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In the evolving landscape of statistical learning, exploiting low-dimensional struc-
tures, particularly for non-Euclidean objects, is an essential and ubiquitous task
with wide applications ranging from image analysis to biomedical research.
Among the momentous developments in the non-Euclidean domain, Fréchet re-
gression extends beyond Riemannian manifolds to study complex random re-
sponse objects in a metric space with Euclidean features. Our work focuses on
sparse Fréchet dimension reduction where the number of features far exceeds the
sample size. The goal is to achieve parsimonious models by identifying a low-
dimensional and sparse representation of features through sufficient dimension
reduction. To this end, we construct amultitask regressionmodelwith synthetic re-
sponses and achieve sparse estimation by leveraging the minimax concave penalty.
Our approach not only sidesteps inverting a large covariance matrix but also mit-
igates estimation bias in feature selection. To tackle the nonconvex optimization
challenge, we develop a double approximation shrinkage-thresholding algorithm
that combines a linear approximation to the penalty term and a quadratic approx-
imation to the loss function. The proposed algorithm is efficient as each iteration
has a clear and explicit solution. Experimental results for both simulated and real-
world data demonstrate the superior performance of the proposed method com-
pared to existing alternatives.

1. Introduction
Non-Euclidean objects, such as images, shapes, tensors, and random densities, have captivated the
attention of data scientists and statisticians as high-throughput data collection and generation con-
tinue to expand. Fréchet regression model, introduced by [1], analyzes a random object response
in a metric space and a predictor vector in a Euclidean space. Advances to handle high-dimensional
predictors in Fréchet regression include the variable selection method proposed by [2] and the
single-index model introduced by [3]. In this paper, we consider a multi-index model assuming
that a few linear combinations of the predictors contain all the relevant information about the non-
Euclidean outcome. Let X ∈ Rp be the predictor vector, and let Y be a random object in a metric
space. We assume that the joint distribution F (X,Y ) and the conditional distribution F (Y |X) ex-
ist. The multi-index model can be stated as: Y = f(β⊤

1 X,β
⊤
2 X, . . . , β

⊤
d X, ϵ), where each βi ∈ Rp×1

denotes a projection vector, d is the structural dimension assumed to be significantly smaller than
p, ϵ denotes the random error, and f is an unknown link function that maps from Euclidean space
to a metric space. Our objective is to find the d-dimensional representation (β⊤

1 X,β
⊤
2 X, . . . , β

⊤
d X)

of the p-dimensional predictor vector X .

Sufficient dimension reduction (SDR) is a commonly used approach for multi-index models. SDR
focuses on finding a p× dmatrix β, such that

Y ⊥⊥ X | β⊤X. (1)

Equation (1) is equivalent to saying that the conditional distribution of Y given X is the same as
that of Y given β⊤X , which is referred to as the regression information. ThenX can be replaced by
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its d-dimensional representation β⊤X without losing any regression information of Y on X . The
matrix β satisfying (1) is not identifiable up to a multiplication by a full-rank matrix. For any full-
rank matrix A ∈ Rp×p, it is easy to prove that Aβ also satisfies Equation (1). Fortunately, the space
spanned by the columns of β, called dimension reduction subspace (DRS) denoted as Span(β), is
identifiable. However, DRS is not unique. For example, Rp is a trivial DRS because Y ⊥⊥ X | I⊤p X
holds, where Ip is the p × p identity matrix and Span(Ip) = Rp. Therefore, the main interest is to
estimate the central subspaceSY |X : SY |X =

⋂
β Span(β), which is the intersection of all DRSs if itself

is a DRS. Under mild conditions [4, 5], the central subspace exists and is unique. The ultimate goal
is to find one basis of the central subspace. When the response variable Y is in a Euclidean space,
numerous methods have been developed for SDR, including sliced inverse regression (SIR) [6],
sliced average variance estimation [7], principal Hessian direction [8], cumulative mean estimation
[9], fused inverse regression estimators [10], and the Fourier transform approach [11]. See related
chapters in [12] for a comprehensive discussion. In particular, some dimension reduction methods,
such as the minimum discrepancy approach [10, 13, 14], decompose the kernel matrix into two
low-rank matrices. This decomposition can be viewed as a form of sparse dictionary learning [15].

Classical SDRmethods are not readily applicable to non-Euclidean responses. For illustration, con-
sider the application in the context of image completion for handwritten digits [16]. Here, a por-
tion of each image serves as the response, situated on a manifold equipped with a distance metric,
while the remaining part of the image is employed as predictors in a high-dimensional Euclidean
space. Recent advances in Fréchet SDR have enabled its application to regression problems in-
volving metric-space valued responses and Euclidean predictors [16]. One idea is to transform the
Fréchet SDR into a traditional SDR bymapping the metric-space response to a real-valued response
[17]. Another paper by [16] developed a weighted inverse regression ensemble (WIRE) approach
that leverages the metric distance of random objects to construct a novelWIRE kernel matrix, which
is used to estimate the central subspace. Nonetheless, when the number of features surpasses the
sample size, the singularity of the covariance matrix often causes the failure of most kernel-based
approaches.

Another challenge arose from high-dimensional Fréchet SDR problems is to allow sparsity in es-
timating the central subspace, as it is often assumed that only a few predictors significantly im-
pact the response. Sufficient variable selection aims to find a subset of predictors, indexed by a set
S ∈ {1, . . . , p}, such that Y ⊥⊥ X | XS , where XS = {Xj , j ∈ S}. Since each row of the coeffi-
cient matrix β corresponds to one feature, nonzero rows of the matrix situate at the index set S. A
widely adopted approach to identify influential variables in SDR is to formulate an optimization
problem with regularization, as seen in [18–30], and many other works referenced within these
sources. Most of the existing sparse SDR methods employed Lasso or group-Lasso penalty, both of
which are convex and lead to biased estimation. Nonconvex penalization offers a promising alterna-
tive with reduced estimation bias. Some commonly used nonconvex penalties include the minimax
concave penalty (MCP) [31], the smooth clipped absolute deviation (SCAD) [32], and the capped
ℓ1-penalty [33]. However, nonconvex optimization can be computationally and analytically chal-
lenging as it gives rise to the issue of multiple local minima. To address this issue, a local linear
approximation (LLA) is introduced by [34] for maximizing the nonconcave penalized likelihood.
The authors employed a one-step LLA estimator that benefits from the oracle property of an initial
estimator, but its performance is rather sensitive to the choice of the initial start.

Contributions. To bridge the existing research gaps, we propose a novel approach for high-
dimensional Fréchet SDR by augmenting the WIRE technique with a nonconvex penalty. Our main
contributions are as follows: (1)We propose amultitask regression approach to estimate the central
subspace of Fréchet regression. The essential advantage of this procedure is that it eliminates the
need for the inverse of the large covariance matrix, which is the main impediment of using kernel-
based prototypes in high-dimensional settings. (2) We achieve simultaneous variable selection by
incorporating a nonconvex penalty into the multitask regression framework. This inclusion enables
the selection of relevant variables and helps mitigate estimation bias. (3) We develop a scalable op-
timization algorithm, called double approximation shrinkage-thresholding, to implement the pro-
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posed method. The double approximation technique is less sensitive to initial values compared to
the one-step LLA procedure. Our proposed algorithm provides explicit expressions at each itera-
tion, thereby enhancing computational efficiency and convergence properties. The Python code for
generating all of the experimental figures in this paper can be accessed at: [code repository].

2. Methodology
2.1. Preliminary
Let (Ω,m) be a metric space, where m(·, ·) is a metric from Ω × Ω → R. We consider the response
variable Y ∈ Ω and the predictors X ∈ Rp. Unlike linear regression, which considers E(Y | X), a
SIR procedure proposed by [6] estimates the inverse regression E(X | Y ) using intervals of Y . The
SIR approach, similar to other kernel-based SDRmethods, utilizes singular value decomposition on
the SIR kernel matrix Σ−1var[E(X | Y )] to recover the central subspace, where Σ = var(X).

To introduce ourmethod, wefirst review themartingale difference divergencematrix (MDDM)pro-
posed by [35], where MDDM is utilized to define the martingale difference correlation, quantifying
the departure from conditional mean independence between two random vectors. The definition
of MDDM is as follows:

−E[{Y − E(Y )}⊤{Ỹ − E(Ỹ )}∥X − X̃∥],

where (X̃, Ỹ ) is an independent copy of (X,Y ), and both are random vectors.

While our primary focus is not on studying independence, understanding the origin of the WIRE
kernel matrix is crucial. Instead of assessing independence, recent research papers by [16, 30] ap-
plied the concept of inverse regression to define aWIREmatrix, switching the roles of response and
predictor vectors within the framework of the MDDM to handle random objects in metric space.
The corresponding WIRE kernel matrix is defined as follows:

Λ =− E{(X − µ)(X̃ − µ)⊤m(Y, Ỹ )} ∈ Rp×p, (2)

=− E[E{X − µ | Y }E{X̃ − µ | Y }⊤m(Y, Ỹ )],

where the weight m(Y, Ỹ ) is the metric distance between Y and Ỹ and µ = E(X). Therefore, Λ in
(2) could be expressed as the weighted average ensemble of the inverse regression means.
Definition 1. (Negative Type; [36]) The semimetric space (Ω,m) is said to have a negative type if, for any
n ≥ 2, y1, . . . , yn ∈ Ω, and a1, . . . an ∈ R, with

∑n
i=1 ai = 0:

n∑
i=1

n∑
j=1

aiajm(yi, yj) ≤ 0.

Proposition 1. (Proposition 1 in [16]) Assume that (Ω,m) is a metric space of negative type, and
the linearity condition holds, that is, E(X | β⊤X) is linear in X , then Λ is positive semidefinite and
Span{Σ−1Λ} ⊆ SY |X .

The metric space of negative type ensures that the kernel matrix Λ is a positive semidefinite matrix.
Examples of distributions satisfying the linearity condition include the normal distribution and the
elliptical distributions. Based on Proposition 1, we can perform a singular decomposition on Σ−1Λ
to obtain the left eigenvectors, which serve as one basis for the central subspace.

Let β = (β1, . . . , βd) be the left singular vectors of Σ−1Λ corresponding to the d largest singular
values (ψ1, . . . , ψd). If we further assume that the coverage condition holds, that is, Span{Σ−1Λ} =
SY |X , then β provides a basis of SY |X . Thus, we have

ΣSpan(β) = Span(Λ). (3)
In the process of estimating a basis for the central subspace, the initial step involves substituting
a sample estimate of Σ−1Λ, which requires calculating the inverse of the covariance matrix. How-
ever, estimating the precision matrix is a well-known challenge in the scenario where the predictor
dimension significantly exceeds the sample size.
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2.2. Sparse weighted inverse regression ensemble

Given data {(xi, yi), i = 1, . . . , n}, estimate Σ and Λ by their sample counterparts Σ̂ =

n−1
∑n

i=1 (xi − x̄) (xi − x̄)
⊤, and Λ̂ = −{n(n − 1)}−1

∑
1≤i̸=j≤n(xi − x̄)(xj − x̄)⊤m(yi, yj), where

x̄ = 1
n

∑n
i=1 xi. Let X = (x1 − x̄, . . . , xn − x̄)⊤ ∈ Rn×p and D = (m(yi, yj))ij ∈ Rn×n.

A Lasso-SIR approach proposed by [26] estimates the central subspace by constructing synthetic
response variables from the top eigenvectors of the SIR kernel matrix. Due to the essence of Λ and
its similar expression to the SIR kernelmatrix, we consider performing eigenvalue decomposition on
thematrixΛ. Let η = (η1, . . . , ηd) be the eigenvectors ofΛ corresponding to the d largest eigenvalues
(ϕ1, . . . , ϕd). Due to the fact that ΣSpan(β) = Span(Λ), we have η ∝ Σβ.

Furthermore, we consider the sample estimates of Λ̂ and Σ̂, and denote the eigenvalues and eigen-
vectors of Λ̂ as ϕ̂1 ≥ ϕ̂2 ≥ . . . ≥ ϕ̂d and η̂ = (η̂1, . . . , η̂d), respectively. According to the prop-
erty of eigenvectors, we have η̂diag{ϕ̂1, . . . , ϕ̂d} = Λ̂η̂. After some algebra, Λ̂ can be written as
Λ̂ = − 1

n(n−1)X
⊤DX. Plug it into the equation of eigenvectors and eigenvalues, we have

η̂diag{ϕ̂1, . . . , ϕ̂d} = − 1

n(n− 1)
X⊤DXη̂.

Definition 2. The synthetic response variables for sparse WIRE are defined as follows:

Y = − 1

n− 1
DXη̂diag{1/ϕ̂1, . . . , 1/ϕ̂d}.

Based on the construction of Y, we have η̂ = 1
nX

⊤Y.

When employing sample estimates to approximateΣ and η, η ∝ Σβ can be written as η̂ = 1
nX

⊤Y ∝
1
nX

⊤Xβ. This aligns precisely with the normal equation in the multiple regression model. Define
a function f(β) = 1

2n∥Y − Xβ∥2F. The gradient of f(β) is ∇f(β) = − 1
nX

⊤(Y − Xβ). Set it to zero,
then we obtain the normal equation 1

nX
⊤Xβ = 1

nX
⊤Y. The expression motivates us to conduct a

regression analysis, regressing the d-dimensional responses Y on the p-dimensional predictor X.

Based on previous discussions, we are ready to introduce a penalizedmultitask regression approach
[37] for recovering the central subspace SY |X = Span{β}. The objective function is as follows:

L(β) =
1

2n
∥Y− Xβ∥2F + g(β), (4)

where g(β) is a sparsity-inducing penalty term, and ∥ · ∥F is the Frobenius norm. Formulating
the problem as a regression offers advantages, one being the elimination of the need to estimate
the inverse of Σ. This is especially beneficial when n < p since Σ̂ can be singular. Additionally,
regression problems with penalization have been extensively studied, and several penalties can be
employed in this context, such as two well-researched penalties: Lasso and group Lasso.

2.3. Sparse WIRE with minimax concave penalty
Convex penalties, like Lasso and group Lasso, induce sparsity and select variables, but these ap-
proaches suffer from underestimation bias in their estimates. The estimation bias severely interferes
with variable selection when p and the number of active variables |S| are both large. Some com-
monly used nonconvex penalties have been developed to overcome this bias, including the SCAD
[32] and MCP [31]. Both the SCAD penalty, that is λ

∫ t

0
min{1, (γ − x/λ)+/(γ − 1)}dx, γ > 0, and

MCP defined on [0,∞),

ρ(|t|;λ) =
{
λ|t| − t2/(2γ), if 0 ≤ |t| < λγ;

λ2γ/2, if |t| ≥ λγ,

mitigate the bias of estimators by choosing a constant penalty beyond a threshold level λγ. Here,
λ > 0 and γ > 0 are regularizationparameters. While themain focus of this paper lies in utilizing the
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MCP for illustrative purposes, all discussions presented here can be extended to other nonconvex
penalties as well. Without confusion, ρ(t) is used as ρ(t;λ) for short. The advantage of the chosen
ρ(·) is to achieve sparsity for those with small magnitude in β while keeping the original scale for
the other large values.

The optimization problemwith the Lasso penalty achieves entry-wide sparsity by applying theMCP
to each entry of β, that is,

β̂ = argmin
β∈Rp×d

1

2n
∥Y− Xβ∥2F +

d∑
j=1

p∑
i=1

ρ(|βij |), (5)

where βij is the (i, j)-entry of β. To achieve a row sparse estimator β, we implement ρ(·) on each
row of β, that is to choose g(β) =

∑p
i=1 ρ(∥e⊤i β∥2), where ei is the ith canonical basis vector in Rp.

So the optimization problem (6) equipped with a group-wise MCP is,

β̂ = argmin
β∈Rp×d

1

2n
∥Y− Xβ∥2F +

p∑
i=1

ρ(∥e⊤i β∥2). (6)

The nonconvexity of a minimization problem results in many local minima and is the main cause
of computational and analytical difficulties. An LLA algorithm is introduced by [34] for maximiz-
ing the nonconcave penalized likelihood function. The key idea of the algorithm involves initially
constructing a linear approximation of the penalty term and subsequently solving the updated op-
timization problem through iteration. Following the same reasoning as Theorem 2 in [34], we can
prove that the linear approximation of ρ(·) is the best convex function of ρ(·) as stated in the follow-
ing lemma.
Lemma 1. Let ρ∗(t | t0) = ρ(t0) + (t − t0)ρ

′(t0) be the linear approximation of ρ(·) at t0, and ρ′(t) =
max{λ− t/γ, 0}, for t > 0. Suppose that ϕ(·) is any convex majorization function of ρ(·) at t0, that is

ϕ(t0) = ρ(t0) and ϕ(t) ≥ ρ(t), for any t.
Then ρ∗(t | t0) is a majorization function of ρ(·) at t0, and ϕ(t) ≥ ρ∗(t | t0), for all t.

The penalty ρ(·) is non-decreasing and has a continuous derivative in (0,∞). Also, ρ′(0+) = λ > 0,
so theminimizers of (5) and (6) possess variable selection properties with certain entries set to zero
[38].

3. Algorithm

3.1. Local linear approximation to penalty term

The LLA algorithm generates a sequence β̂(k) by minimizing a series of convex optimization prob-
lems:

β̂(k+1) = argmin
β∈Rp×d

1

2n
∥Y− Xβ∥2F +

p∑
i=1

ρ∗(∥e⊤i β∥2 | ∥e⊤i β(k)∥2), for k = 0, 1, 2, . . . .

The iteration stops when the sequence {β(k)} converges. After omitting constant terms with respect
to β, we only need to solve: argminβ

1
2n∥Y − Xβ∥2F + λ

∑p
j=1 ∥e⊤j β∥2ρ′(∥e⊤j β(k)∥2), which can be

considered an adjusted group Lasso. Let e⊤j β∗ = ρ′(∥e⊤j β(k)∥2)e⊤j β and X∗ej = 1
ρ′(∥eTj β(k)∥2)

Xej .
Then, it is equivalent to solve: argminβ∗

1
2n∥Y−X∗β∗∥2F + λ

∑p
j=1 ∥e⊤j β∗∥2.

Define G(β) = 1
2n∥Y− Xβ∥2F +

∑p
i=1 ρ(∥e⊤i β∥2) and N(β,β′) = 1

2n∥Y− Xβ∥2F +
∑p

i=1 ρ
∗(∥e⊤i β∥2 |

∥e⊤i β′∥2).
Theorem 1. For a differentiable concave penalty function ρ(·) on [0,∞), we have

G(β) ≤ N(β,β(k)), for any β, and G(β(k)) = N(β(k),β(k)).

Furthermore, the LLA algorithm has the descent property, that is, for k ≥ 0, G(β(k+1)) ≤ G(β(k)).
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Theorem 1 indicates that the sequence of function values {G(β(k))} is nonincreasing given {β(k)}.
Each iteration involves solving an optimization problem, which is computationally expensive.
Hence, a one-step estimator approach is proposed by [34]. This approach firstly uses the ordinary
least squared estimate as the initial value β0, and then obtains the final estimate β1 by iterating the
LLA algorithm once. They have shown that the one-step LLA estimator shares the oracle property
with good initial estimators when properly chosen parameters are used. We adopt their ideas and
introduce a one-step LLA estimator for sparse WIRE. In particular, the initial β0 is chosen from the
penalizedmultitask regression with the Lasso penalty term. The detailed algorithm is stated below.

Algorithm 1: One-step LLA Algorithm for group-wise MCP.
Input: γ.
for i ∈ {1, . . . , d} do

1. Solve the multitask Lasso regression problem:
α̂ = argminα

1
2n∥Y− Xα∥2F + λ

∑p
j=1 ∥e⊤j α∥2, where λ is selected using cross-validation.

2. For j ∈ {1, . . . , p}, define X∗ej =
1
wj

Xej , where wj = ρ′(∥e⊤j α̂∥2) + ϵ and ϵ = 2e−16.

3. Solve the new regression again: β̂∗ = argminβ
1
2n∥Y−X∗β∥22 + λ

∑p
j=1 ∥e⊤j β∥2, where λ

is selected using cross-validation.

4. Each row of β̂ is updated by e⊤j β̂∗/wj .

end

From a computational point of view, ρ′(∥e⊤j α̂∥2) could be zero for some j. Hence, we add a small
value to avoid division by zero: wj = ρ′(∥e⊤j α̂∥2) + ϵ.

3.2. Double approximation shrinkage-thresholding algorithm

The one-step LLA estimator is highly sensitive to the initial value. To address this limitation, a
naive approach is to apply the LLA algorithm to obtain a k-step estimator. However, this intro-
duces additional complexity as each iteration requires solving a new penalized regression problem.
We introduce a novel approach that combines a linear approximation to the penalty term with a
quadratic approximation to the loss function.

When dealing with the unconstrained problem of a continuously differentiable function f(·):
min{f(β) : β ∈ Rp×d}, we generate a sequence {β(k)} using the gradient iteration, a proximal
regularization of the linearized function f at β(k−1),

β(k) = argmin
β∈Rp×d

{
f(β(k−1)) + Tr[(β − β(k−1))⊤∇f(β(k−1))] +

1

2tk
∥β − β(k−1)∥2F

}
,

where tk is a step size, ∇f(β) = − 1
nX

⊤(Y − Xβ) is the gradient of f(β), and Tr(A) is the trace of
matrix A. Then, we apply the same gradient idea in the penalized optimization problem, that is

β(k) =argmin
β∈Rp×d

{
f(β(k−1)) + Tr[(β − β(k−1))⊤∇f(β(k−1))] +

1

2tk
∥β − β(k−1)∥2F +

p∑
i=1

ρ∗(∥e⊤i β∥2 | ∥e⊤i β(k−1)∥2)

}

=argmin
β∈Rp×d

{
1

2tk
∥β − (β(k−1) − tk∇f(β(k−1)))∥2F +

p∑
i=1

ρ′(∥e⊤i β(k−1)∥2)∥e⊤i β∥2

}
.

The second equation rewrites the first one after ignoring constant terms. Solving β(k) reduces to a
ℓ2 penalization for each row of matrix β(k). We use the block soft-thresholding operator Sλ(a) =
max(1− λ

∥a∥ , 0)a to obtain each row: e⊤i β(k) = Stkρ′(∥e⊤i β(k−1)∥2)(e
⊤
i β

(k−1) − tke
⊤
i ∇f(β(k−1))).Mo-

tivated by [39], choose tk to be 1/L, where L is the smallest Lipschitz constant of the gradient ∇f
and L = ∥ 1

nX
⊤X∥2.
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Define a quadratic function of α given β,

f∗(α,β) = f(β) + Tr[(α− β)⊤∇f(β)] + L

2
∥α− β∥2F.

It is straightforward to show that f(α) ≤ f∗(α,β) for every α,β ∈ Rp×d and f(β) = f∗(β,β).
Hence, f∗(α,β) is surrogate function of f(α).
Theorem 2. For each k ≥ 1, β(k) is a minimizer ofM(β,β(k−1)) = f∗(β,β(k−1)) +

∑p
i=1 ρ

∗(∥e⊤i β∥2 |
∥e⊤i β(k−1)∥2), then we have

G(β) ≤M(β,β(k−1)), for any β, and G(β(k−1)) =M(β(k−1),β(k−1)).

Furthermore, for k ≥ 1, G(β(k)) ≤ G(β(k−1)).

Theorem 2 shows that the sequence of function values {G(β(k))} is noninceasing, signifying consis-
tent improvement after each iteration. This algorithm, iterative minimizingM(β,β(k−1)), is called
the double approximation shrinkage-thresholding algorithm, denoted asDASTA, since the objective
functionM utilizes local approximation functions for f and ρ simultaneously.

Algorithm 2: DASTA for group-wise MCP.
Input: λ and γ.
Initialize the algorithm with β0 and set k = 0.
repeat

1. Calculate O(k+1) = β(k) − 1
L∇f(β

(k)) = β(k) + 1
nLX

⊤(Y− Xβ(k)).

2. Calculate w(k+1)
i = ρ′(∥e⊤i β(k)∥2)/L, for i ∈ {1, . . . , p}.

3. The i-row of β(k+1) is S
w

(k+1)
i

(e⊤i O
(k+1)).

4. k = k + 1.
until ∥β(k+1) − β(k)∥F ≤ ϵ;

Unlike the LLA algorithm, which involves solving a new penalized regression problem in each it-
eration, the DASTA algorithm simplifies each iteration by leveraging matrix operations to derive
closed-form solutions. This results in significant computational benefits, making this algorithm
computationally efficient.

3.3. Implementation details
Both Algorithms 1 and 2 necessitate the value of the structural dimension d, even though it might
be unknown in practical scenarios. In [26], the authors have proved that there is a disparity among
the adjusted eigenvalues Φi = ϕ̂i∥e⊤i β̂∥2 before and after the actual dimension d. Therefore, they
applied the K-means clustering on Φi with two groups. The estimated d is the number of points in
the group with larger Φi values. Inspired by their findings, we employ the same algorithm on the
estimated β̂ to ascertain the appropriate value of d for each algorithm.

Algorithm 3: Determine structural dimension d.

1. Estimate β̂ when d = m using one of Algorithms 1 and 2, wherem is large enough
number. For example,m = 10.

2. For i ∈ {1, . . . ,m}, calculate Φi = ϕ̂i∥e⊤i β̂∥2.
3. Apply K-means clustering on {Φi} withK = 2.

4. The estimated value of d̂ is the total number in the cluster with larger {Φi}.

When dealing with nonconvex penalization, we fix γ to be 2 and then utilize cross-validation to
determine an optimal λ. The choice of λ exhibits high robustness. Our simulation study only shows
results when λmax/6, where λmax = max{|X⊤Y/n|ij} or max{∥e⊤i X⊤Y/n∥2, i = 1, . . . , p} for LLA
and DASTA algorithms, respectively.
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4. Numerical studies

4.1. Synthetic data analysis
To showcase the effectiveness of our proposed algorithms, we consider sixmethods: the LASSO and
Group-LASSO estimators (See more details in Appendix A.2); two one-step estimators denoted as
LLA_E and LLA_G by solving Equations (5) and (6); two DASTA estimators DASTA0 and DASTAg

using two initial values β0 = 0 and the group Lasso estimate, respectively. Let Ŝ be the index set
of nonzero rows of β̂. To assess the performance, we utilize the following criteria: (1) General loss
∥β̂β̂⊤ −ββ⊤∥F, where β and β̂ are normalized, (2) False positive, the number of inactive variables
incorrectly indicated as active |Ŝ ∩Sc|, (3) False negative, the number of active variables incorrectly
indicated as inactive |S ∩ Ŝc|, and (4) Estimated structural dimension d̂ using Algorithm 3. Let X
be a p-dimensional multivariate normal random vector: X ∼ Np(0,Σ). We consider two covariance
matrices: an identity matrix Σ1 = Ip and a Toeplitz matrix Σ2 = (0.5|i−j|). All three examples are
multiple index models with d = 2. Let β1 = e1 + · · ·+ e5 and β2 = e6 + · · ·+ e10.
Example 1. This example is multivariate responses with Euclidean metric.

Y1 = 1 + β⊤
1 X + ϵ1, Y2 = β⊤

2 X + ϵ2, Y3 = |β⊤
1 X|ϵ3,

where ϵ1, ϵ2, ϵ3 ∼ N(0, 1) and are independent of each other.
Example 2. The response Y is generated as the distribution with quantile function QY (τ) = β⊤

1 X +
β⊤
2 XΦ−1(τ)[16], where Φ(·) is the cumulative distribution function of standard normal. The 2-Wasserstein

distance is utilized to quantify the distance between two distributions.
Example 3. Consider the unit-sphere data [40], where the response Y lives in a 3-dimensional unit sphere
equipped with the geodesic distance arccos(Y ⊤Ỹ ):

Y1 = cos(ϵ) sin{β⊤
1 (X + 1p)} sin{β⊤

2 (X + 1p)},
Y2 = cos(ϵ) sin{β⊤

1 (X + 1p)} cos{β⊤
2 (X + 1p)},

Y3 = cos(ϵ) cos{β⊤
1 (X + 1p)}, Y4 = sin(ϵ),

where ϵ ∼ N(0, 0.12), and 1p is a all-ones vector with length p.

Figure 1 in Appendix A.1 highlights the superior performance of nonconvex penalties in compar-
ison to their convex counterparts for Examples 1 to 3. Specifically, all LLA and DASTA estimators
using nonconvex penalties outperform LASSO and Group-LASSO, effectively reducing estimation
bias and resulting in lower general losses. LLA_E displays a larger variation than DASTA estima-
tors, as depicted in Figures 1(a,b,c). For Example 3 with Σ2, LLA_E exhibits the highest loss among
all six estimators, while the DASTA estimators produce competitive estimates, shown in Figure 1(f).
Moreover, the DASTA algorithm provides similar estimates for different start values. Overall, the
DASTA estimators show superior performance across different types of responses, including mul-
tivariate, distributed, and sphere data.

Figure 2 in Appendix A.1 illustrates the line plots for each method as the sample size n varies from
300 to 2700, with a fixed value of p = 3000 and covariance matrix Σ1. When the sample size is
small, particularly at n = 300, LLA_E has the highest general loss in Examples 1 and 3. This high
loss indicates the instability of the estimator when confronted with a small sample size, primarily
due to an inaccurate initial value. On the other hand, in scenarios with insufficient sample size, the
DASTA methods exhibit smaller loss values compared to LLA estimators.

The simulation results for variable selection and structural dimension detection when n = 1000
and p = 2000 are presented in Table 1 (see Appendix A.1). All six methods successfully identify
all active variables without any false positives. However, the LASSO and Group-LASSO estimators
tend to selectmore inactive variables as active, whereas theDASTA estimators achieve nearly perfect
variable selectionwith smaller false positives and false negatives. Regarding the performance in de-
tecting the structural dimension, the DASTA approaches consistently choose d̂ = 2 and outperform
the other methods including the LLA estimators in various examples and settings.
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4.2. Real data analysis: human mortality data

This section applies three methods: Group-LASSO, LLA_G, and DASTAg to analyze human mor-
tality data2. The database recorded the number of deaths at five-year intervals for every country
in 2021 from 0 to 100 years. These mortality distributions are considered as responses, and the
Hellinger distance is used to quantify the distance between distributions. This section considers the
high-dimensional regime where the number of predictors exceeds the sample size. We simultane-
ously perform sufficient dimension reduction and variable selection using the sparse Fréchet SDR
approach. To this end, we use 236 countries and 52 demographic indicators (except for the Popu-
lation Annual Doubling Time due to missing values) with additional 200 independent predictors
drawn from the standard normal distribution. We then standardize all predictors by centering them
at zero and scaling to unit variance.

The DASTA algorithm estimates the structural dimension of the central subspace to be one, while
the other two methods choose a larger dimension. Therefore, we report the results for d̂ = 1. Ta-
ble 2 in Appendix A.1 shows that Group-LASSO selects seven variables. On the contrary, LLA_G
and DASTAg select a smaller set of variables. Notably, none of the methods selects any of the 200
noise predictors. The three estimates assign high loading values to male life expectancy at birth
and female life expectancy at age 65. Other predictors have relatively small loading values, indi-
cating a weaker impact on age-at-death distributions. To assess the information captured by our
proposed methods, a 3D plot based on the DASTAg results is generated. Figure 3 in Appendix A.1
showcases the mortality densities and their maximum values against the first sufficient predictor
β̂⊤X , showing a positive relationship between the first sufficient predictor and longevity. These
findings offer a fresh perspective on studying human mortality densities across the age range of 0
to 100 years. Consequently, policymakers, government entities, or healthcare workers can focus on
implementing preventive measures against accidents or diseases and providing support for infants
and elderly individuals around the age of 65. These efforts aim to promote healthier and longer
lives for the population.

5. Conclusion

In this paper, we studied the sparse Fréchet SDR problem for regression of non-Euclidean responses
on high-dimensional features. The sparse Fréchet SDR approach has great potential in representa-
tion learning with applications in image and video compression, natural language processing, rec-
ommendation systems, and financial analysis. We proposed a penalized multitask regression ap-
proach to recover the central subspace that contains the core information about the response. This
strategy seamlessly facilitates the integration of various existing regularization techniques, such as
LASSO, group LASSO, and MCP. The approach also avoids inverting large covariance matrices,
a task that can often be computationally prohibitive. Notably, the method is amenable to a wide
range of non-Euclidean response types, providing flexibility in modeling diverse data structures.
We introduced a novel algorithm called DASTA. The DASTA algorithm effectively addresses the
challenges posed by nonconvex optimization problems by transforming them into convex problems
that can be solved efficiently. By doing so, it preserves the advantageous properties of noncon-
vex penalties, thereby eliminating estimation biases and enhancing variable selection. While our
simulation results demonstrate the efficacy of the proposed methods, one of our future endeavors
involves investigating the statistical properties, such as consistency and the minimax rate, of the
sparse WIRE estimators derived from multitask regression with LASSO penalties. We expect that
a similar convergence rate of

√
s log p/n can be achieved. Additionally, it would be interesting to

investigate the statistical properties of MCP in this context.

2The data set can be downloaded from the World Population Prospects Database
https://population.un.org/wpp/Download.
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(c) Example 3 with Σ1

p = 3000 p = 4000 p = 6000
n = 2000

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Ge
ne

ra
l L

os
s Method

LASSO
Group-
LASSO
LLA_E
LLA_G
DASTA0
DASTAg

(d) Example 1 with Σ2
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p = 3000 p = 4000 p = 6000
n = 2000

0.1

0.2

0.3

0.4

0.5

Ge
ne

ra
l L

os
s Method

LASSO
Group-
LASSO
LLA_E
LLA_G
DASTA0
DASTAg

(f) Example 3 with Σ2

Figure 1: These figures show boxplots of general loss to compare six different methods: LASSO,
Group-LASSO, LLA_E (LLA algorithm with entry-wise MCP), LLA_G (LLA algorithm with
group-wise MCP), DASTA0 (DASTA algorithm with initial value β0 = 0), and DASTAg (DASTA
algorithm with the initial value from group Lasso estimate) for Examples 1–3 with covariance ma-
trices Σ1, Σ2 and three different settings of p = {3000, 4000, 6000}, while keeping n fixed at 2000.
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Figure 2: Line plots show the mean and 95% confidence intervals for six methods: LASSO, Group-
LASSO, LLA_E, LLA_G, DASTA0, and DASTAg , with covariance matrix Σ1 in Examples 1–3 when
p = 3000.

A. Appendix

A.1. Simulation and real data results

Figure 1 highlights the superior performance of nonconvex penalties in comparison to their convex
counterparts for Examples 1 to 3. Figure 2 illustrates the line plots for each method as the sample
sizen varies from 300 to 2700, with a fixed value of p = 3000 and covariancematrixΣ1. Table 1 shows
the simulation results for variable selection and structural dimension detection when n = 1000 and
p = 2000 for Examples 1 to 3.
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Table 1: Compare six distinct methods: LASSO, Group-LASSO, LLA_E (LLA algorithmwith entry-
wise MCP), LLA_G (LLA algorithm with group-wise MCP), DASTA0 (DASTA algorithm with ini-
tial value β0 = 0), and DASTAg (DASTA algorithm with the initial value from group Lasso es-
timate) and present the mean and standard deviation of false positive (FP), false negative (FN),
and estimated d based on 100 simulations for Examples 1 to 3 with two covariance structures when
n = 1000, p = 2000.

Cov Example LASSO Group-LASSO LLA_E LLA_G DASTA0 DASTAg

Σ1 1 FP 61.04(28.49) 35.83(20.31) 0.00(0.00) 0.00(0.00) 0.01(0.10) 0.01(0.10)
FN 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

d̂ 2.00(0.00) 4.10(3.65) 2.00(0.00) 3.99(3.58) 2.00(0.00) 2.00(0.00)
2 FP 62.09(25.84) 31.38(19.24) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

FN 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

d̂ 2.00(0.00) 2.81(2.49) 2.00(0.00) 2.72(2.39) 2.00(0.00) 2.00(0.00)
3 FP 35.63(19.64) 25.11(13.29) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

FN 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

d̂ 2.00(0.00) 2.08(0.08) 2.00(0.00) 2.08(0.08) 2.00(0.00) 2.00(0.00)
Σ2 1 FP 40.59(23.10) 19.94(17.06) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

FN 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

d̂ 2.00(0.00) 2.08(0.08) 2.00(0.00) 2.08(0.08) 2.00(0.00) 2.00(0.00)
2 FP 36.37(19.08) 15.60(10.75) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

FN 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

d̂ 2.00(0.00) 2.00(0.00) 2.00(0.00) 2.00(0.00) 2.00(0.00) 2.00(0.00)
3 FP 25.77(15.83) 14.49(8.96) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

FN 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

d̂ 1.94(0.24) 1.97(0.17) 1.98(0.14) 1.97(0.17) 2.00(0.00) 2.00(0.00)

In the real data analysis, some selected variables are Median Age (MedianAge), Life Expectancy
at Birth (LEx) for both sexes and for males only (LExMale), Life Expectancy at Age 15 (LE15) for
both sexes and for females only (LE15Female), Female Life Expectancy at Age 65 (LE65Female),
and Male mortality before Age 60 (Q0060Male). Table 2 shows that Group-LASSO selects seven
variables, including Median Age (MedianAge), Life Expectancy at Birth (LEx) for both sexes and
for males only (LExMale), Life Expectancy at Age 15 (LE15) for both sexes and for females only
(LE15Female), Female Life Expectancy at Age 65 (LE65Female), and Male mortality before Age 60
(Q0060Male). While LLA_G and DASTAg select a smaller set of variables, including LExMale and
LE65Female.

Table 2: First direction β̂ captured by Group-LASSO, LLA_G, and DASTAg , respectively.

Methods MedianAge LEx LExMale LE15 LE15Female LE65Female Q0060Male
Group-LASSO 0.0065 0.0082 0.0617 0.0368 0.0001 0.0714 -0.0004
LLA_G 0 0 0.0790 0.0304 0 0.0794 0
DASTAg 0 0 0.0915 0 0 0.0982 0

A.2. Sparse WIRE with Lasso and group-Lasso penalties

Consider an ℓ1 penalty on β, that is g(β) = ∥β∥1 =
∑d

i=1 λi∥βi∥1. This penalty is equivalent to
performing multiple Lasso regressions, applying the Lasso penalty to each column of the pseudo
response Y. Thus, we solve the following optimization problems for 1 ≤ i ≤ d:

β̂i = argmin
βi∈Rp

1

2n
∥Yi − Xβi∥22 + λi∥βi∥1, (7)

where Yi is the ith column of Y and λi is a tuning parameter. The final estimator β̂ is a matrix com-
posed of (β̂1, β̂2, . . . , β̂d), and it is referred to as a LASSO WIRE estimator. This approach recovers
the central subspace SY |X by applying the Lasso penalty to each univariate regression model. The
corresponding algorithm is the following.

13



(a) Distribution

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
First Sufficient Predictor

0.10

0.12

0.14

0.16

0.18

0.20

0.22

M
ax

im
um

(b) Maximum

Figure 3: (a) 3D Plot of mortality densities versus the first sufficient predictor; (b) Scatter plot of
the maximum value of densities versus the first sufficient predictor.

Algorithm 4: Algorithm for the LASSOWIRE estimator.

1. Let η̂ and ϕ̂1, . . . , ϕ̂d be the first d eigenvectors and eigenvalues of Λ̂.

2. Let Y = − 1
n−1DXη̂diag{1/ϕ̂1, . . . , 1/ϕ̂d} and solve the Lasso regression problems,

β̂i = argmin
βi∈Rp

1

2n
∥Yi − Xβi∥22 + λi∥βi∥1, for 1 ≤ i ≤ d.

3. β̂ = (β̂1, β̂2, . . . , β̂d) is the estimate.

Recall that the index set S represents the corresponding active predictors. If the ith row ofβ consists
entirely of zeros, then the corresponding predictor is inactive, i.e., i /∈ S. To encourage row sparsity
on β, we consider implementing an alternative penalty to (4), that is group Lasso penalty: g(β) =∑p

i=1 λ∥e⊤i β∥2, where ei is the ith canonical basis vector in Rp. Thus, we consider the optimization
problem (8) as follows:

β̂ = argmin
β∈Rp×d

f(β) +

p∑
i=1

λ∥e⊤i β∥2. (8)

Denote theminimizer of (8) asGroup-LASSOWIRE estimator. The algorithm is summarized below.

Algorithm 5: Algorithm for Group-LASSOWIRE estimator.

1. Let η̂ and ϕ̂1, . . . , ϕ̂d be the first d eigenvectors and eigenvalues of Λ̂.

2. Let Y = − 1
n−1DXη̂diag{1/ϕ̂1, . . . , 1/ϕ̂d} and solve the multitask group-Lasso regression

problem,

β̂ = argmin
β∈Rp×d

f(β) +

p∑
i=1

λ∥e⊤i β∥2.

To implement the optimization problems presented in Algorithms 4 and 5, we utilize widely-used
software packages, namely glmnet in R or scikit-learn in Python. These packages employ cross-
validation to select the optimal tuning parameter λ and generate sparse estimates for the central
subspace. Hence, we use these methods as benchmarks for comparison purposes. In the subse-
quent section, we introduce our novel algorithms, which solve optimization problems with non-
convex penalties and demonstrate superior numerical performance compared to the benchmark
algorithms.
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A.3. Proofs
Proof of Lemma 1: Consider the case when t > t0 and want to proof

ϕ(t)− ρ∗(t) = ϕ(t)− ρ(t0)− (t− t0)ρ
′(t0) ≥ 0

To do that, use the convexity of ϕ(t), for t0 < tk < t, k ≥ 1, we have

ϕ(t)− ϕ(t0
t− t0

≥ ϕ(tk)− ϕ(t0)

tk − t0

≥ ρ(tk)− ρ(t0)

tk − t0

The second inequality dues to that ϕ is one maximization function. Let k go to infinity, then

ϕ(t)− ϕ(t0)

t− t0
≥ ρ′(t0),

which is what we want. Similarly, we can proof ϕ(t) ≥ ρ∗(t) for t < t0.

Proof of Theorem 1: Recall that G(β) = f(β) +
∑p

i=1 ρ(∥bi∥2), and N(β,β(k)) = f(β) +∑p
i=1 ρ

∗(∥e⊤i β∥2 | ∥e⊤i β(k)∥2). Based on Lemma 1, ρ∗ is the best maximization function of ρ,
hence, ρ(∥e⊤i β∥2) ≤ ρ∗(∥e⊤i β∥2 | ∥e⊤i β(k)∥2) and ρ(∥e⊤i β(k)∥2) = ρ∗(∥e⊤i β(k)∥2 | ∥e⊤i β(k)∥2) for
i ∈ {1, . . . , p}. Then we have

G(β) ≤ N(β,β(k)) and G(β(k)) = N(β(k),β(k)).

Note that β(k+1) is minimizer of N(β,β(k)), hence N(β(k+1),β(k)) ≤ N(β,β(k)) for any β.

G(β(k+1)) ≤ N(β(k+1),β(k))

≤ N(β(k),β(k))

= G(β(k)).

Proof of Theorem 2: This is similar to the proof of Theorem 1. Note that M(β,β(k−1)) =
f∗(β,β(k−1)) +

∑p
i=1 ρ

∗(∥e⊤i β∥2 | ∥e⊤i β(k−1)∥2). Both f∗ and ρ∗ are maximization functions of f
and ρ, respectively. Hence, G(β) ≤ M(β,β(k−1)) and G(β(k−1)) ≤ M(β(k−1),β(k−1)). Also we
have β(k) is minimizer ofM(β,β(k−1)).

G(β(k)) ≤M(β(k),β(k−1))

≤M(β(k−1),β(k−1))

= G(β(k−1)).
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