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ABSTRACT

Mobile Phone Agents (MPAs) have emerged as a promising research direction
due to their broad applicability across diverse scenarios. While Multimodal Large
Language Models (MLLMs) serve as the foundation for MPAs, their effectiveness
in handling multiple mobile phone tasks simultaneously remains limited. Although
multitask supervised fine-tuning (SFT) is widely adopted for multitask learning,
existing approaches struggle to determine optimal training data compositions for
peak performance. To address this challenge, we propose DaMo (Data Mixture
Optimizer) – a novel solution employing a trainable network that predicts optimal
data mixtures by forecasting downstream task performance for any given dataset
ratio. To support comprehensive evaluation, we introduce PhoneAgentBench, the
first specialized benchmark to evaluate MLLMs on multimodal mobile phone tasks,
comprising 1,235 QA pairs spanning diverse real-world industrial mobile applica-
tion scenarios. Demonstrating strong predictive capability (R²=0.81) in small-scale
pilot experiments, DaMo efficiently extrapolates optimal data mixing configura-
tions. Our results show DaMo achieves a 3.38% performance improvement on
PhoneAgentBench compared to alternative methods. Furthermore, extensive ex-
periments across established benchmarks including BFCL-v3, MME-Reasoning,
MME-Perception, and OCRBench reveal DaMo’s superior generalization, outper-
forming other approaches by 2.57% in terms of average score. When used solely for
MLLM optimization on the BFCL-v3 task, DaMo improves the metrics by 12.47%
than other methods. Notably, DaMo maintains robust scalability, preserving its
effectiveness when applied to other model architectures.

1 INTRODUCTION

Mobile phone agents (MPAs) have attracted huge attention due to their practicability in a multitude of
scenarios. An ideal MPA has to master multiple capabilities, such as environment perception Zhang
et al. (2024); Ingold (2021), task planning Song et al. (2023); Liu et al. (2024b), multimodal
reasoning Lu et al. (2022); Wang et al. (2024), function call Chen et al. (2024a); Basu (2024), and
personalized memory Li et al. (2024a); Yuan et al. (2023).

The advent of multimodal large language models (MLLMs) provides a promising solution for the
ideal agent. However, existing MLLMs encounter significant challenges in effectively integrating
these diverse capabilities. Consequently, developing a versatile model capable of handling multiple
tasks is critical for creating a advanced phone agent.

Multitask supervised fine-tuning (SFT) is the predominant approach utilized to empower MLLMs in
addressing multiple tasks. Nevertheless, in light of numerous training datasets and downstream tasks,
identifying optimal data blending strategies to maximize model performance remains a significant
research challenge. The existing works on data mixture optimization Xie et al. (2023b); Ge et al.
(2024); Albalak et al. (2023) focus on the pretraining phase by predicting validation loss. However,
these methods are inadequate to determine the optimal data mixture for multitask SFT, as they fail to
directly correlate with model performance on downstream tasks.

We investigate whether downstream task performance can be reliably predicted for any given data
mixture prior to actual model training, including identifying the optimal mixture that would yield
optimal performance. To this end, we propose the downstream task performance prediction (DaPP)
method to build Data Mixing Optimizer (DaMo). DaPP leverages a function to straightly predict
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Figure 1: Illustration of our pipeline for obtaining the optimal data mixture. Left: Given m training
sets with a batch size of b, all possible mixture combinations constitute the data mixing space. We
sample a small number of data mixture from this space, train them on a small MLLM, and then
evaluate downstream task performance. Using the data mixture as inputs and the metrics as outputs,
we fit a MLP to establish the DaMo. By extrapolating from the data mixing space, we predict the
optimal data mixture to train the MLLM. Right: Demonstrates the extension and alignment of DaMo
to other MLLMs and new data mixing spaces.

model performance at downstream tasks. Considering that exponential functions used in Xie et al.
(2023b); Ge et al. (2024); Albalak et al. (2023) are not well-aligned with SFT performance trajectories
for specific downstream applications Huang et al. (2019); Xie et al. (2024); Isik et al. (2024), we
propose to utilize a trainable neural network for target fitting. The optimal data mixture is obtained
through extrapolation via DaMo, with the process shown in Fig. 1.

Another obstacle in developing an ideal mobile phone agent is the absence of comprehensive real-
world industrial benchmarks for evaluating MPA performance. Current benchmarks Gao et al. (2024);
Cheng et al. (2024); Li et al. (2025); Wang et al. (2025) in this domain predominantly focus on
Graphical User Interface (GUI) tasks, which fail to capture the full spectrum of practical application
scenarios. To address this critical gap, we introduce PhoneAgentBench - a thorough benchmark
encompassing four fundamental capabilities: 1) complex task planning, 2) device-native tool usage,
3) multimodal memory, and 4) screen context understanding. Our benchmark comprises 2,350
meticulously validated test cases that simulate real-world phone interactions, with 55% necessitating
the simultaneous activation of more than 3 tools.

Our proposed DaMo demonstrates three key advantages. First, it achieves 3.38% average performance
gain on PhoneAgentBench compared to state-of-the-art method, DML Ye et al. (2024). Second, when
evaluated on the general benchmarks including BFCL-v3 Yan et al. (2024), MME-perception Fu et al.
(2023), MME-reasoning Yuan et al. (2025), and OCRBench Liu et al. (2024c), DaMo outperforms
DML by 2.57% in terms of average score. Third, DaMo exhibits robust scalability—Pearson
correlations between predicted and actual scores remaining consistently high (0.75~0.95) across other
models, while introducing significant gains on downstream tasks over other methods.

Our core contributions are as follows.

• We propose Downstream Task Performance Prediction method to establish a Data Mixing
Optimizer, which directly estimates model performance on downstream tasks for optimal
data mixing.

• We construct PhoneAgentBench, a benchmark spanning four critical dimensions: complex
task planning, device-native tool usage, multimodal memory, and screen context understand-
ing, mirroring real-world mobile interaction scenarios.

• Through systematic experiments, our method demonstrates exceptional generalization and
scalability, outperforming other methods on PhoneAgentBench, and achieving state-of-
the-art performance on the BFCL-V3 leaderboard among 4B-scale models, while also
maintaining stable prediction accuracy with efficient adaptation to other models.
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Table 1: PhoneAgentBench

Dataset Evaluation ability Data size Dataset Evaluation ability Data size
MT-Plan Mulitmodal Task Planning 100 MM-RR Multimodal Reference Resolution 130

ACU Agent Context Understand 100 MM-NER Multimodal Named Entity Recognition 376
APP-Rec APP Recognition 100 Mobile-FC Mobile Function Calling 429

2 RELATED WORK

Data Mixing Data mixtures follow distinct optimization paths in pre-training versus fine-tuning.
Current research can be broadly divided into two paradigms. For pre-training, methods optimize
language model perplexity (PPL). Early heuristic approaches like uniform sampling Michel et al.
(2021) gave way to learnable solutions; DoReMi Xie et al. (2023a) uses Group DRO Sagawa
et al. (2020) for domain weights; ODM Albalak et al. (2023) frames selection as a bandit problem;
BiMix Ge et al. (2024) jointly optimizes domain proportions and data scaling. All these PPL-focused
approaches differ fundamentally from fine-tuning objectives.

Fine-tuning research remains limited: industrial solutions (LLaMA3 Grattafiori et al. (2024), Tulu3
Lambert et al. (2024)) rely on costly manual iteration; SFTMix Xiao et al. (2024) optimizes intra-
dataset ratios but cannot handle multi-source data; MoE-based methods Zhu et al. (2024) adjust
weights but lack interpretable criteria. Key gaps remain in developing general multi-source mixing
schemes and theoretical guidance for fine-tuning datasets.

Agent Benchmark Recent advancements in agent-based systems have spurred various benchmarks
to evaluate their capabilities. PlanBench Valmeekam et al. (2023) and REALM-Bench Geng &
Chang (2025) assess planning capabilities. ToolBench Qin et al. (2023), BFCL Yan et al. (2024), and
API-Bank Li et al. (2023) evaluate tool invocation and ReflectionBench Li et al. (2024b) measures self-
reflection. LTM Benchmark Castillo-Bolado et al. (2024) tests memory retention. These benchmarks
are limited to single-dimensional evaluations, lacking holistic assessment. GAIA Mialon et al. (2023)
uses end-to-end evaluation to assess general agents, but lacks granularity. AgentBench Liu et al.
(2023) and KAgentBench Pan et al. (2023) are unimodal, ignoring multimodal interaction. Moreover,
all of these benchmarks deviates from real-world phone scenarios. ScreenSpot-Pro Cheng et al.
(2024), MobileViews Gao et al. (2024), VisualAgentBench Liu et al. (2024a), ScreenSpot-Pro Li et al.
(2025), and MMBench-GUI L2 Wang et al. (2025) can evaluate phone agents, but they are designed
mainly for GUI tasks in mobile scenarios. A critical gap remains: the absence of a comprehensive
benchmark supporting multimodal interaction while systematically evaluating mobile phone agents
across planning, tool usage, memory, and other dimensions. This hinders iterative optimization and
underscores our work’s innovation potential.

3 PHONEAGENTBENCH

Current open-source agent evaluation benchmarks Valmeekam et al. (2023); Li et al. (2024b); Liu
et al. (2023); Geng & Chang (2025) are unable to assess agents for tackling multimodal tasks in
mobile phone scenarios. Mobile Phone agent relevant benchmarks Gao et al. (2024); Cheng et al.
(2024); Li et al. (2025); Wang et al. (2025) primarily evaluate the GUI tasks of MLLMs. However,
they lack support for multimodal interaction and do not provide systematic evaluation across key
dimensions such as planning, tool use, and memory. This mismatch with mobile phone agent
scenarios poses a significant challenge. To address this gap, we aim to develop a benchmark tailored
to real-world industrial application scenarios, thereby accelerating the practical implementation of
agent technology.

We develop a novel benchmark suite specifically designed for mobile phone agents. This suite
encompasses six carefully curated datasets focusing on key mobile phone application tasks, thereby
offering a holistic assessment of phone agents’ performance across diverse capabilities critical to
real-world mobile applications. Details of the tasks are provided in Table 1. We describe the data
construction process using the Multimodal Task Planning task (MT-Plan) as a case in point.
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Figure 2: MT-Planning example

MT-Plan MT-Plan is designed to evaluate multimodal task planning capabilities. Unlike T-Eval
planning Chen et al. (2023), it focuses on multimodal complex task interactions in phone agent
scenarios. As shown in Fig.2, MT-Plan takes <image + query> as input and outputs a planning
structured as a directed acyclic graph (DAG). Images are sourced from real photos or mobile
screenshots, while tools are derived from APIs provided by operating systems or app ecosystems.
Queries and plannings are carefully constructed by annotators based on the images. Queries are
required to be concise, colloquial, and aligned with real users’ daily needs. Meanwhile, tasks must be
sufficiently complex to require plannings to invoke at least 2 tools. To ensure data accuracy, three
annotators were invited to conduct cross-validation. Additionally, to evaluate the dataset’s complexity
and diversity, we compared the metrics of MT-Plan and T-Eval planning, as presented in Table 7.

The MT-Plan evaluator adopts the T-Eval planning evaluator Chen et al. (2023): it compares the
predicted plan with the golden plan, and calculates the score based on the length of the longest
ordered action sequence derived from similarity-matched pairs.

The construction methods of the remaining five datasets are presented in AppendixA.2.

4 METHODOLOGY

This section formalizes multitask fine-tuning optimization as identifying the optimal data mixture to
maximize downstream task metrics. We propose predicting unseen mixture performance by fitting the
performance of downstream tasks with limited training configurations. Analysis of single and dual
dataset experiments demonstrates why exponential/power-law functions fail to model convergence
patterns, prompting our neural network solution for extrapolating optimal data mixture.

4.1 PROBLEM FORMULATION

Consider fine-tuning a MLLM using a mixture of m heterogeneous training datasets, denoted
as D = ∪mi=1Di. Each Di contains ni labeled samples with the total number of samples being
N =

∑m
i=1 ni. We fine-tune the MLLM starting from initial parameters θ0, using a batch size b, for

a maximum of T = ⌈N/b⌉ training steps.

We define the data mixture proportion as p = [p1, p2, ..., pm], where pi represents the proportion
of samples drawn from dataset Di. The data mixture proportion p satisfies

∑m
i=1 pi = 1.

Similarly, we consider k downstream test datasets, denoted as Dtest = ∪kj=1Dtest
j . Let s =

[s1, ..., sk] ∈ [0, 1]k represent the score of each test dataset. The overall average score of the MLLM
with parameters θ is given by Sθ = 1

k

∑k
j=1 sj .

We aim to find the optimal data mixture proportion p∗ ∈ P (where P denotes the complete data
mixing space, p ∈ Rm) that maximizes the overall average score of downstream tasks:

p∗ = argmax
p∈P,t≤T

Eθ∼A(p,t,θ0)Sθ (1)

4
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where A denotes the fine-tuning process that produces the MLLM’s parameters θ based on the initial
parameters θ0 for t steps using the data mixture strategy p.

Without any constraints, the size of the set P that represents batch-wise permutations is given
by |P| = N !

(b!)T
, which is computationally intractable. Therefore, we introduce some necessary

assumptions to prune the space P . By disregarding the order of samples within the same dataset and
keeping the data mixture fixed throughout the entire number of training steps T , we obtain a smaller
data mixing space Pfix. According to the principle of combination with repetition, the size of this
fixed data mixing space Pfix is given by |Pfix| = Cm

m+b−1.

4.2 PERFORMANCE PREDICTION OF DOWNSTREAM TASKS

We aim to find the optimal mixture p∗ ∈ P . Given the high training cost of MLLMs, an exhaustive
brute-force search is clearly impractical. To address this problem, we propose DaMo which is able to
estimate model performance at downstream tasks without training, given any mixture proportions of
training data. Towards this target, we fit a function f to predict performance based on data mixtures.
To obtain accurate f , a efficient sampling approach is proposed to generate training samples. The
sampling process is detailed as: 1) Randomly select a small set of m-dimensional mixing ratios
from Pfix. 2) Train MLLM while saving checkpoints at every τ steps. 3) Evaluate each checkpoint
to obtain the performance of downstream tasks. This process yields the mapping: (data mixture,
training steps) → performance of downstream tasks. Based on these samples, we fit f to predict the
performance trajectory of unseen mixture:

ŝ = f(p, t; θ0), (2)

where θ0 is initial model state and t = τ ∗ i is train steps of the i-th checkpoint. With an accurate
fitting of f , we can extrapolate performance estimates across the entire Pfix space, dramatically
reducing the model training costs required to identify the optimal data mixture.

(a) Performance under single-dataset training (b) Performance under dual-dataset mixtures

Figure 3: Training dynamics on downstream tasks

The critical challenge lies in selecting an appropriate function f . While conventional exponential or
power-law functions Achiam et al. (2023); Grattafiori et al. (2024) are widely adopted for pretraining
loss convergence, we hypothesize their inadequacy in multi-task fine-tuning scenarios involving
interacting datasets. To validate this, we systematically analyze training dynamics under two configu-
rations: (1) single-dataset training (MultiModal-Understanding, MMU) and (2) dual-dataset mixtures
(APP Recognition (APP-Rec) + MMU, see Section 5.1).

We trained a MLLM on the MMU dataset and evaluated its performance on PhoneAgentBench.
As shown in Fig. 3(a), the results reveal distinct task-specific patterns: (1) Enhancement: MMU
significantly improves ACU performance. (2) Conflict: APP-Rec performance degrades with MMU
training steps. (3) Neutrality: MM-NER shows no correlation with MMU training. (4) Overfitting:
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MT-Plan exhibits initial gains followed by sharp declines, indicating harmful overfitting beyond
optimal data volume.

Fig. 3(b) demonstrates the complex interaction when training on the mixed dataset of APP-Rec
and MMU for the APP-Rec task. The 3D performance surface (X: training steps, Y: APP-Rec
training dataset ratio, Z: APP-Rec bench score) exhibits non-convex topology with non-monotonic
fluctuations along both axes. This nonlinearity fundamentally prevents analytical solutions for Eq. 1
and invalidates conventional exponential and power functions.

Motivated by neural networks’ capacity to model high-dimensional nonlinearities, we pioneer their
application to DaMo. Our framework implements f as a multi-layer perceptron (MLP) that directly
maps data mixture and training step to task performance:

ŝ = fMLP (p, t; θ0), (3)

4.3 OPTIMAL DATA MIXTURE EXTRAPOLATION

When we define the data mixture space as Pfix and employ MLP as the fitting function, the
optimization objective in Eq. 1 can be reformulated as follow.

p∗
fix = argmax

p∈Pfix,t≤T

1

k

k∑
j=1

f j
MLP (p, t; θ0). (4)

Where j denotes jth downsteam task. Given the negligible inference cost of MLP models, DaMo can
efficiently extrapolate the optimal data mixture. We first iterate through all possible data mixtures in
the Pfix space to predict downstream task performance scores. Subsequently, we sort these predicted
scores and select the top-k highest-scoring mixtures to train our MLLM. This approach enables us to
systematically identify the optimal data mixture without exhaustive empirical testing. The complete
algorithm pseudocode is provided in Appendix B.

5 EXPERIMENTS

5.1 EXPERIMENTS SETTINGS

Training datasets Our training data corpus integrates 12 open-source and self-built datasets,
encompassing both Chinese and English languages. The comprehensive dataset contains a total of
220K instructions, providing a diverse and extensive resource for our model training. Details are
provided in Appendix A.3

Downstream Task Evaluation Besides PhoneAgentBench, we further evaluated our method on
four widely used open-source benchmarks to verify generalization, including BFCL-V3 Yan et al.
(2024), MME-perception Fu et al. (2023), MME-reasoning Yuan et al. (2025) and OCRBench Liu
et al. (2024c). These benchmarks collectively encompass a total of ten evaluation tasks, and all
metrics are expressed as percentages (0-100%), with higher values indicating superior performance.

Baseline We selected two heuristic approaches commonly used in industry and one representative
loss-based exponential fitting method: Uniform Mixture: All datasets are sampled with equal
weights. Natural Mixture: Sampling weights are proportional to the size of each dataset. Data
Mixing Laws (DML) Ye et al. (2024): An exponential function-based loss fitting method to predict
the optimal mixture.

Implement Details We conducted a series of experiments to verify the effectiveness of DaMo.
Initially, we performed training and evaluation based on InternVL2.5-4B Chen et al. (2024b) to
obtain fitting samples (in the format of (p, t, s)) for a two-layer MLP training. Subsequently, we
calculated the coefficient of determination (R2) Wright (1921) via 10-fold cross-validation to verify
the fitting performance. Then, we used the MLP to predict the downstream task performance of
unseen data mixtures and train MLLM on the optimal data mixture. Finally, we verified the scalability
of DaMo on other models. Additional implement details are available in Appendix A.1.
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5.2 FITTING SCORE OF NEURAL NETWORK

As analyzed theoretically for Pfix in Section 4.1, when the number of training datasets m = 12 and
batch size b = 16, Pfix forms a discrete enumerable space with a size of

(
12+16−1

12

)
≈ 1.7 · 107. This

is a fairly large space, so how many sample points does DaMo need to fit the entire Pfix well? We
gradually increased the number of training sample points for the MLP, and as shown in Table 2, when
the number reaches 250, the fitting score of the MLP gradually converged. Considering the training
cost, we stopped further experiments. Notably, 250 samples account for only a negligible portion of
the entire Pfix space, yet they enable R2 = 0.81 in 10-fold cross-validation. This indicates that the
performance of MLLM on downstream tasks has an inherent connection with the characteristics and
mixing patterns of training data, and DaMo learns this mapping via neural networks.

Table 2: MLP fitting dynamics

Number of fitting samples Cost of getting samples (H20-hours) Score (R2)
50 872 0.58
100 1817 0.57
150 2581 0.74
200 3521 0.78
250 4225 0.81

5.3 DOWNSTREAM TASK PERFORMANCE OF UNSEEN DATA MIXTURES

We commence with a systematic analysis of the sample point distribution. As shown in Fig. 4(a),
the score distribution under random data mixtures approximately follows a normal distribution,
revealing two critical characteristics: (1) The absence of a right-side long tail indicates that excellent
data mixtures are extremely sparse. (2) The performance of random mixture is predominantly
mediocre, and baseline methods (vertical dashed line) show no discernible advantage, demonstrating
the inefficiency of heuristic approaches.

We used DaMo to predict across Pfix space, selected the top 50 data mixtures with the best predicted
performance, and conducted actual training and evaluation on MLLM. The distribution of their
performance is shown in Fig. 4(b), DaMo successfully identifies data mixtures with significantly
higher overall average scores compared to baseline methods.

(a) Random data mixtures (b) Predicted top 50 data mixtures

Figure 4: Probability distributions of overall average scores across different checkpoints.

Through selecting mixture with top 1 predicting score on PhoneBenchAgent and open-source bench-
marks to train MLLM, we obtain the performance on PhoneBenchAgent and open-souce benchmarks,
as shown in Table 3. DaMo achieves more than 23% (from 44.83% to 68.18%) improvement over
the native model (without SFT) on PhoneAgentBench, surpassing both uniform and natural mixture
strategies. When general capabilities are concurrently considered, DaMo enhances domain-specific
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Table 3: Main results on PhoneAgentBench and open-source benchmarks by using top-1 data mixture
to train MLLM, predicted by DaMo on PhoneAgentBench and open-source benchmarks.

Method MT-Plan APP-Rec MM-RR ACU MM-NER Mobile-FC OS
Avg.

PAB
Avg.

Overall
Avg.

w/o SFT 20.00 6.00 65.38 39.18 84.08 54.31 68.77 44.83 54.40
uniform 54.50 56.00 44.62 86.37 81.71 45.92 55.76 61.52 59.22
natural 47.00 46.00 86.15 83.10 79.83 49.88 59.95 65.33 63.18

DML Ye et al. (2024) 52.00 43.00 85.38 85.72 80.01 42.66 65.48 64.80 65.07
DaMo 55.50 51.00 86.15 85.30 83.34 47.79 68.05 68.18 68.13

Table 4: Main results on open-source benchmarks of MLLMs trained by predicted optimal data
mixture on open-source benchmarks.

Method BFCL-V3 MME-perception MME-reasoning OCRBench OS Avg.
w/o SFT 29.32 83.82 79.42 82.50 68.77
uniform 34.69 58.63 64.91 64.80 55.76
natural 31.41 75.47 67.01 65.90 59.95

DML Ye et al. (2024) 25.47 83.31 76.34 76.8 65.48
DaMo 43.15 84.53 80.94 83.60 73.06

DaMo (∗) 47.43 85.12 82.54 83.90 /

∗: These scores correspond to different checkpoints, which are optimized by DaMo on a single task.

capabilities on the PAB while preserving generalizability, yielding an overall average score improve-
ment of 13.73%. Compared to DML Ye et al. (2024), we observe stable performance gains across
almost all tasks, which validates the advantage of fitting the relationship between data mixtures and
downstream performance.

To study the generalization of DaMo on general tasks, we employ DaMo to predict MLLM’s
performance only on open-source benchmarks, and use the top-1 data mixture to train MLLM,
reporting the results in Table 4. It can be observed that our DaMo achieves remarkably superior
performance across all open-source benchmarks compared to baselines. It is noteworthy that focusing
on task-specific objectives leads to significantly greater improvements. This is clearly demonstrated
by the performance growth from 29.32% to 47.43% on the BFCL-V3 benchmark, implemented by
DaMo (BFCL-V3) which predicts the performance on BFCL-V3 benchmark only to search optimal
data mixture. Crucially, this enhancement is sustained even in the absence of any task-curated
training data. We posit that the observed performance benefit is fundamentally driven by DaMo’s
methodology of exploring optimal mixtures, which orchestrates a balanced advancement across both
specialized and generalizable capabilities.

5.4 EXTENSION TO OTHER MODELS

We are concerned with the effective generalization of the DaMo to other models. Most current
work on data mixture during the pretraining phase assumes that data mixture strategies can be
directly transferred from smaller models to larger ones Xie et al. (2023b), but their applicability
in the supervised fine-tuning phase remains unverified. To this end, we conducted experiments on
transferring DaMo obtained from InternVL2.5-4B to Qwen2.5VL-3B-Instruct, Qwen2.5VL-7B-
Instruct Bai et al. (2025), and InternVL3-14B Zhu et al. (2025) with zero or minimal additional
training cost.

Table 5: Main results of scalability testing on PhoneAgentBench and open-source Benchmarks

Model w/o SFT uniform natural DML DaMo (orig.) DaMo (lin.)

Qwen2.5VL-3B-Inst. 56.25 65.15 64.82 65.03 68.02 68.66
Qwen2.5VL-7B-Inst. 59.43 68.48 65.99 66.37 67.79 69.09

InternVL3-14B 67.84 63.56 67.8 66.45 68.86 69.75
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We randomly selected a subset of data mixtures from the training and extrapolation samples of the
original DaMo and used them to train the new model. As shown in the upper panel of Fig. 5, the
Pearson correlation coefficients (r) are generally above 0.75, demonstrating the robust cross-model
applicability of DaMo. This suggests that optimal mixtures identified for the base model likely remain
near-optimal for the target models.

Due to the varying capabilities across different models, directly transferring DaMo to other models
introduces prediction biases. Therefore, we regard DaMo as a model-agnostic predictor: for a new
model, we train 20 calibration samples to fit a linear layer that compensates for model discrepancies.
The linear-mapped DaMo is defined as g = f(.)w + b (see details in Appendix C). As shown in the
bottom panel of Fig. 5, after applying this linear mapping, the discrepancies between models are
reduced, leading to a further enhancement in correlation with r increasing to above 0.9.

Figure 5: Scalability Analysis. Top: Scatter plot comparing the predicted overall average scores
by the original DaMo against the actual scores of target models. Bottom: Apply linear-mapped
correction to DaMo.

We performed training and evaluation on the new models using the optimal data mixture predicted
by DaMo. As shown in Table 5, directly applying the original DaMo achieves competitive overall
average scores, demonstrating the stable transferability of DaMo. Using the linear-mapped DaMo,
the scores can be further improved, indicating that the linear mapping mitigates differences in model
capabilities and better aligns DaMo with target models.

6 CONCLUSION

In this paper, we present the Data Mixing Optimizer (DaMo) to optimize data mixtures in multitask
fine-tuning of multimodal large language models. By introducing downstream task performance
prediction with neural network-based modeling, DaMo can predict model performance for any given
data mixture. To support comprehensive evaluation, we introduce PhoneAgentBench for evaluation
of multimodal large language models on phone agentic tasks. Moreover, DaMo can be extended
to other models and tasks. Experimental results demonstrate the efficacy of DaMo not only on
PhoneAgentBench, but also on general benchmarks, outperforming the state-of-the-art methods.

9
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A DETAILS OF EXPERIMENTS SETTING

A.1 IMPLEMENT DETAILS

We applied a series of experiments to verify the effectiveness of DaMo. Initially, we conducted
training and evaluation on InternVL2.5-4B Chen et al. (2024b) to obtain fitting samples for the MLP.
Specifically, we first sampled 250 random data mixtures p from Pfix. For each mixture, training was
performed on 8 NVIDIA H20 GPUs, and checkpoints were saved at 4 distinct training steps—resulting
in a total of 1000 checkpoints. All 1000 checkpoints were then evaluated on downstream tasks, which
generated 1000 sample points in the format of (p, t, s). The hyperparameters for training the MLLM
are listed in Table 6.

Subsequently, we fitted the MLP on these 1000 sample points. MLP is structured as a two-layer multi-
layer perceptron (MLP) built upon sklearn.MLPRegressor, where each of the two hidden
layers contains 100 neurons. To verify the model’s fitting score, we assessed the coefficient of
determination (R2) Wright (1921) of DaMo via 10-fold cross-validation. More details of MLP are
provided in Table 6.

Then, we utilized DaMo to predict the downstream task performance of unseen data mixtures.
Leveraging the low inference cost of the MLP, we conducted performance predictions for all mixtures
p ∈ Pfix. Among these, the 50 data mixtures with the optimal predicted performance were selected
for further model training and validation, aiming to obtain actual performance metrics.

Finally, to verify the scalability of DaMo on other models, we extended DaMo (based on InternVL2.5-
4B) to Qwen2.5VL-3B-Instruct, Qwen2.5VL-7B-Instruct Bai et al. (2025), and InternVL3-14B
Zhu et al. (2025). For these new models, we trained a small number of random mixtures, analyzed
the correlation between DaMo’s predicted performance and the actual training performance, and
meanwhile used DaMo to find the optimal mixtures on the new models to verify whether it still
maintains competitiveness compared with the baselines.

Table 6: Hyperparameters of training

Model Hyperparameters setting

MLLMs

AdamW β1 0.9
AdamW β2 0.95
AdamW ϵ 1e− 6

Max Sequence Length 16384
Batch Size 16

Gradient Accumulation Steps 8
Training Steps 1440
Warmup Steps 144

Peak Learning Rate 1e− 5
Weight Decay 0.1

Gradient Clipping 1.0

MLP

Input Layer Dimension 12
Hidden Layer 1 Dimension 100
Hidden Layer 2 Dimension 100
Output Layer Dimension 10

Activation Function ReLU
Optimizer Adam

Learning Rate 1e− 6
Training Steps 10000

A.2 EVALUATION DATASETS

To guarantee the faithfulness of the proposed PhoneAgentBench, we implemented a rigorous workflow
encompassing data filtering, synthetic data generation, and manual verification. Details information
about our evaluation datasets for PhoneAgentBench are as follows.
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A.2.1 MULTIMODAL TASK PLANNING

We introduce the two metrics of complexity and diversity to evaluate the quality of the benchmark for
the task planning.

• Complexity: The answer of MT-Planning can be viewed as a directed acyclic graph (DAG),
where each subtask is a node and the dependency relationship between subtasks are edges.
Thus, complexity can be expressed as nedge/nnode.

• Diversity: The higher the similarity between queries in a dataset, the lower the diversity of
that dataset. We use Rough-L to calculate the similarity between every pair of queries, and
diversity can be expressed as 1− 1

N(N−1)/2

∑
i̸=j Rough-L(qi, qj).

Based on this, we compared the data complexity and diversity between MT-Plan and T-Eval planning.

Table 7: benchmark metrics

Benchmark complexity↑ diversity ↑
MT-Plan 0.661 0.82

T-Eval planning Chen et al. (2023) 0.122 0.73

A.2.2 MULTIMODAL REFERENCE RESOLUTION

The MultiModal Reference Resolution (MM-RR) task requires the model to determine whether the
current question refers to information in the image, which is a binary classification task. As shown in
Fig. 6, the question in Fig. 6(a) does not refer to the content in the image, so the answer is 0; while
the question in Fig. 6(b) refers to the drinks on the shelf in the image, so the answer is 1.

(a) A negative sample example. (b) A positive sample example.

Figure 6: Examples of RR dataset.

A.2.3 MULTIMODAL NER

Multimodal NER (MM-NER) benchmark quantitatively measures MLLMs’ ability in understanding
and extracting key entities. The dataset comprises 376 image-only samples sourced from Baidu’s
publicly available image repositories, where each image underwent a rigorous curation process:
professional annotators manually filtered the raw visual data to retain high-quality, clearly discernible
images, which were subsequently annotated with precise labels focusing on seven critical entity cate-
gories—temporal references, geographical locations, personal identifiers, contact numbers, tracking
Number, flight Number, train Number to establish a structured benchmark for multimodal entity
recognition. We adopt the entity F1-score as the evaluation metric. Fig. 7 demonstrates time, location
and person extraction from chat logs.
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Figure 7: An example of MM-NER dataset.

A.2.4 MOBILE FUNCTION CALL

The Mobile Function Call (Mobile-FC) task is designed to evaluate the ability of MLLMs to call
mobile API functions. The task requires the model to select appropriate functions from a given
set of application functions to call according to the user’s app instruction questions and output the
parameters required for the function calls. We define 50 function call interfaces for different scenarios,
such as setting an alarm, checking the weather, and setting navigation. The questions in the data are
manually constructed by annotators, simulating real-world scenarios of apps on smartphone operating
systems and forming complete multi-round dialogues. The evaluation method mainly compares the
predicted function names and parameter names with the annotated results. A perfect match scores
1 point; otherwise, 0 points. As shown in the Fig. 8, we define the function name create alarm for
setting an alarm, with the time field as the input parameter.

Figure 8: An example of Mobile-FC dataset.

A.2.5 AGENT CONTEXT UNDERSTANDING

The Agent Context Understanding (ACU) task is used to assess the context-aware dialogue compre-
hension ability of MLLMs. The data is presented in the form of multi-turn conversations (including
text and image). The model is required to resolve the anaphoric information in the user’s final
question based on multi-turn conversations or image information, and output a question that contains
no anaphora. As shown in the Fig. 9, the user asks "Do you like his songs?". If no image is provided,
the model needs to determine who "he" refers to based on the historical conversation. Otherwise,
the model needs to recognize the person in the image. Model’s output is a question that contains no
referential information. We use the BLEU of the output answer with the reference answer to evaluate
task performance, with scores ranging from 0 to 1.
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(a) Pure-text conversation sample. (b) Multimodal conversation sample.

Figure 9: Examples of ACU dataset.

Table 8: Training dataset sizes.

Dataset Source Data size Dataset Source Data size
MMIE self-built 1.8k APP-Rec self-built 22.8k
MMU self-built 21.1k RR self-built 10.5k

TP self-built 26.8k FC self-built 10.4k
ITR self-built 9.7k ShareGPT4 open-source 36k
NER open-source 8k Infinity-MM open-source 37.2k
OCR open-source 33k SuperCLUE-Agent open-source 1.5k

A.2.6 APP RECOGNITION

The APP Recognition (APP-Rec) task, similar to the APP-Rec training set, is used to evaluate the
ability of MLLMs to identify mobile applications. The model is required to directly output the APP
name based on the content of the input mobile APP interface image, as illustrated in the Fig. 11. The
performance evaluation is conducted by comparing the overlap between the predicted application
name and the annotated result. A correct prediction scores 1 point; otherwise, 0 points.

A.3 TRAINING DATASETS

The open source data includes: ShareGPT4 shibing624 (2023), NER (composed of Chinese-NER-
SFT qgyd2021 (2024a), Sentiment-Analysis Abhishek Shrivastava (2023), and Few-Shot-NER-
SFT qgyd2021 (2024b)), Infinity-MM Gu et al. (2024), OCR (consisting of Vision-OCR-Financial-
Reports-10K Hamed Rahimi (2024), Arxiv-OCR-v0.1-SFT Niccolò Zanichelli (2024) and Invoices-
and-Receipts-OCR-v1 minyang (2024)), and SuperCLUE-Agent Liang Xu (2024).

The self-built datasets include MultiModal-Instruction-Evolution (MMIE), APP Recognition (APP-
Rec), Reference-Resolution (RR), MultiModal-Understanding (MMU), Function-Calling (FC), Task-
Planning (TP), and Image-Text-Relevance (ITR), which are primarily derived from data synthesis
and real-world industrial scenarios. The size of samples in all the training data is shown in Table 8.

A.3.1 MULTIMODAL INSTRUCTION EVOLUTION

The Multimodal Instruction Evolution (MMIE) task consists of 1.8K pieces of multimodal question-
answering data. As shown in Fig. 10, given an initial query and image with several available tools,
the methodology requires the model to generate more sophisticated and diversified questions. The
generation pipeline comprises six structured phases:

• Intent analysis: Analyze the user’s potential needs from multiple perspectives.

• Scenario expansion: Expand the scenario to increase the diversity and complexity of the
initial question.

• Task decomposition: Decompose the scenario into multiple subtasks which can be executed
correctly by provided tools.

• Raise new question: Propose a new question based on the expanded scenario and subtasks.
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Figure 10: An example of MMIE dataset.

• Iterative Validation: Evaluate completeness and complexity, where completeness indicates
whether the question adequately covers the steps of the subtasks.

• Naturalization and output: Refine questions to be more colloquial and output the final
result.

A.3.2 APP RECOGNITION

The APP Recognition (APP-Rec) task consists of 22.8K pieces of multimodal question-answering
data, which are composed of images and task instructions. The task requires the model to identify the
interface information of mobile apps in the input images and directly output the app names. To obtain
diverse app interface data, we install 100 different applications on a mobile phone, such as WeChat,
QQ, Little Red Book, Weibo, Alipay, Pinduoduo, Taobao, and TikTok. Annotators are then required
to manually capture screenshots of different functional interfaces of each application, which serve as
the image source for the APP-Rec task, as illustrated in Fig. 11. The default input task instruction is
"Identify which app the screenshot belongs to?", and the answer is the name of the app corresponding
to the image.

A.3.3 REFERENCE RESOLUTION

The Reference Resolution (RR) task corresponds to the MM-RR task in Section A.2.2 which contains
10.5K pieces of multimodal question-answering data. We collect various images containing text
information from the internet, with sources including academic papers, test questions, news, company
official websites, Wikipedia, etc. Annotators design corresponding questions based on the text content
in the given images as positive examples, while negative examples are obtained by replacing the
images with different types, as shown in the following Fig. 6, which provides one positive and one
negative example respectively.

A.3.4 MULTIMODAL UNDERSTANDING

The Multimodal Understanding (MMU) tasks are consistent with ACU tasks in Section A.2.5. It
takes the form of multimodal or text-only multi-round dialogues, with 1-4 rounds and a total of 21.1K
samples. The images are sourced from publicly available internet data, covering various fields such as
people, animals, plants, architecture, and digital products. The dialogue data is manually constructed
by annotators based on the given images, focusing on reference problems. The task requires the
model to combine the images and historical dialogue content to rewrite the user’s final input text. This
is achieved by replacing pronouns or supplementing omitted content to make the text semantically
complete.

A.3.5 FUNCTION CALLING

The Function Calling (FC) task consists of plain text instructions, which requires selecting appropriate
tools from given tool set and filling in correct parameters for executing. The tools involve practical
mobile applications such as unit conversion, weather inquiry, time calculation, text creation, recipe
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Figure 11: An example of APP-Rec dataset.

search, mobile phone bill inquiry, and other 500 types of useful tools. Notably, 90% of the instructions
only require the invocation of a single tool.

Here is an example in Fig. 12: The user inquires how much 500 US dollars is in Japanese yen, and
the answer includes thoughts and actions. The thought process briefly outlines the current step, while
the action first provides the name of the selected tool and sets the actual parameters in the action
input.

Figure 12: An output example of FC dataset.

A.3.6 TASK PLANNING

The Task Planning (TP) dataset, also targeting tool calling scenarios, places greater emphasis on multi-
stage operations with inter-dependent steps compared to FC. It involves 26.8K pieces of multimodal
question-answering data. This dataset requires models to properly decompose complex problems
into solvable subtasks while ensuring correct tool selection and execution. In multistep scenarios,
managing inter-parameter dependencies becomes critical.
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The input is a complex question requiring calling apps on moblie phone. Output contains multistep
thinking and actions similar to FC, and symbols start with #E are used to receive parameter for cited
in subsequent tasks. (as demonstrated in Fig. 2).

A.3.7 IMAGE-TEXT RELEVANCE

(a) A negative sample example. (b) A positive sample example.

Figure 13: Examples of ITR dataset.

The Image-Text Relevance (ITR) task involves 9.7K pieces of multimodal question-answering data.
The task requires the model to analyze the relevance between the question and the image based
on the characteristics of the question. If the image is relevant to the question and can be used to
answer the user’s question, the model should answer 1; otherwise, 0. The images are sourced from
publicly available internet data, the same as those used in the MMU task. Annotators manually
construct questions related to the image content as positive examples. For example, for images of
people, questions about names, works, or family relationships can be asked. Negative examples are
constructed by replacing the images with different types, as shown in the following Fig. 13, which
presents one positive and one negative example respectively.

B ALGORITHM

Algorithm 1: Algorithm of DaMo
Input: D: training dataset; Dtest: test dataset; θ0: initial parameters of MLLM; P: data mixing

space, consisting of data mixture p; fMLP : fitted MLP; t: training steps;M: The data
points for fitting MLP, consisting of pairs <(p, t), s>.

Output: θ∗: MLLM trained with the optimal data mixture p∗.
InitializeM← ∅
Randomly sample a small subset Pmlp ⊂ Pfix

foreach pi ∈ Ptrain do
θit ← Trainer(D,pi, t, θ0)
si ← Evaluator(θit,Dtest)
M←M∪ {(pi, t, si)}

end
fMLP ← fit(M)

p∗, t∗ ← argmaxp∈Pfix
fMLP (p, t)

θ∗ ← Trainer(D,p∗, t∗, θ0)
ŝ← Evaluator(θ∗,Dtest)
return θ∗, s∗
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C EXTENSIBLE VALIDATION

We validate the generalizability of DaMo across model families and model sizes (Qwen2.5VL-3B,
Qwen2.5VL-7B, InternVL3-14B) through a two-stage sampling strategy: 1) Random selection from
base model’s experimental mixtures, and 2) Strategic sampling from extrapolated optimal mixtures.
We plot the predicted overall average scores of target models(using the original DaMo) on the x-axis
against the ground-truth overall average scores on the y-axis. If mixture pi always outperforms
mixture pj for any i, j across models (Pearson correlation coefficient r = 1), it proves that DaMo
has perfect transferability. As shown in the upper panel of Fig. 5, the Pearson correlation coefficients
are consistently above 0.75, demonstrating robust cross-model applicability of DaMo. This suggests
that optimal mixtures identified for base model likely remain near-optimal for target models.

Although DaMo demonstrates promising cross-model transferability, model variations still introduce
errors when extrapolating the optimal mixture for target models. To address this, we establish a linear
mapping g = f()W + b between base model’s DaMo F and target model’s optimal law G using 20
calibration samples. This projection improves Pearson correlation to 0.90(bottom panel of Fig. 5),
enabling more precise extrapolation. As Table 5 demonstrates, the linear-mapped DaMo achieve
superior performance compared to direct extrapolation from the base model’s DaMo.

D LIMITATIONS AND FUTURE WORK

Our study is grounded in two key assumptions: (1) disregarding sample order within individual
datasets, and (2) maintaining a fixed data mixture ratio throughout training. While recent research
reports the efficacy of multi-stage training and curriculum learning, our preliminary attempts to relax
these assumptions—specifically through dynamic data mixture adjustments—remain exploratory.
We have yet to establish a systematic methodology for extrapolating optimal dynamic mixtures or
quantify the computational costs and performance gains relative to fixed data mixture.

Moving forward, we plan to formalize a framework for dynamic data mixture optimization. This
will involve integrating Monte Carlo Tree Search (MCTS) with reinforcement learning to iteratively
determine stage-specific data mixtures, aiming to extrapolate optimal mixture trajectories that mitigate
task conflict and catastrophic forgetting. Additionally, we propose incorporating sample quality
metrics as input variables for downstream performance prediction, enabling difficulty-aware sampling
during training. Further, we will enhance PhoneAgentBench to better align with the fast-evolving
requirements of on-device AI deployment, ensuring its adaptability to emerging mobile-centric AI
paradigms.

E LLM USAGE

In this paper, we used LLMs to polish the content of the main text and appendices.
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