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Abstract
Similarity metrics have played a significant role
in computer vision to capture the underlying se-
mantics of images. In recent years, advanced
similarity metrics, such as the Learned Perceptual
Image Patch Similarity (LPIPS), have emerged.
These metrics leverage deep features extracted
from trained neural networks and have demon-
strated a remarkable ability to closely align with
human perception when evaluating relative im-
age similarity. However, it is now well-known
that neural networks are susceptible to adversar-
ial examples, i.e., small perturbations invisible to
humans crafted to deliberately mislead the model.
Consequently, the LPIPS metric is also sensitive
to such adversarial examples. This susceptibil-
ity introduces significant security concerns, es-
pecially considering the widespread adoption of
LPIPS in large-scale applications. In this paper,
we propose the Robust Learned Perceptual Im-
age Patch Similarity (R-LPIPS) metric, a new
metric that leverages adversarially trained deep
features. Through a comprehensive set of experi-
ments, we demonstrate the superiority of R-LPIPS
compared to the classical LPIPS metric. The
code is available at https://github.com/
SaraGhazanfari/R-LPIPS.

1. Introduction
The ability to compare data points is fundamental in many
areas of machine learning. For many years, The ℓp distance
metric, for instance, is a well-established mathematical tool
for measuring differences between data points. However,
in the context of computer vision, these metrics primarily
focus on pixel-wise differences and fail to capture the se-
mantic information of the images. This limitation becomes
especially evident in high-dimensional settings, where two
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high-definition images depicting the same scene, i.e., shar-
ing the same underlying informational content, are far apart
in terms of ℓp distance metrics.

Perceptual metrics (Wang et al., 2003; 2004; Hore & Ziou,
2010; Zhang et al., 2011; Mantiuk et al., 2011; Zhang et al.,
2018) have been adopted for their ability to closely align
with human perception when assessing relative image sim-
ilarity. These metrics successfully capture the underlying
semantics of images, providing a more accurate reflection
of human judgment. To compute the “distance” between
images, these metrics operate on the features of the images
instead of the raw images in the image space. For example,
the Learned Perceptual Image Patch Similarity (Zhang et al.,
2018) (LPIPS) metric takes the Euclidean distance over the
deep features (latent space) of a trained neural network. This
new semantic measure has been shown to outperform all
previous metrics by large margins due to the capabilities of
a neural network to learn good features.

Notwithstanding their remarkable success of neural net-
works in a range of tasks, neural networks are also known to
be sensitive to adversarial perturbations (Goodfellow et al.,
2014; Madry et al., 2017), i.e., small perturbations invisible
to humans crafted to deliberately mislead the model. Given
that the LPIPS metric is based on the feature of a trained
neural network, it should not come as a surprise that this
metric is also sensitive to adversarial perturbations (Ket-
tunen et al., 2019), i.e., invisible perturbations to an image
which considerably modify the LPIPS value. This raises
significant security concerns as similarity metrics are al-
ready in wide use, for instance, in detecting cases of online
copyright infringement and digital forensics.

In this paper, we propose a thorough analysis of the LPIPS
metric and empirically show that this metric, which is based
on the learned feature of a trained network, is sensitive to
adversarial attacks. Then, we introduce the Robust Learned
Perceptual Image Patch Similarity (R-LPIPS) which lever-
ages adversarially trained deep features and shows that is
robust to adversarial perturbations. Our contributions can
be summarized as follows.

1. We show that the LPIPS metric is sensitive to adversarial
perturbation by showing that there exist small ℓ∞ pertur-
bations such that the LPIPS between a reference image
and the perturbed image is large.
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2. We propose the use of Adversarial Training (Madry et al.,
2017) to build a new Robust Learned Perceptual Image
Patch Similarity (R-LPIPS) that leverages adversarially
trained deep features.

3. Based on an adversarial evaluation, we demonstrate the
robustness of R-LPIPS to adversarial examples compared
to the LPIPS metric.

4. Finally, based on the work of Laidlaw et al. (2021), we
showed that the perceptual defense achieved over LPIPS
metrics could easily be broken by stronger attacks devel-
oped based on R-LPIPS.

2. Related Work
In this section, we provide a comprehensive review of re-
lated works on perceptual and similarity metrics. Addition-
ally, we propose a concise review of adversarial attacks and
adversarial robustness. Finally, we offer a brief summary
of research that explores the intersection of robustness and
similarity metrics.

Similarity Metrics. The ℓ2 Euclidean distance, a classic
per-pixel measure, assumes pixel-wise independence and is
often used for regression problems. However, it is insuffi-
cient for structured outputs like images due to its inability
to effectively capture perceptual changes like blurring. Peak
Signal-to-Noise Ratio (PSNR) measures the quality degra-
dation in a reconstructed or compressed image/video by cal-
culating the ratio of peak signal power to the mean squared
error. Despite its wide usage, it does not correlate well with
perceived image quality. The Structural Similarity Index
(SSIM), proposed by (Wang et al., 2004), is a perceptual
metric that quantifies the structural similarity between two
images or video frames. It takes into account luminance,
contrast, and structural similarities and has been shown to
correlate well with human visual perception. SSIM cal-
culates local measures of similarity by comparing small
image patches and then computes the average similarity
across the entire image. The Feature Similarity Index for
Image Quality Assessment (FSIM), proposed by (Zhang
et al., 2011), is a perceptual metric that evaluates image
quality by quantifying the similarity between two images
based on their features. FSIM uses phase congruency for
feature significance and image gradient magnitude for fea-
ture similarity, ensuring consistency across varying lighting
conditions. These two metrics are often considered to be
a better indicator of perceived image quality compared to
PSNR, as they correlate better with human visual percep-
tion.

More recently, the Learned Perceptual Image Patch Similar-
ity (LPIPS) proposed by (Zhang et al., 2018) was developed
and aimed at providing a more accurate measure of the
perceptual similarity between two images. Instead of com-

paring raw pixel data, LPIPS uses deep learning to calculate
the perceptual difference between images. Specifically, it
uses a deep convolutional neural network, pretrained on
an image classification task, to extract features from the
images. Then, it computes the distance between these fea-
ture vectors to calculate the perceptual similarity. Any neu-
ral network architecture can be used for the LPIPS metric,
(Zhang et al., 2018) experimented with several well-known
architectures such as SqueezeNet (Iandola et al., 2016),
AlexNet (Krizhevsky et al., 2017), and VGG (Simonyan &
Zisserman, 2014) and showed that the AlexNet architecture
offers the best performance.

To evaluate the quality of this metric with respect to human
perception compared to other perceptual metrics, Zhang
et al. (2018) introduced the Berkeley-Adobe Perceptual
Patch Similarity (BAPPS) dataset. The BAPPS dataset is a
large-scale, highly diverse dataset of perceptual judgments
used to evaluate perceptual similarity metrics. It contains
pairs of images along with human judgments of their per-
ceptual similarity, which serves as ground truth data.

Adversarial Examples. Since the discovery of adversar-
ial examples (Szegedy et al., 2013), significant research
has been devoted to developing attacks (Goodfellow et al.,
2014; Kurakin et al., 2018; Carlini & Wagner, 2017; Croce
& Hein, 2020; 2021) and defenses (Goodfellow et al., 2014;
Madry et al., 2017; Pinot et al., 2019; Araujo et al., 2020;
2021; Meunier et al., 2022; Araujo et al., 2023), resulting in
an ongoing battle between the two. Most of these defenses
relied on smoothing the local neighborhood around each
point, resulting in very small gradients that the attacks were
based on. However, it has become apparent that many of the
proposed empirical defenses could be circumvented with
stronger attacks (Athalye et al., 2018). In the context of a
classification task, one of the best attacks, called Projected
Gradient Descent (PGD) (Madry et al., 2017) consists in
maximizing the cross-entropy loss with respect to a perturba-
tion added to the input and then projecting the perturbation
to a specific ℓp ball. This attack also led to one of the
strongest empirical defenses (Athalye et al., 2018) called
adversarial training (AT) which trains neural networks with
adversarial examples crafted with PGD attack.

Adversarial Robustness & Similarity Metrics. Percep-
tual similarity metrics based on deep features inherit both
the emergent properties (good features) and the sensitivity
to adversarial perturbation. To the best of our knowledge,
the robustness of LPIPS has only been investigated in the
work proposed by (Kettunen et al., 2019). They introduced
a self-ensembled metric (E-LPIPS), which operates in the
space of natural images. However, this approach may have
limitations, as ensembling models have been shown to be
ineffective in defending against adversarial examples (Atha-



Towards Adversarially Robust Perceptual Similarity Metrics

1.20 / 0.04 1.34 / 0.04 1.30 / 0.03 1.55 / 0.04 1.45 / 0.05 1.69 / 0.05 1.52 / 0.05

Figure 1. Adversarial examples generated using PGD with ∥δ∥∞ ≤ 0.05 on ImageNet-100 validation set. Original and perturbed images
are shown in the first and second rows, respectively. The LPIPS/R-LPIPS values for these images are mentioned below each image. In
contrast with LPIPS values that are quite large, the R-LPIPS are very small and correctly reflect the small difference between images.

lye et al., 2018). Another line of work has proposed to
use the LPIPS metric to craft a perceptual attack (Laidlaw
et al., 2021). They build upon PGD and introduced a new
attack called Perceptual Projected Gradient Descent (PPGD)
which consists in projecting with the LPIPS metric instead
of an ℓp norm. Furthermore, they combined an AT scheme
with PPGD, called PAT, and demonstrated strong defenses
against adversarial attacks that generalize to unforeseen
threat models.

3. Robust Perceptual Similarity Metric
In this section, we build upon LPIPS and adversarial training
and introduce R-LPIPS a new robust perceptual similarity
metric. Moreover, based on this new robust metric we pro-
pose two new strong perceptual attacks.

3.1. Adversarially Trained Perceptual Similarity Metric

The LPIPS metric (Kettunen et al., 2019) is defined as the
ℓ2 norm of deep features of a trained convolutional neural
network. More formally, for inputs x, x0 ∈ X , the LPIPS
metric is defined as follows:

d(x, x0) =
∑
j

1

WjHj

∑
h,w

∥∥ϕj(x)− ϕj(x0)
∥∥2
2

(1)

where ϕj(·) is defined as:

ϕj(x) = wj ⊙ ojhw(x) (2)

and oj(x) and oj(x0) are the internal activations of a trained
convolutional neural network scaled channel-wise by vec-
tor wj . Then, the ℓ2 norm of the weighted activations is
normalized by the width and height of filters.

In order to build the LPIPS metric, Zhang et al. (2018) used
the features of the AlexNet classification model trained on

the ImageNet dataset (Deng et al., 2009). Then, they “tune”
the metric by learning the weights wj on the BAPPS dataset.
More formally, the loss used to “tune” the metric is defined
as follows:

lce [gθ (dw(x, x0), dw(x, x1)) , h]

where lce is the cross-entropy loss, x0, x1 are distortions of
the reference images x from the BAPPS dataset, h ∈ (0, 1)
is a perceptual score, gθ is a small network parameterized by
θ, trained to map distances to h score and d is the distance
defined in Equation (1) and it is parameterized by w.

To adversarially train the LPIPS metric, we leverage the ad-
versarial training scheme introduced by Madry et al. (2017)
and introduce an adversarial perturbation δ at each step of
the training on x0:

min
θ,w

max
δ:∥δ∥p≤ε

lce [gθ (dw(x, x0 + δ), dw(x, x1)) , h] (3)

The new weights w trained with adversarial training become
the building block of R-LPIPS following the same construct
as LPIPS in Equation (2).

3.2. New Attacks based on R-LPIPS

Recently, LPIPS has been employed instead of ℓp norms
to produce perceptual adversarial attacks. The general con-
strained optimization scheme to craft an adversarial example
with respect to the LPIPS metric is defined as follows:

max
x̃

lm [f(x̃), y] s.t. ∥ϕ(x)− ϕ(x̃)∥2 ≤ ε

where lm = maxi ̸=y(f(x̃)y−f(x̃)i) is the margin loss used
by Carlini & Wagner (2017), f(·) is the classifier, and ϕ(·)
is the network that generates feature vectors. However, this
constrained optimization scheme is not trivial. Therefore,
Laidlaw et al. (2021) relax the problem and proposed two
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Table 1. Results of Naturally and Adversarially Trained LPIPS with respect to adversarial attacks generated using ℓ2 and ℓ∞ norms
against the BAPPS dataset. First, we can observe from table (a) that LPIPS is not robust to adversarial attacks crafted with ℓ∞-PGD
or ℓ2-PGD. We note that the ℓ∞ attacks are causing the largest drops in 2AFC score compared to ℓ2-PGD attacks. Tables (b) and (c)
show the 2AFC score under attack for R-LPIPS trained with ℓ∞ and ℓ2. The natural 2AFC score of R-LPIPS remains mostly the same as
LPIPS while the 2AFC score under attack is considerably improved.

Natural
2AFC

ℓ∞-PGD (ϵ =8/255) ℓ2-PGD (ϵ =1.0)

x0 x1 x0/x1 x0 x1 x0/x1

(a) LPIPS

Traditional 74.58 64.22 64.36 63.47 71.17 72.92 69.48
CNN-based 83.52 70.02 68.37 68.92 80.06 79.35 78.53
Superres 71.36 58.92 58.46 59.74 65.07 65.54 63.53
Deblur 60.92 53.68 51.70 53.92 58.15 57.45 56.55
Color 65.53 58.72 51.74 54.76 61.97 57.84 60.07
Frameinterp 63.01 53.99 52.60 51.47 58.89 58.05 55.01

(b) R-LPIPS with ℓ∞ AT

Traditional 70.94 66.29 66.30 63.89 69.58 70.42 70.34
CNN-based 83.04 75.17 74.80 73.74 81.28 81.68 80.77
Superres 71.77 63.28 61.42 61.34 68.06 67.18 66.19
Deblur 60.83 54.85 53.58 57.46 59.53 58.57 58.74
Color 65.55 57.98 55.56 59.50 62.32 63.69 59.80
Frameinterp 63.27 56.63 53.82 58.95 61.38 56.05 58.46

(c) R-LPIPS with ℓ2 AT

Traditional 73.19 67.07 65.11 65.63 71.17 71.35 72.14
CNN 83.40 73.46 72.28 71.98 81.56 81.70 80.27
Superres 71.70 60.42 59.89 58.21 67.17 68.10 65.44
Deblur 61.19 54.24 53.05 52.20 58.69 57.58 58.58
Color 65.71 59.21 53.83 57.69 63.44 61.38 60.40
Frameinterp 63.53 53.67 53.56 58.23 61.57 57.58 55.38

perceptual attack methods, Perceptual Projected Gradient
Descent (PPGD) and Lagrangian Perceptual Attack (LPA)
based on the LPIPS metric to craft adversarial perturbations
with better perceptual properties.

Perceptual Projected Gradient Descent (PPGA) tries to find
the optimal δ by using first-order Taylor’s approximation
and rewriting the optimization formula as:

max
δ

l [f(x), y] +∇l [f(x), y)]
⊤
δ s.t. ∥Jδ∥2 ≤ η

where J is the Jacobian matrix of ϕ(·) at x, δ is the pertur-
bation size applied to x, and η is the step size. The second
method, Lagrangian Perceptual Attack (LPA), uses a La-
grange multiplier to add the constraint to the optimization
formula and perform the optimization:

max
x̃

l [f(x̃), y]− λmax (0, ∥ϕ(x̃)− ϕ(x)∥2 − ε)

In this work, we build upon the work of Laidlaw et al. (2021)
and propose the R-PPGD and R-LPA attack scheme which
consist of the same optimization but our R-LPIPS is replaced
with the classical LPIPS metric.

4. Experiments
In this section, we present a comprehensive set of experi-
ments to demonstrate the superiority of R-LPIPS compared
to the classical LPIPS metric. More precisely, we aim at
answering the following questions:
(Q1) Is LPIPS vulnerable to adversarial examples?
(Q2) How robust is R-LPIPS compared to LPIPS?
(Q3) Can R-LPIPS leads to stronger attacks?

4.1. Vulnerabilities of LPIPS (Q1)

To illustrate the lack of robustness of the LPIPS metric, we
present two sets of results. First, we present the result of ℓ∞-
PGD and ℓ2-PGD against the LPIPS metric in Table 1a with
ε = 8/255 and ε = 1 respectively on x0, x1 independently,
and x0/x1 together. To evaluate the performance of LPIPS
over clean and adversary data, we use the 2FAC score which
was employed in Zhang et al. (2018). It can be observed
that the 2AFC score under attack on different distortions is
significantly lower, up to 15.15% lower for ℓ∞-PGD and
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Figure 2. The histogram of LPIPS and R-LPIPS distances between the clean and OPT adversarial examples for ImageNet-100 validation
set. Figure (a) shows the LPIPS and R-LPIPS distribution of adversarial examples generated using the OPT optimization scheme and the
LPIPS metric with ∥δ∥∞ ≤ 0.05. Although LPIPS is fooled and assigns large values to the semantically identical images, the R-LPIPS
shows complete robustness and considers the perturbation to be small. Figure (b) shows the same setup except R-LPIPS is used instead of
LPIPS during the optimization of adversarial attack. Although R-LPIPS values in (b) are greater than the values in (a), they are still far
from the threshold (0.5) and are quite smaller than the values of LPIPS.

for 8% lower ℓ2-PGD, compared to the natural 2AFC score
of the LPIPS metric over different distortions.

Second, we propose a new optimization scheme, called OPT,
to demonstrate that there exist adversarial examples with
small ℓ∞ perturbations such that the LPIPS metric is large.
More formally, by defining ϕ(·) as the model that generates
the feature vectors, we define the optimization formula for
the attack as follows:

max
δ:∥δ∥∞≤ε

lMSE [ϕ(x+ δ), ϕ(x)]

where lMSE is the mean squared error loss and we choose
ε = 0.05 for the optimization. We perform this attack on the
validation set of ImageNet-100 and present the distribution
of the values of LPIPS in Figure 2a in blue. Based on the
result presented by Laidlaw et al. (2021), two images with
an LPIPS value greater than 0.5 are observable to humans.
The histogram in Figure 2a demonstrates that nearly all
images of the ImageNet-100 validation set have an LPIPS
value over 0.5 while having a difference of 0.05 in ℓ∞
which is considered very small and nearly imperceptible to
humans. Figure 1 illustrates this difference. The top row
shows clean reference images while the bottom row shows
OPT adversarial images and the left value below shows the
LPIPS value.

4.2. Robust LPIPS (R-LPIPS) (Q2)

After observing the vulnerabilities of LPIPS, we propose a
new robust perceptual similarity metric called R-LPIPS. In
order to develop R-LPIPS, we leverage the training scheme
of LPIPS and adversarial training. The setup is explained

Table 2. Accuracy of Perceptual Adversarial Training (PAT) vari-
ants on CIFAR-10 against PPGD/LPA and R-PPGD/R-LPA attacks
with the constraint of 0.5 for perturbation size measured by LPIPS
and R-LPIPS. Although PAT variants show relative robustness
to PPGD/LPA attacks, they are completely vulnerable to attacks
generated by R-PPGD and R-LPA.

PPGA LPA R-PPGA R-LPA

PAT-self 13.1 2.1 3.1 0.0
PAT-AlexNet 26.6 9.8 4.3 0.2

in detail in Section 3.1. First, we conducted an adversarial
training with ℓ∞ and ℓ2 norms and evaluated both R-LPIPS
against the BAPPS dataset. Table 1 presents results for
natural and under attack images with ℓ∞-PGD and ℓ2-PGD
against adversarial training conducted with ℓ∞ (Table 1b)
and ℓ2 (Table 1c) norms.

The first interesting result to observe from Table 1 is that the
natural 2AFC score is preserved across all data distortions,
except for a slight decrease observed for the traditional
distortion. We can even observe slight improvements in
the natural 2AFC score for some distortions, as the model
shows a better generalization. To evaluate robustness of
R-LPIPS, we compute a perturbation with PGD attack with
ℓ∞ and ℓ2 norms with ε = 8/255 and ε = 1, respectively
on x0, x1 independently, and x0/x1 together. We observe a
consistent increase in robustness of R-LPIPS compared to
the original LPIPS metric trained without AT. We also note
that R-LPIPS with ℓ∞-AT seems to provide better results.
In the following, we refer to ℓ∞-AT LPIPS as the R-LPIPS.

To further demonstrate the robustness of R-LPIPS with re-
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Figure 3. The adversarial images generated by the R-PPGA/R-LPA attacks. Original images are shown in the first row, and the adversarial
images generated by R-PPGA and R-LPA (which are bounded by 0.5) are added to the second and third rows. Similar to adversarial
images generated by PPGA/LPA (Laidlaw et al., 2021), the perturbations between images in this figure are invisible to human eyes.

spect to LPIPS, we computed the R-LPIPS metric on the
OPT adversarial examples. The distribution of the values
of R-LPIPS is shown in Figure 2a. One can observe that
the two distributions are entirely separated and the values of
R-LPIPS are very small when the ℓ∞ perturbation is small.
Figure 2b provides the same experiments but with OPT with
R-LPIPS instead of LPIPS. The adversarial examples are
therefore stronger but the distinction between LPIPS and
R-LPIPS is still significant. To better illustrate, Figure 1
provides a set of images with the comparison between the
LPIPS value and the R-LPIPS value.

4.3. Perceptual Adversarial Attack with R-LPIPS (Q3)

Perceptual Adversarial Training (PAT) was also proposed
by Laidlaw et al. (2021) to train the model using perceptual
attacks and come up with a perceptually robust model. In
this section, we combined the PPGA and LPA attacks with
our robust perceptual distance metric and developed attacks
named R-PPGA and R-LPA. To compare the strength of
attacks generated by LPIPS and R-LPIPS, we reproduced
the accuracy of PAT to attacks generated by PPGA and LPA
on CIFAR-10 and performed an experiment to compute
the accuracy of PAT to R-PPGA and R-LPA attacks. Our
results (Table 2) shows that PAT has relative robustness to
attacks constrained with LPIPS, and is highly vulnerable
to attacks bounded by R-LPIPS. The significant drop in
the accuracy of PAT when exposed to R-PPGA and R-LPA
attacks motivated us to visualize the adversarial data for
attacks generated based on R-LPIPS; the results are shown
in Figure 3. The first row consists of the original images,
and the second and third rows are the adversarial images

generated by R-PPGA and R-LPA attacks, respectively.

5. Conclusion & Future Work
Conclusion. In this paper, we showed that the LPIPS met-
ric is vulnerable to adversarial examples and proposed R-
LPIPS, a perceptual similarity metric that has been trained
adversarially. During the process of adversarial training,
the wl weights are optimized while leaving the backbone
weights of the model (AlexNet architecture) unchanged.
Our findings reveal that R-LPIPS exhibits superior general-
ization and robustness across various data distortions when
subjected to ℓ∞-PGD and ℓ2-PGD attacks. Additionally, we
have investigated strong perceptual attacks using R-LPIPS,
namely R-PPGA and R-LPA, and demonstrated their superi-
ority over the previously established state-of-the-art attacks.

Future work. First, the R-LPIPS metric, which is an ad-
versarially trained version of LPIPS achieved through ℓ∞
AT on x0, could be further explored by applying AT to x1

or x0 and x1. Assessing the robustness of these different
versions would offer valuable insights. Second, R-LPIPS
can be used as a defense mechanism in similar settings as
the PAT training scheme and LPIPS. It would be interesting
to explore the development of R-PAT, which has the poten-
tial to be a more universal perceptual adversarial defense.
Evaluating its performance under attack would provide valu-
able insights and potentially demonstrate superior results.
Finally, by using adversarial training to develop R-LPIPS,
the new metric inherits its drawback which is the lack of the-
oretical guarantees. An interesting future direction would
be to devise guarantees to a perceptual metric.
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