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Abstract

Extracting and aggregating information from
clinical trial registries could provide invaluable
insights into the drug development landscape
and advance the treatment of neurologic dis-
eases. However, achieving this at scale is ham-
pered by the volume of available data and the
lack of an annotated corpus to assist in the de-
velopment of automation tools. Thus, we in-
troduce NeuroTrialNER, a new and fully open
corpus for named entity recognition (NER). It
comprises 893 clinical trial summaries sourced
from ClinicalTrials.gov, annotated for neuro-
logical diseases, interventions, and control
treatments. We describe our data collection pro-
cess and the corpus in detail. We demonstrate
its utility for NER using large language models
and achieve a close-to-human performance. By
bridging the gap in data resources, we hope to
foster the development of text processing appli-
cations that help researchers navigate clinical
trials data more easily, efficiently, and compre-
hensively.

1 Introduction

Despite substantial investment, developing new
treatments for human diseases is a challenging and
often unsuccessful endeavour, especially for neu-
rological conditions (Seyhan, 2019). For example,
more than 99% of drugs tested in clinical trials for
Alzheimer’s disease fail (Cummings et al., 2014).

In this context, the synthesis of evidence from
clinical trials is critical for researchers developing
therapies, offering insights into the effectiveness
and safety of interventions (Sutton et al., 2009).
This process entails systematically evaluating data
from clinical studies to form reliable conclusions
about healthcare practices. Public clinical trial reg-
istries, such as ClinicalTrials. govl, are fundamental
to this effort, fostering transparency and accessibil-
ity in clinical research (Laine et al., 2007).

"https://clinicaltrials.gov/

However, extracting information from these re-
sources is challenging due to the large volumes
of data, incomplete and unstructured reporting,
variability in medical terminology, and data qual-
ity concerns (Tse et al., 2018). Computational
methods, in particular natural language processing
(NLP), can help overcome some of these hurdles
and ease the synthesis of clinical evidence (Mar-
shall et al., 2017; Thomas et al., 2017). Named
entity recognition (NER), a foundational step in
NLP, enables text processing and standardization
for downstream tasks like relation extraction and
question answering (Wang et al., 2018). Yet, there
is a scarcity of publicly available annotated cor-
pora for clinical trial registries, hindering NLP’s
effectiveness in processing trial data.

Here we bridge this gap by introducing a new
gold standard annotated dataset for clinical trial reg-
istry data in the neurological/psychiatric domain.
The corpus comprises 893 clinical trial summaries
from ClinicalTrials.gov, one of the largest interna-
tional clinical trial registries (Zarin et al., 2019).
It has been annotated by two to three annotators
for key trial characteristics, i.e., condition (e.g.,
Alzheimer’s disease), intervention (e.g., aspirin),
and control (e.g., placebo).

We leverage this corpus to showcase its suitabil-
ity for the NER task using models based on BERT
(Bidirectional Encoder Representations from Trans-
formers) and GPT (Generative Pre-trained Trans-
formers). Additionally, we compare the perfor-
mance of these models against simple baseline
methods and human experts to assess their effec-
tiveness. The dataset, along with its documentation,
guidelines, and code, is available on an anonymous
GitHub repository?. After publication, it will be
linked to Zenodo® and shared via the HuggingFace
Dataset API, in compliance with the FAIR princi-
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ples (Wilkinson et al., 2016).

2 Related Work

A curated database for Aggregate Analysis of Clin-
icalTrials.gov* (AACT) has been released in 2011
to stimulate the accessibility of the clinical trial
registry data (Tasneem et al., 2012). Disease and
intervention information about each trial is avail-
able in two ways: 1) provided by the data con-
tributors, and 2) in the form of Medical Subject
Headings (MeSH) terms (Rogers, 1963) extracted
by an algorithm developed by the National Library
of Medicine (NLM) (Mork et al., 2013). In the
first case, aggregation of the results is challeng-
ing due to substantial heterogeneity in terminology
and maintenance quality across trials. In the sec-
ond case, the rule-based NLM algorithm uses the
MeSH ontology to infer terms, but this approach
has several limitations. These include the risk of
missing entities not in the ontology and lacking a
clear strategy for grouping and analyzing trials in
broader disease categories. Additionally, the an-
notation of MeSH terms lacks context sensitivity
and specificity. This can result in the omission of
clinically critical details of a disease, such as distin-
guishing between mild or severe COVID infections
or between early- and late-stage cancer (Tasneem
et al., 2012). In our work, we use AACT to sample
clinical trials data and utilize the AACT disease
and intervention labels as a baseline.

NER enables the automated identification and ex-
traction of specific entities such as disease names
(Wang et al., 2018). The main focus of existing
work in NER for clinical trial data has been on
PubMed abstracts. In Marshall et al. (2020), the au-
thors extract PICO (Population, Intervention, Con-
trol, Outcome) elements from PubMed abstracts
of clinical trial publications. Those entities are
processed by a relation extraction module to in-
fer which intervention was reported to work for
which outcomes. The authors also utilized trial
registry data from the World Health Organization
International Clinical Trials Registry Platform (IC-
TRP)>. For both PubMed and ICTRP, the models
were trained on the EBM-NLP dataset (Nye et al.,
2018), an annotated corpus of PubMed abstracts de-
scribing clinical trials for cardiovascular diseases,
cancer, and autism.

Another widely distributed dataset is the

4https ://aact.ctti-clinicaltrials.org/
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BCS5CDR corpus to support the task of recogni-
tion of chemicals/diseases and mutual interactions
(Li et al., 2016a). It consists of 1500 articles sam-
pled from the CTD-Pfizer corpus, which covers a
large sample of PubMed articles related to different
disease classes (Davis et al., 2013).

Hence, to our knowledge, our study is the first
developing a NER dataset for drugs and diseases
in clinical trial registry data for neurological and
psychiatric diseases. In recent years, the systems
used for biomedical NER are based on deep neural
networks (Song et al., 2021). Those architectures
do not depend on hand-crafted rules or dictionaries
and have shown a superior performance for several
biomedical NLP tasks (Gu et al., 2021). Further-
more, leveraging a pre-trained biomedical language
model like BioBERT requires fewer training exam-
ples as it can capture rich contextual information
from existing language knowledge. We exploit
such NER approaches for our dataset in section 4.

3 The Corpus

3.1 Data Collection

A static copy of the AACT database was down-
loaded® and ingested into a local PostgreSQL
database. The total number of unique clinical trials
from this snapshot was 451,860.

First, we identified trials in neurological and
psychiatric diseases. Since the AACT database
does not provide a classification of the diseases to
broader categories, we compiled a reference list of
neuropsychiatric diseases. For this, we combined
two sources - the International Classification of Dis-
eases 1 1th Revision’ (ICD-11) and the MeSH terms
list®. This resulted in a list of 16,520 unique dis-
ease names (including synonyms and lexical varia-
tions) in categories such as “Mental, behavioural
or neurodevelopmental disorder”, and “Neurologic
Manifestations”. The full list with its generation
code is available on our GitHub repository.

Subsequently, we used this disease list to filter
the records from the AACT database, resulting in
40,842 unique trials. We further selected only the
interventional trials (35,969) based on the corre-
sponding study type field in the database. From this
set, we randomly sampled 1,000 entries (title and

®Accessed on May 12 2023 from https:/aact.ctti-
clinicaltrials.org/snapshots.
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8Version 2023 obtained as an XML file from
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trial summary) for the annotation step, from which
we annotated 893.

3.2 Data Annotation

3.2.1 Annotation Guidelines

Our annotation rules were harmonized with the
PICO framework (Huang et al., 2006). Within this
context, the annotators were informed by the fol-
lowing questions:

* Disease (=Population): “Who is the group of
people being studied?”

* Intervention: “What is the intervention being
investigated?”

* Control: “To what is the intervention being
compared?”

Furthermore, we aligned our annotation conven-
tions for drug names with previous work (Li et al.,
2016b; Krallinger et al., 2015).

We labelled the following entity types - six cate-
gories covering a broad range of common interven-
tions (DRUG, BEHAVIOURAL, SURGICAL, RA-
DIOTHERAPY, PHYSICAL, OTHER), one dis-
ease category (CONDITION) and one control in-
tervention category (CONTROL).

The annotation guidelines were iteratively re-
fined to ensure maximum clarity and optimize inter-
rater agreement.

3.2.2 Annotation Process

The annotation was performed by three indepen-
dent annotators - one medical doctor with > 15
years experience (BVI), one senior medical student
(AEC), and a PhD candidate in the Life Sciences
Graduate School (SED). There were two rounds of
annotation. A first batch of 488 annotations was
performed by all three annotators. 405 additional
clinical trials were annotated by two annotators
(BVI and SED).

The annotators used the browser-based tool
Prodigy (Montani and Honnibal, 2017) to perform
the manual annotation. One clinical trial example
from our dataset is shown in Figure 1. To enhance
annotation quality in case of unknown entities, the
curators were encouraged to crosscheck informa-
tion from reference sources such as Wikipedia,
DrugBank and the ICD library.

To compile the final dataset, all conflicts were
resolved by discussion. Further details about the
resulting corpus can be found in section 3.4.
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Figure 1: Annotation example shown in the annotation
tool Prodigy. Blue labels indicate annotated DRUG
entities and orange labels denote CONDITION entities.

Annotation Round 1 (488 annotations)

Annotators Overall DRUG CONDITION
SED;AEC 0.77 (0.76,0.77)  0.85(0.83,0.87) 0.82 (0.81, 0.83)
AEC;BVI 0.76 (0.75,0.77)  0.85(0.83,0.86) 0.83 (0.82, 0.84)
SED;BVI  0.76 (0.75,0.77)  0.86 (0.84,0.87) 0.82(0.81, 0.83)
Annotation Round 2 (405 annotations)
SED;BVI 0.79 (0.78,0.79)  0.86 (0.84,0.87) 0.86 (0.85, 0.87)
Table 1: Overview of inter-annotator agreement re-

ported as the Cohen’s Kappa score (95% confidence
interval lower bound, upper bound).

3.2.3 Annotation Data Formats

We provide the tokenized version of the trial reg-
istry texts together with the list of corresponding an-
notations in BIO (Beginning, Inside or Outside of
an entity span) format (Sang and Buchholz, 2000).
Additionally, we give the annotated entities from
each trial as a tuple consisting of (start character in-
dex, end character index, entity type, entity words)
like (228, 243, ’DRUG’, ’botulinum toxin’).

3.3 Inter-Annotator Agreement
3.3.1 Results

Table 1 shows the pairwise inter-annotator agree-
ment (IAA) using the Cohen’s kappa statistic’
across all entities, as well as for the separate la-
bels DRUG and CONDITION, in the two rounds
of annotation. We also report the 95% confidence
intervals (Cohen, 1960).

In the first round (488 clinical trial abstracts), the
overall agreement was 0.77 across all entity types,
indicating a substantial IAA. The score was higher
for DRUG (range 0.85-0.86) and for CONDITION
(range 0.82-0.83). In the second round of anno-
tations, the overall agreement score between BVI
and SED increased slightly. The small confidence
intervals suggest a high level of precision in the
estimated Cohen’s kappa scores.

°Calculated with sklearn.metrics.cohen_kappa_score.
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3.3.2 Examples of Annotation Disagreements

During the preparation of the final annotated
dataset, conflicts were resolved by two annotators.
We observed several patterns of discrepancies:

* Span Errors: Discrepancies in the bound-
aries of annotated entities. For instance, one
annotator accidentally included punctuation
marks within an entity annotation. Addition-
ally, there were differences in the included
level of detail, for example BVI selected the
whole expression “amnestic mild cognitive im-
pairment”, while SED only annotated “mild
cognitive impairment”. We settled on includ-
ing “amnestic” as it was important for the
diagnostic and treatment of the disease.

* Missed Entities: In cases involving longer
texts, one annotator overlooked tagging cer-
tain entities.

 Label Disagreement: Cases when annotators
assigned different labels to the same entity.
For example, one annotator classified “IGF-1”
as OTHER, while another annotator labeled it
as DRUG.

Figure 2 presents the confusion matrix for each
entity class between two of the annotators. The
most substantial disagreements occurred between
“0” (no annotation) and the classes CONDITION
and OTHER. It also stands out that BVI identified
194 entities as SURGICAL, which SED had clas-
sified as OTHER, while recognizing only 12 SUR-
GICAL entities. Note that the confusion matrix
represents missed entities, but also span disagree-
ments.

3.4 Corpus Overview

Our final annotated corpus contains 893 trial sum-
maries/titles in total. Table 2 describes key fea-
tures of the data. In total, the corpus comprises
of 11,549 unique tokens with an average number
of 135 tokens per trial. The most common entities
among these tokens were CONDITION (disease)
with 3,998 tokens, followed by DRUG with 1,477
tokens.

Figure 3 shows the top ten most frequent an-
notated conditions. Stroke was the most prevalent
term, occurring 111 times, followed by Parkinson’s
disease, schizophrenia, pain, multiple sclerosis,
and Alzheimer’s disease, including abbreviations
thereof.

5 266 579 40

0-@ 97 36 19 48
0

DRUG {100 883 0 0O 0 11 5 0

5000

BEHAVIOURAL {110 1 144 0 5 0 120 0 0 4000

SURGICALAH © 0 0 12 o] 0 23 o] 0

a PHYSICAL{130 0 o0 o0 320 0 102 0 3000
]

RADIOTHERAPY{ O ©0 ©0 O O 33 0 0 0
OTHER {667 57 97 194 89 0 1476 15 9

20 7 1000

2000

CONDITION 4513 11 1

=}
=}
=}
w
=}
w
©
w0
[N]
w0
)

CONTROL 109

DRUG A
BEHAVIOURAL -
SURGICAL -
PHYSICAL -
RADIOTHERAPY -
OTHER A
CONDITION -
CONTROL -

BV

Figure 2: Confusion matrix between the labels assign-
ments across the second annotation round of two in-
dependent annotators (SED and BVI). For readability,
the number of the majority "0" class (no annotation) is
shown as 10 times smaller than the actual value.

stroke 111
parkinson's disease 83
pd 79
schizophrenia 68
pain 61
ms 48

multiple sclerosis a7

CONDITION Entity

alzheimer's disease 43
sci 39

dementia 38

0 20 40 60 80 100
Frequency

Figure 3: Top 10 most frequent CONDITION entities
found in the complete dataset.

Similarly Figure 4 presents the most frequent
medication-related terms. “Aripiprazole” was the
most frequently mentioned drug (n=16), followed
by “dexmedetomidine” (n=14).

4 Experiments

4.1 Named Entity Recognition Methods

We considered two simple baselines. First, a dic-
tionary lookup approach based on the developed
list of neurological and psychiatric diseases (see
3.1) and a list of drug names compiled from the
DrugBank 10 Wikipedia, Medline Plus, and MeSH
terms !'. We followed the approach in Wood (2023)
and annotated individual words or pairs of consecu-

https://go.drugbank.com/
"https://pypi.org/project/drug-named-entity-recognition/
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Overview

Entire Corpus

Number of trials

Number of tokens per

abstract (min/mean/max)

Total number of tokens/ unique

893
17/ 134.8/ 829
120,383/ 11,549

Entity Class Count / Unique

DRUG 1477 552
OTHER 1436 846
PHYSICAL 419 264
BEHAVIOURAL 222 157
SURGICAL 98 71
RADIOTHERAPY 26 15
CONDITION 3998 1349
CONTROL 462 173

Table 2: Overview of the corpus in terms of the number
of manually revised trial number, number of tokens
per trial (abstract), as well as vocabulary size. The
number of mentions for each annotated entity class (six
intervention types, one condition and one control), total
and unique count, is provided in the lower half of the
table.

aripiprazole 16
dexmedetomidine 14
ci 13
vitamin d 12
levodopa 12

nicotine 11

DRUG Entity

insulin 11
donepezil 10
methylphenidate o

saline 9
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Figure 4: Top 10 most frequent DRUG entities found in
the complete dataset.

tive words, that had a match in the lists. Our second
baseline consisted of the condition and disease en-
tries associated with each clinical trial from the
AACT database.

For neural NER, we used three BERT-style
models: BERT-base-uncased (Devlin et al.,
2018), BioLinkBERT-base (Yasunaga et al., 2022),
BioBER-v1.1(Lee et al., 2020), and two GPT mod-
els, gpt-3.5-turbo and gpt-4!2. We fine-tuned
BERT, BioBERT and BioLinkBERT on a single
GPU in less than an hour. The latter two mod-
els have been pre-trained on biomedical domain
corpora - BioBERT using PubMed abstracts and
PMC full-text articles, and BioLinkBERT leverag-
ing PubMed abstracts and citation links between
PubMed articles. In contrast, BERT-base has been
pre-trained on the generic BookCorpus and English

Zhttps://platform.openai.com/docs/models/overview

Wikipedia. BioLinkBERT is notably effective in
biomedical NER, ranking highly in the BLURB
ranking'3. We trained the models to classify each
token as either the Beginning (B), Inside (I) or Out-
side (O) of an entity span (Sang and Buchholz,
2000). All BERT-based models implementations
were based on the Huggingface Transformers li-
brary, using their default parameters, and Python
version 3.9 (Wolf et al., 2019). We utilized the GPT
models in a zero-shot setting without fine-tuning.
These models excel at generating contextually rel-
evant text for diverse tasks (Brown et al., 2020).
We queried the model by sending the text of each
clinical trial and asking for a list of drug and dis-
ease names. The prompt construction details are
available in Appendix B.

4.2 Evaluation Setup

We evaluated the performance of the NER meth-
ods on both token and full-text level. Token-level
evaluation assessed the model’s performance on a
per-token basis, focusing on how well it correctly
labeled individual words within the text.

To evaluate the full-text level performance, we
aggregated the token-level annotations to identify
the unique named entities mentioned in the abstract
(title and clinical trial summary). Our goal was
to identify and group entities not only based on
their unique textual string, but also considering
semantic equivalence. For instance, we consid-
ered “MS” and “multiple sclerosis” to be equiva-
lent. Similarly, we wanted to treat “Alzheimers”
and “Alzheimers Disease” as a single entity. To ad-
dress the first point, we replaced all abbreviations
with their long forms using the Schwartz-Hearst
algorithm (Schwartz and Hearst, 2002)'4. To han-
dle the cases of different spellings and synonyms,
we reused the lists for diseases and drugs that we
compiled for our NER baseline and mapped each
synonym or spelling variation to their canonical
form. By incorporating these steps, our aim was
not only to enhance the evaluation process, but
also to align it with a possible target application of
generating descriptive statistics for unique diseases
and drug names across the entire corpus.

4.2.1 Evaluation Metrics

We employed precision, recall, and F1-score calcu-
lated on the test set for the performance evaluation
of the NER methods. To provide a comprehensive

Bhttps://microsoft.github.io/BLURB/leaderboard.html
Yhttps://github.com/philgooch/abbreviation-extraction
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NER Method Exact Partial NER Method Exact Partial

BERT-base 0.61 (0.53,0.68) 0.63 (0.55, 0.70) BERT-base 0.65 (0.60, 0.69)  0.69 (0.65, 0.73)
BioLinkBERT  0.76 (0.68, 0.83) 0.78 (0.70, 0.84) BioLinkBERT  0.78 (0.74, 0.81)  0.83 (0.79, 0.86)
BioBERT 0.63 (0.55,0.70)  0.65 (0.57,0.73) BioBERT 0.73 (0.69, 0.77)  0.79 (0.76, 0.83)

GPT-3.5-turbo
GPT-4

0.26 (0.22, 0.32)
0.45 (0.42, 0.57)

0.33 (0.27, 0.38)
0.58 (0.50, 0.65)

GPT-3.5-turbo
GPT-4

0.40 (0.36, 0.43)
0.49 (0.45, 0.53)

0.49 (0.45, 0.52)
0.61 (0.57, 0.65)

AACT

0.39 (0.32, 0.47)

0.49 (0.41, 0.58)

AACT

0.34 (0.30, 0.39)

0.43 (0.38, 0.47)

Table 3:

F1-Score (95% confidence interval lower

Table 4: F1-Score (95% confidence interval lower

bound, upper bound) for DRUG recognition.

assessment, we present scores for both strict and
partial matches. A “strict” match implies an ex-
act match with the boundaries and entity type in
the gold standard. A “partial” match required to
have the correct entity type and a majority of words
overlapping with that in the target annotations. For
example, if the target is “hemiplegic cerebral palsy”
and prediction “cerebral palsy”, this would be a
partial match since more than half of the target
words are in the prediction. Confidence intervals
for all evaluation metrics were calculated using the
Wilson method (Wilson, 1927).

4.2.2 Data Split

To train and evaluate the methods, we randomly
split the corpus into training (80%, 713 trials), val-
idation (10%, 90 trials) and test (10%, 90 trials)
sets. Overview of the number of entities in each
split and their overlap is provided in Appendix A.

4.3 Results

4.3.1 Performance

Abstract Level Performance Tables 3 and 4
showcase the F1-Scores and their 95% confidence
intervals for DRUG and CONDITION entity recog-
nition tasks, respectively, comparing the different
NER methods. We summarize the data for the par-
tial match F1-Scores in Table Figure 5.

BioLinkBERT led in performance for the DRUG
recognition task with a notable partial match F1-
Score of 0.78 (CI: 0.70-0.84), outpacing BioBERT
and BERT, which occupied the subsequent rank-
ings. Despite the confidence intervals of BioBERT
and BERT overlapping, BioLinkBERT’s mean F1-
Score surpassed BioBERT’s by over 10%. GPT-3.5
trailed significantly with a partial match F1-Score
of 0.33 (CI: 0.27-0.38), while GPT-4 nearly dou-
bled its predecessor’s score. Performance metrics
based on AACT labels were intermediate, record-
ing a 0.49 (CI: 0.41-0.58) for partial matches

In the CONDITION recognition task, Bi-
oLinkBERT led with an F1-Score of 0.83 (CI: 0.79-
0.86), followed by BioBERT and BERT. The im-

bound, upper bound) for CONDITION recognition.

provement from GPT-3.5 to GPT-4, reaching a 0.61
F1-Score, was notable but less pronounced com-
pared to the DRUG task. Both generative models
still lagged behind the fine-tuned BERT models.
The AACT labels had the lowest performance for
this task.
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Figure 5: F1-Score (95% confidence interval lower
bound, upper bound) for DRUG and CONDITION
recognition on abstract level across all methods.

Entity Level Performance Table 5 provides pre-
cision (P), recall (R), and F1-Score (F1) metrics
on an entity-level evaluation. The numbers are
calculated using the HuggingFace seqeval imple-
mentation (Nakayama, 2018).

BioLinkBERT outperformed other methods with
the highest F1-Scores for both DRUG (0.85) and
CONDITION (0.83) entities, indicating a bal-
anced precision and recall. BioBERT also demon-
strated strong results, with F1-Scores close to Bi-
oLinkBERT’s performance. In contrast, BERT-
base’s performance lagged slightly behind these
domain-aware models. Dict-Lookup had the low-
est performance with significantly lower F1-Scores
of 0.43 for DRUG and 0.31 for CONDITION.

Furthermore, we calculated the IAA on entity
level between BioLinkBERT and our target manual
annotations. We reached an overall kappa score
of 0.81 (0.79, 0.82), which shows that the model
achieves a close to human performance.



DRUG CONDITION
P R F1 P R F1
BERT-base 072 088 0.79 0.77 0.78 0.78
BioLinkBERT 085 086 0.85 0.81 0.86 0.83
BioBERT 076 088 0.82 0.80 0.85 0.82
Dict-Lookup 033 060 043 062 021 0.31

Table 5: Precision (P), Recall (R) and F1-Score (F1)
achieved by each method considered for entity level
evaluation.

4.3.2 Impact of training data size

Figure 6 illustrates the impact of increasing train-
ing dataset size on the performance of the Bi-
oLinkBERT model after fine-tuning, measured
by the validation F1-Score. The performance in-
creased rapidly up to the utilization of 30% of the
training set, after which the increase became more
gradual through to 100% usage of the training set.
However, even at the size of the full training set the
performance has not fully reached a plateau.
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Figure 6: F1-Score on the validation data set versus
training data size given as proportion of the full data
set. The mean score (blue line) is calculated from 5
independent training runs. The shaded area shows the
observed variation.

4.3.3 Error Analysis

Our qualitative error-analysis focused on the
abstract-level errors. We consider it to be a good
proxy for the errors on entity-level as it covers all
unique entities found in the trial registries.

CONDITION We observed the following error
patterns in BioLinkBERT’s classification of CON-
DITION entities:

* Over-specifying words that we would not an-
notate for the disease classification, e.g., “age-
related hearing loss” instead of “hearing loss";
“prolonged covid symptoms" instead of “pro-
longed covid”.

* Under-specifying, e.g., “abdominal and
lower limb surgeries” instead of “lower ab-
dominal and lower limb surgeries”.

Generic diseases symptoms that we could
consider as relevant for the study, but we did
not annotate in the target as they were not

specific, e.g. “loss of muscle”; “fear"; “cannot
walk’;

* Study outcome-related expressions, e.g.,
“ear and hearing health”; “cardio-metabolic
risk”.

Non-target disease names that were usually
mentioned to give context to the study, but
were not the subject of investigation, e.g.,

“dyslexia”; “cerebral lesions”.

Missed entities as clear false negatives, e.g.
“lumbosacral radiculopathy”; “immunosup-
pression”.

There were also a few cases that should have
been annotated in the target and the annotators had
missed, e.g., the word "pain". BioLinkBERT had
annotated those correctly, but the evaluation con-
sidered them as false positive.

BioBERT made similar qualitative errors like
BioLinkBERT. Furthermore, we observed an is-
sue related to the segmentation of words into sub-
tokens for labelling. BioBERT erroneously as-
signed “B-LABEL” (indicating the start of a new
entity) instead of “I-LABEL” (indicating continua-
tion within an entity) to sub-tokens that should rep-
resent ongoing entities. For example in one case the
word “chronic” was split into “ch” and “##ronic”,
and for both sub-parts the assigned labels were “B-
CONDITION”. This misclassification resulted in
the the wrong grouping of entities, and led to more
false positives.

The GPT models showed high sensitivity to the
prompt formulation. Furthermore, additional post-
processing was required, as the model outputs did
not consistently generate the requested output list.
GPT frequently extracted the trial outcome and
intervention words together with the conditions, e.g.
"quality of life", "functional status", "education
outcomes". Also, generic terms were returned, e.g.

"symptoms", "sleep".

DRUG BioLinkBERT annotated “soybean oil”
and “fish oil” incorrectly as DRUG instead of the
expected OTHER. Another issue was the reporting



of additional drugs in the trial summary not being
tested, e.g. “Remimazolam combines the safety
of midazolam and [...] of propofol.” While “remi-
mazolam” is the target drug of the trial, the other
two are only there to provide context and should
not be annotated. Similar cases were observed for
substances used for diagnostic purposes such as
contrast agents for imaging, e.g. “gadabutrol” for
MRA imaging. BioBERT missed more relevant an-
notations. Furthermore, again several of the errors
stemmed from wrong labelling of tokenized sub-
words. For example the drug name “propranolol”
was split and erroneously annotated as “prop” (B-
DRUG), “##rano” (B-DRUG), “##lo” (I-DRUG),
“##1” (I-DRUG).

GPT often returned non-drug interventions such
“chamomile”, “acupuncture”, and “speech therapy".
There were also overall correct extractions, yet too
specific according to our annotations guidelines.
For example, GPT returned “diazepam nasal spray"
and “diazepam rectal gel”, while we would only
annotate “diazepam”.

4.4 Discussion and Limitations

BioLinkBERT and BioBERT emerged as the top-
performing models for both drug and disease recog-
nition. This was true when evaluating on entity-
level, as well as the full-text aggregated target. The
larger confidence intervals for drug recognition sug-
gest that this task presents a bigger challenge for
both models. However, we should note that there
were also less training examples including DRUG
annotations. Comparing the performance of these
models with expert inter-rater agreements showed
that the models achieved human like performances.
The lower performance of BERT-base highlights
the importance of domain-aware pre-training, as
biomedical texts contain specialized terminology
and complexities that generic language models
might struggle to capture.

An interesting observation was the inability
of the BioBERT model to recognize contiguous
phrases, a limitation observed in other work as well
(Chen et al., 2020). A proposed approach in (Chen
et al., 2020) to mitigate this involves model archi-
tecture modification by replacing the last softmax
layer with a BILSTM+CRF layer. We did not ex-
plore this alternative extensively, as our primary
focus was on the direct application of existing mod-
els to the task.

We observed that the "Dictionary-Lookup" ap-
proach fell short, particularly in recall, suggesting

a propensity to miss relevant entities. This under-
lines the importance of leveraging more sophisti-
cated models for the proposed entity recognition
tasks.

Additionally, our study underscores the impor-
tance of prompt design in GPT models and the
difficulties in eliciting specific information with-
out comprehensive annotation guidelines. Future
work may focus on improving prompts, enriching
model context, and investigating few-shot training
methods (Karkera et al., 2023).

We also showed that the training data size has
a large impact on the model’s performance and
we expect to see small improvements with more
annotations.

Finally, it is important to acknowledge the as-
sumption made in our methodology, namely, that
drug and disease names are mentioned in the ab-
stract or title of the clincal trial. Although this as-
sumption holds in many cases, we did encounter in-
stances where relevant information was only avail-
able in the trial’s condition and intervention AACT
fields. This highlights the need for future work to
address these scenarios and potentially adapt our
methodology.

5 Conclusion and Outlook

We have presented NeuroTrialNER, a new, openly
available corpus comprising 893 clinical trial reg-
istry abstracts annotated for diseases, interventions,
and controls. We further demonstrated that the
dataset was effective in training neural NER models
and analyzed the performance of DRUG and CON-
DITION recognition. Specifically, BioLinkBERT
emerged as the top-performing model with results
approaching the level of a human rater. With this,
our dataset has the potential to enhance our un-
derstanding of disease and drug relationships in
neurological and psychiatric diseases and improve
downstream tasks, such as biomedical literature
summarization, ultimately improving the develop-
ment of drugs to treat neurological and psychiatric
diseases.

As future work, we plan on expanding the dataset
with more annotated trials, other disease types,
including trial outcomes, and applying the NER
models to other clinical trial registries. We aim
to conduct a comprehensive analysis of neurolo-
gy/psychiatry clinical trial research and envision
integrating our work into the services provided by
the AACT database.
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A Data Split Details

To train and evaluate the methods, we randomly
split the corpus into training (80%, 713 trials), de-
velopment (10%, 90 trials) and test (10%, 90 tri-
als) sets. Figure 7 illustrates the intersection of
unique DRUG mentions (n= 552 tokens) across
the three datasets. The numbers within each set
signify the count of unique DRUG mentions found
only in the corresponding dataset. Additionally,
we show the number of overlapping entities: 18
DRUG mentions are shared between Train and Val-
idation, 16 between Train and Test, and 2 between
Validation and Test. Seven DRUG mentions were
found within all three datasets (1%). Figure 8
presents overlap of unique diseases (n=1349 to-
kens). It shows that diseases show a higher overlap
between different datasets with 31 mentions in all
three datasets (2%).
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Figure 7: Overlap of unique DRUG entity mentions
across datasets.

B GPT Prompting

Here we briefly describe the prompting implemen-
tation used for querying GPT. The code in Listing
1 shows the API call we used for each clinical trial.
The gpt_model variable was replaced with the name
of the GPT model, i.e., either gpt-3.5-turbo or gpt-4.
The input_raw_text variable serves as a placeholder
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Figure 8: Overlap of unique CONDITION entity men-
tions across datasets.

for the actual content of the clinical trial, includ-
ing both its title and detailed description. This is
the text from which the GPT model is tasked with
extracting relevant information based on the given
prompt. The nature of the prompt varies depending
on the information extraction task at hand.

completion
openai.ChatCompletion.create(
model = ,
temperature=0.6,
max_tokens=2000,
messages=[
{"role": "system”,
"You are an expert
information
extraction assistant from
clinical trials."},
{"role": "user", "content”:
+ "o g

"content":

+

”)77”}

Listing 1: GPT Chat Completion API Call

For the drug name extraction task, we utilize
a prompt specifically designed to solicit a con-
cise list of drug names mentioned within the clin-
ical trial text. This is exemplified by the interven-
tions_prompt variable, which reads:

interventions_prompt= "Extract the drug
names from the following clinical
trial and return them in a list
separated with the | symbol. If none
is found, return only the word none

n

Listing 2: DRUG Extraction Prompt

Similarly, for the disease name and symptoms
extraction task, the conditions_prompt is tailored
to extract both the diseases being investigated and
any related symptoms, as demonstrated below:

conditions_prompt "Extract the
investigated disease names and
related symptoms from the following
clinical trial. Return them in a
single list separated with the |
symbol. If none is found, return
only the word none: "

Listing 3: CONDITION Extraction Prompt

We also investigated a variation of the prompts
that we show in Listing 4 for DRUG. However, this
did not result in consistently better performance.

interventions_prompt_v2 "Review the

clinical trial document enclosed
within triple quotes. Extract only
the names of drugs that are actively
being investigated in the trial.
List these names separated by the
|’ symbol without any additional
text or explanation. Exclude drugs
merely mentioned and not under
investigation. If there are no drugs
actively investigated, simply
respond with ’none’. Focus solely on
the drug names for clarity and
precision.”
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Listing 4: DRUG Extraction Prompt v2

The final reported results were from queries exe-
cuted on 29/01/2024.
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