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Abstract: This paper reports on a new 3D point cloud-based place recognition1

framework that uses SE(3)-equivariant networks to learn SE(3)-invariant global2

descriptors. We discover that, unlike existing methods, learned SE(3)-invariant3

global descriptors are more robust to matching inaccuracy and failure in severe4

rotation and translation configurations. Mobile robots undergo arbitrary rotational5

and translational movements. The SE(3)-invariant property ensures the learned6

descriptors are robust to the rotation and translation changes in the robot pose and7

can represent the intrinsic geometric information of the scene. Furthermore, we8

have discovered that the attention module aids in the enhancement of performance9

while allowing significant downsampling. We evaluate the performance of the10

proposed framework on real-world data sets. The experimental results show that11

the proposed framework outperforms state-of-the-art baselines in various metrics,12

leading to a reliable point cloud-based place recognition network.13

Keywords: Place Recognition, SE(3)-Invariant, SE(3)-Equivariant Representa-14

tion Learning, 3D Point Clouds15

1 Introduction16

Place recognition can be defined as linking the sensor’s in-situ observations and the prebuilt ref-17

erence map. Among numerous 2D (RGB, thermal, and event-triggered) and 3D (stereo, LiDAR,18

and RGB-D) sensors [1], 3D sensors are gaining popularity and have recently been extensively re-19

searched. Modern service robots, autonomous cars [2], and drones [3] are widely equipped with20

consumer-level 3D sensors due to their better environment perception ability and decreasing prices.21

Thus, place recognition techniques with 3D data can be used in estimating the agent’s location22

in scenarios such as self-driving vehicles, autonomous indoor navigation, or scientific exploration.23

Place recognition, also known as loop closure detection, is a critical component in Simultaneous24

Localization and Mapping (SLAM). It enables a robot to determine if it has seen a place before and25

provides loop closure candidates [4]. With a correct loop closure, the SLAM system can eliminate26

accumulated drift from the odometry and improve the mapping accuracy [5].27

Extracting consistent features from 3D data is an important research topic but remains underex-28

plored and unsolved [6]. One key issue in present place recognition methods is that they do not29

consider transformation changes in data or expect robustness via simple data augmentation [7].30

Take data measured on vehicles as an example. If the vehicle changes lanes, though it is still in the31

same location, translation differences exist in the data. Furthermore, if it travels to an intersection32

where the previous pose is in a different direction, then rotation changes exist in the data. Since33

existing works do not consider these transformation changes, their performance is sensitive to trans-34

formation variations in the training and testing point cloud samples. As such, the extracted global35

descriptors change substantially when the point clouds are rotated or translated, resulting in place36

recognition failure as descriptors are matched incorrectly. Our research aims at designing a rotation37

and translation-invariant global descriptor for point clouds, called SE(3)-invariant feature, to solve38

the transformation-sensitivity problem.39

The attention mechanism of transformers [8] enables networks to learn the correlation between40

input features and obtain the importance of each feature. Some place recognition frameworks like41
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Figure 1: Overview of the proposed SE(3)-equivariant point cloud-based place recognition pipeline. Optionally,
3D point clouds are preprocessed with an attentive downsampling process. Next, SE(3)-equivariant local fea-
tures are learned using SE(3)-equivariant networks. In this work, we use EPN and E2PN. Then, SE(3)-invariant
local features are extracted by max-pooling. Lastly, SE(3)-invariant global descriptors are computed by global
pooling methods. In this work, we use NetVLAD and Generalized Mean (GeM). The global descriptors are
SE(3)-invariant and can perform place recognition tasks.

PCAN [9] use an attention mechanism on local features to re-weight each feature. However, they42

usually apply an attention mechanism to feature space to learn the importance of each feature. In43

our work, we apply the attention mechanism on the 3D points to learn which point to reserve during44

the downsampling process.45

In this paper, we propose a place recognition framework that exploits SE(3)-invariant features to46

perform place recognition in challenging rotation and translation scenes (Figure 1). We propose47

to learn SE(3)-equivariant local features via a group-equivariant encoder; in this work, we use a48

modified Equivariant Point Network (EPN) [10] and its more efficient variant E2PN [11]. How-49

ever, our pipeline is agnostic to the particular approach for learning equivariant features. Then,50

SE(3)-invariant global descriptors are learned by aggregating local features using NetVLAD [12] or51

Generalized Mean (GeM) [13]. Moreover, we apply a self-attention mechanism for downsampling52

point clouds before the equivariant encoder block to decrease memory usage and increase efficiency53

in training. We train our network on Oxford RobotCar Dataset [14] and evaluate on Oxford, in-54

house [15], and KITTI odometry benchmark [16]. We also validate our proposed framework for55

rotation and translation scenes. Experimental results show that our approach consistently outper-56

forms existing state-of-the-art approaches. The experiment of the trained network on unseen data57

sets verifies the generalizability and scalability of our proposed framework.58

The main contributions of this work can be summarized as follows:59

1. We propose a new pipeline for place recognition using SE(3)-equivariant encoders to learn60

SE(3)-invariant descriptors with only geometric information from 3D point clouds. The61

proposed method is robust against arbitrary rotation and translation of robot poses. It is62

generalizable and scalable to unseen data sets, thereby removing the need for data augmen-63

tation.64

2. We apply a self-attention mechanism to downsample point clouds which maintains place65

recognition in high performance up to 50 % downsampling rate.66

3. The code is open-sourced and will be publicly available after receiving the final decision.67

2 Related Work68

3D point clouds generated by LiDAR (light detection and ranging), stereo cameras, RGB-D cameras,69

or other sensors obtain rich and accurate environmental 3D geometric information. We first review70

place recognition works that utilize the geometric information from 3D point clouds in section 2.1.71

Then, we present existing works that utilize the point cloud descriptors with rotation-invariant or72

translation-invariant properties in section 2.2. Later, we discuss existing group-equivariant networks73

for 3D point cloud in section 2.3. In section 2.4, we provide brief introduction on designing attention74

mechanisms to improve place recognition performance.75
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2.1 Geometry-based Place Recognition76

Previously, place recognition using point clouds relied on histograms or hand-engineered features77

such as Fast Histogram [17], M2DP [18] and Scan Context [19]. M2DP [18] projects 3D point78

clouds to multiple 2D planes and constructs global descriptors from singular vectors of density79

signatures. Scan Context [19] represents the point cloud in the polar axis and encodes the height of80

the observed points into the representation.81

PointNetVLAD [15] is a pioneering work to apply a learning-based feature extractor to place recog-82

nition tasks. It combines PointNet [20] and NetVLAD [12] to allow end-to-end representation train-83

ing from a given 3D point cloud. LPD-Net [21], which proposes adaptive local feature extraction and84

graph-based neighborhood aggregation to construct a global descriptor. OverlapNet [22] constructs85

range images to learn the overlap score and the yaw angle between two inputs. MinkLoc3D [23]86

presents sparse voxelized point cloud representation and sparse 3D convolutions. LCDNet [24]87

provides an estimated pose in addition to representation learning in the network. However, these88

algorithms are not robust to rotational and translational pose changes.89

2.2 Exploiting Symmetry in Place Recognition90

Considering that the observer may be in different orientations or locations is critical, researchers91

propose some hand-crafted, rotation-invariant features to perform place recognition more robustly92

and accurately. Yin et al. [25] propose a heading-invariant feature that uses histograms of range in93

a LiDAR scan ring to deal with the change of heading angle of the vehicle. Scan Context [19] uses94

ring keys, the occupancy ratio of rings in scan context, as rotation-invariant features. It is further95

generalized in their later work Scan Context++ [26] to include lateral invariance by augmentation96

based on urban road assumption. FreSCo [27] uses frequency-domain Scan Context to perform place97

recognition with translation and rotation invariance. LiDAR-Iris [28] encodes height information98

into eight-bit binary code and uses Fourier transform to estimate the translation between two LiDAR-99

Iris images to remove the rotational difference between LiDAR scans. Xu et al. [29] build polar grid100

height coding image descriptor which is rotationally invariant. While these hand-crafted features101

are rotation-invariant, some structural information is ignored when composing them. Later, deep102

learning features are widely used since their performances surpass hand-crafted features [30].103

Only a few works try to encode rotation-invariant or translation-invariant features into learning-104

based place recognition algorithms. PointNetVLAD [15] and LCDNet [24] try to increase ro-105

bustness by randomly rotating input point clouds during training. RINet [7] exploits additional106

semantic information and combines it with rotation equivariant convolution to achieve rotation-107

invariant. OverlapNet [22] and OverlapTransformer [31] use range images to make the feature108

yaw-angle-invariant. Lu et al. [32] propose a RING descriptor that is translation-invariant after109

the discrete Fourier transform procedure and is yaw-angle-invariant. SeqSphereVLAD [33] uses110

spherical convolution to extract orientation-invariant descriptors from point clouds in spherical view.111

RPR-Net [34] constructs rotation-invariant feature using rotation-invariant convolution. Neverthe-112

less, these strategies do not consider both 3D rotation and translation differences in the pose, thus113

might not be sufficient in more challenging scenarios.114

2.3 Group-Equivariant Networks for 3D Point Clouds115

While only a small number of works take rotation-equivariant and translation-equivariant into con-116

sideration in place recognition tasks, a series of works design network architectures with the equiv-117

ariance property for general feature learning. Esteves et al. [35] propose Spherical CNNs (Convo-118

lutional Neural Networks), which map 3D models into spherical functions and use spherical con-119

volutions to generate equivariant feature maps. Vector Neuron [36] proposes a SO(3)-equivariant120

network that replaces scalars with 3-vectors in the neurons. Equivariant Point Network (EPN) [10],121

which we adopt in our work, performs SE(3) separable convolution, which separates 6D convolu-122

tion into convolutions in the 3D Euclidean space and in SO(3). It enables SE(3)-equivariant feature123

learning in a computationally affordable way. E2PN [11] proposes a lightweight variant of SE(3)-124

equivariant network for point clouds, which we also test in our work. These networks generally125

address the rotation-equivariant feature learning problem in classification and segmentation tasks.126

They are only tested with point clouds in single object shapes but have not been tested much on127

3D point clouds in real-world outdoor scenes. We propose a new pipeline for place recognition that128
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exploits symmetry via group-equivariant networks. This work is the first attempt to develop SE(3)-129

equivariant place recognition framework to bridge the gap between the group-equivariant and place130

recognition literature.131

2.4 Attention Mechanism in Place Recognition132

An attention mechanism has been applied to some place recognition tasks to utilize the neighbor-133

hood context better. PCAN [9] predicts the significance of each local feature using an attention134

mechanism. Similarly, SOE-Net [37] includes this technique to learn the contextual features. Re-135

triever [38] builds an attention mechanism between local features and a latent code to construct136

global descriptors. OverlapTransformer [31] includes Transformer to learn spatial relations of dif-137

ferent features before feeding into NetVLAD. Among these applications, attention mechanisms are138

used to learn the importance of the local features. In this work, we explore applying the attention139

mechanism to the input 3D points to learn the points’ significance.140

3 Methodology141

This section details our proposed EPN-NetVLAD framework for SE(3)-invariant place recognition142

using 3D point clouds. Figure 1 presents an overview of the proposed approach. The framework143

consists of three parts: attentive downsampling, SE(3)-invariant local feature extraction, and SE(3)-144

invariant global descriptor generation. We will fully discuss each component in the following sub-145

sections.146

3.1 Attentive Downsampling147

3D point clouds measured from LiDAR or RGB-D sensors may contain hundreds of thousands of148

points. To perform place recognition efficiently in neural networks, we exploit the attention mech-149

anism to downsample point cloud measurements while preserving meaningful information. For a150

point cloud with N points P ∈ RN×3, we apply the multi-head attention module [8] using the Py-151

Torch library [39] to learn the attention weights Watten ∈ RN×3 from the input point cloud. Multi-152

head attention is defined as MultiHead(X) = Concat(head1, head2, head3)W
O, where Concat(·)153

does the features concatenation. The number of parallel attention heads is set as 3. Each attention154

head is defined as headi = Attention(XWQ
i , XWK

i , XWV
i ). Here, we set query Q = XWQ

i , key155

K = XWK
i , and value V = XWV

i , where, X is the input point cloud P to perform self-attention156

and learn correlation between the input 3D points.157

With the attention weights, we summarize over the feature space to obtain point-wise atten-158

tion weights Wpw−atten ∈ RN , which represent the significance of each point. Wpw−atten =159 ∑
i=1,2,3 W

i
atten, where W i

atten ∈ RN is the attention weight in dimension i. We select top-k160

attention weights and keep the corresponding points P ′ = Rk×3.161

3.2 Local SE(3)-Equivariant Features162

Learning equivariant representation from point clouds can provide efficiency and generalizability in163

challenging robot perception tasks. Equivariance is a form of symmetry for functions that preserve164

the transformation applied on the input to the output.165

Equivariance generalizes the concept of invariance, which means that the output of functions is166

independent of the transformations applied to the input. Mathematically, a function finv : X → X167

is invariant to a set of transformations T , if for any t ∈ T , finv(x) = finv(t · x),∀x ∈ X .168

The general linear group of degree n, denoted by GLn(R), is the set of all n×n nonsingular real ma-169

trices, where the group binary operation is the ordinary matrix multiplication. The three-dimensional170

(3D) special orthogonal group, denoted by SO(3) = {R ∈ GL3(R) | RRT = I3,detR = +1}171

is the rotation group on R3, where I3 denotes the 3 × 3 identity matrix. The 3D special Euclidean172

group, denoted by173

SE(3) = {H = (R, t) | R ∈ SO(3), t ∈ R3}
is the group of rigid transformations, i.e., direct isometries on R3 [40].174

4



In this work, we leverage Equivariant Point Network (EPN) [10] and E2PN [11] to learn the SE(3)-175

equivariant feature and capture the inherent symmetry of 3D point cloud data. In the original176

EPN [10], given a 3D point x, a rotation g, a feature representation function F : R3×SO(3) → RD,177

and a kernel h : R3 × SO(3) → RD, the discretized SE(3)-equivariant convolutional operator is178

defined as the dot product between the translated and rotated kernel and the function F :179

(F ∗ h)(x, g) =
∑
xi∈P

∑
gj∈G

F(xi, gj)h(g
−1(x− xi), g

−1
j g), (1)

where P and G are the discretized sets corresponding to R3 and SO(3), respectively. To reduce the180

computation cost in 6D convolution, the authors separate the kernel h into two smaller kernels rep-181

resenting SE(3) point convolution and SE(3) group convolution, respectively. This design preserves182

SE(3)-equivariant features from the input point cloud while maintaining affordable computation.183

We also experimented with E2PN [11], which is a lightweight and more efficient variant of EPN [10].184

E2PN leverages quotient representations to embed SO(3)-equivariance in a spherical feature space,185

resulting in much fewer feature dimensions than EPN. Therefore, it drastically reduces memory186

consumption and runtime while preserving the rotational equivariance. Such property is highly187

relevant to our task since we work with large-scale point clouds in an outdoor environment.188

3.3 Local SE(3)-Invariant Feature Pooling189

After learning SE(3)-equivariant features fe(P ), pooling is then applied to extract SE(3)-invariant190

features. To avoid the group attentive pooling failing if the point cloud is circularly symmetric as191

discussed in [10], we propose to apply max-pooling on the rotational dimension for each spatial192

point to generate SE(3)-invariant features and increase the robustness for different shapes of point193

clouds. SE(3)-equivariant features represent as fe(P ) ∈ RN×C×R, where P is the input point cloud,194

fe(·) is the mapping from point cloud to SE(3)-equivariant features, N is number of points, C is195

number of local features, and R is the number of rotation group discretization. In the max-pooling196

step, we only keep the maximum feature from one of the R discretized rotation groups. After max-197

pooling, the SE(3)-invariant feature is then represent as finv(P ) ∈ RN×C . The last part of the local198

feature extractor is a linear layer to map the SE(3)-invariant features to the desired dimension. See199

Figure 1 for an illustration.200

3.4 Global SE(3)-Invariant Place Representation201

Global descriptors are computed by aggregating local features using NetVLAD or Generalized Mean202

(GeM) [13]. NetVLAD learns cluster centers of VLAD (Vector of Locally Aggregated Descriptors)203

in a CNN framework. The output descriptors V are adopted for describing the places and are given204

in (2). This equation shows j-th dimensions of the i-th descriptor, where x is the local feature. wk,205

bk, and ck are trainable parameters to learn the center of cluster k.206

V (j, k) =

N∑
i=1

ew
T
kxi+bk∑

k′ e
wT

k′xi+bk′
(xi(j)− ck(j)). (2)

GeM is a trainable pooling layer that generalizes max-pooing and mean-pooling. With local feature207

input x, the output of GeM pooling is defined in (3). Where p is a pooling parameter that can be set208

manually. When p → ∞, the process is max-pooling. When p = 1, it is mean-pooling.209

fGeM = (
1

|x|
∑
xi∈x

xp
i )

1
p . (3)

210

To learn discriminative and generalizable global descriptors for performing place recognition tasks,211

we use lazy quadruplet loss proposed by Uy and Lee [15]. For each iteration of training, there are212

an anchor point cloud Pa, a “positive” point cloud Pp that is similar to the anchor point cloud, and213

some “negative” point clouds {Pn} that are dissimilar to the anchor point cloud, and a random point214

cloud in the training set Pn∗ . The lazy quadruplet loss defined in (4) can minimize the L2 distance215

between anchor and positive representation δp = d(f(Pa), f(Pp)) while maximizing the distance216
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between anchor and some negative representation δnj = d(f(Pa), f(Pnj )), Pnj ∈ {Pn}. α and β217

are constant values to provide margin.218

Loss(Pa, Pp, Pn, Pn∗) = max
j

([α+ δpδnj ]+) + max
k

([β + δpδn∗
k
]+). (4)

4 Experimental Results and Discussion219

We construct SE(3)-invariant place recognition descriptors using the described method. In this sec-220

tion, we examine the performance of place recognition, SE(3)-invariant properties, and the design221

of attentive downsampling.222

4.1 Model Training223

We train our networks on Oxford RobotCar [14] benchmark created by Uy and Lee [15]. Oxford224

benchmark contains 45 sequences of a vehicle taking measurements using SICK LMS-151 2D Li-225

DAR in similar routes for different times, days, and seasons. Each point cloud is a submap of a226

pre-built map. The ground points are removed, and the point clouds are normalized to be zero mean227

and inside the range of [-1, 1]. Training and testing sets are geographically split with a ratio of 70228

% and 30 %. For creating training tuples, a ground truth location within 10 meters is considered a229

positive pair, while a location larger than 50 meters is considered a negative sample. We train with230

21,711 sub-maps. We trained and tested our method on a system equipped with Intel i9-10900K231

CPU with a 3.7 GHz processor and an Nvidia GeForce RTX 3090.232

In EPN-NetVLAD, Point clouds are downsampled to 2048 points using the attention mechanism.233

We construct EPN-NetVLAD with two layers of EPN, one with 32 local features and one with234

64 local features. In EPN, we set the number of discretized rotation groups R as 60. EPN is235

followed with max-pooling and a linear layer to map local features to 1024 dimensions. Then, we236

use NetVLAD to learn global descriptors with dimensions of 256. The network is trained for 30237

epochs with a learning rate of 5 × 10−5. Each training tuple consists of one query point cloud,238

one “positive” point cloud, one “negative” point cloud, and another random point cloud. The hyper-239

parameters in lazy quadruplet loss in set as α = 0.5, β = 0.2. The network parameters are optimized240

by ADAM [41].241

We construct E2PN-NetVLAD with two layers of E2PN, one with 32 local features and one with242

64 local features. The number of discrete rotation groups in E2PN is 12. Then, it follows the243

same setting for NetVLAD as in EPN-NetVLAD. For GeM in E2PN-GeM, we follow MinkLoc3D’s244

structure and set pooling parameter p = 3.245

Note that we do not need random rotation during the training process since the network is designed246

to generate the same descriptor as we rotate or translate the point cloud. The decreased need for data247

augmentation is an advantage of the proposed framework.248

4.2 Place Recognition Evaluation249

In place recognition tasks, precision and recall are the two well-established evaluation metric [42].250

Precision is the percentage of true loop closures among all the places we recognize. Recall is the251

percentage of places we recognize among all true loop closures. The definition is shown in (5),252

where TP is the number of true-positive cases, FP represents the number of false-positive cases,253

and FN stands for the number of false-positive cases. The F1 score is introduced and defined in the254

same equation to obtain a balancing metric between precision and recall.255

precision =
TP

TP + FP
; recall =

TP

TP + FN
; F1 = 2

precision · recall
precision + recall

. (5)

4.2.1 Oxford and in-house benchmark256

We first evaluate the performance of the proposed method on the Oxford benchmark. The Ox-257

ford RoboCar Dataset consists of data collected by vehicles driving in a similar route at different258

times and seasons. Hence, every sequence revisits the path traveled by other sequences. When259
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(a) (b)

(c)

Figure 2: Experimental results of proposed methods (E2PN-GeM in blue line, E2PN-NetVLAD in red line, and
EPN-NetVLAD in cyan line), state-of-the-art approaches MinkLoc3D [23], PointNetVLAD [15], M2DP [18],
and Scan Context [19] on Oxford benchmark.

performing the evaluation, we generate the SE(3)-invariant global descriptor for each input point260

cloud. Then, we find the top 1, top 25, and top 1% of candidates’ matches similar to the query261

point cloud in each sequence. We calculate the precision, recall rate, and average among different262

query point clouds in different sequences. The average recall curve represents the model perfor-263

mance for the top 25 matches. With these evaluation metrics and scikit-learn library [43], we report264

precision-recall curves, F1-recall curves, and average recall curves of the proposed method and265

other state-of-the-art methods are shown in Figure 2. EPN-NetVLAD, E2PN-NetVLAD, E2PN-266

GeM, PointNetVLAD [15], and MinkLoc3D [23] are trained on the same Oxford benchmark train-267

ing set. However, MinkLoc3D is trained with a more efficient training strategy. Scan Context [19]268

and M2DP [18] construct hand-engineered features to perform place recognition. The figure shows269

that the proposed network E2PN-NetVLAD and EPN-NetVLAD outperform PointNetVLAD, which270

shares the same global feature extraction method. MinkLoc3D and E2PN-GeM both use GeM pool-271

ing for global feature extraction. Though MinkLoc3D performs the best among all methods, E2PN-272

GeM and E2PN-NetVLAD still perform consistently within 5% of difference.273

To show the generalizability of the proposed method, we also evaluate all methods on in-house data274

sets with three kinds of regions that are unseen to the network, including the university sector (U.S.),275

residential area (R.A.), and business district (B.D.). In-house data sets are generated by Uy and Lee276

[15] and are constructed from Velodyne-64 LiDAR scans. Table 1 shows the average recall at top277

1% and at top 1 for each method on Oxford and in-house benchmark. Our method performs better278

than others for networks with NetVLAD global feature extraction regardless of selecting several or279

only one loop closure candidate. Our method achieves the best performance among all the data sets280

we did not train on. For methods that use GeM pooling, MinkLoc3D performs better on Oxford but281

performs similarly on U.S., R.A., and B.D. compared to the proposed E2PN-GeM method.282
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Table 1: Experimental result showing the average recall (%) at top 1% and at top 1 for each of the methods on
Oxford and in-house benchmark. Scan Context and M2DP are non-learning methods. Three methods in the
middle rows use NetVLAD as a global pooling method. The last two methods in the bottom rows use GeM as
a global pooling method.

Oxford U.S. R.A. B.D.

AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1

Scan Context [19] 32.91 22.89 75.96 65.06 66.40 53.69 50.90 44.57
M2DP [18] 34.69 23.14 45.03 32.41 44.62 34.34 39.34 32.95

PointNetVLAD [15] 84.94 71.39 80.79 65.33 73.86 61.83 69.29 61.78
EPN-NetVLAD 89.17 77.69 87.82 74.03 81.98 70.09 76.91 69.14
E2PN-NetVLAD 93.78 85.04 92.85 83.19 87.23 79.36 86.82 81.83

MinkLoc3D [23] 97.91 93.76 95.04 86.01 91.19 81.17 88.48 82.66
E2PN-GeM 94.76 87.45 95.36 88.47 88.64 82.39 88.21 83.29

Table 2: KITTI experimental result shows the average recall (%) at top 1% for each model. All methods are
only trained on Oxford. KITTI sequence 00 consists of loop closure in the same direction, whereas KITTI
sequence 08 consists of loop closure in a reverse orientation.

KITTI Sequence 00 KITTI Sequence 08
AR@1% AR@1 AR@1% AR@1

PointNetVLAD [15] 73.18 17.61 32.47 70.68
EPN-NetVLAD (Ours) 78.21 37.69 63.84 61.90
E2PN-NetVLAD (Ours) 79.45 43.40 61.63 71.43

MinkLoc3D [23] 28.07 4.01 17.30 3.50
E2PN-GeM (Ours) 80.45 71.18 68.55 54.09

4.2.2 KITTI benchmark283

In addition to the above evaluation, we also evaluate the proposed methods on KITTI odometry284

data set [16]. 3D point clouds in the KITTI data set are collected by Velodyne HDL-64E, random285

downsampled to 4096 points, and scaled to [-1, 1] with zero mean. Different from data in Oxford,286

the points of ground are not removed. We choose sequence 00 and sequence 08 for evaluation.287

Sequence 00 has the highest number of scans and pairs for loop closure in the same orientation.288

Sequence 08 contains 100% reverse loop closure where there are revisiting the same place with 180-289

degree viewing angle differences and provides a more challenging scenario. For sequence 00, the290

first 170 seconds construct the reference database, and the remaining part of the sequence is used291

as test queries. Similarly, for sequence 08, the first 85 and middle 259 to 264 seconds construct292

the reference database, and the rest of the sequence is used as test queries. We ignore two nearby293

frames to avoid matching consecutive scans falsely. Table 2 reports the average recall at the top 1%294

and top 1 for place recognition in sequence 00 and sequence 08. All methods are trained using the295

same Oxford training data set. The table shows that the SE(3)-invariant property in EPN-NetVLAD,296

E2PN-NetVLAD, and E2PN-GeM helps them perform better in these challenging scenarios, sup-297

porting the better generalization claim.298

4.2.3 Data Augmentation Experiment299

In Table 3, we experiment with different amount of training data. PointNetVLAD relies on both300

random transformation and increasing training data size to achieve high performance. Whereas301

E2PN-NetVLAD can achieve similar performance with only training on three sequences. Min-302

kLoc3D performs the best among all methods. However, it still requires random transformations in303

the training data.304

4.3 Experiment with SE(3) Transformation305

In addition to the place recognition experiments on Oxford and in-house benchmark, we construct306

simulated data to test the model performance with severe rotation and translation. First, we visualize307
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Table 3: Experimental result of data augmentation in training data size and if random transformation is applied
during training.

Random Training Size: 3 Sequences Training Size: 45 Sequences
Transformation AR@1% AR@1 AR@1% AR@1

PointNetVLAD [15] 69.38 54.00 86.88 73.12
PointNetVLAD [15] ✓ 80.85 65.55 84.94 71.39
EPN-NetVLAD (Ours) 75.15 57.51 89.17 77.69
E2PN-NetVLAD (Ours) 85.16 70.61 93.78 85.04

MinkLoc3D [23] ✓ - - 97.91 93.76
E2PN-GeM (Ours) 88.49 76.73 94.76 87.45

(a) point clouds under
transformations

(b) SE(3)-invariant local
features

(c) SE(3)-invariant global
features

Figure 3: Visualization of the input point clouds, local features, and global descriptors under different transfor-
mations.

the local features and global descriptors when the input point cloud is transformed under rotation,308

translation, rotated then translated, and translated then rotated. Figure 3 shows the results and the co-309

sine similarity score between each transformed feature/descriptor and the original feature/descriptor.310

We can see that even if the point cloud is rotated or translated, the output features and descriptors311

remain the same and has 100 % similarity to the original one.312

Furthermore, we construct a simulated data set to include place recognition examples of differ-313

ent transformations. It contains the point clouds that are transformed under purely SO(3)-rotation,314

purely 3D translation, and with both rotation and translation. With original point clouds in a range315

between [-1, 1], 3D rotations are applied randomly, and 3D translations are applied with a standard316

deviation of 1.0. We use 440 point clouds, where each of them has two positive pairs. We then use317

the model trained on the Oxford benchmark to perform place recognition on this simulated data set.318

The result is shown in Table 4, EPN-NetVLAD performs significantly better in severe transforma-319

tion. E2PN’s rotation-invariant property is not fully carried by NetVLAD and GeM. However, it still320

performs better than MinkLoc3D and PointNetVLAD.321

4.4 Attentive Downsampling322

We design an experiment to test the performance of the downsampling point cloud using an attention323

mechanism. Following the place recognition task experiment, we study the proposed network’s324

performance with random and attentive downsampling methods. In this experiment, the network is325

constructed with only one layer of EPN with 64 local features and trained on three sequences of the326

Oxford data set to simplify the task. The result of different downsampling rates is presented in Table327

5. It shows that using an attention mechanism to downsample point clouds can maintain high place328

recognition performance up to 50 % downsampling rate.329

4.5 Run Time Performance330

We tested our method on a system equipped with Intel i9-10900K CPU with a 3.7 GHz processor331

and an Nvidia GeForce RTX 3090. We also record the number of parameters in the network. For332

3D point clouds with 4096 points, Table 6 shows the run time performance. E2PN-GeM has the333

lowest number of parameters. PointNetVLAD and MinkLoc3D have the shortest inference time.334
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Table 4: Experimental result reports average recall at top 1% for performing place recognition task on different
scenes where the point clouds are transformed under rotation or/and translation.

Rotation Translation PointNetVLAD EPN-NetVLAD E2PN-NetVLAD E2PN-GeM MinkLoc3D

✓ 6.60 % 98.74 % 76.16 % 78.17 % 13.71 %
✓ 3.21 % 100.00 % 100.00 % 100.00 % 100.00 %

✓ ✓ 2.96 % 99.43 % 75.03 % 77.42 % 13.77 %

Table 5: Experimental result showing the average recall (%) at top 1% of EPN-NetVLAD when the input point
cloud is downsampled with different percentages and different methods. This table compares the result of
random downsampling and attentive downsampling, which utilize the attention mechanism to downsample.

Number of Points Downsampling Rate Random Downsampling Attentive Downsampling

4096 0 % 71.66 % 71.66 %
3000 27 % 63.34 % 71.65 %
2048 50 % 57.29 % 71.05 %
1600 61 % 53.19 % 66.22 %
1024 75 % 43.17 % 57.97 %

Changing the global descriptor extraction method from NetVLAD to GeM drastically decrease the335

number of parameters but does not affect the run time substantially. We conjecture that the higher336

run times of SE(3)-equivariant networks are caused by the lack of network optimization. EPN and337

E2PN are coded with custom functions to perform separate convolution, while other networks have338

network structures optimized on GPU. Thus, it is possible that SE(3)-equivariant networks can be339

further optimized in the future to improve run time.340

5 Limitation341

The major limitation of the proposed framework is the relatively slow run time and the need for342

optimized libraries to perform real-time place recognition. However, with the development of more343

powerful computing hardware, we expect this limitation to be largely resolved in the near future. In344

addition, the study of equivariant encoders under other Lie groups to enable invariance to, e.g., scale345

and deformation is an interesting future direction that we did not discuss in this paper.346

6 Conclusion347

We have designed a place recognition framework that exploits SE(3)-equivariant representation348

learning. In particular, SE(3)-invariant features learned from 3D point clouds improve robustness to349

large transformations and generalizability in place recognition tasks. In addition, we propose using350

an attention mechanism in place recognition to downsample the input point cloud while maintaining351

high performance. Our experimental results on real-world data sets show the proposed method per-352

forms well in various metrics. Future work includes a lightweight design of the equivariant encoder353

for real-time onboard applications and the extension of this framework to stereo cameras where354

image data can also be incorporated into the learned representation.355

Table 6: Run time performance of the proposed framework and other learning-based place recognition methods.
The input point cloud contains 4096 points. The run times are computed without any network optimization.
*Prior to EPN-NetVLAD, attentive downsampling is performed to reduce point cloud size to 2048 points.

Parameters Run Time per Point Cloud (s)

PointNetVLAD [15] 19,779,145 0.006
MinkLoc3D [23] 1,055,713 0.005
EPN-NetVLAD (Ours)* 17,135,376 2.052
E2PN-NetVLAD (Ours) 17,167,488 0.079
E2PN-GeM (Ours) 192,513 0.082
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