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Abstract

Extracting and aggregating information from001
clinical trial registries could provide invaluable002
insights into the drug development landscape003
and advance the treatment of neurologic dis-004
eases. However, achieving this at scale is ham-005
pered by the volume of available data and the006
lack of an annotated corpus to assist in the de-007
velopment of automation tools. Thus, we in-008
troduce NeuroTrialNER, a new and fully open009
corpus for named entity recognition (NER). It010
comprises 893 clinical trial summaries sourced011
from ClinicalTrials.gov, annotated for neuro-012
logical diseases, interventions, and control013
treatments. We describe our data collection pro-014
cess and the corpus in detail. We demonstrate015
its utility for NER using large language models016
and achieve a close-to-human performance. By017
bridging the gap in data resources, we hope to018
foster the development of text processing appli-019
cations that help researchers navigate clinical020
trials data more easily, efficiently, and compre-021
hensively.022

1 Introduction023

Despite substantial investment, developing new024

treatments for human diseases is a challenging and025

often unsuccessful endeavour, especially for neu-026

rological conditions (Seyhan, 2019). For example,027

more than 99% of drugs tested in clinical trials for028

Alzheimer’s disease fail (Cummings et al., 2014).029

In this context, the synthesis of evidence from030

clinical trials is critical for researchers developing031

therapies, offering insights into the effectiveness032

and safety of interventions (Sutton et al., 2009).033

This process entails systematically evaluating data034

from clinical studies to form reliable conclusions035

about healthcare practices. Public clinical trial reg-036

istries, such as ClinicalTrials.gov1, are fundamental037

to this effort, fostering transparency and accessibil-038

ity in clinical research (Laine et al., 2007).039

1https://clinicaltrials.gov/

However, extracting information from these re- 040

sources is challenging due to the large volumes 041

of data, incomplete and unstructured reporting, 042

variability in medical terminology, and data qual- 043

ity concerns (Tse et al., 2018). Computational 044

methods, in particular natural language processing 045

(NLP), can help overcome some of these hurdles 046

and ease the synthesis of clinical evidence (Mar- 047

shall et al., 2017; Thomas et al., 2017). Named 048

entity recognition (NER), a foundational step in 049

NLP, enables text processing and standardization 050

for downstream tasks like relation extraction and 051

question answering (Wang et al., 2018). Yet, there 052

is a scarcity of publicly available annotated cor- 053

pora for clinical trial registries, hindering NLP’s 054

effectiveness in processing trial data. 055

Here we bridge this gap by introducing a new 056

gold standard annotated dataset for clinical trial reg- 057

istry data in the neurological/psychiatric domain. 058

The corpus comprises 893 clinical trial summaries 059

from ClinicalTrials.gov, one of the largest interna- 060

tional clinical trial registries (Zarin et al., 2019). 061

It has been annotated by two to three annotators 062

for key trial characteristics, i.e., condition (e.g., 063

Alzheimer’s disease), intervention (e.g., aspirin), 064

and control (e.g., placebo). 065

We leverage this corpus to showcase its suitabil- 066

ity for the NER task using models based on BERT 067

(Bidirectional Encoder Representations from Trans- 068

formers) and GPT (Generative Pre-trained Trans- 069

formers). Additionally, we compare the perfor- 070

mance of these models against simple baseline 071

methods and human experts to assess their effec- 072

tiveness. The dataset, along with its documentation, 073

guidelines, and code, is available on an anonymous 074

GitHub repository2. After publication, it will be 075

linked to Zenodo3 and shared via the HuggingFace 076

Dataset API, in compliance with the FAIR princi- 077

2https://anonymous.4open.science/r/
NeuroTrialNER-2FFC/

3https://zenodo.org/
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ples (Wilkinson et al., 2016).078

2 Related Work079

A curated database for Aggregate Analysis of Clin-080

icalTrials.gov4 (AACT) has been released in 2011081

to stimulate the accessibility of the clinical trial082

registry data (Tasneem et al., 2012). Disease and083

intervention information about each trial is avail-084

able in two ways: 1) provided by the data con-085

tributors, and 2) in the form of Medical Subject086

Headings (MeSH) terms (Rogers, 1963) extracted087

by an algorithm developed by the National Library088

of Medicine (NLM) (Mork et al., 2013). In the089

first case, aggregation of the results is challeng-090

ing due to substantial heterogeneity in terminology091

and maintenance quality across trials. In the sec-092

ond case, the rule-based NLM algorithm uses the093

MeSH ontology to infer terms, but this approach094

has several limitations. These include the risk of095

missing entities not in the ontology and lacking a096

clear strategy for grouping and analyzing trials in097

broader disease categories. Additionally, the an-098

notation of MeSH terms lacks context sensitivity099

and specificity. This can result in the omission of100

clinically critical details of a disease, such as distin-101

guishing between mild or severe COVID infections102

or between early- and late-stage cancer (Tasneem103

et al., 2012). In our work, we use AACT to sample104

clinical trials data and utilize the AACT disease105

and intervention labels as a baseline.106

NER enables the automated identification and ex-107

traction of specific entities such as disease names108

(Wang et al., 2018). The main focus of existing109

work in NER for clinical trial data has been on110

PubMed abstracts. In Marshall et al. (2020), the au-111

thors extract PICO (Population, Intervention, Con-112

trol, Outcome) elements from PubMed abstracts113

of clinical trial publications. Those entities are114

processed by a relation extraction module to in-115

fer which intervention was reported to work for116

which outcomes. The authors also utilized trial117

registry data from the World Health Organization118

International Clinical Trials Registry Platform (IC-119

TRP)5. For both PubMed and ICTRP, the models120

were trained on the EBM-NLP dataset (Nye et al.,121

2018), an annotated corpus of PubMed abstracts de-122

scribing clinical trials for cardiovascular diseases,123

cancer, and autism.124

Another widely distributed dataset is the125

4https://aact.ctti-clinicaltrials.org/
5https://www.who.int/clinical-trials-registry-platform

BC5CDR corpus to support the task of recogni- 126

tion of chemicals/diseases and mutual interactions 127

(Li et al., 2016a). It consists of 1500 articles sam- 128

pled from the CTD-Pfizer corpus, which covers a 129

large sample of PubMed articles related to different 130

disease classes (Davis et al., 2013). 131

Hence, to our knowledge, our study is the first 132

developing a NER dataset for drugs and diseases 133

in clinical trial registry data for neurological and 134

psychiatric diseases. In recent years, the systems 135

used for biomedical NER are based on deep neural 136

networks (Song et al., 2021). Those architectures 137

do not depend on hand-crafted rules or dictionaries 138

and have shown a superior performance for several 139

biomedical NLP tasks (Gu et al., 2021). Further- 140

more, leveraging a pre-trained biomedical language 141

model like BioBERT requires fewer training exam- 142

ples as it can capture rich contextual information 143

from existing language knowledge. We exploit 144

such NER approaches for our dataset in section 4. 145

3 The Corpus 146

3.1 Data Collection 147

A static copy of the AACT database was down- 148

loaded6 and ingested into a local PostgreSQL 149

database. The total number of unique clinical trials 150

from this snapshot was 451,860. 151

First, we identified trials in neurological and 152

psychiatric diseases. Since the AACT database 153

does not provide a classification of the diseases to 154

broader categories, we compiled a reference list of 155

neuropsychiatric diseases. For this, we combined 156

two sources - the International Classification of Dis- 157

eases 11th Revision7 (ICD-11) and the MeSH terms 158

list8. This resulted in a list of 16,520 unique dis- 159

ease names (including synonyms and lexical varia- 160

tions) in categories such as “Mental, behavioural 161

or neurodevelopmental disorder”, and “Neurologic 162

Manifestations”. The full list with its generation 163

code is available on our GitHub repository. 164

Subsequently, we used this disease list to filter 165

the records from the AACT database, resulting in 166

40,842 unique trials. We further selected only the 167

interventional trials (35,969) based on the corre- 168

sponding study type field in the database. From this 169

set, we randomly sampled 1,000 entries (title and 170

6Accessed on May 12 2023 from https://aact.ctti-
clinicaltrials.org/snapshots.

7https://icd.who.int/icdapi
8Version 2023 obtained as an XML file from

https://www.nlm.nih.gov/databases/download/mesh.html.
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trial summary) for the annotation step, from which171

we annotated 893.172

3.2 Data Annotation173

3.2.1 Annotation Guidelines174

Our annotation rules were harmonized with the175

PICO framework (Huang et al., 2006). Within this176

context, the annotators were informed by the fol-177

lowing questions:178

• Disease (=Population): “Who is the group of179

people being studied?”180

• Intervention: “What is the intervention being181

investigated?”182

• Control: “To what is the intervention being183

compared?”184

Furthermore, we aligned our annotation conven-185

tions for drug names with previous work (Li et al.,186

2016b; Krallinger et al., 2015).187

We labelled the following entity types - six cate-188

gories covering a broad range of common interven-189

tions (DRUG, BEHAVIOURAL, SURGICAL, RA-190

DIOTHERAPY, PHYSICAL, OTHER), one dis-191

ease category (CONDITION) and one control in-192

tervention category (CONTROL).193

The annotation guidelines were iteratively re-194

fined to ensure maximum clarity and optimize inter-195

rater agreement.196

3.2.2 Annotation Process197

The annotation was performed by three indepen-198

dent annotators - one medical doctor with > 15199

years experience (BVI), one senior medical student200

(AEC), and a PhD candidate in the Life Sciences201

Graduate School (SED). There were two rounds of202

annotation. A first batch of 488 annotations was203

performed by all three annotators. 405 additional204

clinical trials were annotated by two annotators205

(BVI and SED).206

The annotators used the browser-based tool207

Prodigy (Montani and Honnibal, 2017) to perform208

the manual annotation. One clinical trial example209

from our dataset is shown in Figure 1. To enhance210

annotation quality in case of unknown entities, the211

curators were encouraged to crosscheck informa-212

tion from reference sources such as Wikipedia,213

DrugBank and the ICD library.214

To compile the final dataset, all conflicts were215

resolved by discussion. Further details about the216

resulting corpus can be found in section 3.4.217

Figure 1: Annotation example shown in the annotation
tool Prodigy. Blue labels indicate annotated DRUG
entities and orange labels denote CONDITION entities.

Annotation Round 1 (488 annotations)
Annotators Overall DRUG CONDITION
SED;AEC 0.77 (0.76, 0.77) 0.85 (0.83, 0.87) 0.82 (0.81, 0.83)
AEC;BVI 0.76 (0.75, 0.77) 0.85 (0.83, 0.86) 0.83 (0.82, 0.84)
SED;BVI 0.76 (0.75, 0.77) 0.86 (0.84, 0.87) 0.82 (0.81, 0.83)

Annotation Round 2 (405 annotations)
SED;BVI 0.79 (0.78, 0.79) 0.86 (0.84, 0.87) 0.86 (0.85, 0.87)

Table 1: Overview of inter-annotator agreement re-
ported as the Cohen’s Kappa score (95% confidence
interval lower bound, upper bound).

3.2.3 Annotation Data Formats 218

We provide the tokenized version of the trial reg- 219

istry texts together with the list of corresponding an- 220

notations in BIO (Beginning, Inside or Outside of 221

an entity span) format (Sang and Buchholz, 2000). 222

Additionally, we give the annotated entities from 223

each trial as a tuple consisting of (start character in- 224

dex, end character index, entity type, entity words) 225

like (228, 243, ’DRUG’, ’botulinum toxin’). 226

3.3 Inter-Annotator Agreement 227

3.3.1 Results 228

Table 1 shows the pairwise inter-annotator agree- 229

ment (IAA) using the Cohen’s kappa statistic9 230

across all entities, as well as for the separate la- 231

bels DRUG and CONDITION, in the two rounds 232

of annotation. We also report the 95% confidence 233

intervals (Cohen, 1960). 234

In the first round (488 clinical trial abstracts), the 235

overall agreement was 0.77 across all entity types, 236

indicating a substantial IAA. The score was higher 237

for DRUG (range 0.85-0.86) and for CONDITION 238

(range 0.82-0.83). In the second round of anno- 239

tations, the overall agreement score between BVI 240

and SED increased slightly. The small confidence 241

intervals suggest a high level of precision in the 242

estimated Cohen’s kappa scores. 243

9Calculated with sklearn.metrics.cohen_kappa_score.
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3.3.2 Examples of Annotation Disagreements244

During the preparation of the final annotated245

dataset, conflicts were resolved by two annotators.246

We observed several patterns of discrepancies:247

• Span Errors: Discrepancies in the bound-248

aries of annotated entities. For instance, one249

annotator accidentally included punctuation250

marks within an entity annotation. Addition-251

ally, there were differences in the included252

level of detail, for example BVI selected the253

whole expression “amnestic mild cognitive im-254

pairment”, while SED only annotated “mild255

cognitive impairment”. We settled on includ-256

ing “amnestic” as it was important for the257

diagnostic and treatment of the disease.258

• Missed Entities: In cases involving longer259

texts, one annotator overlooked tagging cer-260

tain entities.261

• Label Disagreement: Cases when annotators262

assigned different labels to the same entity.263

For example, one annotator classified “IGF-1”264

as OTHER, while another annotator labeled it265

as DRUG.266

Figure 2 presents the confusion matrix for each267

entity class between two of the annotators. The268

most substantial disagreements occurred between269

“0” (no annotation) and the classes CONDITION270

and OTHER. It also stands out that BVI identified271

194 entities as SURGICAL, which SED had clas-272

sified as OTHER, while recognizing only 12 SUR-273

GICAL entities. Note that the confusion matrix274

represents missed entities, but also span disagree-275

ments.276

3.4 Corpus Overview277

Our final annotated corpus contains 893 trial sum-278

maries/titles in total. Table 2 describes key fea-279

tures of the data. In total, the corpus comprises280

of 11,549 unique tokens with an average number281

of 135 tokens per trial. The most common entities282

among these tokens were CONDITION (disease)283

with 3,998 tokens, followed by DRUG with 1,477284

tokens.285

Figure 3 shows the top ten most frequent an-286

notated conditions. Stroke was the most prevalent287

term, occurring 111 times, followed by Parkinson’s288

disease, schizophrenia, pain, multiple sclerosis,289

and Alzheimer’s disease, including abbreviations290

thereof.291

Figure 2: Confusion matrix between the labels assign-
ments across the second annotation round of two in-
dependent annotators (SED and BVI). For readability,
the number of the majority "0" class (no annotation) is
shown as 10 times smaller than the actual value.
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Figure 3: Top 10 most frequent CONDITION entities
found in the complete dataset.

Similarly Figure 4 presents the most frequent 292

medication-related terms. “Aripiprazole” was the 293

most frequently mentioned drug (n=16), followed 294

by “dexmedetomidine” (n=14). 295

4 Experiments 296

4.1 Named Entity Recognition Methods 297

We considered two simple baselines. First, a dic- 298

tionary lookup approach based on the developed 299

list of neurological and psychiatric diseases (see 300

3.1) and a list of drug names compiled from the 301

DrugBank 10, Wikipedia, Medline Plus, and MeSH 302

terms 11. We followed the approach in Wood (2023) 303

and annotated individual words or pairs of consecu- 304

10https://go.drugbank.com/
11https://pypi.org/project/drug-named-entity-recognition/
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Overview Entire Corpus
Number of trials 893
Number of tokens per
abstract (min/mean/max) 17/ 134.8/ 829

Total number of tokens/ unique 120,383/ 11,549
Entity Class Count / Unique
DRUG 1477 552
OTHER 1436 846
PHYSICAL 419 264
BEHAVIOURAL 222 157
SURGICAL 98 71
RADIOTHERAPY 26 15
CONDITION 3998 1349
CONTROL 462 173

Table 2: Overview of the corpus in terms of the number
of manually revised trial number, number of tokens
per trial (abstract), as well as vocabulary size. The
number of mentions for each annotated entity class (six
intervention types, one condition and one control), total
and unique count, is provided in the lower half of the
table.
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Figure 4: Top 10 most frequent DRUG entities found in
the complete dataset.

tive words, that had a match in the lists. Our second305

baseline consisted of the condition and disease en-306

tries associated with each clinical trial from the307

AACT database.308

For neural NER, we used three BERT-style309

models: BERT-base-uncased (Devlin et al.,310

2018), BioLinkBERT-base (Yasunaga et al., 2022),311

BioBER-v1.1(Lee et al., 2020), and two GPT mod-312

els, gpt-3.5-turbo and gpt-412. We fine-tuned313

BERT, BioBERT and BioLinkBERT on a single314

GPU in less than an hour. The latter two mod-315

els have been pre-trained on biomedical domain316

corpora - BioBERT using PubMed abstracts and317

PMC full-text articles, and BioLinkBERT leverag-318

ing PubMed abstracts and citation links between319

PubMed articles. In contrast, BERT-base has been320

pre-trained on the generic BookCorpus and English321

12https://platform.openai.com/docs/models/overview

Wikipedia. BioLinkBERT is notably effective in 322

biomedical NER, ranking highly in the BLURB 323

ranking13. We trained the models to classify each 324

token as either the Beginning (B), Inside (I) or Out- 325

side (O) of an entity span (Sang and Buchholz, 326

2000). All BERT-based models implementations 327

were based on the Huggingface Transformers li- 328

brary, using their default parameters, and Python 329

version 3.9 (Wolf et al., 2019). We utilized the GPT 330

models in a zero-shot setting without fine-tuning. 331

These models excel at generating contextually rel- 332

evant text for diverse tasks (Brown et al., 2020). 333

We queried the model by sending the text of each 334

clinical trial and asking for a list of drug and dis- 335

ease names. The prompt construction details are 336

available in Appendix B. 337

4.2 Evaluation Setup 338

We evaluated the performance of the NER meth- 339

ods on both token and full-text level. Token-level 340

evaluation assessed the model’s performance on a 341

per-token basis, focusing on how well it correctly 342

labeled individual words within the text. 343

To evaluate the full-text level performance, we 344

aggregated the token-level annotations to identify 345

the unique named entities mentioned in the abstract 346

(title and clinical trial summary). Our goal was 347

to identify and group entities not only based on 348

their unique textual string, but also considering 349

semantic equivalence. For instance, we consid- 350

ered “MS” and “multiple sclerosis” to be equiva- 351

lent. Similarly, we wanted to treat “Alzheimers” 352

and “Alzheimers Disease” as a single entity. To ad- 353

dress the first point, we replaced all abbreviations 354

with their long forms using the Schwartz-Hearst 355

algorithm (Schwartz and Hearst, 2002)14. To han- 356

dle the cases of different spellings and synonyms, 357

we reused the lists for diseases and drugs that we 358

compiled for our NER baseline and mapped each 359

synonym or spelling variation to their canonical 360

form. By incorporating these steps, our aim was 361

not only to enhance the evaluation process, but 362

also to align it with a possible target application of 363

generating descriptive statistics for unique diseases 364

and drug names across the entire corpus. 365

4.2.1 Evaluation Metrics 366

We employed precision, recall, and F1-score calcu- 367

lated on the test set for the performance evaluation 368

of the NER methods. To provide a comprehensive 369

13https://microsoft.github.io/BLURB/leaderboard.html
14https://github.com/philgooch/abbreviation-extraction
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NER Method Exact Partial
BERT-base 0.61 (0.53, 0.68) 0.63 (0.55, 0.70)
BioLinkBERT 0.76 (0.68, 0.83) 0.78 (0.70, 0.84)
BioBERT 0.63 (0.55, 0.70) 0.65 (0.57, 0.73)
GPT-3.5-turbo 0.26 (0.22, 0.32) 0.33 (0.27, 0.38)
GPT-4 0.45 (0.42, 0.57) 0.58 (0.50, 0.65)
AACT 0.39 (0.32, 0.47) 0.49 (0.41, 0.58)

Table 3: F1-Score (95% confidence interval lower
bound, upper bound) for DRUG recognition.

assessment, we present scores for both strict and370

partial matches. A “strict” match implies an ex-371

act match with the boundaries and entity type in372

the gold standard. A “partial” match required to373

have the correct entity type and a majority of words374

overlapping with that in the target annotations. For375

example, if the target is “hemiplegic cerebral palsy”376

and prediction “cerebral palsy”, this would be a377

partial match since more than half of the target378

words are in the prediction. Confidence intervals379

for all evaluation metrics were calculated using the380

Wilson method (Wilson, 1927).381

4.2.2 Data Split382

To train and evaluate the methods, we randomly383

split the corpus into training (80%, 713 trials), val-384

idation (10%, 90 trials) and test (10%, 90 trials)385

sets. Overview of the number of entities in each386

split and their overlap is provided in Appendix A.387

4.3 Results388

4.3.1 Performance389

Abstract Level Performance Tables 3 and 4390

showcase the F1-Scores and their 95% confidence391

intervals for DRUG and CONDITION entity recog-392

nition tasks, respectively, comparing the different393

NER methods. We summarize the data for the par-394

tial match F1-Scores in Table Figure 5.395

BioLinkBERT led in performance for the DRUG396

recognition task with a notable partial match F1-397

Score of 0.78 (CI: 0.70-0.84), outpacing BioBERT398

and BERT, which occupied the subsequent rank-399

ings. Despite the confidence intervals of BioBERT400

and BERT overlapping, BioLinkBERT’s mean F1-401

Score surpassed BioBERT’s by over 10%. GPT-3.5402

trailed significantly with a partial match F1-Score403

of 0.33 (CI: 0.27-0.38), while GPT-4 nearly dou-404

bled its predecessor’s score. Performance metrics405

based on AACT labels were intermediate, record-406

ing a 0.49 (CI: 0.41-0.58) for partial matches407

In the CONDITION recognition task, Bi-408

oLinkBERT led with an F1-Score of 0.83 (CI: 0.79-409

0.86), followed by BioBERT and BERT. The im-410

NER Method Exact Partial
BERT-base 0.65 (0.60, 0.69) 0.69 (0.65, 0.73)
BioLinkBERT 0.78 (0.74, 0.81) 0.83 (0.79, 0.86)
BioBERT 0.73 (0.69, 0.77) 0.79 (0.76, 0.83)
GPT-3.5-turbo 0.40 (0.36, 0.43) 0.49 (0.45, 0.52)
GPT-4 0.49 (0.45, 0.53) 0.61 (0.57, 0.65)
AACT 0.34 (0.30, 0.39) 0.43 (0.38, 0.47)

Table 4: F1-Score (95% confidence interval lower
bound, upper bound) for CONDITION recognition.

provement from GPT-3.5 to GPT-4, reaching a 0.61 411

F1-Score, was notable but less pronounced com- 412

pared to the DRUG task. Both generative models 413

still lagged behind the fine-tuned BERT models. 414

The AACT labels had the lowest performance for 415

this task. 416

BERT-base BioLinkBERT BioBERT GPT-3.5 GPT-4 AACT
NER Method
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0.8
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F1
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Figure 5: F1-Score (95% confidence interval lower
bound, upper bound) for DRUG and CONDITION
recognition on abstract level across all methods.

Entity Level Performance Table 5 provides pre- 417

cision (P), recall (R), and F1-Score (F1) metrics 418

on an entity-level evaluation. The numbers are 419

calculated using the HuggingFace seqeval imple- 420

mentation (Nakayama, 2018). 421

BioLinkBERT outperformed other methods with 422

the highest F1-Scores for both DRUG (0.85) and 423

CONDITION (0.83) entities, indicating a bal- 424

anced precision and recall. BioBERT also demon- 425

strated strong results, with F1-Scores close to Bi- 426

oLinkBERT’s performance. In contrast, BERT- 427

base’s performance lagged slightly behind these 428

domain-aware models. Dict-Lookup had the low- 429

est performance with significantly lower F1-Scores 430

of 0.43 for DRUG and 0.31 for CONDITION. 431

Furthermore, we calculated the IAA on entity 432

level between BioLinkBERT and our target manual 433

annotations. We reached an overall kappa score 434

of 0.81 (0.79, 0.82), which shows that the model 435

achieves a close to human performance. 436
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DRUG CONDITION
P R F1 P R F1

BERT-base 0.72 0.88 0.79 0.77 0.78 0.78
BioLinkBERT 0.85 0.86 0.85 0.81 0.86 0.83
BioBERT 0.76 0.88 0.82 0.80 0.85 0.82
Dict-Lookup 0.33 0.60 0.43 0.62 0.21 0.31

Table 5: Precision (P), Recall (R) and F1-Score (F1)
achieved by each method considered for entity level
evaluation.

4.3.2 Impact of training data size437

Figure 6 illustrates the impact of increasing train-438

ing dataset size on the performance of the Bi-439

oLinkBERT model after fine-tuning, measured440

by the validation F1-Score. The performance in-441

creased rapidly up to the utilization of 30% of the442

training set, after which the increase became more443

gradual through to 100% usage of the training set.444

However, even at the size of the full training set the445

performance has not fully reached a plateau.446
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Figure 6: F1-Score on the validation data set versus
training data size given as proportion of the full data
set. The mean score (blue line) is calculated from 5
independent training runs. The shaded area shows the
observed variation.

4.3.3 Error Analysis447

Our qualitative error-analysis focused on the448

abstract-level errors. We consider it to be a good449

proxy for the errors on entity-level as it covers all450

unique entities found in the trial registries.451

CONDITION We observed the following error452

patterns in BioLinkBERT’s classification of CON-453

DITION entities:454

• Over-specifying words that we would not an-455

notate for the disease classification, e.g., “age-456

related hearing loss” instead of “hearing loss";457

“prolonged covid symptoms" instead of “pro-458

longed covid”.459

• Under-specifying, e.g., “abdominal and 460

lower limb surgeries” instead of “lower ab- 461

dominal and lower limb surgeries”. 462

• Generic diseases symptoms that we could 463

consider as relevant for the study, but we did 464

not annotate in the target as they were not 465

specific, e.g. “loss of muscle”; “fear"; “cannot 466

walk”; 467

• Study outcome-related expressions, e.g., 468

“ear and hearing health”; “cardio-metabolic 469

risk”. 470

• Non-target disease names that were usually 471

mentioned to give context to the study, but 472

were not the subject of investigation, e.g., 473

“dyslexia”; “cerebral lesions”. 474

• Missed entities as clear false negatives, e.g. 475

“lumbosacral radiculopathy”; “immunosup- 476

pression”. 477

There were also a few cases that should have 478

been annotated in the target and the annotators had 479

missed, e.g., the word "pain". BioLinkBERT had 480

annotated those correctly, but the evaluation con- 481

sidered them as false positive. 482

BioBERT made similar qualitative errors like 483

BioLinkBERT. Furthermore, we observed an is- 484

sue related to the segmentation of words into sub- 485

tokens for labelling. BioBERT erroneously as- 486

signed “B-LABEL” (indicating the start of a new 487

entity) instead of “I-LABEL” (indicating continua- 488

tion within an entity) to sub-tokens that should rep- 489

resent ongoing entities. For example in one case the 490

word “chronic” was split into “ch” and “##ronic”, 491

and for both sub-parts the assigned labels were “B- 492

CONDITION”. This misclassification resulted in 493

the the wrong grouping of entities, and led to more 494

false positives. 495

The GPT models showed high sensitivity to the 496

prompt formulation. Furthermore, additional post- 497

processing was required, as the model outputs did 498

not consistently generate the requested output list. 499

GPT frequently extracted the trial outcome and 500

intervention words together with the conditions, e.g. 501

"quality of life", "functional status", "education 502

outcomes". Also, generic terms were returned, e.g. 503

"symptoms", "sleep". 504

DRUG BioLinkBERT annotated “soybean oil” 505

and “fish oil” incorrectly as DRUG instead of the 506

expected OTHER. Another issue was the reporting 507
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of additional drugs in the trial summary not being508

tested, e.g. “Remimazolam combines the safety509

of midazolam and [...] of propofol.” While “remi-510

mazolam” is the target drug of the trial, the other511

two are only there to provide context and should512

not be annotated. Similar cases were observed for513

substances used for diagnostic purposes such as514

contrast agents for imaging, e.g. “gadabutrol” for515

MRA imaging. BioBERT missed more relevant an-516

notations. Furthermore, again several of the errors517

stemmed from wrong labelling of tokenized sub-518

words. For example the drug name “propranolol”519

was split and erroneously annotated as “prop” (B-520

DRUG), “##rano” (B-DRUG), “##lo” (I-DRUG),521

“##l” (I-DRUG).522

GPT often returned non-drug interventions such523

“chamomile”, “acupuncture", and “speech therapy".524

There were also overall correct extractions, yet too525

specific according to our annotations guidelines.526

For example, GPT returned “diazepam nasal spray"527

and “diazepam rectal gel”, while we would only528

annotate “diazepam”.529

4.4 Discussion and Limitations530

BioLinkBERT and BioBERT emerged as the top-531

performing models for both drug and disease recog-532

nition. This was true when evaluating on entity-533

level, as well as the full-text aggregated target. The534

larger confidence intervals for drug recognition sug-535

gest that this task presents a bigger challenge for536

both models. However, we should note that there537

were also less training examples including DRUG538

annotations. Comparing the performance of these539

models with expert inter-rater agreements showed540

that the models achieved human like performances.541

The lower performance of BERT-base highlights542

the importance of domain-aware pre-training, as543

biomedical texts contain specialized terminology544

and complexities that generic language models545

might struggle to capture.546

An interesting observation was the inability547

of the BioBERT model to recognize contiguous548

phrases, a limitation observed in other work as well549

(Chen et al., 2020). A proposed approach in (Chen550

et al., 2020) to mitigate this involves model archi-551

tecture modification by replacing the last softmax552

layer with a BiLSTM+CRF layer. We did not ex-553

plore this alternative extensively, as our primary554

focus was on the direct application of existing mod-555

els to the task.556

We observed that the "Dictionary-Lookup" ap-557

proach fell short, particularly in recall, suggesting558

a propensity to miss relevant entities. This under- 559

lines the importance of leveraging more sophisti- 560

cated models for the proposed entity recognition 561

tasks. 562

Additionally, our study underscores the impor- 563

tance of prompt design in GPT models and the 564

difficulties in eliciting specific information with- 565

out comprehensive annotation guidelines. Future 566

work may focus on improving prompts, enriching 567

model context, and investigating few-shot training 568

methods (Karkera et al., 2023). 569

We also showed that the training data size has 570

a large impact on the model’s performance and 571

we expect to see small improvements with more 572

annotations. 573

Finally, it is important to acknowledge the as- 574

sumption made in our methodology, namely, that 575

drug and disease names are mentioned in the ab- 576

stract or title of the clincal trial. Although this as- 577

sumption holds in many cases, we did encounter in- 578

stances where relevant information was only avail- 579

able in the trial’s condition and intervention AACT 580

fields. This highlights the need for future work to 581

address these scenarios and potentially adapt our 582

methodology. 583

5 Conclusion and Outlook 584

We have presented NeuroTrialNER, a new, openly 585

available corpus comprising 893 clinical trial reg- 586

istry abstracts annotated for diseases, interventions, 587

and controls. We further demonstrated that the 588

dataset was effective in training neural NER models 589

and analyzed the performance of DRUG and CON- 590

DITION recognition. Specifically, BioLinkBERT 591

emerged as the top-performing model with results 592

approaching the level of a human rater. With this, 593

our dataset has the potential to enhance our un- 594

derstanding of disease and drug relationships in 595

neurological and psychiatric diseases and improve 596

downstream tasks, such as biomedical literature 597

summarization, ultimately improving the develop- 598

ment of drugs to treat neurological and psychiatric 599

diseases. 600

As future work, we plan on expanding the dataset 601

with more annotated trials, other disease types, 602

including trial outcomes, and applying the NER 603

models to other clinical trial registries. We aim 604

to conduct a comprehensive analysis of neurolo- 605

gy/psychiatry clinical trial research and envision 606

integrating our work into the services provided by 607

the AACT database. 608
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A Data Split Details 785

To train and evaluate the methods, we randomly 786

split the corpus into training (80%, 713 trials), de- 787

velopment (10%, 90 trials) and test (10%, 90 tri- 788

als) sets. Figure 7 illustrates the intersection of 789

unique DRUG mentions (n= 552 tokens) across 790

the three datasets. The numbers within each set 791

signify the count of unique DRUG mentions found 792

only in the corresponding dataset. Additionally, 793

we show the number of overlapping entities: 18 794

DRUG mentions are shared between Train and Val- 795

idation, 16 between Train and Test, and 2 between 796

Validation and Test. Seven DRUG mentions were 797

found within all three datasets (1%). Figure 8 798

presents overlap of unique diseases (n=1349 to- 799

kens). It shows that diseases show a higher overlap 800

between different datasets with 31 mentions in all 801

three datasets (2%). 802
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Figure 7: Overlap of unique DRUG entity mentions
across datasets.

B GPT Prompting 803

Here we briefly describe the prompting implemen- 804

tation used for querying GPT. The code in Listing 805

1 shows the API call we used for each clinical trial. 806

The gpt_model variable was replaced with the name 807

of the GPT model, i.e., either gpt-3.5-turbo or gpt-4. 808

The input_raw_text variable serves as a placeholder 809
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Figure 8: Overlap of unique CONDITION entity men-
tions across datasets.

for the actual content of the clinical trial, includ-810

ing both its title and detailed description. This is811

the text from which the GPT model is tasked with812

extracting relevant information based on the given813

prompt. The nature of the prompt varies depending814

on the information extraction task at hand.815

completion =816

openai.ChatCompletion.create(817

model=gpt_model ,818

temperature =0.6,819

max_tokens =2000,820

messages =[821

{"role": "system", "content":822

"You are an expert823

information824

extraction assistant from825

clinical trials."},826

{"role": "user", "content":827

prompt + "’’’" +828

input_raw_text + "’’’"}829

]830

)831

Listing 1: GPT Chat Completion API Call

For the drug name extraction task, we utilize832

a prompt specifically designed to solicit a con-833

cise list of drug names mentioned within the clin-834

ical trial text. This is exemplified by the interven-835

tions_prompt variable, which reads:836
837

interventions_prompt= "Extract the drug838
names from the following clinical839
trial and return them in a list840
separated with the | symbol. If none841
is found , return only the word none842

: "843844

Listing 2: DRUG Extraction Prompt

Similarly, for the disease name and symptoms845

extraction task, the conditions_prompt is tailored846

to extract both the diseases being investigated and847

any related symptoms, as demonstrated below:848

849
conditions_prompt = "Extract the 850

investigated disease names and 851
related symptoms from the following 852
clinical trial. Return them in a 853
single list separated with the | 854
symbol. If none is found , return 855
only the word none: " 856857

Listing 3: CONDITION Extraction Prompt

We also investigated a variation of the prompts 858

that we show in Listing 4 for DRUG. However, this 859

did not result in consistently better performance. 860
861

interventions_prompt_v2 = "Review the 862
clinical trial document enclosed 863
within triple quotes. Extract only 864
the names of drugs that are actively 865
being investigated in the trial. 866

List these names separated by the 867
’|’ symbol without any additional 868
text or explanation. Exclude drugs 869
merely mentioned and not under 870
investigation. If there are no drugs 871
actively investigated , simply 872

respond with ’none ’. Focus solely on 873
the drug names for clarity and 874

precision." 875876

Listing 4: DRUG Extraction Prompt v2

The final reported results were from queries exe- 877

cuted on 29/01/2024. 878
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