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Abstract

Out-of-distribution (OOD) generalization in the graph
domain is challenging due to complex distribution shifts and
a lack of environmental contexts. Recent methods attempt
to enhance graph OOD generalization by generating flat
environments. However, such flat environments come with
inherent limitations to capture more complex data distribu-
tions. Considering the DrugOOD dataset, which contains
diverse training environments (e.g., scaffold, size, etc.), flat
contexts cannot sufficiently address its high heterogeneity.
Thus, a new challenge is posed to generate more seman-
tically enriched environments to enhance graph invariant
learning for handling distribution shifts. In this paper, we
propose a novel approach to generate hierarchical seman-
tic environments for each graph. Firstly, given an input
graph, we explicitly extract variant subgraphs from the in-
put graph to generate proxy predictions on local environ-
ments. Then, stochastic attention mechanisms are employed
to re-extract the subgraphs for regenerating global environ-
ments in a hierarchical manner. In addition, we introduce
a new learning objective that guides our model to learn the
diversity of environments within the same hierarchy while
maintaining consistency across different hierarchies. This
approach enables our model to consider the relationships
between environments and facilitates robust graph invariant
learning. Extensive experiments on real-world graph data
have demonstrated the effectiveness of our framework. Par-
ticularly, in the challenging dataset DrugOOD, our method
achieves up to 1.29% and 2.83% improvement over the best
baselines on IC50 and EC50 prediction tasks, respectively.

1. Introduction

Graph-structured data is ubiquitous in real-world appli-
cations, from social networks to biological networks and

(a) (b) Flat environments from existing approaches
71 1C50-SCA °0 ° DR
L S
© '. °
70 e "% o
c. o, o
0%0./ o

@
©
T

Einfer =2

)
@
T

Test ROC-AUC

[
N

-3
o)

Real Rand#2 Infer#2 Ours

#Eours 0= 10 #Eours 1= 6 Eours 2= 2

Figure 1. (a) Results on IC50-scA dataset from DrugOOD [20].
(b) Flat environments from existing approaches. (c) Hierarchical
environments from our methods. For visualization, we set #real
environments as 10.

chemical molecules [14, 16, 21, 48]. One notable advance-
ment in this area is the emergence of Graph Neural Net-
works (GNNs). GNN-based models have pioneered end-to-
end learning strategies to extract valuable information from
graphs and have demonstrated remarkable success across
various applications [13, 24, 42]. However, the success of
GNNs encounters challenges in out-of-distribution (OOD)
scenarios primarily due to the intricate nature of graph dis-
tribution shifts [3, 9, 28]. Graph data, characterized by
nodes, edges, and potential attributes, poses additional chal-
lenges compared to other domains such as natural language
processing (NLP) or computer vision (CV). Unlike those
domains where context is often provided by sentences, para-
graphs, or spatial information in images [4, 15, 36], graph
lacks a built-in contextual framework, making it inherently
challenging to discern the relevance and context of individ-
ual graph elements in OOD scenarios [12, 49].

Invariant Risk Minimization (IRM) [2] is a widely used
strategy in the Euclidean domain, relying on the assump-
tion that training data is sourced from distinct environments
with varied data distributions. Motivated by the success of
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invariant learning in the Euclidean domain [1, 2, 8, 17, 26,
29, 31, 32], invariant learning methods for non-Euclidean
graphs [6, 7, 10, 27, 27, 30, 43] extend the concept to
address the unique challenges posed by graph-structured
data. Despite commendable progress in addressing OOD
scenarios within the graph domain, existing studies have
predominantly adhered to the assumption of a flat environ-
mental situation [5, 33]. For example, in the DrugOOD
dataset, there are nearly 7000 diverse training environments
in 1C50-SCA subset, including a wide variety of distinct
substructures. Fig. | illustrates three existing approaches to
acquire environments when performing invariant learning
on this data: “Real” means directly utilizing provided en-
vironments [27], “Rand#2” means randomly splitting sam-
ples into two environments [2, 6], and “Infer#2” means in-
ferring samples into two environments [8, 17]. As shown in
Fig. 1, all existing approaches exhibit poor or comparable
performance to empirical risk minimization (ERM), which
is consistent with the findings of Yang [43]. These phe-
nomena indicate the shortcomings of flat environments: (1)
Limited consideration of local environment similarity de-
grades performance in numerous environments (e.g., ‘Real’
case in Fig. 1) (2) Inferring from a small number of environ-
ments may fail to capture global environment similarities
and interrelationships. (e.g., ‘Infer#2’ case in Fig. 1)

Considering that graphs exhibit a hierarchical structure,
with semantic information organized across various lev-
els. This inherent hierarchy is fundamental to understand-
ing structures and properties within graphs [44]. In addi-
tion, inspired by the recent works [1, 17, 29], which show
that the diversity of environments is recognized as the key
to effectively handling graph OOD scenarios , we aim to
bridge the gap of flat environments while leveraging the in-
herent hierarchy of graphs. In this paper, we propose a hi-
erarchical approach to generate semantic environments of
each graph for effective graph invariant learning. Initially,
we extract variant subgraphs from the input graph, enabling
the generation of proxy predictions on local environments.
Employing stochastic attention mechanisms, we iteratively
re-extract subgraphs, building global environments hierar-
chically. To guide the robustness of hierarchical environ-
ment inference, we introduce a hierarchical environment di-
versification loss which encourages our model to diversify
environments within the same hierarchy while maintaining
consistency across different hierarchical levels. This ap-
proach not only aids our model in considering relationships
between environments but also strengthens graph invariant
learning robustness. By modeling relationships between
different environments within a hierarchical framework, our
approach acquires the rich source of environmental infor-
mation embedded in the hierarchical structure of graphs.
Extensive experiments demonstrate our approach to graph
OOD classification datasets. Our contributions can be sum-

marized as follows:

* We propose a hierarchical approach to generate semantic
environments for effective graph invariant learning. To
the best of our knowledge, our proposed method is the
first attempt to generate the environments in a hierarchical
way in graph OOD generalization.

* We introduce a new learning objective that guides our
model to learn the diversity of environments within the
same hierarchy while maintaining consistency across dif-
ferent hierarchies.

» Extensive experiments have demonstrated our model
yields significant improvements over various domains.
In molecule graph benchmarks DrugOOD, our method
achieves up to 1.29% and 2.83% higher ROC-AUC com-
pared to SOTA graph invariant learning approaches.

2. Related Works

Out-of-Distribution Generalization In the Euclidean
domain, such as computer vision, OOD generalization has
been studied extensively using a variety of strategies, such
as Invariant Risk Minimization (IRM) [2], data augmen-
tation [47], and domain adaptation methods [39]. Un-
like deep neural networks with ERM, which suffer perfor-
mance degradation under data distributional shifts, IRM-
based studies [1, 26] have shown powerful and robust per-
formance when providing environmental information. Re-
cently, a two-step optimization framework EIIL [8] has
been proposed to train the invariant learning model with-
out explicit environment labels. EIIL trains the environment
inference model to learn and infer the environment labels
in the first step, and in the second step, EIIL uses inferred
environments to conduct invariant learning. Other recent
approaches, such as ZIN [29], HRM [31], KerHRM[32],
and EDNIL [17] improve the OOD generalization by aug-
menting the environment to address its high heterogeneity.
These augmentation strategies, such as the assistant model,
clustering-based model, or effective diversification objec-
tive function all enhance the learning stage to infer diverse
environments for effective invariant learning.

Graph Invariant Learning While general invariant
learning methods are effective for the Euclidean domain,
challenges arise when applying them to non-Euclidean do-
mains like graph structures. In the realm of graph invari-
ant learning, since graph data have an inherent nature of
complex distribution shifts, often lacks explicit environ-
ment labels. To address this issue, methodologies have been
widely developed and implemented. Approaches such as
EERM [41], LiSA [45], and GREA [30] proposed to gen-
erate new environments, offering effective strategies to dis-
cover invariant patterns without environment label knowl-
edge. While methods like MoleOOD [43] and GIL[27] fo-
cus on the inference of environments, providing solutions to
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deal with challenging or unexplored environments. Another
dimension of exploration involves learning with auxiliary
assistance to ensure sufficient variation, with typical tech-
niques found in CIGA [6], GALA[7]. Collectively, these
innovative methods offer detailed strategies to navigate the
challenges inherent in graph invariant learning.

3. Problem Definition and Preliminaries

In Sec. 3.1, we introduce notations about out-of-distribution
generalization and the background knowledge of graph in-
variant learning. In Sec. 3.2, we introduce environment in-
ference to explain how recent research works on the graph
dataset without environmental information.

3.1. Problem Definition

Following general settings of OOD generalization, we as-
sume that the training datasets are collected from multiple
training environments. Let Gy, = {G*}eesupp(e,,) With dif-
ferent graphs G¢ = {(G%,y¢) |1 < i < N°} be the training
datasets, where GG° represents the graphs drawn from envi-
ronment e, and &, indicates the environment labels in the
training datasets. We denote the environments &, as all
possible environment labels in the real world. Then, the test
datasets contain graphs G;cs; = {GEI} with unknown envi-
ronment labels €', where ¢/ € supp(Eair) \ supp(&r).
Our approach addresses out-of-distribution challenges in
graph-level classification by incorporating invariant learn-
ing within environments derived from complex heteroge-
neous data hierarchically.

3.2. Preliminaries

Graph Invariant Learning. Recently, several studies
have identified the cause of performance deterioration in
out-of-distribution (OOD) graphs, attributing it to the in-
troduction of spurious features. It is widely acknowledged
that spurious features exhibit sensitivity to environmental
changes, often referred to as environmental factors. The in-
corporation of spurious features diminishes the significance
of invariant features, resulting in a decline in OOD perfor-
mance. As a result, recent research [6, 7, 27, 45] often
involves graph decomposition to extract both variant sub-
graphs GG, and invariant subgraphs G}, from the original
graphs G, thereby facilitating the invariant GNN encoder f
[24] to learn relationships between invariant features F;;,,
and labels y. Following the invariant risk minimization [2],
the encoder f is trained with a regularization term enforc-
ing jointly optimize the encoder f in training environments
e, which can generalize to unseen testing environments e’

> RUANH+ANIVRNIP, (1)
e€supp{&;r}

where R°(f) = E ,[L(f(G),y)] denotes the risk of f in
environment e, and £(-, -) denotes the loss function.

Environment Inference for GIL. In most cases, environ-
mental information is difficult to obtain, especially in the
context of graph generalization. While some datasets may
provide metadata that could serve as environmental infor-
mation, it is not reliable to fully use such information as the
ground truth of the environment is not guaranteed. There-
fore, existing methods [8, 17, 29, 31, 32] often infer the
environmental labels &;,, ¢o by using variant subgraphs G,
that are related to the environment. A variant GNN encoder
f€is used to learn the variant features h,, from GG, and infer
the label € of the environment e. This approach allows joint
optimization of environment inference and graph invariant
learning through a learning process.

4. Methods

Our method consists of three components: hierarchical
stochastic subgraph generation Sec. 4.1, hierarchical se-
mantic environment inference Sec. 4.2, and robust graph in-
variant learning (GIL) with inferred environments Sec. 4.3.
In Sec. 4.1, we generate invariant and variant subgraphs
hierarchically for hierarchical semantic environment infer-
ence. In Sec. 4.2, we learn hierarchical semantic envi-
ronments using the proposed hierarchical loss. Finally, in
Sec. 4.3, we leverage the inferred hierarchical semantic en-
vironments to facilitate robust graph invariant learning, en-
abling us to uncover the invariant relationships between
input graphs and their corresponding labels. These three
steps together form a comprehensive approach for enhanced
graph analysis and understanding.

4.1. Hierarchical Stochastic Subgraph Generation

Given a graph G = (V, E), where V represents the set
of nodes and E represents the set of edges, the goal is
to generate the invariant subgraph G¥ and variant sub-
graph G¥  from the original graph G at each hierarchy
k € K, where K denotes the number of environmental
hierarchies. At each hierarchy k, we employ a graph neu-
ral network denoted as GNN, to update the hidden embed-
ding h¥ = GNN(h¥~1, A) for each node v; € V. We use
graph neural networks as GNNy, [42] to aggregate informa-
tion from neighboring nodes for node embedding updating.
In the process of learning variant and invariant subgraphs at
each hierarchy, we define a probability distribution function
Sk (.) for edge selection as follows. We omit the hierarchy
notations, while the computation of probability distribution
is conducted within each hierarchy:

sij = S(hij) = o(MLP([h;, hy])) 2)

Here, s;; is the probability of selecting edge e;;, o is the
sigmoid function, and MLP(h;, h;) is a multi-layer percep-
tron (MLP) that takes node embeddings v; and v; as inputs.

To introduce stochasticity in edge selection, we gener-
ate a sampler p;; € {0,1} from the Bernoulli distribution
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Figure 2. Our Framework consists of (a) Hierarchical Stochastic Subgraph Generation in Sec. 4.1, (b) Hierarchical Semantic Environments
in Sec. 4.2, (c) Robust GIL with Hierarchical Semantic Environments in Sec. 4.3.

pij ~ {m = s;5,m = 1 — s;;}. Gumbel-Softmax [19]
is then applied to obtain differentiable edge selection prob-
abilities for each edge:

Pii = exp ((logm +g1)/7)
Y Yicqoy exp ((log mi + gi) /7)

Here, g, and gy are i.i.d variables sampled from the Gumbel
distribution, and 7 is a temperature parameter that controls
the smoothness of the sampling process. A lower 7 leads to
more categorical (hard) selections, while a higher 7 results
in smoother (soft) probabilities. As 7 approaches 0, p;; can
be annealed to a categorical distribution.

To ensure hierarchical neighborhood consistency [38] in
the generation of stochastic subgraphs, we introduce an ad-
ditional hierarchical neighbor masking function denoted as
N*. This masking function compares the neighbor matrix
from the previous hierarchy (k — 1) with the currently se-
lected neighbors, ensuring that nodes within the hierarchical
neighborhood are consistently either included or excluded.
The hierarchical neighbor mask Ni’} can be defined as:

3)

NE =N+ 1N =0andp}; > T} (4

where T" denotes the threshold for selecting the edges based

on pgj ), and 1 denotes indicator function. Then we obtain

the variant and invariant subgraph at each hierarchy k as:

AF «— A® N* A* 5)

mnuv

— A— Ak

where the adjacency matrix of the variant subgraph, denoted
as AF, is derived by performing element-wise multiplica-
tion between the original edge matrix A and the hierarchical
neighbor mask matrix N*. Conversely, the adjacency ma-
trix of the invariant subgraph, denoted as A¥ . is obtained
by subtracting the edges included in the variant subgraph
Ak from the original edge matrix A [5, 7, 27]. By fol-
lowing this process iteratively across hierarchies, we con-
struct a series of variant and invariant subgraphs that cap-
ture the hierarchical and structural nuances within the orig-
inal graph, enabling a multi-level analysis of downstream
tasks and analysis.

4.2. Hierarchical Semantic Environments

Since the existing environmental information is not reliable
or available, we design an environment inference model to
assign the graphs to relatively reliable environments. Given
prior p(e|G), we maximize the log-likelihood of p(y|G) to
obtain the posterior p(e|G,y). As there is no solution to
the true posterior, existing methods use clustering-based or
variational distribution to approximate and infer the poste-
rior. Inspired by a multi-class classification problem, we
estimate the posterior using the softmax function as:

exp (=I(f(2(X),Y)))

) S e e I B0,V

where f€ denotes neural network with y©-class classifier
and @ indicates the variant subgraph generator.
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4.2.1 Intra-Hierarchy Environment Diversification

In the previous section, we discussed the extraction of vari-
ant subgraphs {G¥|k € K} utilizing GNN encoders in con-
junction with corresponding stochastic masking {pi—“j\k €
K} at each hierarchy k. To guide the learning process ef-
fectively, we incorporate an intra-hierarchy environment di-
versification loss with variant subgraph and estimated pos-
teriors, denoted as Lgp:

Lip ==Y _maxlog P(e"|[* (Gl ) (©)

Specifically, Lzp is designed to guide the network f* to
maximize the dependency between e and Y given the
variant subgraph G¥ at each hierarchy k. By optimizing
this loss, the network f k is ensured to distinguish relation-
ships between the generated environments, fostering diver-
sity within hierarchies.

4.2.2 Inter-Hierarchy Environment Augmentation

The goal of inter-hierarchy environment augmentation is
to maximize the intra-class mutual information of the es-
timated invariant subgraphs while maximizing the intra-
environment mutual information of the estimated variant
subgraphs. Before introducing our objective function, a
standard InfoNCE loss [37] can maximize the similarity be-
tween positive pairs and minimize the similarities between
some randomly sampled negative pairs, which is defined as:

exp(z - Ny (2)/7) )

nEN(2) exp(z-n/7)

Lintonce (2, Np, T) = —log (Z

where N, (z) denotes positive samples for z, and N'(z) de-
notes the batch samples for z, and 7 denotes a temper-
ature parameter. To ensure the reliability and diversifi-
cation of learned hierarchical environments, we introduce
two inter-hierarchy semantic invariants: label-invariant and
neighborhood-invariant. Inspired by [5, 7], we introduce
two contrastive learning losses: (1) Environment-based
Contrastive learning loss Lgyycon and (2) Label-based Con-
trastive learning 1oss Ly ypeicon- FOr environment-based con-
trastive learning, we define an environment-based neighbor-
hood function /\/'IZ that constructs the positive set for the
anchor sample, where samples have the same inferred envi-
ronment. To preserve neighborhood consistency across hi-
erarchies, the hierarchical neighborhood function ./\/'Ife can
be defined as :

NE(2) =N z2) Uz e =eb,z e N(2)} (D)

Using ke, we formulate the environment consistency loss
Lgnvcon as follows:

Lvcon = Ecrmp, [Lmfonce(zs, Ny (25),7)]  (®)

where pg denotes the batch of data, and zfj denotes the em-
bedding of variant subgraph G¥ from a multi-layer percep-
tion MLP at k-th hierarchy. Environment consistency loss
Lk con attracts the variant subgraphs with the same envi-
ronment labels and pushes the variant subgraphs with differ-
ent environments, which can augment the power of learning
the sufficiency of the environment.

For label-based contrastive loss, we define a label-based
neighborhood function that represents the positive sam-
ples given ground truth label y, which can be defined as
Ny, (2) ={zi | yi = Y., zi € N(2)}. To measure the label
consistency loss, we formulate Ly ypeicon as follows:

‘C]IiabelCon = ]EGﬁv~pd [»ClnfoNCE(Zi];wpr (Zi]flv)ﬂ T)} )

where zi,, denotes the embedding of invariant subgraph
G*%  from MLP at k-th hierarchy.

mv

4.2.3 Overall Objective Function

Considering the diversity of intra-hierarchy and consistency
of inter-hierarchy, we define a total loss of each hierarchy k
as follows:

Lhierk = ‘CED +a- ‘CénvCon + B : ﬁfabelCon (10)

where « and 3 denote coefficient parameters. And the over-
all objective loss can be defined as Lyg; = Zszl Lher,,
This formulation ensures a unified optimization objective,
allowing the model to learn invariant subgraphs that capture
both label and environment information effectively.

4.3. Robust GIL with Hierarchical Semantic Envi-
ronments

After the hierarchical learning stage of environment gener-
ation, we extract the generated environment e~ from the
last hierarchy K —1. Our objective is to minimize the invari-
ant risk given by Eq. (1), employing the hierarchically gen-
erated semantic environments e ~!1. The objective function
to calculate L;,,, is as follows:

m}nﬁcls(f) + Ve(Las(f)) st. é =argmin Lyg; (11)

This equation represents an optimization problem where
the goal is to find a function f that minimizes the sum
of two terms. The first term L.4(f) corresponds to the
cross entropy loss of the classification task. The second
term V(L5 (f)) represents the gradient with respect to é,
which is a specific environment. In essence, the objective is
to discover a function f that performs well on a classifica-
tion task while maintaining stability in performance across
different environments, adhering to the specified environ-
mental minimization condition.
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METHODS IC50-ASSAY IC50-SCA IC50-SIZE ECS50-ASSAY EC50-SCA  EC50-SIZE
#ENV 311 6881 190 47 850 167
ERM[40] 71.794+0.27 68.85+0.62 66.70+1.08 76.42+1.59 64.56+1.25 62.79+1.15
IRM[2] 72.12+0.49 68.694+0.65 66.54+0.42 76.51£1.89 64.824+0.55 63.23+0.56
V-REX[26] 72.05£1.25 68.92+098 66.33+0.74 76.731+2.26 62.83+1.20 59.27+1.65
EIIL[8] 72.60+£0.47 68.45+0.53 66.38+0.66 76.96+0.25 64.95+1.12 62.65+1.88
IB-IRM[1] 72.5040.49 68.504+0.40 66.64+0.28 76.72+0.98 64.43+0.85 64.10+0.61
GREA [30] 72.77+1.25 68.334+0.32 66.16£0.46 72.44+2.55 67.98+1.00 63.93+3.01
CIGAV1 [6] 72.71£0.52 69.04+0.86 67.24+0.88 78.46+0.45 66.05+1.29 66.01+£0.84
CIGAV?2 [6] 73.17+0.39 69.70+£0.27 67.78+0.76 - - -
MOLEOOD [43] 71.384+0.68 68.024+0.55 66.51+0.55 73.25+1.24 66.69+0.34 65.09+0.90
GALA [7] - - - 79.2441.36 66.00+£1.86 66.01+0.84
OURS 74.01+0.11 70.724+0.30 68.64-+:0.23 80.82+0.21 69.73+0.21 66.87+0.38

Table 1. Test ROC-AUC of various models on DrugOOD benchmark datasets. The mean =+ standard deviation of all models is reported as
an average of 5 executions of each model. The best methods are highlighted in bold and the second best methods are underlined.

5. Experiments

Datasets. Extensive experiments were conducted on real-

world graph data from diverse domains.

e CMINIST-75sp. The task is to classify each graph that
is converted from an image in the ColoredMNIST dataset
[2] into the corresponding handwritten digit using the su-
perpixels algorithm [25]. Distribution shifts exist on node
attributes by adding random noises in the testing set.

¢ Graph-SST datasets. We utilize sentiment graph data
from SST5 and SST-Twitter datasets from [46]. For
the Graph-SSTS5 dataset, graphs are split into different
sets based on averaged node degrees to create distribu-
tion shifts. For the Graph-Twitter dataset, we invert the
split order to assess the out-of-distribution generaliza-
tion capability of GNNs trained on large-degree graphs
to smaller ones.

* DrugOOD. We use six datasets in DrugOOD [20] that
are provided with manually specified environment labels.
DrugOOD provides more diverse splitting indicators, in-
cluding assay, scaffold, and size. To comprehensively
evaluate the performance of our method under different
environment definitions, we adopt these three different
splitting schemes on categories IC50 and EC50 provided
in DrugOOD. Then we obtain six datasets, EC50-* and
IC50-*, where the suffix * specifies the splitting scheme
i.e. IC50/EC50-ASSAY/SCAFFOLD/SIZE.

Baselines. We comprehensively compare our methods
with the following categories of baselines: (1) ERM de-
notes supervised learning with empirical risk minimization
[40]. (2) Euclidean OOD methods: We compare with SOTA
invariant learning methods from the Euclidean regime, in-
cluding IRM [2], V-REX [26], EIIL [8], IB-IRM [1]. (3)

Graph OOD methods: We also compare with SOTA invari-
ant learning methods from the graph regime. Graph OOD
methods can be further split into three groups: environment
generation-based baseline methods including GREA [30]
and LiSA [45], environment augmentation-based baseline
methods including DisC [10] and CIGA [6] and environ-
ment inference-based baseline methods including GIL [27],
MoleOOD [43], and GALA [7].

Environmental Setup. All methods use the same GIN
backbone [42] and the same optimization protocol for fair
comparisons. Each of the methods is configured using the
same parameters reported in the original paper or selected
by grid search. For a fair comparison, we use the same em-
bedding size for all methods. We tune the hyperparameters
following the common practice. All details are given in Ap-
pendix. We report the ROC-AUC score in the DrugOOD
dataset and the accuracy score for the rest of the datasets.

5.1. Performance Comparison

We first provide a detailed report on the DrugOOD bench-
mark dataset in Tab. 1. We conduct IC50 and EC50 pre-
dictions with different split settings. As shown in Tab. 1
and mentioned in Sec. 1, the DrugOOD dataset includes
molecular datasets with complex distributions, such as as-
say, scaffold, and size split with various numbers of envi-
ronments. Our approach consistently outperforms existing
methods, demonstrating the importance of hierarchical en-
vironment learning in addressing complex drug OOD gen-
eralization applications. As shown in Tab. 1, compared to
Empirical Risk Minimization (ERM), Euclidean-based in-
variant learning methods, such as IRM [2], V-REX [26],
EIIL [8], etc, show comparable or even degraded perfor-
mance in most experimental settings. This suggests that di-
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METHODS \ 1C50-scaA 1C50-SIZE CONFIGURATIONS 1C50-scA 1C50-SIZE
W/ eNVinon-infer(rand)=2 68.544+0.64 67.63+0.33 #real = [#e,] 69.08+0.64 67.60+0.32
W/ €NVanon-infer=real 68.77+0.72 67.60+£0.32 #env = [5] 69.354+0.67 67.70+0.50
W/ eV ginfer—2 69 144080 67.55+0.34 #env = [2] 69.14+0.80 67.73+0.64
W/ €NV 4infer—real 69.084+0.64 67.74+0.13 f#env=[#e, — #e,/2 — 5] | 70.12+0.14 68.62+0.34
W/ eV hier-nter (OURS) | 70724030  68.64-:0.23 fenv=lffe, — #e,/2 — 2] | 70.724:0.30  68.640.23

Table 2. The ablation study on IC50-SCA and 1C50-SIZE datasets.

rectly applying general invariant learning struggles to han-
dle shifts in graph distributions. In contrast, graph-based
OOD methods exhibit better performance, as they learn in-
variant subgraph patterns for graph OOD generalization.

In addition, in the performance comparison of graph-
based OOD methods, the MoleOOD [43] pointed out that
simple ERM sometimes outperforms several existing meth-
ods when faced with a large number of provided environ-
ments in graph OOD datasets, which is aligned with the re-
sults of Tab. 1. For example, IC50-SCA dataset is provided
with 6881 environments, where 6881 scaffolds or substruc-
tures construct a vast amount of environmental information
for the dataset. In IC50-SCA dataset, GREA and MoleOOD
show poor performance compared to ERM, as shown in
Tab. 1. We analyze this phenomenon for two potential rea-
sons: (1) The first reason is that the provided environments
are overly fine-grained, thereby similar substructure envi-
ronments in the training and testing sets. ERM can cap-
ture similar substructures to learn similar data distributions,
showing better performance. (2) The second reason is that
GREA and MoleOOD only generate a small number of en-
vironments, which overly simplifies the environment and
neglects the relationships between environments. This lim-
its their ability to learn heterogeneous and interrelated envi-
ronments, resulting in noticeable performance degradation.

Our method performs a hierarchical approach to learn
relationships between redundant environments and maxi-
mize the diversity of environments. Leveraging the high-
level semantic environments from the last hierarchy, we
minimize invariant prediction risk, thereby achieving better
graph OOD generalization. In Appendix, we report perfor-
mance comparisons showing that our performance is better
or comparable to existing methods in general domains.

5.2. Effect of Hierarchical Semantic Environments

In this section, similar to existing environment inference-
based works for OOD generalization [7, 8], we first analyze
the role of environment inference, and then we discuss the
effects of hierarchical environments learned by our model,
showing the necessity of learning the hierarchical environ-
ments for graph invariant learning.

Table 3. Sensitivity analysis on generated environments. #e, de-
notes the number of provided environments in datasets.

Environment Inference. As shown in Tab. 2, we analyze
the role of environment inference by comparing the direct
usage of non-inferred and inferred environments. Direct
usage of the non-inferred environments can be divided into
two scenarios: (1) When environments are unavailable, ex-
isting methods randomly assign two environments for graph
invariant learning, which is shown as ‘w/ envinon-infer (rand)’
from Tab. 2. (2) DrugOOD dataset provides environmental
information, e.g., scaffold information in 1IC50-SCA dataset.
As shown in Tab. 1, we can know the number of environ-
ments for both dataset IC50-SCA and dataset IC50-SIZE. In
such cases, we use environments for invariant learning, as
illustrated by the ‘w/ envinon-infer (realy’ in Tab. 2.

Secondly, we consider the usage of inferred environ-
ments for invariant learning, as indicated in Tab. 2. Through
the model of environment inference, we directly predict the
flat environment and use it in invariant learning, as illus-
trated by ‘w/ envinfer—+’. From Tab. 2, it can be observed
that the model with inferred environments exhibits bet-
ter performance, indicating that learned environments from
data are more effective than direct usage of non-inferred en-
vironments. Moreover, in dataset IC50-SCA, the effects of
inference are more pronounced, emphasizing the necessity
of performing environment inference operations in situa-
tions with complex real-world environments.

Hierarchical Environment Inference. We further ana-
lyze the effects of hierarchical environments by comparing
them with flat environments. Our model adopts a hierarchi-
cal approach to learning environmental information, regu-
lating semantic environmental content between hierarchies
through both intra-hierarchy and inter-hierarchy mecha-
nisms. Upon comparing experimental results in 1IC50-SCA
and 1C50-SIZE datasets, as shown in Tab. 2, our hierarchi-
cal model consistently outperforms invariant learning mod-
els with flat environments. This indicates that in real-world
datasets, the environmental factors influencing label predic-
tions are complex and interdependent. Consequently, inves-
tigating graph invariant learning with hierarchical environ-
ment inference is essential for attaining more sophisticated
and effective in graph OOD generalization.
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5.3. Sensitive analysis on hierarchy

We also conduct sensitive analysis on the number of hier-
archies and the number of environments at each hierarchy.
Specifically, in hierarchical settings, we start from the num-
ber of environments as the number of environments pro-
vided in the first hierarchy for a fair comparison. By com-
paring the results shown in Tab. 3, we find inferred environ-
ments with hierarchical settings help OOD generalization in
the graph domain. Inferring flat environments is worse than
environment inference with three hierarchies. In addition,
inferring a large number of environments #e, in a single
hierarchy shows poor performance compared to inferring a
small number of environments. This is because the model
with a large number of environments learns too local and re-
dundant to capture the relationships between environments.
However, in a hierarchical setting, even if inference starts
from a large number of environments to a small number of
environments, different hierarchies can capture the local re-
lationships among a huge number of environments and dy-
namically maximize the diversity of inferred high-level en-
vironments. Therefore, despite the final number of inferred
environments is still small, these environments learn the se-
mantic information from complex data distribution hierar-
chically and can improve the Graph OOD generalization
using the high-level semantic environments.

5.4. Discussions

We discuss the diversity of environments generated by dif-
ferent methods as shown in Fig. 3. we compare two envi-
ronment assignment methods with our method, which are
random sampling-based method rand#2, and flat environ-
ment inference-based method infer#2, respectively. For a
fair comparison, we set two environments for both methods
and set the hierarchical environment as [6881 — 3440 — 2]
for our method using the 1C50-SCA dataset from DrugOOD.

As mentioned in [8], the diversity of environments is im-
portant to obtain effective IRM models, and large discrep-
ancy of spurious correlations between environments bene-
fits the IRM model. We measure the diversity of environ-
ments by calculating the distance of distributions among the
acquired environments for each method. More specifically,
we measure the Kolomogorov-Smirnov (K-S) statistic [34]
as a distance between the two inferred scaffold distributions
for each method, respectively. The K-S test can capture
the dissimilarity between cumulative distribution functions,
making it suitable for our analysis. As shown in Fig. 3,
the two environments generated by rand#2 methods are al-
most the same since they assign the sample to two environ-
ments using random sampling, showing the lowest diver-
sity of environments. infer#2 shows better diversity of gen-
erated environment distributions with significant p-values
(p = 1.86e — 26). Our method generates more signifi-
cantly diverse environment distributions (p = 4.52e — 73)

(a) (b)
Rand#2
— env.0

Infer#2
— env 0

— env.1 — env_1

1 1
2000 4000
# of environments

1 1 |
0 2000 4000 0
# of environments
(c) (d) sokk
inter-env-distance

Ours
— env.0
— env_1

n.s.

L L
0 2000 4000 ) Rand#2 Infer#2 Ours
# of environments Methods

Figure 3. Discussions on the diversity of generated environments.
We show distributions of two generated environments envo and
env; for (a) random sampling methods, (b) flat environment in-
ference methods, and (c) our hierarchical environment inference
methods. (d) We employ the Kolmogorov-Smirnov test [34] to
calculate the diversity of three methods.

compared to other methods, surpassing them in inter-env-
distance by a large margin. Moreover, the results are
aligned with Fig. 1, our methods outperform other methods
in 1IC50-SCA dataset, indicating that diverse environments
can give a clear indication of distribution shifts, therefore
IRM can easily identify and eliminate variant features.

6. Conclusion

In our research, we take on the formidable challenge of
improving out-of-distribution (OOD) generalization in the
graph domain. We observe that recent works often overlook
the crucial aspect of studying hierarchical environments in
graph invariant learning. To address this gap, we intro-
duce a novel method that generates hierarchical dynamic
environments for each graph. Our approach involves hier-
archical stochastic subgraph generation, hierarchical envi-
ronment inference, and a carefully designed learning ob-
jective. By incorporating graph invariant learning with in-
ferred high-level environments, our model not only achieves
meaningful and diverse environments within the same hier-
archy but also ensures consistency across different hierar-
chies. The effectiveness of our method is particularly pro-
nounced in the DrugOOD dataset, shedding light on the po-
tential for further exploration in hierarchical graph learning
within OOD scenarios.
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