of colors than on the ability of
DLP to recognize each color individually.
Change in Mass - Changes in mass have resulted in the smallest performance drop out of all the
scenarios we considered. While the change in mass has a significant affect on dynamics, it does not
affect dynamics related to torques (moment of inertia matrix is of the same structure) or agent-object
contact. Additionally it does not affect the appearance of objects and therefore does not require
generalization from the DLP. We believe our EIT policy is able to generalize well to these changes
because it is Markovian and therefore reactive: it does not need to predict the exact displacement of
the object in order to infer the direction of its action and can simply react to the unraveling sequence
of states.

Our main conclusion from this study is that while zero-shot generalization to objects with different
properties is only partial, the non-negligible success rates hint at potential few-shot generalization.

Configuration Success Rate Success Fraction Max Obj Dist Avg Obj Dist Avg Return

Training 0.919± 0.008 0.969± 0.004 0.026± 0.002 0.016± 0.001 −0.157± 0.007

Star 0.902± 0.002 0.961± 0.002 0.031± 0.005 0.019± 0.001 −0.167± 0.007
Cuboid x · = 1.5 0.743± 0.061 0.891± 0.030 0.052± 0.008 0.029± 0.004 −0.228± 0.023
Cuboid x · = 2 0.403± 0.079 0.694± 0.056 0.124± 0.020 0.063± 0.010 −0.408± 0.043
Cuboid x, y · = 1.5 0.316± 0.077 0.635± 0.060 0.205± 0.037 0.097± 0.017 −0.560± 0.078
Cuboid x, y · = 2 0.026± 0.008 0.274± 0.040 0.398± 0.009 0.217± 0.014 −1.089± 0.048

Colors New to EIT 0.379± 0.052 0.728± 0.031 0.094± 0.021 0.047± 0.009 −0.306± 0.041
Colors New to EIT + DLP 0.550± 0.100 0.810± 0.050 0.089± 0.009 0.042± 0.005 −0.307± 0.026

Mass · = 0.05 0.900± 0.004 0.961± 0.001 0.033± 0.002 0.019± 0.001 −0.164± 0.005
Mass · = 0.1 0.888± 0.023 0.956± 0.008 0.035± 0.003 0.020± 0.001 −0.169± 0.007
Mass · = 10 0.881± 0.014 0.945± 0.008 0.032± 0.002 0.021± 0.001 −0.244± 0.009
Mass · = 20 0.751± 0.019 0.876± 0.010 0.061± 0.009 0.035± 0.004 −0.378± 0.016

Table 6: Performance Metrics: Zero-shot Generalization to Object Properties – Methods trained
from images with GT reward and evaluated on the 3-Cubes environment with red, green and blue
cubes. Values calculated on 400 random goals per random seed.
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Figure 9: DLP perception of environments with shape and color modifications of cube objects not
seen during training. Left to Right: Raw Image | Visualization of Particle Locations | Foreground
Reconstruction of the DLP Decoder. Top to Bottom: Cuboid x · = 2 | Cuboid x, y · = 2 | New
Colors | Star Shape & New Colors.

C.3 PUSH-T

See Figure 10 for a visualization and performance results on the Push-T task.

Figure 10: Left – Rollout of an agent trained on the Push-T task. Right – Distribution of object
angle difference (radians) from goal. Values of 400 episodes with randomly initialized goal and
initial configurations.

19



Published as a conference paper at ICLR 2024

(a) Multiview (b) Action Entity

Figure 11: Success Rate vs. Environment Timesteps - Multiview and Action Entity Ablation –
Values calculated based on 96 randomly sampled goals.

C.4 ABLATION STUDY

We explore how aspects we found to be key to the success of our proposed method effect sample
efficiency. Figure 11a compares our method with multi-view vs. single-view image inputs. We
find that both with GT and image-based reward, multi-view inputs substantially improve sample
efficiency. We believe that the connections formed between particles from different views in the
Transformer blocks makes it easier for the agent to learn the correlations between actions defined in
3D space and latent attributes defined in 2D pixel space. In addition, multiple viewpoints decrease
the degree of partial observability. Figure 11b compares treating the action as a separate input
entity to the Q-function Transformer blocks vs. concatenating the action to the output of the final
Transformer block, before the output MLP. We find that learning the relations between the action and
the state and goal entities via the attention mechanism is crucial to the performance of our method.
Without it, our experiments exhibit decreased sample efficiency in state observations and failure to
learn in the given environment timestep budget with image observations.

Figure 12 presents an ablation of the contribution of DLP’s attributes, z = (zp, zs, zd, zt, zf ), to
the agent’s success on the 2-Cubes environment. The position attribute zp and visual features zf
contain necessary location and entity-identifying information, therefore we do not run experiments
without them. The results show equivalent performance when discarding the depth zd and trans-
parency zt attributes as well as without attention masking based on the transparency. The scale
attribute zs, on the other hand, proves to be significant for sample efficiency although it does not
affect final performance.

Figure 12: Success Rate vs. Environment Timesteps - DLP Attribute Ablation – Values calculated
based on 96 randomly sampled goals.

Figure 13 compares the performance of our method with DLP vs. Slot-Attention (SA, Locatello
et al. (2020)) as the OCR. On the 1-Cube environment the performance is equivalent (see 13a).
Note that the (x, y) coordinates are not explicit in the SA latent representation. Nevertheless, the
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(a) 1-Cube - Success Rate (b) 2-Cubes - Return

Figure 13: OCR Performance Ablation – Values calculated based on 96 randomly sampled goals.

EIT is able to infer object location from the slots. These results showcase similar capabilities to
the ones presented in the Push-T task, where the EIT was able to infer orientation from the DLP
latent visual attributes. In the 2-Cubes environment, despite observing a moderate increase in
return during training (see Figure 13b), our method with SA was unable to solve the task, achieving
approximately 0% success rates. From an investigation of these experiments and the representations
produced by SA, we found that often, both cubes were assigned to a single slot. This led to the agent
learning to push both cubes to the middle point between the two cubes’ goals. We hypothesize that
this behavior is optimal given that the agent can only infer a single location for both objects in the
same slot. We were not able to train a SA model which consistently separated the cubes to different
slots. Our design choice of utilizing DLP, coupled with training a model with a relatively large
number of particles (24) and limiting the capacity of each particle’s visual latent features (zf ∈ R4),
effectively prevented multiple cubes from being assigned to a single particle.

D IMPLEMENTATION DETAILS AND HYPER-PARAMETERS

In this section, we provide extensive implementation details in addition to the open-source code that
can be found in the official repository: https://github.com/DanHrmti/ECRL.

D.1 ENVIRONMENT

We implement our environments with IsaacsGym (Makoviychuk et al., 2021), by adapting code
from IsaacGymEnvs3 and OSCAR4.

Ground-truth State Denote si = (xi, yi), gi = (xg
i , y

g
i ) the xy coordinates of the state and goal

of entity i respectively. The input to the networks in the structured methods are two sets of vectors
{vi}Ni=1, vi = [si, one-hot (i|N)] ∈ R2+N , {ui}Ni=1, ui = [gi, one-hot (i|N)] ∈ R2+N , [·] denoting
concatenation, where the one-hot vectors serve as entity-identifying features. In the unstructured
case, the input is [s1, s2, ..., sN , g1, g2, ..., gN ].

Ground-truth Reward The reward calculated from the ground-truth state of the system, which we
refer to as the ground-truth (GT) reward, is the mean negative L2 distance between each cube and
its desired goal position on the table:

rt = − 1

N

N∑
i=1

1

L

∥∥gdi − gai
∥∥
2
, (2)

where gdi and gai denote the desired and achieved goal for object i respectively, N the number
of objects, rt the immediate reward at timestep t and L a normalization constant for the reward
corresponding to the dimensions of the table.

3https://github.com/NVIDIA-Omniverse/IsaacGymEnvs
4https://github.com/NVlabs/oscar
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Image-Based Reward The reward calculated from the DLP OCR for our method is the negative
GDAC distance (see Eq. 1) between state and goal sets of particles, averaged over viewpoints:

rt = − 1

K

K∑
k=1

DistGDAC

(
{pkm}Mm=1, {qkm}Mm=1

)
, (3)

where we use D1 (x, y) =
∥∥zxp − zyp

∥∥
1

and D2 (x, y) =
∥∥∥zxf − zyf

∥∥∥
2

in the GDAC distance, z(·)p ,

z
(·)
f denoting DLP latent attribute zp, zf of particle (·) respectively. We filter out particles that do

not correspond to cubes (see section B.1) for the distance calculation. When a particle has no match
(i.e. miny

∥∥∥zxf − zyf

∥∥∥
2
> C), a negative bonus is added to the reward to avoid ”reward hacking” by

pushing blocks off the table or occluding them intentionally.

Evaluation Metrics We evaluate the performance of the different methods based on the following:

Success: I
(∑N

i=1 I
(∥∥gdi − gai

∥∥
2
< R

)
= N

)
, all N objects are at a threshold distance from their

desired goal. R denotes the success threshold distance and is slightly smaller than the effective
radius of a cube. I denotes the indicator function. This metric most closely captures task success,
but does not capture intermediate success or timestep efficiency.

Success Fraction: 1
N

∑N
i=1 I

(∥∥gdi − gai
∥∥
2
< R

)
, fraction of objects that reach individual success.

Maximum Object Distance: maxi
{∥∥gdi − gai

∥∥
2

}
, largest distance of an object from its desired goal.

Average Object Distance: 1
N

∑N
i=1

∥∥gdi − gai
∥∥
2
, average distance of objects from their desired goal.

Average Return: 1
T

∑T
t=1 rt, the immediate GT reward averaged across timesteps, where T is the

evaluation episode length. A high average return means that the agent solved the task quickly.

D.2 REINFORCEMENT LEARNING

We implement our RL algorithm with code adapted from stable-baselines3 (Raffin et al.,
2021). Specifically, we use TD3 (Fujimoto et al., 2018) with HER (Andrychowicz et al., 2017).
We use ε-greedy and Gaussian action noise for exploration, that decays to half its initial value with
training progress, similar to Zhou et al. (2022). We use Adam for neural network optimization.
Related hyper-parameters can be found in Table 7 and Table 8.

Learning Rate 5e-4
Batch Size 512

γ 0.98
τ 0.05

# Episodes Collected per Training Loop 16
Update-to-Data Ratio 0.5

HER Ratio 0.8
Exploration Action Noise σ 0.2

Exploration ε 0.3

Table 7: General hyper-parameters used for RL training.

Number of Cubes 1 2 3
Episode Horizon 30 50 100

Replay Buffer Size 100000 100000 200000

Table 8: Environment specific hyper-parameters used for RL training.

For the Entity Interaction Transformer (EIT) we adapted components from DDLP’s Particle Interac-
tion Transformer (PINT, Daniel & Tamar (2023)), which is based on a Transformer decoder architec-
ture and utilizing the open-source minGPT (Karpathy, 2021) code base. Related hyper-parameters
can be found in Table 9.
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Attention Dimension 64
Attention Heads 8

MLP Hidden Dimension 256
MLP Number of Layers 3

Table 9: Hyper-parameters for the EIT architecture.

Attention Masking: The DLP model extracts a fixed number of particles, which often include
particles that do not represent objects in the image. These particles are assigned low transparency
(zt) values by the DLP model as to not affect the reconstruction quality. We disregard these particles
in our policy and Q-function by directly masking the attention entries related to them. We found that
this slightly improves sample efficiency but is not crucial to performance as the EIT is able to learn
to disregard these particles by assigning them very low attention values.

Policies for the unstructured baselines have 5 layer MLPs with hidden dimension 256.

D.3 PRE-TRAINED IMAGE REPRESENTATIONS

In this section, we detail the various unsupervised pre-trained image representation methods used
in this work. We begin with the non-object-centric baselines, i.e., methods that given an image
I ∈ RH×W×C , encode a single-vector representation z ∈ RD, where D is the latent dimension,
of the entire input image. Then, we describe the object-centric representation (OCR) method that
provides a structured latent representation z ∈ RK×d of a given image I , where K is the number of
entities in the scene, each described by latent features of dimension d.

Data: We collect 600, 000 images from 2 viewpoints by interacting with the environment using
a random policy for 300, 000 timesteps. For all methods, we use RGB images at a resolution of
128× 128, i.e., I ∈ R128×128×3.

Variational Autoencoder (VAE): We train a β-VAE (Higgins et al., 2017) with a latent bottleneck
of size D = 256, i.e., each image I is encoded as z ∈ R256. We adopt a similar autoencoder archi-
tecture as Rombach et al. (2022) based on the open-source implementation5 and add a 2-layer MLP
with 512 hidden units after the encoder and before the decoder to ensure the latent representation is
of dimension 256. We use β = 1e − 10, a batch size of 16 and an initial learning rate of 2e − 4
which is gradually decayed with a linear schedule. The model is trained for 40 epochs with a per-
ceptual reconstruction loss and L1 pixel-wise loss, similarly to Rombach et al. (2022), and we keep
the default values for the rest of the hyper-parameters.

Deep Latent Particles (DLP): We train a DLPv2 (Daniel & Tamar, 2023) using the publicly avail-
able code base6 as our unsupervised OCR model. We modify the DLP model to have background
particle features of dimension 1, and discard the background particle for RL purposes. The
background is static in our experiments and setting its latent particle to have a single feature is
meant to limit its capacity to capture changing parts of the scene such as the objects or the agent.
Recall that DLP provides a disentangled latent space structured as a set of foreground particles
z = {(zp, zs, zd, zt, zf )i}K−1

i=0 ∈ RK×(6+l), where K is the number of particles. Figure 14 il-
lustrates an example of the object-centric decomposition for a single image using a DLP model
pre-trained on our data. We keep the default recommended hyper-parameters and report the data-
specific hyper-parameters in Table 10. Note that our DLP model represents an image I by a total of
K × (6 + l) = 24 ∗ (6 + 4) = 240 latent features.

Slot-Attention: For the OCR ablation study we train a Slot-Attention (Locatello et al., 2020) model
with 10 slots, each of size D = 64, i.e., each image I is encoded as z ∈ R10×64. We use the
implementation from https://github.com/HHousen/object-discovery-pytorch,
and keep most of the hyper-parameters similar, corresponding to the ones used in the original paper,
and we provide the set of hyper-parameters in our code repository. We performed multiple training
runs with each set of hyper-parameters and took the run that yielded the best object separation to
slots, similar to the training procedure in Wu et al. (2022).

5https://github.com/CompVis/latent-diffusion
6https://github.com/taldatech/ddlp
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Figure 14: Object-centric Decomposition with DLP – DLP decomposes a single image into la-
tent particles, each characterized by attributes including position (keypoints in the images), scale
(bounding boxes), and visual appearance features around the keypoint (displayed as decoded
glimpses from these features).

Batch Size 64
Posterior KP K 24

Prior KP Proposals L 32
Reconstruction Loss MSE

βKL 0.1
Prior Patch Size 16
Glimpse Size S 32
Feature Dim m 4

Background Feature Dim mbg 1
Epochs 60

Table 10: Hyper-parameters used for the Deep Latent Particles (DLP) object-centric model.

D.4 SMORL REIMPLEMENTATION

We re-implement SMORL (Zadaianchuk et al., 2020) based on the official implementation7, using
the same code-base as we used for the EIT for the SMORL attention architecture. SMORL specific
hyper-parameters are detailed in Table 11. We extend SMORL to multiple views, which includes
modifications to several aspects of the algorithm:

Attention Architecture: We extend SMORL’s attention policy by adding a goal-conditioned and
goal-unconditional attention block for the additional view. The outputs of attention layers from both
views are concatenated and fed to an MLP, as in the single-view version. An outline of SMORL’s
single-view attention-based architecture is described in Figure 15.

7https://github.com/martius-lab/SMORL
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Figure 15: Outline of SMORL’s Attention Architecture - The policy is conditioned on the goal by
choosing a single goal particle and feeding it to a cross-attention block between the goal particle
and the state particles. In parallel, cross-attention between a learned particle and the state particles
is performed to extract features from the state that are not goal-dependant. The outputs of the two
attention layers are then concatenated to the original goal particle and fed to an MLP to produce
the action. For the Q-function, the input action is additionally concatenated to the output of the
attention to produce the value.

Selecting a Single Goal: SMORL decomposes the multi-object goal-conditioned task to single
objects by selecting a single goal at a time, and rewarding the agent with respect to this sub-goal
alone. Working with multiple views requires selecting a goal particle corresponding to the same
object from both viewpoints, which requires explicit matching. We do this by selecting a goal
particle from one viewpoint and choosing the closest matching particle from the second viewpoint
based on the L2 distance in latent attribute zf .

Reward: The image-based reward calculated from the DLP OCR for SMORL is the negative L2

distance in attribute zp between the goal particle to the closest matching state particle based on
attribute zf , averaged over viewpoints:

rt = − 1

K

K∑
k=1

∥∥∥∥zgk

p − z
skmk
p

∥∥∥∥
2

, mk = argmin
m

∥∥∥zgk

f − z
skm
f

∥∥∥
2
, (4)

gk denoting the goal particle from view k and skm denoting particle m from view k. When there is

no match for the goal particle in viewpoint k (i.e. minm

∥∥∥zgk

f − z
skm
f

∥∥∥
2
> C), the minimal reward

is given for that view. Note that this reward is a special case of the Chamfer reward we define in this
work, with the goal set consisting of a single entity per view.

Attention Dimension 64
Unconditional Attention Heads 8

Goal-conditioned Attention Heads 8
MLP Hidden Dimension 256

MLP Layers 4
Scripted Meta-policy Steps 15

Table 11: SMORL hyper-parameters.
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E ATTENTION IN RL POLICIES - COMPARISON TO PREVIOUS WORK

In this section, we compare our use of attention to two previous approaches, Zhou et al. (2022)
which is state-based and SMORL (Zadaianchuk et al., 2020) which is image-based.
Zhou et al. (2022) also propose a Transformer-based policy. They define an entity as the concate-
nation of each object’s state, goal, and the state of the agent (and the action when we consider the
input to the Q-function). This requires explicitly matching between entities in state and goal as well
as identifying the agent, which is trivial when working with GT state observations. When learning
from OCRs of images, this is not at all trivial. Matching is not always possible due to lack of a
one-to-one match or occlusion, which also limits the use of multiple viewpoints. We tackle this in
our EIT by using a cross-attention block for goal-conditioning. Additionally, we learn which parti-
cles correspond to the agent implicitly through the RL objective. Figure 16 describes the differences
between their definition of an input entity to ours.
SMORL uses an OCR of images and does not require matching between entities in the single-view
case. The goal-conditioned attention in their architecture (see Figure 15) matches a single goal par-
ticle to the relevant state particle via cross-attention. Different from us, the attention mechanism is
used only to extract sub-goal specific entities from the set of state entities, and does not explicitly
model relationships between the different entities in the state. We do this explicitly by incorporating
self-attention Transformer blocks in our architecture.

Figure 16: Entity Definition Comparison Left – description of an input token defined by Zhou et al.
(2022), where each token is a concatenation of the object and corresponding goal as well as global
entities such as the agent and action; Right – Our definition of input tokens, where each entity is
treated as a separate token.
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F COMPOSITIONAL GENERALIZATION THEORY

We begin by defining a notion of compositionally generalizing functions F.1.1 and provide an ex-
ample of such a class of functions F.1.2. We additionally provide an example of a case where a class
of functions can accurately approximate another class of functions up to N entities but does not
generalize to increasing number of entities F.1.3. Following these, we prove our main theorem F.2.
We then present modifications to the assumptions of our main theorem to obtain a result F.3 that
adheres to Definition 3.

Relating the theorems to compositionally generalizing policies, we show that an ε-optimal Q-
function for M objects is also approximately optimal for M + k objects under our structural as-
sumptions. This implies that a policy that is trained to maximize this Q-function with M objects
should also achieve high returns for M + k objects, i.e. achieve zero-shot compositional generaliza-
tion.

F.1 COMPOSITIONALLY GENERALIZING FUNCTIONS

F.1.1 DEFINITION

In the following, we define a notion of compositionally generalizing functions:
Definition 3. Denote the space of variable-sized sets of entities S = ∪N∈NSN where SN =
{{si}Ni=1|si ∈ S̃}, S̃ being the space of a single entity. Denote S<N ⊂ S the subspace con-
taining sets of up to size N .
A class of functions C : S → R is said to admit compositional generalization on X ⊆ S if there
exists N such that for any f∗, f ∈ C that satisfy ∥f∗(x) − f(x)∥ < ε, ∀x ∈ X<N , we have that
for any M > 0 and x ∈ X<N+M : ∥f∗(x)− f(x)∥ < (C1 + C2 ·M) · ε, ∀x ∈ X where C1, C2

are constants that do not depend on M, ε.

Put simply, our definition of compositional generalization asks that adding additional M objects to
the problem incurs an error that is at most linear in M .

F.1.2 EXAMPLE

An example of a class of compositionally generalizing functions is the class of DeepSets-style (Za-
heer et al., 2017) function approximators, which are an aggregation of functions defined on single
entities:
Theorem 4. Let CDS : S → R be the class of functions of the form: Q (s) = 1

N

∑N
i=1 v (si),

where v : S̃ → R is a function that operates on single entities. Then CDS admits compositional
generalization on S.

Proof. Assume Q∗, Q̂ ∈ CDS satisfy ∥Q∗(s)− Q̂(s)∥ < ε, ∀s ∈ S<N .
From the case of N = 1 we have:

∥Q∗(s)− Q̂(s)∥ < ∥v∗(s)− v̂(s)∥ < ε, ∀s ∈ S̃.

From the above equation we obtain ∀N ∈ N:

∥Q∗(s)−Q̂(s)∥ = ∥ 1

N

N∑
i=1

v∗ (si)−
1

N

N∑
i=1

v̂ (si) ∥ ≤ 1

N

N∑
i=1

∥v∗ (si)−v̂ (si) ∥ <
1

N

N∑
i=1

ε = ε, ∀s ∈ SN .

Thus we have that by Definition 3, CDS admits compositional generalization on S with C1 =
1, C2 = 0.

F.1.3 NON-GENERALIZING Q̂ EXAMPLE

Assuming Q∗ has a self-attention structure, Theorem 2 shows that if we obtained an ε-optimal Q̂ for
1, . . . ,M objects where Q̂ also has a self-attention structure, then the sub-optimality w.r.t. M + k

objects grows at most linearly in M+k. This raises the question: are there Q̂ structures that lack the
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compositional generalization quality in this case? In this section we provide a simple example for a
structure that can accurately approximate a self-attention Q∗ for 2 objects but does not generalize to
increasing number of objects.

Consider the following Q̂ structure:

∀S ∈ SN , ∀a ∈ A, ∀N ∈ N: Q̂ (s1, ..., sN , a) = 1
N

∑N
i=1 Q̃i (s1, ..., sN , a), where

Q̃i (s1, ..., sN , a) = 1∑N
j=1 α(si,sj ,a)

∑Ñ
j=1 α (si, sj , a) v (sj , a), α (·) ∈ R+.

We denote Ñ = min{2, N} where the indices j = 1, . . . , N are ordered by the value of v (sj , a)
in increasing order. Note that this operation is still invariant to permutations of the input state
s = {si}Ni=1.

For N = 1, 2, this structure is identical to the one assumed in Theorem 2 which is that of Q∗ and
therefore there exists a Q̂ such that: |Q̂−Q∗| = 0. In this case, both v = v∗ and α = α∗.

For N > 2 on the other hand, the approximation error cannot be bounded by ε as Q̂ does not account
for the entire set of states:

∣∣∣Q̂ (s1, ..., sN , a)−Q∗ (s1, ..., sN , a)
∣∣∣ = ∣∣∣∣∣ 1N

N∑
i=1

Q̃i (s1, ..., sN , a)− Q̃∗
i (s1, ..., sN , a)

∣∣∣∣∣ =
=

∣∣∣∣∣∣ 1N
N∑
i=1

1∑N
j=1 α (si, sj , a)

2∑
j=1

α (si, sj , a) v (sj , a)−
1∑N

j=1 α
∗ (si, sj , a)

N∑
j=1

α∗ (si, sj , a) v
∗ (sj , a)

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣ 1N
N∑
i=1

2∑
j=1

[
α (si, sj , a)∑N
j=1 α (si, sj , a)

v (sj , a)−
α∗ (si, sj , a)∑N
j=1 α

∗ (si, sj , a)
v∗ (sj , a)

]
−

N∑
j=3

α∗ (si, sj , a)∑N
j=1 α

∗ (si, sj , a)
v∗ (sj , a)

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣ 1N
N∑
i=1

N∑
j=3

α∗ (si, sj , a)∑N
j=1 α

∗ (si, sj , a)
v∗ (sj , a)

∣∣∣∣∣∣ ≥ 0

The approximation error is not zero for all inputs (s1, ..., sN , a) so long as v∗ > 0 for some state
si ∈ S̃ and action a, which is true unless Q∗ (s1, ..., sN , a) = 0, ∀s ∈ SN , ∀a ∈ A.

This example illustrates how some function approximators are not well-suited for compositional
generalization. Although the approximated model perfectly fits the training distribution, containing
up to 2 objects in this case, it does not fit test distributions with more objects.
Relating this to Definition 3, if we consider a class of functions that contains both Q̂ and Q∗ de-
scribed above, the example illustrates that this class does not admit compositional generalization.

F.2 MAIN THEOREM PROOF

F.2.1 LEMMAS

We start by showing that if two positive functions 0 < f (s) , g (s) normalized by a sum of their
values over a set of inputs {sj}Nj=1 of size M are δ-close to each other, the difference in their
normalized value under a set of size 2M − 1 is bounded by 2δ.

Lemma 5. If
∣∣∣∣ f(si)∑N

j=1 f(sj)
− g(si)∑N

j=1 g(sj)

∣∣∣∣ < δ, 0 < f (s) , g (s) , ∀si, sj , ∀N ∈ [1,M ] then for

k ∈ [1,M − 1], i ∈ [1,M ]: ∣∣∣∣∣ f (si)∑M+k
j=1 f (sj)

− g (si)∑M+k
j=1 g (sj)

∣∣∣∣∣ ≤ 2δ
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Proof.

(∗)

∣∣∣∣∣ f (si)∑N
j=1 f (sj)

− g (si)∑N
j=1 g (sj)

∣∣∣∣∣ =
∣∣∣∣∣∣f (si)

∑N
j=1 g (sj)− g (si)

∑N
j=1 f (sj)(∑N

j=1 f (sj)
)(∑N

j=1 g (sj)
)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑N

j ̸=i,j=1 [f (si) g (sj)− g (si) f (sj)](∑N
j=1 f (sj)

)(∑N
j=1 g (sj)

)
∣∣∣∣∣∣ < δ

For k ∈ [1,M − 1], i ∈ [1,M ]:∣∣∣∣∣ f (si)∑M+k
j=1 f (sj)

− g (si)∑M+k
j=1 g (sj)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑M+k

j ̸=i,j=1 [f (si) g (sj)− g (si) f (sj)](∑M+k
j=1 f (sj)

)(∑M+k
j=1 g (sj)

)
∣∣∣∣∣∣ ≤

≤

∣∣∣∣∣∣
∑M

j ̸=i,j=1 [f (si) g (sj)− g (si) f (sj)](∑M+k
j=1 f (sj)

)(∑M+k
j=1 g (sj)

)
∣∣∣∣∣∣+

∣∣∣∣∣∣
∑M+k

j=M+1 [f (si) g (sj)− g (si) f (sj)](∑M+k
j=1 f (sj)

)(∑M+k
j=1 g (sj)

)
∣∣∣∣∣∣ ≤
0<f(s),g(s)

≤

∣∣∣∣∣∣
∑M

j ̸=i,j=1 [f (si) g (sj)− g (si) f (sj)](∑M
j=1 f (sj)

)(∑M
j=1 g (sj)

)
∣∣∣∣∣∣+

∣∣∣∣∣∣
∑M+k

j=M+1 [f (si) g (sj)− g (si) f (sj)](
f (si) +

∑M+k
j=M+1 f (sj)

)(
g (si) +

∑M+k
j=M+1 g (sj)

)
∣∣∣∣∣∣ ≤(∗) 2δ ⇒

⇒

∣∣∣∣∣ f (si)∑M+k
j=1 f (sj)

− g (si)∑M+k
j=1 g (sj)

∣∣∣∣∣ ≤ 2δ

In the following two lemmas we bound the difference between two weighted sums of single-input
functions applied individually on a set of inputs {si}Ni=1 assuming the weights are δ-close and the
function values are ε-close.

Lemma 6. If α, β, v, u ≥ 0 and |α− β| < δ, |v − u| < ε, then:

|αv − βu| < α+ β

2
ε+

v + u

2
δ

Proof.

|αv − βu| = |αv − αu− β · u+ αu| < |αv − αu|+|αu− β · u| = α |v − u|+u |α− β| < αε+uδ

|αv − βu| = |αv − β · v − β · u+ β · v| < |βv − βu|+|αv − β · v| = β |v − u|+v |α− β| < βε+vδ

Combining the above two inequalities we get:

|αv − βu| < α+ β

2
ε+

v + u

2
δ

Lemma 7. Let F (s1, ..., sN ) =
∑N

i=1
f(si)g(si)∑N

j=1 f(sj)
and F ∗ (s1, ..., sN ) =

∑N
i=1

f∗(si)g
∗(si)∑N

j=1 f∗(sj)
, and

assume
∣∣∣∣ f(si)∑N

j=1 f(sj)
− f∗(si)∑N

j=1 f∗(sj)

∣∣∣∣ < δ, |g (si)− g∗ (si)| < ε, 0 ≤ g (si) , g
∗ (si) ≤ C,

0 < f (s) , g (s) , f∗ (s) , g∗ (s). Then:

|F (s1, ..., sN )− F ∗ (s1, ..., sN )| ≤ ε+N · C · δ
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Proof.

|F (s1, ..., sN )− F ∗ (s1, ..., sN )| =

∣∣∣∣∣
N∑
i=1

f (si) g (si)∑N
j=1 f (sj)

− f∗ (si) g
∗ (si)∑N

j=1 f
∗ (sj)

∣∣∣∣∣ ≤
≤

N∑
i=1

∣∣∣∣∣ f (si)∑N
j=1 f (sj)

g (si)−
f∗ (si)∑N
j=1 f

∗ (sj)
g∗ (si)

∣∣∣∣∣ = (∗)

Using Lemma 6 we get:

(∗) <
N∑
i=1

f(si)∑N
j=1 f(sj)

+ f∗(si)∑N
j=1 f∗(sj)

2
ε+

g (si) + g∗ (si)

2
δ =

=

∑N
i=1 f(si)∑N
j=1 f(sj)

+
∑N

i=1 f∗(si)∑N
j=1 f∗(sj)

2
ε+

N∑
i=1

g (si) + g∗ (si)

2
δ ≤

≤ ε+

N∑
i=1

C · δ = ε+N · C · δ

F.2.2 PROOF

We now prove Theorem 2.

Proof. Using 0 ≤ r ≤ 1 and the discounted reward definition we get that ∀N :

0 ≤ Q̂ (s1, ..., sN , a) ≤ 1

1− γ

By definition of the structure of the Q-function and setting N = 1 we get that ∀s ∈ S̃:

Q̂ (s, a) = Q̃ (s, a|s) = v (s, a) ⇒ 0 ≤ v (s, a) ≤ 1

1− γ

Again using the definition of the structure of the Q-function we get that ∀N :

Q̃i (s1, ..., sN , a) =
1∑N

j=1 α (si, sj , a)

N∑
j=1

α (si, sj , a) v (sj , a) ≤

≤ 1∑N
j=1 α (si, sj , a)

N∑
j=1

α (si, sj , a)
1

1− γ
=

1

1− γ

Repeating the above for the optimal Q-function we obtain ∀N :

0 ≤ v (s, a) ≤ 1

1− γ
, 0 ≤ v∗ (s, a) ≤ 1

1− γ
(5)

0 ≤ Q̃i (s1, ..., sN , a) ≤ 1

1− γ
, 0 ≤ Q̃∗

i (s1, ..., sN , a) ≤ 1

1− γ
(6)

Setting N = 1 and using the ε-optimality assumption:∣∣∣Q̃i (s, a)− Q̃i
∗
(s, a)

∣∣∣ = |v (s, a)− v∗ (s, a)| < ε, ∀s ∈ S̃ (7)

We restate the theorem assumption that the attention weights are δ-close for up to M objects:∣∣∣∣∣ α (si, sj , a)∑N
l=1 α (si, sl, a)

− α∗ (si, sj , a)∑N
l=1 α

∗ (si, sl, a)

∣∣∣∣∣ ≤ δ, ∀j ∈ 1, . . . , N, ∀N ∈ 1, . . . ,M. (8)
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Using equation 8 and the fact that α(·), α∗(·) ∈ R+, from Lemma 5 we obtain that ∀k ∈ [1, N − 1]:∣∣∣∣∣
∑N

j=1 α (si, sj , a)∑N+k
l=1 α (si, sl, a)

−
∑N

j=1 α
∗ (si, sj , a)∑N+k

l=1 α∗ (si, sl, a)

∣∣∣∣∣ =
∣∣∣∣∣∣

N∑
j=1

α (si, sj , a)∑N+k
l=1 α (si, sl, a)

− α∗ (si, sj , a)∑N+k
l=1 α∗ (si, sl, a)

∣∣∣∣∣∣ ≤
≤

N∑
j=1

∣∣∣∣∣ α (si, sj , a)∑N+k
l=1 α (si, sl, a)

− α∗ (si, sj , a)∑N+k
l=1 α∗ (si, sl, a)

∣∣∣∣∣ ≤
N∑
j=1

2δ = 2Nδ ⇒

⇒

∣∣∣∣∣
∑N

j=1 α (si, sj , a)∑N+k
l=1 α (si, sl, a)

−
∑N

j=1 α
∗ (si, sj , a)∑N+k

l=1 α∗ (si, sl, a)

∣∣∣∣∣ ≤ 2Nδ, ∀i ∈ [1, N ] (9)

Using equation 5, equation 7 and equation 8, from Lemma 7 we have:∣∣∣Q̃i (s1, ..., sN , a)− Q̃i
∗
(s1, ..., sN , a)

∣∣∣ ≤ ε+
N

1− γ
δ, ∀i ∈ [1, N ] (10)

Note that we can decompose Q̃i in the following manner:

Q̃i (s1, ..., sM+k, a) =
1∑M+k

j=1 α (si, sj , a)

M+k∑
j=1

[α (si, sj , a) v (sj , a)] =

=
1∑M+k

j=1 α (si, sj , a)

M∑
j=1

[α (si, sj , a) v (sj , a)] +
1∑M+k

j=1 α (si, sj , a)

M+k∑
j=M+1

[α (si, sj , a) v (sj , a)] =

=

∑M
j=1 α (si, sj , a)∑M+k
j=1 α (si, sj , a)

Q̃i (s1, ..., sM , a) +

∑M+k
j=M+1 α (si, sj , a)∑M+k
j=1 α (si, sj , a)

Q̃i (si, sM+1, ..., sM+k, a)+

− α (si, si, a)∑M+k
j=1 α (si, sj , a)

v (si, a)

Using this decomposition for Q̃i and Q̃∗
i :∣∣∣Q̃i (s1, ..., sM+k, a|si)− Q̃∗
i (s1, ..., sM+k, a)

∣∣∣ ≤
≤ (#)

∣∣∣∣∣
∑M

j=1 α (si, sj , a)∑M+k
j=1 α (si, sj , a)

Q̃i (s1, ..., sM , a)−
∑M

j=1 α
∗ (si, sj , a)∑M+k

j=1 α∗ (si, sj , a)
Q̃∗

i (s1, ..., sM , a)

∣∣∣∣∣+
(##)

∣∣∣∣∣
∑M+k

j=M+1 α (si, sj , a)∑M+k
j=1 α (si, sj , a)

Q̃i (si, sM+1, ..., sM+k, a)−
∑M+k

j=M+1 α
∗ (si, sj , a)∑M+k

j=1 α∗ (si, sj , a)
Q̃∗

i (si, sM+1, ..., sM+k, a)

∣∣∣∣∣+
(###)

∣∣∣∣∣ α (si, si, a)∑M+k
j=1 α (si, sj , a)

v (si, a)−
α∗ (si, si, a)∑M+k

j=1 α∗ (si, sj , a)
v∗ (si, a)

∣∣∣∣∣
Using equation 9 and equation 10 with Lemma 5 we obtain the following bound for the first term:

(#) =

∣∣∣∣∣
∑M

j=1 α (si, sj , a)∑M+k
j=1 α (si, sj , a)

Q̃i (s1, ..., sM , a)−
∑M

j=1 α
∗ (si, sj , a)∑M+k

j=1 α∗ (si, sj , a)
Q̃∗

i (s1, ..., sM , a)

∣∣∣∣∣ ≤
≤

∑M
j=1 α(si,sj ,a)∑M+k
j=1 α(si,sj ,a)

+
∑M

j=1 α∗(si,sj ,a)∑M+k
j=1 α∗(si,sj ,a)

2

(
ε+

M

1− γ
δ

)
+

Q̃i (s1, ..., sM , a) + Q̃∗
i (s1, ..., sM , a)

2
2Mδ ≤

≤ε+
M

1− γ
δ +

2M

1− γ
δ
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Similarly for the other two terms we obtain:

(##) ≤ ε+
k

1− γ
δ +

2k

1− γ
δ

(###) ≤ ε+
2

1− γ
δ

Putting the three terms together we have:∣∣∣Q̃i (s1, ..., sM+k, a)− Q̃∗
i (s1, ..., sM+k, a|)

∣∣∣ ≤ 3ε+
3 (M + k) + 2

1− γ
δ

The same result is obtained for M < i ≤ M + k by similarly repeating derivations above, starting
from the decomposition of Q̃i.

Using this final result we obtain our desired upper bound:∣∣∣Q̂ (s1, ..., sM+k, a)−Q∗ (s1, ..., sM+k, a)
∣∣∣ ≤

≤ 1

M + k

M+k∑
i=1

∣∣∣Q̃i (s1, ..., sM+k, a)− Q̃∗
i (s1, ..., sM+k, a)

∣∣∣ ≤
≤3ε+

3 (M + k) + 2

1− γ
δ, ∀k ∈ [1,M − 1]

F.3 RELAXING THE ASSUMPTION ON THE ATTENTION WEIGHTS

Theorem 2 does not exactly fit Definition 3 because it makes an assumption on the difference be-
tween the optimal and approximated attention weights (equation 8). In this section we present mod-
ifications to the assumptions of the theorem that allow us to alleviate this assumption, and bound the
difference as a function of the Q-value approximation error ε alone.

The first additional assumption we make on the state space SN is that individual object states are
distinguishable, and separated by some constant C:
Assumption 8. SN = {{si}Ni=1, si ∈ S̃ | ∀ sj , sk, ∥sj − sk∥1 ≥ C > 0}.

The second assumption we add is that the attention-value function v∗(·) is object-distinguishing, i.e.
∀ ∥si − sj∥1 ≥ C > 0 → |v∗ (si, a)− v∗ (sj , a) | ≥ λ > 0:
Assumption 9. ∀S ∈ SN ,∀a ∈ A, ∀N ∈ N we have:
Q∗ (s1, ..., sN , a) = 1

N

∑N
i=1 Q̃

∗
i (s1, ..., sN , a), where

Q̃∗
i (s1, ..., sN , a) = 1∑N

j=1 α∗(si,sj ,a)

∑N
j=1 α

∗ (si, sj , a) v
∗ (sj , a), α∗ (·) ∈ R+, v∗ ∈ R and satis-

fies |v∗ (si, a)− v∗ (sj , a) | ≥ λ > 0.

We state our compositional generalization result under these assumptions as follows:
Theorem 10. Let Assumptions 8 and 9 hold. Let Q̂ be an approximation of Q∗ with
an identical structure. Assume that ∀s ∈ SN , ∀a ∈ A, ∀N ∈ [1,M ] we have∣∣∣Q̂ (s1, ..., sN , a)−Q∗ (s1, ..., sN , a)

∣∣∣ < ε. Then ∀s ∈ SM+k, ∀a ∈ A, ∀k ∈ [1,M − 1]:∣∣∣Q̂ (s1, ..., sM+k, a)−Q∗ (s1, ..., sM+k, a)
∣∣∣ ≤ (

12(M + k)

λ(1− γ)
+

8

λ(1− γ)
+ 3

)
ε,

where λ > 0 is a constant independent of ε.

This theorem thus states that the class of functions described in Assumption 9 admits compositional
generalization on S (defined in Assumption 8), as defined by Definition 3.

We now prove Theorem 10.

We start by showing that for the self-attention class of functions, if two functions are ε-similar for
any set of objects that are λ-different, it must mean that the attention weights are also similar.
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Lemma 11. Consider the functions v, v∗ : S̃ → R+ and α, α∗ : S̃ → R+. Assume that for any
N ∈ 1, . . . ,M , and for any {si}Ni=1 ∈ SN it holds that:

|v(sj)− v(sk)| ≥ λ ∀j ̸= k ∈ 1, . . . , N, λ > 0, (11)

and ∣∣∣∣∣
∑N

i=1 α(si)v(si)∑N
i=1 α(si)

−
∑N

i=1 α
∗(si)v

∗(si)∑N
i=1 α

∗(si)

∣∣∣∣∣ ≤ ε, ε > 0, (12)

Then ∣∣∣∣∣ α(si)∑N
j=1 α(sj)

− α∗(si)∑N
j=1 α

∗(sj)

∣∣∣∣∣ ≤ 4ε

λ
, ∀i ∈ 1, . . . , N, ∀N ∈ 1, . . . ,M.

Proof. From the case of N = 1 of equation 12 we have that for every s ∈ S̃:

|v(s)− v∗(s)| ≤ ε. (13)

Consider the case of N = 2. Let ᾱ = α(s1)∑2
i=1 α(si)

, and similarly ᾱ∗ = α∗(s1)∑2
i=1 α∗(si)

. We have:

|ᾱv(s1) + (1− ᾱ)v(s2)− (ᾱ∗v(s1) + (1− ᾱ∗)v(s2))|
= |ᾱv(s1) + (1− ᾱ)v(s2)− (ᾱ∗v∗(s1) + (1− ᾱ∗)v∗(s2)) + ᾱ∗(v∗(s1)− v(s1)) + (1− ᾱ∗)(v∗(s2)− v(s2))|
≤ |ᾱv(s1) + (1− ᾱ)v(s2)− (ᾱ∗v∗(s1) + (1− ᾱ∗)v∗(s2))|+ ᾱ∗ε+ (1− ᾱ∗)ε ≤ ε+ ε = 2ε

(14)

where the first inequality is from equation 13 and the second inequality is from equation 12.
Manipulating the terms above we obtain:

|(ᾱ− ᾱ∗)(v(s1)− v(s2))| ≤ 2ε. (15)

Now, from equation 11 and equation 15 we get that for any s1, s2 ∈ S2:∣∣∣∣∣ α(si)∑2
j=1 α(sj)

− α∗(si)∑2
j=1 α

∗(sj)

∣∣∣∣∣ ≤ 2ε

λ
<

4ε

λ
, i = 1, 2.

The claim holds for N = 2.

Let us now consider the case of N = 3. Assume without loss of generality that v(s1) < v(s2) <

v(s3). Denote γi =
α(si)∑3

j=1 α(sj)
, v̂1 = v(s1) and v̂2,3 = γ2v(s2)

γ2+γ3
+ γ3v(s3)

γ2+γ3
.

We rewrite the weighted sum using this notation:∑3
i=1 α(si)v(si)∑3

i=1 α(si)
= γ1v(s1) + γ2v(s2) + γ3v(s3) =

= γ1v(s1) + (γ2 + γ3)

(
γ2v(s2)

γ2 + γ3
+

γ3v(s3)

γ2 + γ3

)
= γ1v̂1 + (1− γ1)v̂2,3

Then we can rewrite equation 12 for this case in the following manner:∣∣γ1v̂1 + (1− γ1)v̂2,3 −
(
γ∗
1 v̂

∗
1 + (1− γ∗

1)v̂
∗
2,3

)∣∣ ≤ ε.

Since v̂2,3 is a weighted average of v(s2) and v(s3), we can say that |v̂1 − v̂2,3| ≥ λ. Additionally,
from the case of N = 2 of equation 12 we have that

∣∣v̂2,3 − v̂∗2,3
∣∣ ≤ ε. Using the above with a

similar derivation of equation 14 we obtain for s1:∣∣∣∣∣ α(s1)∑3
j=1 α(sj)

− α∗(s1)∑3
j=1 α

∗(sj)

∣∣∣∣∣ ≤ 2ε

λ
,
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and ∣∣∣∣∣α(s2) + α(s3)∑3
j=1 α(sj)

− α∗(s2) + α∗(s3)∑3
j=1 α

∗(sj)

∣∣∣∣∣ ≤ 2ε

λ
. (16)

Symmetrically we can obtain the following bound for s3:∣∣∣∣∣ α(s3)∑3
j=1 α(sj)

− α∗(s3)∑3
j=1 α

∗(sj)

∣∣∣∣∣ ≤ 2ε

λ
, (17)

and we use equation 16 and equation 17 to obtain a bound for s2:∣∣∣∣∣ α(s2)∑3
j=1 α(sj)

− α∗(s2)∑3
j=1 α

∗(sj)

∣∣∣∣∣ =
=

∣∣∣∣∣α(s2) + α(s3)− α(s3)∑3
j=1 α(sj)

− α∗(s2) + α∗(s3)− α∗(s3)∑3
j=1 α

∗(sj)

∣∣∣∣∣ ≤
≤

∣∣∣∣∣α(s2) + α(s3)∑3
j=1 α(sj)

− α∗(s2) + α∗(s3)∑3
j=1 α

∗(sj)

∣∣∣∣∣+
∣∣∣∣∣ α(s3)∑3

j=1 α(sj)
− α∗(s3)∑3

j=1 α
∗(sj)

∣∣∣∣∣ ≤
≤ 2ε

λ
+

2ε

λ
=

4ε

λ
.

The claim holds for N = 3.

Now consider the case of 3 < N ≤ M . Assume without loss of generality that v(s1) < v(s2) <

· · · < v(sN ). Denote the normalized attention weights γi = α(si)∑N
j=1 α(sj)

and the partial weighted

sum v̂k,...,l =
∑l

j=k
γjv(sj)∑l

j=k γj
. Given i ∈ 2, . . . , N − 1, we can regroup the values such that we have

v̂1,...,i−1 < v̂i < v̂i+1,...,N and corresponding weights
∑i−1

j=1 γj , γi,
∑N

j=i+1 γj . Notice that by
definition, v̂i = vi.

The new set of values {v̂1,...,i−1, v̂i, v̂i+1,...,N} are λ-far from each other since v̂1,...,i−1 and
v̂i+1,...,N are weighted averages of values, {v1, . . . , vi−1} and {vi+1, . . . , vN}, that are λ-far from
v̂i = vi.

From equation 12 we have that each v̂ is ε-close to its v̂∗ counterpart. To see why this is true, notice
that γi is a normalized αi and therefore:

v̂k,...,l =

l∑
j=k

γjv(sj)∑l
j=k γj

=

l∑
j=k

α(sj)∑N
m=1 α(sm)

v(sj)∑l
j=k

α(sj)∑N
m=1 α(sm)

=

l∑
j=k

α(sj)v(sj)∑l
j=k α(sj)

=

∑l
j=k α(sj)v(sj)∑l

j=k α(sj)

So we have: ∣∣v̂k,...,l − v̂∗k,...,l
∣∣ = ∣∣∣∣∣

∑l
j=k α(sj)v(sj)∑l

j=k α(sj)
−

∑l
j=k α

∗(sj)v
∗(sj)∑l

j=k α
∗(sj)

∣∣∣∣∣ ≤ ε

We therefore return to the case of N = 3 for values {v̂1,...,i−1, v̂i, v̂i+1,...,N} and weights

{
∑i−1

j=1 γj , γi,
∑N

j=i+1 γj} and have that |γi − γ∗
i | =

∣∣∣∣ α(si)∑N
j=1 α(sj)

− α∗(si)∑N
j=1 α∗(sj)

∣∣∣∣ ≤ 4ε
λ . This

applies for every i ∈ 2, . . . , N − 1.

The bound on |γ1 − γ∗
1 | and |γN − γ∗

N | is obtained from the case of i = 2 and i = N − 1 since the
attention weights in these cases can be divided to {γ1, γ2,

∑N
j=3 γj} and {

∑N−2
j=1 γj , γN−1, γN}

respectively.

And thus, we obtain the desired bound for all N ∈ 1, . . . ,M .
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The proof of Theorem 10 follows by substituting equation 8 with the following bound on the nor-
malized attention weights:

From Assumption 9:
|v(sj , a)− v(sk, a)| ≥ λ ∀j ̸= k ∈ 1, . . . , N. (18)

Using Assumption 9, the ε-optimality assumption and equation 18 we can bound the difference
between the sets of approximated and optimal normalized attention weights with Lemma 11 and
obtain:∣∣∣∣∣ α (si, sj , a)∑N

l=1 α (si, sl, a)
− α∗ (si, sj , a)∑N

l=1 α
∗ (si, sl, a)

∣∣∣∣∣ ≤ 4ε

λ
, ∀j ∈ 1, . . . , N, ∀N ∈ 1, . . . ,M. (19)

We substitute the bound of δ with 4ε
λ in the derivation and obtain the desired bound:∣∣∣Q̂ (s1, ..., sM+k, a)−Q∗ (s1, ..., sM+k, a)

∣∣∣ ≤ (
12(M + k)

λ(1− γ)
+

8

λ(1− γ)
+ 3

)
ε
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