
Under review as a conference paper at ICLR 2024

ARE GRAPH NEURAL NETWORKS OPTIMAL APPROX-
IMATION ALGORITHMS?

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work we design graph neural network architectures that can be used to ob-
tain optimal approximation algorithms for a large class of combinatorial optimiza-
tion problems using powerful algorithmic tools from semidefinite programming
(SDP). Concretely, we prove that polynomial-sized message passing algorithms
can represent the most powerful polynomial time algorithms for Max Constraint
Satisfaction Problems assuming the Unique Games Conjecture. We leverage this
result to construct efficient graph neural network architectures, OptGNN, that ob-
tain high-quality approximate solutions on landmark combinatorial optimization
problems such as Max Cut and maximum independent set. Our approach achieves
strong empirical results across a wide range of real-world and synthetic datasets
against both neural baselines and classical algorithms. Finally, we take advantage
of OptGNN’s ability to capture convex relaxations to design an algorithm for pro-
ducing dual certificates of optimality (bounds on the optimal solution) from the
learned embeddings of OptGNN.

1 INTRODUCTION

Combinatorial Optimization is the class of problems that optimize functions subject to constraints
over discrete search spaces. They are almost always NP-hard to solve and to approximate, owing
to their typically exponential search spaces over nonconvex domains. Nevertheless, their important
applications in science and engineering (Gardiner et al., 2000; Zaki et al., 1997; Smith et al., 2004;
Du et al., 2017) has engendered a long history of study rooted in the following simple insight. In
practice, CO instances are endowed with domain-specific structure that can be exploited by special-
ized algorithms (Hespe et al., 2020; Walteros & Buchanan, 2019; Ganesh & Vardi, 2020). In this
context, neural networks are natural candidates for learning and then exploiting patterns in the data
distribution over CO instances.

The emergence of research directions at the intersection of machine learning (ML) and CO which
have obtained promising empirical results at several CO problems. However, similar to classical ap-
proaches to CO, ML pipelines have to manage a tradeoff between efficiency and optimality. Indeed,
prominent works in this line of research forego optimality and focuses on parametrizing heuristics
(Li et al., 2018; Khalil et al., 2017; Yolcu & Póczos, 2019; Chen & Tian, 2019) or by employing spe-
cialized models (Zhang et al., 2023; Nazari et al., 2018; Toenshoff et al., 2019; Xu et al., 2021; Min
et al., 2022) and task-specific loss functions (Amizadeh et al., 2018; Karalias & Loukas, 2020; Wang
et al., 2022; Karalias et al., 2022; Sun et al., 2022). Exact ML solvers that can guarantee optimality
often leverage general techniques like branch and bound (Gasse et al., 2019; Paulus et al., 2022)
and constraint programming (Parjadis et al., 2021; Cappart et al., 2019), which offer the additional
benefit of providing approximate solutions together with a bound on the distance to the optimal so-
lution. The downside of those methods is their exponential worst-case time complexity. This makes
it clear that striking a balance between efficiency and optimality is challenging, which leads us to
the central question of this paper:

Are there neural architectures for general combinatorial optimization that can learn to adapt to
a data distribution over instances yet capture algorithms with optimal worst-case approximation
guarantees?

To answer this question, we build on the extensive literature on approximation algorithms and
semidefinite programming. Convex relaxations of CO problems via semidefinite programming are

1

Under review as a conference paper at ICLR 2024

Figure 1: Message-passing neural networks for constraint satisfaction problems. Neural networks
trained using the SDP objective as a loss function can be used to produce strong empirical results on
Maximum Cut and Minimum Vertex Cover. We observe Maximum Cut performance of within 0.7%
and Minimum Vertex Cover performance of within 3.1% of the integral value reported by Gurobi
running with a time limit of 8 seconds.

the fundamental building block for breakthrough results in the design of efficient algorithms for NP-
Hard combinatorial problems, such as the Goemans-Williamson approximation algorithm for Max
Cut (Goemans & Williamson, 1995) and the use of the Lovász theta function to find the maximum
independent set on perfect graphs (Lovász, 1979; Grötschel et al., 1981). In fact, it is known that if
the Unique Games Conjecture is true, then the approximation guarantees obtained through semidef-
inite programming relaxations are indeed the best that can be achieved (Raghavendra, 2008; Barak
& Steurer, 2014). We will leverage these results to provide an affirmative answer to our question.
Our contributions can be organized into theory and experiments.

First, on the theory side we show that a polynomial time message passing algorithm approximates
the solution of an SDP with the optimal integrality gap for the class of Maximum Constraint Sat-
isfaction Problems, assuming the Unique Games Conjecture. The key theoretical insight is that a
message-passing algorithm can be used to compute gradient updates for the augmented Lagrangian
of an overparameterized reformulation of the SDP in (Raghavendra, 2008). This in turn leads to
our main contribution, OptGNN, a graph neural network architecture that generalizes our message-
passing algorithm and therefore captures its approximation guarantee.

Our second contribution is empirical. We show that our theoretical construction can be used directly
within graph neural network pipelines for CO that are easy to implement and train. By training
with the SDP objective as a loss function, OptGNN learns embeddings that can be regarded as
feasible fractional solutions of an overparameterized low rank SDP, which are subsequently rounded
to feasible integral solutions. On the primal side, we show OptGNN achieves strong empirical results
against classical and neural baselines across a broad battery of datasets for landmark CO problems
such as Max Cut, Vertex Cover, and Max Clique.

Finally, to underscore the fact that OptGNN captures powerful convex relaxations, we construct dual
certificates of optimality, i.e bounds that are provably correct, from OptGNN embeddings for the
Max Cut problem that are virtually tight for small synthetic instances. See our discussion on general
neural certification schemes for extracting dual certificates from OptGNN networks in Appendix
B.1.

To summarize, the contribution of this paper is twofold:

• We construct a polynomial time message passing algorithm for solving the SDP of
Raghavendra (2008) for the broad class of maximum constraint satisfaction problems (in-
cluding, Max Cut, max-SAT, etc.), that is optimal barring the possibility of significant
breakthroughs in the foundations of algorithms.

• We construct graph neural architectures to capture this message passing algorithm and show
that they achieve strong results against classical and neural baselines.

2

Under review as a conference paper at ICLR 2024

2 RELATED WORK

Optimal approximation algorithms. In theoretical computer science, it is typically quite difficult
to prove that an algorithm achieves the best approximation guarantee for a given problem, as it is
hard to rule out the existence of a more powerful algorithm. The Unique Games Conjecture (UGC)
(Khot, 2002) is a striking development in the theory of approximation algorithms because it is able
to circumvent precisely this obstacle. If true, it implies several approximation hardness results which
often match the approximation guarantees of the best-known algorithms (Raghavendra & Steurer,
2009; Raghavendra et al., 2012). In fact, it implies something even stronger: there is a general algo-
rithm based on semi-definite programming that achieves the best possible approximation guarantees
for several important problems (Raghavendra, 2008). Our theoretical contribution builds on these
ideas to construct a neural architecture that is a candidate optimal approximation algorithm. For a
complete exposition on the topic of UGC and approximation algorithms we refer the reader to Barak
& Steurer (2014).

Semidefinite programming in machine learning. Semidefinite programming has already found
applications in machine learning pipelines. In a similar spirit to our work, Wang et al. (2019) propose
a differentiable SDP-based SAT solver based on previous works on low-rank SDPs (Wang & Kolter,
2019), while Kriváchy et al. (2021) use neural networks to solve primal-dual SDP pairs for quantum
information tasks. The key difference in our case is that our neural network architecture naturally
aligns with solving an SDP and while our GNNs capture the properties of the SDP, in practice they
can also improve upon it.

Other applications of semidefinite programming in machine learning include global minimization
of functions by obtaining kernel approximations through a SDP (Rudi et al., 2020), deriving dif-
ferentiable high-dimensional extensions of discrete functions (Karalias et al., 2022), and leveraging
the connection between SVMs and the Lovász theta function to efficiently find the largest common
dense subgraph among a collection of graphs (Jethava et al., 2013).

Neural combinatorial optimization Beyond semidefinite programming, prior work in the litera-
ture has examined the capabilities of neural networks to obtain solutions to combinatorial problems,
including the ability of modern GNNs to achieve approximation guarantees for combinatorial prob-
lems Sato et al. (2019) and impossibility results for computing combinatorial properties of graphs
(Loukas, 2019). It was previously shown that for maxSAT, a neural network can straightforwardly
obtain a 1/2-approximation (Liu et al., 2021) which is also easily obtainable through a simple ran-
domized algorithm Johnson (1973). SDPs can yield at least 3/4-approximations for max-SAT (Goe-
mans & Williamson, 1995), so our approach improves significantly over previous results. Finally, a
different divide and conquer approach was proposed by McCarty et al. (2021), which uses Baker’s
paradigm to solve maximum independent set on geometric intersection graphs by partitioning the
problem into at most a linear number (on the size of the input) of subproblems of bounded size,
which allows them to use a neural network on each subproblem to obtain an approximation guaran-
tee.

In order to obtain exact solvers that are guaranteed to find the optimal solution, a prominent direc-
tion in the field involves combining solvers with neural networks either to provide a “warm start”
(Benidis et al., 2023), or to learn branching heuristics for branch and bound (Gasse et al., 2019;
Nair et al., 2020; Gupta et al., 2020; Paulus et al., 2022) and CDCL SAT solvers (Selsam & Bjørner,
2019; Kurin et al., 2020; Wang et al., 2021). Owing to their integration with powerful solvers, those
ML pipelines are able to combine some of the strongest elements of classical algorithms and neural
networks to obtain compelling results. Other related work in this vein includes constructing differ-
entiable solvers and optimization layers (Wang et al., 2019; Agrawal et al., 2019), and the paradigm
of neural algorithmic reasoning (Veličković & Blundell, 2021) which focuses on training neural
networks to emulate classical polynomial-time algorithms and using them to solve various combi-
natorial problems (Ibarz et al., 2022; Georgiev et al., 2023). Other prominent neural approaches that
have achieved strong empirical results with fast execution times follow different learning paradigms
including reinforcement learning (Ahn et al., 2020; Böther et al., 2022; Tönshoff et al., 2022; Barrett
et al., 2022) and unsupervised learning (Min et al., 2022; Ozolins et al., 2022).

The list of works mentioned here is by no means exhaustive, for a complete overview of the field we
refer the reader to the relevant survey papers Cappart et al. (2023); Bengio et al. (2021).

3

Under review as a conference paper at ICLR 2024

3 AN OPTIMAL APPROXIMATION ALGORITHM WITH GRAPH NEURAL
NETWORKS

OptGNN is a neural network architecture that uses message passing to solve a semidefinite program
(SDP) for a given combinatorial optimization problem. The model learns to produce a feasible
low rank solution to a semidefinite program for the max-CSP. This is jointly achieved through the
forward and backward pass. The message-passing steps in the forward pass are gradient updates
to the node embeddings towards the direction that minimizes the augmented lagrangian of the SDP.
The backward pass aids this process by backpropagating derivatives from the augmented Lagrangian
L to the parameters of the neural network.

Before we define our OptGNN architecture, we first provide the basic technical background and
intuition behind the central claim of the paper. First, we show that solving the Max Cut SDP via
a simple projected gradient descent scheme amounts to executing a message-passing algorithm on
the graph. This sets the stage for our main result which generalizes this observation. We describe
a general maximum constraint satisfaction problem (CSP) and the standard semidefinite program
(Optimization 1) that computes an approximate solution. Then we formally define OptGNN and
show that message passing with OptGNN (algorithm 2) for a general CSP can solve the general
SDP in Optimization 1.

3.1 SOLVING SDPS WITH MESSAGE PASSING

To build intuition, we begin with the canonical example for the usage of semidefinite programming
in combinatorial optimization: the Maximum Cut problem. Given a graph G = (V,E) with vertices
V , |V | = N and edge set E, in the Max Cut problem we are looking to find a set of nodes in G that
maximize the number of edges with exactly one endpoint in that set. Formally, this means solving
the following quadratic integer program over variables x = (x1, x2, ..., xN).

max
x

∑
(i,j)∈E

1
2 (1− xixj) (1)

subject to: x2i = 1 ∀i ∈ [N]

The global optimum of the integer program is the Max Cut. Unfortunately the discrete variables are
not amenable to the tools of continuous optimization. A standard technique is to ’lift’ the problem
and solve it with a rank constrained SDP. Here we introduce a matrix X ∈ RN×N of variables,
where we index the i’th row and j’th column entry as Xij .

max
X

∑
(i,j)∈E

1
2 (1−Xij) (2)

subject to: Xii = 1 ∀i ∈ [N]

X ⪰ 0

rank(X) = r

The intuition is that a rank r = 1 solution to Algorithm 2 is equivalent to solving the integer program.
Thus we wish to solve the optimization problem 2 for small r. A common approach is to replace the
integer variables xi with vectors vi ∈ Rr and constrain vi to lie on the unit sphere.

min
v1,v2,...,vN

−
∑

(i,j)∈E

1
2 (1− ⟨vi, vj⟩) (3)

subject to: ∥vi∥ = 1 ∀i ∈ [N]

vi ∈ Rr

For r larger than Ω(
√
N) Burer & Monteiro (2003) the landscape of this nonconvex optimization

is benign in that all local minima are approximately global minima. Thus, for large r, simple algo-
rithms such as projected gradient descent can find an approximate global optimum of the objective.
However, for large r, it is unclear how to transform, i.e., round, the vectors v into a solution to
the integral problem. Thus we need an approach that generalizes projected gradient descent that
performs well for small r. In iteration t (and for T iterations), projected gradient descent updates

4

Under review as a conference paper at ICLR 2024

vector vi in v as

v̂i
t+1 = vti − η

∑
j∈N(i)

vj (4)

vt+1
i =

v̂i
t+1

∥v̂it+1∥
, (5)

where η ∈ R+ is an adjustable step size and we let N(i) denote the neighborhood of node i. We
explore a natural dynamic that we call OptGNN-MaxCutr(v) which generalizes gradient descent to
the following form. Let {M1,t}t∈[T] ∈ Rr×r and {M2,t}t∈[T] ∈ Rr×r each be sets of T learnable
matrices corresponding to T layers of a neural network. Then for layer t in max iterations T , for
embedding vi in v, we have

v̂i
t+1 :=M1,tv

t
i −M2,t

∑
j∈N(i)

vj + b (6)

vt+1
i :=

v̂i
t+1

∥v̂it+1∥
, (7)

where b is a learnable affine shift. Even more generally, we can write our dynamics as

v̂i
t+1 := UPDATE(M1,tv

t
i ,AGGREGATE(M2,t, {vj}j∈N(i)), b) (8)

vt+1
i := NONLINEAR(v̂i

t+1) (9)

For efficiently computable functions UPDATE : R3r → Rr and AGGREGATE : Rr×r ×
Rr|N(i)| → Rr and NONLINEAR : Rr → Rr. That is to say, our dynamic OptGNN-MaxCut(r) is
a GNN. For an analogous discussion on Vertex Cover and Max Clique see A.

Rounding vs. Rank: To be clear, we do not regard OptGNN to be an SDP solver. Indeed we
demonstrate numerous empirical examples where OptGNN outcompetes the SDP solver. Of course,
on instances where the SDP is optimal, we should expect OptGNN to match the SDP performance
though this is not a guarantee. We also do not regard OptGNN as an algorithm for learning a ’round-
ing’. The term ’rounding’ is a vague ’catch-all’ term for all post-processing of convex relaxations.
Observe that ’rounding’ is inextricably intertwined with the solving of low rank SDP formulations as
for r = 1 no rounding is even necessary. Succinctly, OptGNN finds good CO solutions that captures
powerful classes of convex relaxations. Our theory result, which we dive into next, pertains entirely
to capturing the convex relaxation of Raghavendra (2008).

3.2 OPTGNN

Given a set of constraints over variables, Max-CSP asks to find a variable assignment that maximizes
the number of satisfied constraints. Max-CSP includes Max Cut, 3-SAT, boolean satisfiability, etc.
Formally, we define Max-CSP as follows.
Definition 3.1 (Max-k-CSP). A Constraint Satisfaction Problem Λ = (V,P, q) consists of a
set of N variables V := {xi}i∈[N] each taking values in an alphabet [q] and a set of predi-
cates P := {Pz}z⊂V where each predicate is a payoff function over k variables denoted Xz =
{xi1 , xi2 , ..., xik}. Here we refer to k as the arity of the Max-k-CSP. We adopt the normalization
that each predicate Pz returns outputs in [0, 1]. We index each predicate Pz by its domain z. The
goal of Max-k-CSP is to maximize the payoff of the predicates.

OPT := max
(x1,...,xN)∈[q]N

1

|P|
∑

Pz∈P
Pz(Xz), (10)

where we normalize by the number of constraints so that the total payoff is in [0, 1]. Therefore
we can unambiguously define an ϵ-approximate assignment as an assignment achieving a payoff of
OPT − ϵ.

There is a reformulation of the SDP of Raghavendra (2008) detailed in Optimization 1 that possesses
the optimal integrality gap assuming the Unique Games conjecture. Precisely, for Max-k-CSP we
define the approximation ratio to be

Approximation Ratio := min
Λ∈Max-k-CSP

OPT (Λ)

SDP (Λ)
,

5

Under review as a conference paper at ICLR 2024

where the minimization is being taken over all instances Λ with arity k. Then there is no polynomial
time algorithm that can achieve a superior approximation ratio assuming the truth of the conjecture.
Furthermore, there is a polynomial time rounding algorithm that achieves the integrality gap of SDP
Optimization 1 (Raghavendra, 2008). Our main theoretical result is the following.
Theorem 3.1. (Informal) Given a Max-k-CSP instance Λ, there exists a message passing Algo-
rithm 2 on constraint graph Gλ with a per iteration update time of poly(|P|, qk) that computes in
poly(1ϵ , |P|, q

k, log(δ−1)) iterations an ϵ-approximate solution to SDP Optimization 1 with proba-
bility 1 − δ. That is to say, Algorithm 2 computes a set of vectors v satisfying constraints of Opti-
mization 1 to error ϵ with objective value denoted OBJ(v) satisfying |OBJ(v)− SDP (Λ)| ≤ ϵ.

For the formal theorem and proof see Theorem B.1. Our algorithm is remarkably simple: perform
gradient descent on the quadratically penalized objective of the reformulated SDP Optimization 1.
We observe that the gradient takes the form of a message passing algorithm. For each predicate we
associate qk vectors, one vector for each assignment to each subset of k variables, for a total of |P|qk
vectors. The updates on each vector only depend on the vectors appearing in the same predicates.
Therefore, if each variable xi appears in no more than C predicates, every message update in the
algorithm depends no more than Cqk vectors rather than the total set of |P|qk vectors. For Max
Cut for example this would mean each vector corresponds to a node which is updated as a function
of the vectors in adjacent vertices. This message passing form allows us to define a natural GNN
generalization that captures the gradient iteration of Algorithm 2.

To make the above discussion precise, we define the constraint graph associated so a Max-CSP
instance Λ as follows.
Definition 3.2. [Constraint Graph GΛ = (V,E)] Given a Max-k-CSP instance Λ = (V,P, q) a
constraint graph GΛ = (V,E) is comprised of vertices V = {vϕ,ζ} for every subset of variables
ϕ ⊆ z for every predicate Pz ∈ P and every assignment ζ ∈ [q]k to the variables in z. The edges
E are between any pair of vectors vϕ,ζ and vϕ′,ζ′ such that the variables in ϕ and ϕ′ appear in a
predicate together.

Furthermore, we define message passing algorithms on the constraint graph GΛ as follows.
Definition 3.3. [Message Passing Algorithm] Given a graph G = (V,E) with a set of vectors
v = {vi}i∈V a message passing algorithm for T iterations is an update of the form; for vector vi in
v and for iteration t ∈ [T],

vti = UPDATE({vtj}j∈N(i), v
t
i)

For an arbitrary polynomial time computable function UPDATE : Rr(|N(i)|+1) → Rr

Then by inspection of the gradient iteration of Algorithm 2 we see that for a Max-k-CSP instance
Λ, Algorithm 2 is a message passing algorithm on the associated constraint graph GΛ.
Definition 3.4 (OptGNN). Given a Max-k-CSP instance Λ, an OptGNN(T,r,GΛ)(v) is a T layer,
dimension r, neural network over constraint graph GΛ with learnable matrices {M1,t}t∈[T],
{M2,t}t∈[T], and affine shift {bt}t∈[T] that generalizes the gradient iteration equation 32 of Al-
gorithm 2 with an embedding v ∈ v for every node in GΛ with updates of the form

vt+1
w = UPDATE(M1,tv

t
w,AGGREGATE(M2,t, {vtj}j∈N(w), v

t
w), bt)

vt+1
w = NONLINEAR(vt+1

w)

For arbitrary polynomial time computable functions UPDATE : R3r → Rr, AGGREGATE :
Rr×r × Rr(|N(w)|+1) → Rr, and NONLINEAR : Rr → Rr. Here by ’generalize’ we mean there
exists an instantiation of the learnable parameters {M1,t}t∈[T] and {M2,t}t∈[T] such that OptGNN
is equivalent to equation 32.

The crux of our proof is then to construct a message passing algorithm for the reformulated SDP
Optimization 1 which is the subject of Appendix B.

3.3 PRACTICAL INSTANTIATION AND ROUNDING

Our theoretical results lead to a simple practical recipe for solving CO problems with OptGNN.
Consider a distribution over graphs D. OptGNN computes node embeddings V ∈ Rr for mini-
batches of training graphs, which are then plugged into the Lagrangian, which is used as a

6

Under review as a conference paper at ICLR 2024

loss function. Going back to the maxcut example, the loss in that case would be calculated as
L(V ;G) = −

∑
(i,j)∈E

1
2 (1 − ⟨vi, vj⟩). The network is then trained in a completely unsupervised

fashion by minimizing EG∼D[L(V ;G)] with a standard automatic differentiation package like Py-
torch (Paszke et al., 2019). At inference time, the neural network produces fractional embeddings
V that we discretize with hyperplane rounding followed by a simple greedy heuristic. This enables
fast inference while also helping ensure feasibility in the case of problems with constraints. For an
example of the Lagrangian in the case of an optimization problem with additional constraints like
Vertex Cover, see Appendix A.

4 EXPERIMENTS

In this section, we report experimental measurements of the performance of the OptGNN approach
on two NP-complete combinatorial optimization problems, Maximum Cut and Minimum Vertex
Cover.

4.1 METHODS

Datasets Our experiments span a variety of randomly generated and real-world datasets. Our
randomly generated datasets contain graphs from several random graph models, in particular Erdős-
Rényi (with p = 0.15), Barabási–Albert (withm = 4), Holme-Kim (withm = 4 and p = 0.25), and
Watts-Strogatz (with k = 4 and p = 0.25). Our real-world datasets are ENZYMES, PROTEINS,
MUTAG, IMDB-BINARY, COLLAB (which we will together call TU-small), and REDDIT-
BINARY, REDDIT-MULTI-5K, and REDDIT-MULTI-12K (which we will call TU-REDDIT).

We abbreviate the generated datasets using their initials and the range of vertex counts. For example,
by ER (50,100) we denote Erdős-Rényi random graphs with a vertex count drawn uniformly at
random from [50, 100]. In tables, we mark generated datasets with superscript a, TU-small with b,
and TU-REDDIT with c.

Baselines We compare the performance of our approach against classical and neural baselines.
In terms of classical baselines, we run Gurobi with varying timeouts and include SDP results
on smaller datasets. SDP scales extremely poorly with graph size so we omit the results for
datasets with larger graphs. For minimum Vertex Cover, we include the classical baseline KaMIS,
a maximum independent set solver. We also include a greedy baseline, which is the function
one exchange (for Maximum Cut) or min weighted vertex cover (for minimum Ver-
tex Cover) from networkx (Hagberg et al., 2008). Our neural baselines include LwD (Ahn et al.,
2020) and DGL-TREESEARCH (Li et al., 2018; Böther et al., 2022).

Validation and test splits For each dataset we hold out a validation and test slice for evaluation.
In our generated graph experiments we set aside 1000 graphs each for validation and testing. Each
step of training ran on randomly generated graphs. For TU-small, we used a train/validation/test
split of 0.8/0.1/0.1. For TU-REDDIT, we set aside 100 graphs each for validation and testing.

Scoring To measure a model’s score on a graph, we first run the model on the graph to generate
an SDP output, and then round this output to an integral solution using 1,000 random hyperplanes.
We ran validation periodically during each training run and retained the model that achieved the
highest validation score. Then for each model and dataset, we selected the hyperparameter setting
that achieved the highest validation score, and we report the average score measured on the test slice.
Please see subsection C.2 for further details on the hyperparameter ranges used.

4.2 PERFORMANCE

Table 1 presents the average integral cut value achieved by OptGNN and classical baselines on a
variety of datasets. We note that Greedy achieves poor performance compared to OptGNN and
Gurobi on every dataset, indicating that for these datasets, finding Maximum Cut is not trivial. On
the worst case, WS (400, 500), OptGNN achieves a cut value within 1.1% on average of Gurobi with
an 8s time limit. On other datasets, OptGNN is typically within a fraction of a percent. Notably,
OptGNN is within 0.1% of Gurobi 8s on all the TU datasets.

7

Under review as a conference paper at ICLR 2024

Dataset OptGNN Greedy Gurobi
0.1s 1.0s 8.0s

BAa (50,100) 351.49 (18) 200.10 351.87 352.12 352.12
BAa (100,200) 717.19 (20) 407.98 719.41 719.72 720.17
BAa (400,500) 2197.99 (66) 1255.22 2208.11 2208.11 2212.49

ERa (50,100) 528.95 (18) 298.55 529.93 530.03 530.16
ERa (100,200) 1995.05 (24) 1097.26 2002.88 2002.88 2002.93
ERa (400,500) 16387.46 (225) 8622.34 16476.72 16491.60 16495.31

HKa (50,100) 345.74 (18) 196.23 346.18 346.42 346.42
HKa (100,200) 709.39 (23) 402.54 711.68 712.26 712.88
HKa (400,500) 2159.90 (61) 1230.98 2169.46 2169.46 2173.88

WCa (50,100) 198.29 (18) 116.65 198.74 198.74 198.74
WCa (100,200) 389.83 (24) 229.43 390.96 392.07 392.07
WCa (400,500) 1166.47 (78) 690.19 1173.45 1175.97 1179.86

MUTAGb 27.95 (9) 16.95 27.95 27.95 27.95
ENZYMESb 81.37 (14) 48.53 81.45 81.45 81.45
PROTEINSb 102.15 (12) 60.74 102.28 102.36 102.36
IMDB-BINb 97.47 (11) 51.85 97.50 97.50 97.50
COLLABb 2622.41 (22) 1345.70 2624.32 2624.57 2624.62

REDDIT-BINc 693.33 (186) 439.79 693.02 694.10 694.14
REDDIT-M-12Kc 568.00 (89) 358.40 567.71 568.91 568.94
REDDIT-M-5Kc 786.09 (133) 495.02 785.44 787.48 787.92

Table 1: Performance of OptGNN, Greedy, and Gurobi 0.1s, 1s, and 8s on Maximum Cut. For each
approach and dataset, we report the average cut size measured on the test slice. Here, higher score
is better. In parentheses, we include the average runtime in milliseconds for OptGNN.

Dataset OptGNN Greedy Gurobi
0.1s 1.0s 8.0s

BAa (50,100) 42.88 (27) 51.92 42.82 42.82 42.82
BAa (100,200) 83.43 (25) 101.42 83.19 83.19 83.19
BAa (400,500) 248.74 (27) 302.53 256.33 246.49 246.46

ERa (50,100) 55.25 (21) 68.85 55.06 54.67 54.67
ERa (100,200) 126.52 (18) 143.51 127.83 123.47 122.76
ERa (400,500) 420.70 (41) 442.84 423.07 423.07 415.52

HKa (50,100) 43.06 (25) 51.38 42.98 42.98 42.98
HKa (100,200) 84.38 (25) 100.87 84.07 84.07 84.07
HKa (400,500) 249.26 (27) 298.98 247.90 247.57 247.57

WCa (50,100) 46.38 (26) 72.55 45.74 45.74 45.74
WCa (100,200) 91.28 (21) 143.70 89.80 89.80 89.80
WCa (400,500) 274.21 (31) 434.52 269.58 269.39 269.39

MUTAGb 7.79 (18) 12.84 7.74 7.74 7.74
ENZYMESb 20.00 (24) 27.35 20.00 20.00 20.00
PROTEINSb 25.29 (18) 33.93 24.96 24.96 24.96
IMDB-BINb 16.78 (18) 17.24 16.76 16.76 16.76
COLLABb 67.50 (23) 71.74 67.47 67.46 67.46

REDDIT-BINc 82.85 (38) 117.16 82.81 82.81 82.81
REDDIT-M-12Kc 81.55 (25) 115.72 81.57 81.52 81.52
REDDIT-M-5Kc 107.36 (33) 153.24 108.73 107.32 107.32

Table 2: Performance of OptGNN, Greedy, and Gurobi 0.1s, 1s, and 8s on Minimum Vertex Cover.
For each approach and dataset, we report the average Vertex Cover size measured on the test slice.
Here, lower score is better. In parentheses, we include the average runtime in milliseconds for
OptGNN.

8

Under review as a conference paper at ICLR 2024

Table 2 presents the average size of the Vertex Cover achieved by OptGNN and classical baselines
on our datasets. For this problem OptGNN also performs nearly as well as Gurobi 8s, remaining
within 1% on the TU datasets and 3.1% on the worst case, ER (100, 200).

Dataset GAT GCNN GIN GatedGCNN OptGNN

ERa (50,100) 525.92 (25) 500.94 (17) 498.82 (14) 526.78 (14) 528.95 (18)
ERa (100,200) 1979.45 (20) 1890.10 (26) 1893.23 (23) 1978.78 (21) 1995.05 (24)
ERa (400,500) 16317.69 (208) 15692.12 (233) 15818.42 (212) 16188.85 (210) 16387.46 (225)

MUTAGb 27.84 (19) 27.11 (12) 27.16 (13) 27.95 (14) 27.95 (9)
ENZYMESb 80.73 (17) 74.03 (12) 73.85 (16) 81.35 (9) 81.37 (14)
PROTEINSb 100.94 (14) 92.01 (19) 92.62 (17) 101.68 (10) 102.15 (12)
IMDB-BINb 81.89 (18) 70.56 (21) 81.50 (10) 97.11 (9) 97.47 (11)
COLLABb 2611.83 (22) 2109.81 (21) 2430.20 (23) 2318.19 (18) 2622.41 (22)

Table 3: Performance of various model architectures for selected datasets on Maximum Cut. Here,
higher is better. GAT is the Graph Attention network (Veličković et al., 2018)
, GIN is the Graph Isomorphism Network (Xu et al., 2019), GCNN is the Graph Convolutional Neural Network
(Morris et al., 2019), and GatedGCNN is the gated version (Li et al., 2015).

4.3 ABLATION

Our approach of training on the SDP objective generalizes to neural network architectures other
than OptGNN. We trained several architectures besides OptGNN on a subset of our datasets for
both maximum cut and minimum vertex cover. We present the comparison of their performance
to OptGNN for maximum cut in Table 3; please see subsection C.4 for the analogous table for
minimum vertex cover. On the datasets we used, OptGNN outperforms the other architectures we
tested. We note that compared to OptGNN, many other models performed fairly well; for instance,
GatedGCNN achieves average cut values within a few percent of OptGNN on nearly all the datasets
(excluding COLLAB). An interesting question for future investigation is what architectures may
perform better than OptGNN.

5 CONCLUSION

We have presented OptGNN, a GNN that can capture provably optimal message passing algorithms
for a large class of combinatorial optimization problems. OptGNN achieves the appealing combi-
nation of obtaining approximation guarantees while also being able to adapt to the data to achieve
improved results. Empirically, we observed that the OptGNN architecture achieves strong perfor-
mance on a wide range of datasets and on multiple problems. Since the landscape of combinatorial
optimization is expansive, there are still important challenges that have to be addressed within the
scope of this work such as the extension of our approach to problems with more complex constraints
and objectives. OptGNN offers a novel perspective on the connections between general approxima-
tion algorithms and neural networks, and opens up new avenues for exploration. These include
the design of more powerful and sound (neural) rounding procedures that can secure approxima-
tion guarantees, the construction of neural certificates that improve upon the ones we described in
Appendix B.1, and the design of neural SDP-based branch and bound solvers.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems,
32, 2019.

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In International Conference on Machine Learning, pp. 134–144. PMLR, 2020.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An unsu-
pervised differentiable approach. 2018.

Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal algorithms.
arXiv preprint arXiv:1404.5236, 2014.

Thomas D Barrett, Christopher WF Parsonson, and Alexandre Laterre. Learning to solve combi-
natorial graph partitioning problems via efficient exploration. arXiv preprint arXiv:2205.14105,
2022.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Konstantinos Benidis, Ugo Rosolia, Syama Rangapuram, George Iosifidis, and Georgios
Paschos. Solving recurrent mips with semi-supervised graph neural networks. arXiv preprint
arXiv:2302.11992, 2023.

Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, and Praneeth Netrapalli. Smoothed analysis
for low-rank solutions to semidefinite programs in quadratic penalty form, 2018.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. arXiv preprint
arXiv:2201.10494, 2022.

Samuel Burer and Renato Monteiro. A nonlinear programming algorithm for solving semidefi-
nite programs via low-rank factorization. Mathematical Programming, Series B, 95:329–357, 02
2003. doi: 10.1007/s10107-002-0352-8.

Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau. Improving
optimization bounds using machine learning: decision diagrams meet deep reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 1443–1451,
2019.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovic. Combinatorial optimization and reasoning with graph neural networks. J. Mach.
Learn. Res., 24:130–1, 2023.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. In Advances in Neural Information Processing Systems, pp. 6278–6289, 2019.

Jiaoman Du, Xiang Li, Lean Yu, Ralescu Dan, and Jiandong Zhou. Multi-depot vehicle routing
problem for hazardous materials transportation: A fuzzy bilevel programming. Information sci-
ences, 399:201–218, 2017.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Vijay Ganesh and Moshe Y Vardi. On the unreasonable effectiveness of sat solvers. Beyond the
Worst-Case Analysis of Algorithms, pp. 547–566, 2020.

10

Under review as a conference paper at ICLR 2024

Eleanor J Gardiner, Peter Willett, and Peter J Artymiuk. Graph-theoretic techniques for macro-
molecular docking. Journal of Chemical Information and Computer Sciences, 40(2):273–279,
2000.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. arXiv preprint arXiv:1906.01629,
2019.

Dobrik Georgiev, Danilo Numeroso, Davide Bacciu, and Pietro Liò. Neural algorithmic reasoning
for combinatorial optimisation. arXiv preprint arXiv:2306.06064, 2023.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):
1115–1145, 1995.

Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1:169–197, 1981.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman (eds.),
Proceedings of the 7th Python in Science Conference, pp. 11 – 15, Pasadena, CA USA, 2008.

Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. Wegotyoucovered: The
winning solver from the pace 2019 challenge, vertex cover track. In 2020 Proceedings of the
SIAM Workshop on Combinatorial Scientific Computing, pp. 1–11. SIAM, 2020.

Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
Csordás, Andrew Joseph Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, et al. A
generalist neural algorithmic learner. In Learning on Graphs Conference, pp. 2–1. PMLR, 2022.

Vinay Jethava, Anders Martinsson, Chiranjib Bhattacharyya, and Devdatt Dubhashi. Lovász ϑ func-
tion, svms and finding dense subgraphs. The Journal of Machine Learning Research, 14(1):
3495–3536, 2013.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
saddle points efficiently, 2017.

David S Johnson. Approximation algorithms for combinatorial problems. In Proceedings of the fifth
annual ACM symposium on Theory of computing, pp. 38–49, 1973.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. arXiv preprint arXiv:2006.10643, 2020.

Nikolaos Karalias, Joshua Robinson, Andreas Loukas, and Stefanie Jegelka. Neural set function
extensions: Learning with discrete functions in high dimensions. Advances in Neural Information
Processing Systems, 35:15338–15352, 2022.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial op-
timization algorithms over graphs. In Advances in Neural Information Processing Systems, pp.
6348–6358, 2017.

Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing, pp. 767–775, 2002.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tamás Kriváchy, Yu Cai, Joseph Bowles, Daniel Cavalcanti, and Nicolas Brunner. High-speed batch
processing of semidefinite programs with feedforward neural networks. New Journal of Physics,
23(10):103034, 2021.

11

Under review as a conference paper at ICLR 2024

Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Can q-learning with graph net-
works learn a generalizable branching heuristic for a sat solver? Advances in Neural Information
Processing Systems, 33:9608–9621, 2020.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. In Advances in Neural Information Processing Systems, pp.
539–548, 2018.

Minghao Liu, Fuqi Jia, Pei Huang, Fan Zhang, Yuchen Sun, Shaowei Cai, Feifei Ma, and Jian Zhang.
Can graph neural networks learn to solve maxsat problem? arXiv preprint arXiv:2111.07568,
2021.

Andreas Loukas. What graph neural networks cannot learn: depth vs width, 2019.

László Lovász. On the shannon capacity of a graph. IEEE Transactions on Information theory, 25
(1):1–7, 1979.

Evan McCarty, Qi Zhao, Anastasios Sidiropoulos, and Yusu Wang. Nn-baker: A neural-network
infused algorithmic framework for optimization problems on geometric intersection graphs. Ad-
vances in Neural Information Processing Systems, 34:23023–23035, 2021.

Yimeng Min, Frederik Wenkel, Michael Perlmutter, and Guy Wolf. Can hybrid geometric scattering
networks help solve the maximum clique problem? Advances in Neural Information Processing
Systems, 35:22713–22724, 2022.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, pp. 9839–9849, 2018.

Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs Ko-
zlovics. Goal-aware neural sat solver. In 2022 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2022.

Augustin Parjadis, Quentin Cappart, Louis-Martin Rousseau, and David Bergman. Improving
branch-and-bound using decision diagrams and reinforcement learning. In Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research: 18th International Con-
ference, CPAIOR 2021, Vienna, Austria, July 5–8, 2021, Proceedings 18, pp. 446–455. Springer,
2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In International conference
on machine learning, pp. 17584–17600. PMLR, 2022.

Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In Proceed-
ings of the fortieth annual ACM symposium on Theory of computing, pp. 245–254, 2008.

Prasad Raghavendra and David Steurer. Towards computing the grothendieck constant. In Pro-
ceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 525–534.
SIAM, 2009.

12

Under review as a conference paper at ICLR 2024

Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion problems.
In 2012 IEEE 27th Conference on Computational Complexity, pp. 64–73. IEEE, 2012.

Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding global minima via kernel ap-
proximations. arXiv preprint arXiv:2012.11978, 2020.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
for combinatorial problems, 2019.

Daniel Selsam and Nikolaj Bjørner. Guiding high-performance sat solvers with unsat-core predic-
tions. In Theory and Applications of Satisfiability Testing–SAT 2019: 22nd International Con-
ference, SAT 2019, Lisbon, Portugal, July 9–12, 2019, Proceedings 22, pp. 336–353. Springer,
2019.

Alexander Smith, Andreas Veneris, and Anastasios Viglas. Design diagnosis using boolean satisfi-
ability. In ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE
Cat. No. 04EX753), pp. 218–223. IEEE, 2004.

David Steurer. Fast sdp algorithms for constraint satisfaction problems. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pp. 684–697,
USA, 2010. Society for Industrial and Applied Mathematics. ISBN 9780898716986.

Haoran Sun, Etash K Guha, and Hanjun Dai. Annealed training for combinatorial optimization on
graphs. arXiv preprint arXiv:2207.11542, 2022.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Run-csp: Unsupervised learn-
ing of message passing networks for binary constraint satisfaction problems. arXiv preprint
arXiv:1909.08387, 2019.

Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One model, any csp: Graph neural net-
works as fast global search heuristics for constraint satisfaction. arXiv preprint arXiv:2208.10227,
2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, 2021.
ISSN 2666-3899.

Jose L Walteros and Austin Buchanan. Why is maximum clique often easy in practice. Oper. Res,
2019.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for com-
binatorial optimization with principled objective relaxation. In Advances in Neural Information
Processing Systems, 2022.

Po-Wei Wang and J Zico Kolter. Low-rank semidefinite programming for the max2sat problem. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 1641–1649, 2019.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and log-
ical reasoning using a differentiable satisfiability solver. In International Conference on Machine
Learning, pp. 6545–6554. PMLR, 2019.

Wenxi Wang, Yang Hu, Mohit Tiwari, Sarfraz Khurshid, Kenneth McMillan, and Risto Mi-
ikkulainen. Neurocomb: Improving sat solving with graph neural networks. arXiv preprint
arXiv:2110.14053, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Yunqiu Xu, Meng Fang, Ling Chen, Gangyan Xu, Yali Du, and Chengqi Zhang. Reinforcement
learning with multiple relational attention for solving vehicle routing problems. IEEE Transac-
tions on Cybernetics, 52(10):11107–11120, 2021.

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Under review as a conference paper at ICLR 2024

Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfiability. Ad-
vances in Neural Information Processing Systems, 32, 2019.

Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, Wei Li, et al. New algorithms
for fast discovery of association rules. In KDD, volume 97, pp. 283–286, 1997.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial optimization problems with gflownets. arXiv preprint
arXiv:2305.17010, 2023.

A VERTEX COVER AND MAX CLIQUE

Minimum Vertex Cover can be written as the following integer program

Minimize: VertexCover(x) :=
∑
i∈[N]

1 + xi
2

(11)

Subject to: (1− xi)(1− xj) = 0 ∀(i, j) ∈ E (12)

x2i = 1 ∀i ∈ [N] (13)

To deal with the constraint on the edges (1 − xi)(1 − xj) = 0, we add a quadratic penalty to the
objective with a penalty parameter ρ > 0 yielding

Minimize: VertexCover(x) :=
∑
i∈[N]

1 + xi
2

+ ρ
∑

(i,j)∈E

(1− xi − xj + xixj)
2 (14)

Subject to: x2i = 1 ∀i ∈ [N] (15)

Analogously to Max Cut, we introduce a natural low rank vector formulation LiftVertexCoverr(v)
for vectors v = {vi}i∈[N] in r dimensions.

Minimize: LiftVertexCoverr(v) :=
∑
i∈[N]

1 + ⟨vi, e1⟩
2

+ ρ
∑

(i,j)∈E

(1− ⟨vi, e1⟩ − ⟨vj , e1⟩+ ⟨vi, vj⟩)2

(16)
Subject to: ∥vi∥ = 1 vi ∈ Rr ∀i ∈ [N] (17)

Now we can design a simple projected gradient descent scheme as follows. For iteration t in max
iterations T , and for vector vi in v we perform the following update.

v̂i
t+1 := vti − η

(
e1 + 2ρ

∑
j∈N(i)

(1− ⟨vi, e1⟩ − ⟨vj , e1⟩+ ⟨vi, vj⟩)(−e1 + vj)
)

(18)

vt+1
i :=

v̂t+1
i

∥v̂t+1
i ∥

(19)

We can then define a OptGNN-VertexCoverr(v) analogously with learnable matrices {M1,t}t∈[T] ∈
Rr×r and {M2,t}t∈[T] ∈ Rr×r which are each sets of T learnable matrices corresponding to T
layers of neural network. Then for layer t in max iterations T , for vi in v, we have

v̂i
t+1 :=M1v

t
i +M2

(
e1 + 2ρ

∑
j∈N(i)

(1− ⟨vi, e1⟩ − ⟨vj , e1⟩+ ⟨vi, vj⟩)(−e1 + vj)
)
+ b (20)

vt+1
i :=

v̂t+1
i

∥v̂t+1
i ∥

(21)

14

Under review as a conference paper at ICLR 2024

Which once again we see can be captured by the dynamic

v̂i
t+1 = UPDATE(M1v

t
i ,M2AGGREGATE({vj}j∈N(i)), b) (22)

vt+1
i = NONLINEAR(v̂i

t+1) (23)

For functions UPDATE : R3r → Rr and AGGREGATE : Rr|N(i)| → Rr and NONLINEAR :
Rr → Rr.

B OPTIMALITY OF MESSAGE PASSING FOR MAX-CSP

Our primary theoretical result is that a polynomial time message passing algorithm on an appro-
priately defined constraint graph computes the approximate optimum of Optimization 1 which is
notable for being an SDP that achieves the Unique Games optimal integrality gap.

Our proof roadmap is simple. First, we design an SDP relaxation Optimization 1 for Max-k-CSP
that is provably equivalent to the SDP of Raghavendra (2008) and therefore inherits its complex-
ity theoretic optimality. Finally, we design a message passing algorithm to approximately solve
Optimization 1 in polynomial time to polynomial precision. Our message passing algorithm has
the advantage of being formulated on an appropriately defined constraint graph. For a Max-k-CSP
instance Λ with N variables, |P| predicates, over an alphabet of size q, it takes |P|qk space to rep-
resent the Max-CSP. Our message passing algorithm achieves an additive ϵ approximation in time
poly(1ϵ , N, |P|q

k) which is then polynomial in the size of the CSP and inverse polynomial in the
precision.

Here we briefly reiterate the definition of Max-k-CSP. A Max-k-CSP instance Λ = (V,P, q) con-
sists of a set of N variables V := {xi}i∈[N] each taking values in an alphabet [q] and a set of
predicates P := {Pz}z⊂V where each predicate is a payoff function over k variables denoted
z = {xi1 , xi2 , ..., xik}. Here we refer to k as the arity of the GCSP, and we adopt the normal-
ization that each predicate Pz returns outputs in [0, 1]. We index each predicate Pz by its domain z
and we will use the notation S(P) to denote the domain of a predicate P . The goal of Max-k-CSP
is to maximize the payoff of the predicates.

max
(x1,...,xN)∈[q]N

1

|P|
∑
Pz∈P

Pz(Xz) (24)

Where Xz denotes the assignment of variables {xi}i∈z .

There is an SDP relaxation of equation 24 that is the ”qualitatively most powerful assuming the
Unique Games conjecture” Raghavendra (2008). More specifically, the integrality gap of the SDP
achieves the Unique Games optimal approximation ratio. Furthermore, there exists a rounding that
achieves its integrality gap.

SDP Reformulation: Next we will introduce the SDP formulation we adopt in this paper. For
the sake of exposition and notational simplicity, we will work with binary Max-k-CSP’s where
q = {0, 1}. The extension to general q is straightforward and detailed in the appendix. TODO

We will adopt the standard pseudoexpectation and pseudodistribution formalism in describing our
SDP. Let Ẽµ[X] be a matrix in dimension R(N+1)k/2×(N+1)k/2

of optimization variables defined as
follows

Ẽµ[X] := Ẽµ[(1, x1, x2, ..., xN)⊗k/2
(
(1, x1, x2, ..., xN)⊗k/2

)T
] (25)

Where we use ⊗ to denote tensor product. It is convenient to think of Ẽµ[X] as a matrix of variables
denoting the up to k multilinear moments of a distribution µ over the variables V . A multilinear
polynomial is a polynomial of the form Xϕ :=

∏
i∈ϕ xi for some subset of the variables ϕ ⊆ V .

We index the variables of the matrix Ẽµ[X] by the multilinear moment that it represents. Notice that
this creates repeat copies as their are multiple entries representing the same monomial. This is dealt
with by constraining the repeated copies to be equal with linear equality constraints.

15

Under review as a conference paper at ICLR 2024

Specifically, let z be a subset of the CSP variables z ⊂ {xi}i∈[N] of size k. Let Xz denote the
multilinear moment Xz :=

∏
i∈z xi. Then Ẽµ[Xz] denotes the SDP variable corresponding to

the multilinear moment Eµ[Xz]. Of course optimizing over the space of distributions µ over V is
intractable, and so we opt for optimizing over the space of low degree pseudodistributions and their
associated pseudoexpecation functionals. See Barak & Steurer (2014) for references therein.

In particular, for any subset of variables Xz := {xi1 , ..., xik} ∈ V we let Ẽµ[X]
∣∣
z,d

denote the
matrix of the up to degree up to d multilinear moments of the variables in z.

Ẽµ[X]
∣∣
z
:= Ẽµ[(1, xi1 , xi2 , ..., xik)

⊗d/2
(
(1, xi1 , xi2 , ..., xik)

⊗d/2
)T

] (26)

Subsequently, we describe a pseudoexpectation formulation of our SDP followed by a vector for-
mulation.

Multilinear Formulation: A predicate for a boolean Max-k-CSP Pz(Xz) can be written as a
multilinear polynomial

Pz(Xz) :=
∑

τ=(τ1,...,τk)∈{−1,1}k

wz,τ

∏
xi∈z

1 + τixi
2

:=
∑
s⊆z

wsXs (27)

For some real valued weights wz,τ and ws which are simply the fourier coefficients of the function
Pz . Then the pseudoexpectation formulation of our SDP is as follows

max
Ẽµ[X]

∑
Pz∈P

Ẽµ[Pz(Xz)] (28)

subject to the following constraints

1. Unit: Ẽµ[1] = 1, Ẽµ[x
2
i] = 1 for all xi ∈ V , and Ẽµ[

∏
i∈s x

2
i

∏
j∈s′ xj] = Ẽµ[

∏
j∈s′ xj]

for all s, s′ ⊆ S(P) for every predicate P ∈ P such that 2s + s′ ≤ k. In expectation, the
squares of all multilinear polynomials are equal to 1.

2. Positive Semidefinite: Ẽµ[X]|V,2 ⪰ 0 i.e the degree two pseudoexpectation is positive
semidefinite. Ẽµ[X]

∣∣
z,k
⪰ 0 for all z = S(P) for all P ∈ P . The moment matrix for the

multilinear polynomials corresponding to every predicate is positive semidefinite.

Equivalently we can view the SDP in terms of the vectors in the cholesky decomposition of Ẽµ[X].
We rewrite the above SDP accordingly. For this purpose it is useful to introduce the notation
ζ(A,B) := A ∪ B/A ∩ B. It is also useful to introduce the notation C(s) for the size of the
set {g, g′ ⊆ s : ζ(g, g′) = s}.
Lemma B.1. For Max-k-CSP instance Λ, The SDP of Optimization 1 is at least as tight as the SDP
of Raghavendra (2008).

Proof. The SDP of Raghavendra (2008) is a based degree 2 SoS SDP augmented with k-local dis-
tributions for every predicate P ∈ P . By using the vectors of the cholesky decomposition and
constraining them to be unit vectors we automatically capture degree 2 SoS. To capture k local
distributions we simply enforce degree 2k SoS on the boolean hypercube for the domain of every
predicate. This can be done with the standard vector formulation written in Optimization 1. See
Barak & Steurer (2014) for background and references.

Theorem B.1. Algorithm 2 computes in poly(1/ϵ, |P|, 2k, log(δ−1)) iterations a set of vectors v :=
{v̂s} for all s ⊆ S(P) for all P ∈ P that satisfy the constraints of Optimization 1 to error ϵ and
approximates the optimum of Optimization 1 to error ϵ with probability 1− δ∣∣ ∑

Pz∈P
Ẽµ̂[Pz(Xz)]−OPTSDP (Λ)

∣∣ ≤ ϵ
where OPTSDP (Λ) is the optimum of Optimization 1.

16

Under review as a conference paper at ICLR 2024

Algorithm 1 SDP Vector Formulation for Max-k-CSP
1: procedure SDP VECTOR FORMULATION(Λ = (V,P, {0, 1})) ▷ SDP Equivalent to UGC

optimal

Minimize:
∑

Pz⊂P
Ẽµ[−Pz(Xz)] :=

∑
Pz∈P

∑
s⊆z

ws
1

|C(s)|
∑

g,g′⊆s:ζ(g,g′)=s

⟨vg, vg′⟩ (29)

2: ▷ multilinear formulation of objective

Subject to: ∥vs∥2 = 1 ∀s ⊆ S(P) ∀P ∈ P (30)

Ẽµ[Xζ(g,g′)] := ⟨vg, vg′⟩ = ⟨vh, vh′⟩ ∀ζ(g, g′) = ζ(h, h′) s.t g ∪ g′ ⊆ S(P) ∀P ∈ P
(31)

▷ First constraint is the square of multilinear polynomials are unit
3: ▷ Second constraint are degree 2k SoS constraints for products of multilinear polynomials
4: end procedure

Algorithm 2 Message Passing for Max-CSP
1: procedure MESSAGE PASSING(Λ = (V,P, {0, 1}))
2: n← |P|2k log(δ−1)
3: η, ψ, σ ← n−100 ▷ Initialize step size, noise threshold, and noise variance
4: v0 = {vs}s⊆z:Pz∈P ← Uniform(Sn−1) ▷ Initialize vectors to uniform on the unit sphere
5: for t ∈ [poly(1ϵ , |P|, 2

k, log(δ−1))] do
6: for vtw ∈ vt do ▷ Iterate over vectors
7:

v̂t+1
w ← vtw − η

∑
Pz∈P:w⊆z

∑
s⊆z:w⊆s

ws
1

|C(s)|
∑

w′⊆s:ζ(w,w′)=s

vtw′ (32)

+2ρ

[∑
Pz∈P:w⊆z

∑
w′,h,h′⊆s:ζ(w,w′)=ζ(h,h′)

(
⟨vtw, vtw′⟩ − ⟨vth, vth′⟩

)
v′tw (33)

+(∥vtw∥2 − 1)vtw

]
(34)

▷ Update each vector with neighboring vectors in constraint graph
8:
9: if ∥vt+1

w − vtw∥ ≤ ψ then
10: ζ ← N(0, σI)
11: else
12: ζ ← 0
13: end if
14: vt+1

w ← vt+1
w + ζ ▷ Add perturbed noise if gradient smaller than threshold

15: end for
16: end for
17: return vt ▷ Returns the vectors corresponding to solution to Optimization 1
18: end procedure

17

Under review as a conference paper at ICLR 2024

Proof. We begin by writing down the objective penalized by a quadratic on the constraints.

Lρ(v) :=
∑
Pz∈P

Ẽµ[Pz(Xz)]

+ ρ

[∑
Pz∈P

∑
g,g′,h,h′⊆z:ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩ − ⟨vh, vh′⟩

)2
+

∑
vs∈v

(∥vs∥2 − 1)2

]
(35)

For any monomial Xs =
∏

i∈s xi in Pz(Xz) we write

Ẽµ[Xs] :=
1

|C(s)|
∑

g,g′⊆s:ζ(g,g′)=s

⟨vg, vg′⟩ (36)

Where C(s) is the size of the set {g, g′ ⊆ s : ζ(g, g′) = s}. In a small abuse of notation, we regard
this as the definition of Ẽµ[Xs] but realizet that we’re referring to the iterates of the algorithm before
they’ve converged to a pseudoexpectation. Now recall equation 27, we can expand the polynomial
Pz(Xz) along its standard monomial basis

Pz(Xz) =
∑
s⊆z

wsXs (37)

where we have defined coefficients ws for every monomial in Pz(Xz). Plugging equation 36 and
equation 37 into equation 35 we obtain

(35) =
∑
Pz∈P

∑
s⊆z

ws
1

|C(s)|
∑

g,g′⊆s:ζ(g,g′)=s

⟨vg, vg′⟩

+ ρ

[∑
Pz∈P

∑
g,g′,h,h′⊆z:ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩ − ⟨vh, vh′⟩

)2
+

∑
vs∈v

(∥vs∥2 − 1)2

]
(38)

Taking the derivative with respect to any vw ∈ v we obtain

∂Lρ(v)
∂vw

=
∑

Pz∈P:w⊆z

∑
s⊆z:w⊆s

ws
1

|C(s)|
∑

w′⊆s:ζ(w,w′)=s

vw′

+ 2ρ

[∑
Pz∈P:w⊆z

∑
w′,h,h′⊆s:ζ(w,w′)=ζ(h,h′)

(
⟨vw, vw′⟩ − ⟨vh, vh′⟩

)
v′w

+ (∥vw∥2 − 1)vw

]
(39)

The gradient update is then what is detailed in Algorithm 2

vt+1
w = vtw − η

∂Lρ(v)
∂vw

(40)

Thus far we have established the form of the gradient. To prove the gradient iteration converges
we reference the literature on convergence of perturbed gradient descent (Jin et al., 2017). First we
note that the SDP equation 29 has ℓ smooth gradient for ℓ ≤ poly(ρ, |P|, 2k) and has γ lipschitz
Hessian for γ = poly(ρ, |P|, 2k) which we arrive at by bounding the size of every matrix involved
in the objective and constraints of Optimization 1. Then by Theorem B.2 the iteration converges to
an (ϵ′, γ2)-SOSP in no more than Õ(1

ϵ′2) iterations with probability 1 − δ. It remains to show that
(ϵ′, γ2)-SOSP are approximately global optimum.

18

Under review as a conference paper at ICLR 2024

Thus far we have worked with the vector version of the SDP which is overparameterized and non-
convex. For subsequent analysis we need to define the penalized loss which we denoteHρ(Ẽ[X]) in
terms of the SDP moment matrix Ẽ[X].

Hρ(Ẽ[X]) :=
∑
Pz∈P

Ẽµ̂[Pz(Xz)]

+ρ

[∑
Pz∈P

∑
g,g′,h,h′⊆z:ζ(g,g′)=ζ(h,h′)

(
Ẽµ̂[Xg,g′]−Ẽµ̂[Xh,h′]

)2
+

∑
Xs:s⊂S(P),|s|≤k,∀P∈P

(Ẽµ̂[X
2
s]−1)2

]
(41)

Note that although by definition Hρ(Ẽ[X]) = Lρ(v) , their gradients and hessians are distinct be-
cause Lρ(v) is overparameterized.

For the SDP we are working a global optimum clearly exists which we denote Ẽµ̃[X̃] with a cholesky
decomposition ṽ. Let v̂ be the set of vectors outputted by Algorithm 2 with associated pseudoexpec-
tation Ẽµ̂[X̂]. Then, we can bound

Lρ(v̂) − Lρ(ṽ) = Hρ(Ẽ[X̂]) − Hρ(Ẽ[X̃]) ≤
〈
∇Hρ(Ẽ[X̂]), Ẽ[X̂] − Ẽ[X̃]

〉
(42)

Here the first equality is by definition, and the inequality is by the convexity of Hρ. Moving on,
we observe that ∇2Lρ(v̂) ⪰ −γ

√
ϵ′ implies λmin(∇Hρ(Ẽ[X̂])) ≥ −γ

√
ϵ′. This derivation can be

found in multiple references such as Bhojanapalli et al. (2018). We adapt the lines of their argument
in lemma 3 most relevant to our analysis which we detail here for the sake of completeness.

equation 42 ≤ −λmin(∇Hρ(Ẽ[X̂])) Tr(Ẽ[X̂])−
〈
∇Hρ(Ẽ[X̂]), Ẽ[X̃]

〉
≤ −λmin(∇Hρ(Ẽ[X̂])) Tr(Ẽ[X̂]) + ∥∇Hρ(Ẽ[X̂])∥F ∥Ẽ[X̃]∥F

≤ γ
√
ϵ′ Tr(Ẽ[X]) + ϵ′∥ṽ∥F

≤ γ
√
ϵ′|P|2k + ϵ′|P|2k ≤ ϵ (43)

Here the first inequality follows by a standard inequality of frobenius inner product, the second in-
equality follows by Cauchy-Schwarz, the third inequality follows by the SOSP conditions on both
the min eigenvalue of the hessian and the norm of the gradient, the final two inequalities follow
from knowing the main diagonal of Ẽ[X̂] is the identity and that every vector in ṽ is a unit vector
up to inverse polynomial error. For this last point see the proof in Lemma B.2. Therefore if we set
ϵ′ = poly(ϵ, |P|, 2k) we arrive at any ϵ error. Therefore we have established our estimate v̂ is approx-
imates the global optimum of the quadratically penalized objective i.e Hρ(Ẽ[X̂]) −Hρ(Ẽ[X̃]) ≤ ϵ.
To finish our proof, we have to bound the distance between the global optimum of the quadratically
penalized objectiveHρ(Ẽ[X̃]) and OPTSDP(Λ) the optimum of Optimization 1. This is established
for ρ a sufficiently large poly(ϵ−1, |P|, 2k) in Lemma B.2. This concludes our proof that the iterates
of Algorithm 2 converge to the solution of the SDP Optimization 1.

The following Lemma B.2 establishes that

Lemma B.2. Let Λ be a Max-k-CSP instance, and let OPTSDP(Λ) be the optimum of Optimiza-
tion 1. Let Lρ(v) be the quadratically penalized objective

Lρ(v) :=
∑
Pz∈P

∑
s⊆z

ws
1

|C(s)|
∑

g,g′⊆s:ζ(g,g′)=s

⟨vg, vg′⟩

+ ρ

[∑
Pz∈P

∑
g,g′,h,h′⊆z:ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩ − ⟨vh, vh′⟩

)2
+

∑
vs∈v

(∥vs∥2 − 1)2

]
(44)

19

Under review as a conference paper at ICLR 2024

Let ṽ be the argmin of the unconstrained minimization

ṽ := argmin
v∈R|P|2(22k)

Lρ(v)

Then we have
Lρ(ṽ)− OPTSDP(Λ) ≤ ϵ

for ρ = poly(1ϵ , |P|, 2
k)

Proof. We begin the analysis with the generic equality constrained semidefinite program of the form

Minimize: ⟨C,X⟩ (45)
Subject to: ⟨Ai, X⟩ = bi ∀i ∈ F (46)

X ⪰ 0 (47)

X ∈ Rd×d (48)

For an objective matrixC and constraint matrices {Ai}i∈F in some constraint setF . We will invoke
specific properties of Optimization 1 to enable our analysis. First we define the penalized objective
in this generic form

Hρ(X) := ⟨C,X⟩+ ρ
∑
i∈F

(⟨Ai, X⟩ − bi)2

Let X̃ be the minimizer of the penalized problem.

X̃ := argmin
X∈Rd×d

Lρ(X)

Let X∗ be the minimizer of the constrained problem equation 61. Let τi be the error X̃ has in
satisfying constraint ⟨Ai, X̃⟩ = bi.

τi := |⟨Ai, X̃⟩ − bi|

We will show that τi scales inversely with ρ. That is, τi ≤ poly(|P|, 2k, ρ−1).

Notice that the quadratic penalty on the violated constraints must be smaller than the decrease in the
objective for having violated the constraints. So long as the objective is not too sensitive ’robust’ to
perturbations in the constraint violations the quadratic penalty should overwhelm the decrease in the
objective. To carry out this intuition, we begin with the fact that the constrained minimum is larger
than the penalized minimum.

Hρ(X
∗)−Hρ(X̃) ≤ 0 (49)

This implies

⟨C,X∗⟩ − (⟨C, X̃⟩+ ρ
∑
i∈F

τ2i) ≤ 0 (50)

Rearranging LHS and RHS we obtain

ρ
∑
i∈F

τ2i ≤ ⟨C, X̃ −X∗⟩ (51)

We know the RHS is upper bounded

ρ
∑
i∈F

τ2i ≤ ⟨C, X̃ −X∗⟩ ≤
∑
i∈F

τipoly(k, q) (52)

The last line follows from the robustness theorem of Steurer (2010) lemma 3.4 that states for an
SDP solution that violates the constraints by a small perturbation changes the objective by a small
amount. Then taking Cauchy-Schwarz of the RHS we further bound by

ρ
∑
i∈F

τ2i ≤
√
|F|

∑
i∈F

τ2i poly(k, q)

20

Under review as a conference paper at ICLR 2024

Rearranging left and right hand sides we obtain∑
i∈F

τ2i ≤ ρ−1poly(k, q)|F|

which implies ∥τ∥ = poly(|P|, 2k, ρ−1). Moving on, consider the dual feasibility condition

C = Q+
∑
i∈F

λiAi

for some Q ⪰ 0. Then we have

⟨C,X∗ − X̃⟩ = ⟨Q,X∗⟩ − ⟨Q, X̃⟩+
∑
i∈F

λi⟨Ai, X
∗ − X̄⟩

By complementary slackness ⟨Q,X∗⟩ = 0 so we obtain

= −⟨Q, X̃⟩+
∑
i∈F

λi⟨Ai, X
∗ − X̄⟩

By PSD’ness of both Q and X̃ we upper bound by

≤
∑
i∈F

λi⟨Ai, X
∗ − X̃⟩ =

∑
i∈F

λi(bi − ⟨Ai, X̃⟩) ≤
√∑

i∈F
λ2i ∥τ∥

Where in the first equality we used the fact that ⟨Ai, X̄⟩ = bi, and the second inequality is Cauchy-
Schwarz. Since we’ve already established that ∥τ∥ ∝ ρ−1 we must simply bound the size of the dual
variables λi. To bound the size of λi, we separate the constraints Ai into the diagonal constraints
{Fi}i∈W and equality constraints {Gi}i∈R where

⟨Fi, X⟩ = 1 ∀i ∈ W ⟨Gi, X⟩ = 0 ∀i ∈ R

The dual takes on the following form for δ, η ∈ R

Maximize:
∑
i∈W

δi (53)

Subject to: C −
∑
i∈W

δiFi −
∑
i∈R

ηiGi ⪰ 0 (54)

Where we’ve split the dual variables {λi}i∈F into two sets {δi}i∈W and {ηi}i∈R. Note that the δi
are polynomially bounded i.e |δi| ≤ poly(|P|, 2k). Assume the contrary, if δi > poly(|P|, 2k) then
the objective is polynomially unbounded which contradicts dual objective being smaller than primal
objective. If δi < −poly(P, 2k) then the i′th diagonal coordinate of equation 54 is polynomially
unbounded and then ei is a negative eigenvalue of equation 54 which is a contradiction of PSD’ness.
Therefore, the δi are polynomially bounded. To demonstrate the {ηi}i∈R are polynomially bounded,
note that because of linear independence of the constraints plus the minimum singular value being
greater than a constant, there exists a setting of the η that is polynomially bounded such that the dual
feasibility constraint is satisfied. Since the η do not appear in the objective, finding a setting that
satisfies equation 54 suffices.

Constraint matrix is well conditioned. The smallest singular value of {Ai}i∈F is a constant.
This is a technical observation about collections of vectors of the form {e1 + ej}j∈[2,T] where ei is
the i′th standard basis vector. Any unit vector v satisfies ∥

∑
j vj(e1+ej)∥ = (

∑
j vj)

2+
∑

j v
2
j ≥

1.

Finally we show it’s not hard to generalize our algorithm to alphabets of size [q].

21

Under review as a conference paper at ICLR 2024

Algorithm 3 SDP Vector Formulation for Max-k-CSP General Alphabet
1: procedure SDP VECTOR FORMULATION GENERAL ALPHABET(Λ = (V,P, q)) ▷ SDP

Equivalent to UGC optimal

Minimize:
∑

Pz⊂P
Ẽµ[−Pz(Xz)] (55)

2: ▷ Pseudoexpectation formulation of objective

Subject to: Ẽµ[(x
2
(i,a) − x(i,a))

∏
(j,b)∈ϕ

x(j,b)] = 0 ∀i ∈ V , ∀a ∈ [q], ∀ϕ ⊆ D(P), ∀P ∈ P

(56)

Ẽµ[(
∑
a∈[q]

xia − 1)
∏

(j,b)∈ϕ

x(j,b)] = 0 ∀i ∈ V , ∀ϕ ⊆ D(P), ∀P ∈ P (57)

Ẽµ[x(i,a)x(i,a′)

∏
(j,b)∈ϕ

x(j,b)] = 0 ∀i ∈ V , ∀a ̸= a′ ∈ [q], ∀ϕ ⊆ D(P), ∀P ∈ P

(58)

Ẽ[SoS2kq(Xϕ)] ≥ 0 ∀ϕ ⊆ D(P), ∀P ∈ P (59)

Ẽ[SoS2(X)] ≥ 0 (60)

▷ First constraint corresponds to booleanity
3: ▷ Second constraint corresponds to a variable taking on only one value in the alphabet
4: ▷ Third constraint corresponds to a variable taking on only one value in the alphabet
5: ▷ Fourth constraint corresponds to
6: ▷ Fifth constraint correpsonds to the positivity of every degree two sum of squares of

polynomials
7: end procedure

Notation for General Alphabet. For any predicate P ∈ P , let D(P) be the set of all variable
assignment tuples indexed by a set of variables s ⊆ S(P) and an assignment τ ∈ [q]|s|. Let x(i,a)
denote an assignment of value a ∈ [q] to variable xi.
Lemma B.3. There exists a message passing algorithm that computes in
poly(1/ϵ, |P|, 2k, log(δ−1)) iterations a set of vectors v := {v̂(i,a)} for all (i, a) ∈ ϕ, for
all ϕ ⊆ D(P), for all P ∈ P that satisfy the constraints of Algorithm 3 to error ϵ and approximates
the optimum of Algorithm 3 to error ϵ with probability 1− δ∣∣ ∑

Pz∈P
Ẽµ̂[Pz(Xz)]−OPTSDP (Λ)

∣∣ ≤ ϵ
where OPTSDP (Λ) is the optimum of Algorithm 3.

Proof. The proof is entirely parallel to the proof of Theorem B.1. We can write Algorithm 3 entirely
in terms of the vector of its cholesky decomposition where once again we take advantage of the fact
that SoS degree 2kq distributions are actual distributions over subsets of kq variables over each
predicate. Given the overparameterized vector formulation, we observe that once again we are faced
with equality constraints that can be added to the objective with a quadratic penalty. Perturbed
gradient descent induces a message passing algorithm over the constraint graph GΛ, and in no more
than poly(1ϵ , |P |, q

k) iterations reaches an (ϵ, γ)-SOSP. The analysis of optimality goes along the
same lines as Lemma B.2. For sufficiently large penalty ρ = poly(1ϵ , |P |, q

k) the error in satisfying
the constraints is ϵ and the objective is robust to small perturbations in satisfying the constraint. That
concludes our discussion of generalizing to general alphabets.

B.1 NEURAL CERTIFICATION SCHEME

An intriguing aspect of OptGNN is that the embeddings can be interpreted as the solution to a low
rank SDP which leaves open the tantalizing possibility that the embeddings can be used to generate

22

Under review as a conference paper at ICLR 2024

a dual certificate i.e a lower bound on a convex relaxation. First we define the primal problem
Minimize: ⟨C,X⟩ (61)

Subject to: ⟨Ai, X⟩ = bi ∀i ∈ [F] (62)
X ⪰ 0 (63)

Lemma B.4. Let OPT be the minimizer of the SDP equation 61. Then for any X̃ ∈ RN×N ⪰ 0 and
any λ∗ ∈ R|F|, we define Fλ∗(X) to be

Fλ∗(X̃) := ⟨C, X̃⟩+
∑
i∈F

λ∗i (⟨Ai, X̃⟩ − bi)

We require SDP to satisfy a bound on its trace Tr(X) ≤ Y for some Y ∈ R+. Then the following is
a lower bound on OPT.

OPT ≥ Fλ∗(X̃)− ⟨∇Fλ∗(X̃), X̃⟩+ λmin(∇Fλ∗(X̃))Y

Proof. Next we introduce lagrange multipliers λ ∈ Rk and Q ⪰ 0 to form the lagrangian

L(λ,Q,X) = ⟨C,X⟩+
∑
i∈F

λi(⟨Ai, X⟩ − bi)− ⟨Q,X⟩

We lower bound the optimum of OPT defined to be the minimizer of equation 61

OPT := min
X⪰0

max
λ∈R,Q⪰0

L(λ,Q,X)

≥ min
V ∈RN×N

max
λ
⟨C, V V T ⟩+

∑
i∈F

λi(⟨Ai, V V
T ⟩ − bi)

≥ max
λ

min
V ∈RN×N

⟨C, V V T ⟩+
∑
i∈F

λi(⟨Ai, V V
T ⟩ − bi) (64)

≥ min
V ∈RN×N

⟨C, V V T ⟩+
∑
i∈F

λ∗i (⟨Ai, V V
T ⟩ − bi) (65)

Where in the first inequality we replaced X ⪰ 0 with V V T which is a lower bound as every psd
matrix admits a cholesky decomposition. In the second inequality we flipped the order of min and
max, and in the final inequality we chose a specific set of dual variables λ∗ ∈ R|F| which lower
bounds the maximization over dual variables. The key is to find a good setting for λ∗.

Next we establish that for any choice of λ∗ we can compute a lower bound on equation 65 as follows.
Let Fλ∗(V V T) be defined as the funciton in the RHS of equation 65.

Fλ∗(V V T) := ⟨C,X⟩+
∑
i∈F

λ∗i (⟨Ai, X⟩ − bi)

Then equation 65 can be rewritten as

OPT ≥ min
V ∈RN×N

Fλ∗(V V T) := ⟨C,X⟩+
∑
i∈F

λ∗i (⟨Ai, X⟩ − bi)

Now let V ∗ be the minimizer of equation 65 and let X∗ = V ∗(V ∗)T . We have by convexity that
Fλ∗(X)− Fλ∗(X∗) ≤ ⟨∇Fλ∗(X), X −X∗⟩ = ⟨∇Fλ∗(X), X⟩+ ⟨−∇Fλ∗(X), X∗⟩ (66)

≤ ⟨∇Fλ∗(X), X⟩ − λmin(∇Fλ∗(X))Tr(X∗) (67)
≤ ⟨∇Fλ∗(X), X⟩ − λmin(∇Fλ∗(X))N (68)

In the first inequality we apply the convexity of Fλ∗ . In the second inequality we apply a standard
inequality of frobenius inner product. In the last inequality we use the fact that Tr(X∗) = N .
Rearranging we obtain for any X

OPT ≥ Fλ(X
∗) ≥ Fλ∗(X)− ⟨∇Fλ∗(X), X⟩+ λmin(∇Fλ∗(X))N (69)

Therefore it suffices to upper bound the two terms above ⟨∇Fλ∗(X), X⟩ and λmin(∇Fλ∗(X))

which is an expression that holds for anyX . Given the output embeddings Ṽ of OptGNN (or indeed
any set of vectors Ṽ) let X̃ = Ṽ Ṽ T . Then we have concluded

OPT ≥ Fλ(X
∗) ≥ Fλ∗(X̃)− ⟨∇Fλ∗(X̃), X̃⟩+ λmin(∇Fλ∗(X̃))N (70)

as desired.

23

Under review as a conference paper at ICLR 2024

Up to this point, every manipulation is formal proof. Subsequently we detail how to make an edu-
cated ’guess’ of the dual variables λ∗. Although any guess will produce a bound, it won’t produce
a tight bound. To be clear, solving for the optimal λ∗ would be the same as building an SDP solver
which would bring us back into the expensive primal dual procedures that are involved in solving
SDP’s. We are designing quick and cheap ways to output a dual certificate that may be somewhat
looser. Our scheme is simply to set λ∗ such that ∥∇Fλ∗(X̃)∥ is minimized, ideally equal to zero.
The intuition is that if (X̃, λ∗) were a primal dual pair, then the lagrangian would have a derivative
with respect to X evaluated at X̃ would be equal to zero. Let Hλ(V) be defined as follows

Hλ∗(Ṽ) := ⟨C, Ṽ Ṽ T ⟩+
∑
i∈F

λ∗i (⟨Ai, Ṽ Ṽ
T ⟩ − bi)

We know the gradient of Hλ(Ṽ)

∇Hλ(Ṽ) = 2(C +
∑
i∈F

λ∗iAi)Ṽ = 2∇Fλ(Ṽ Ṽ
T)Ṽ

Therefore it suffices to find a setting of λ∗ such that ∥∇Fλ(X̃)Ṽ ∥ is small, ideally zero. This would
be a simple task, indeed a regression, if not for the unfortunate fact that OptGNN explicitly projects
the vectors in Ṽ to be unit vectors. This creates numerical problems such that minimizing the norm
of ∥∇Fλ(X̃)Ṽ ∥ does not produce a∇Fλ(X̃) with a large minimum eigenvalue.

To fix this issue, letRη,ρ(V) denote the penalized lagrangian with quadratic penalties for constraints
of the form ⟨Ai, X⟩ = bi and linear penalty ηi for constraints along the main diagonal of X of the
form ⟨eieTi , X⟩ = 1.

Rη,ρ(V) := ⟨C, V V T ⟩+
∑
i∈J

ρ(⟨Ai, V V
T ⟩ − bi)2 +

N∑
i=1

ηi(⟨eieTi , V V T ⟩ − 1)

Taking the gradient of Rη,ρ(V) we obtain

∇Rη,ρ(V) := 2CV +
∑
i∈J

2ρ(⟨Ai, V V
T ⟩ − bi)AiV +

N∑
i=1

2ηieie
T
i V

Our rule for setting dual variables δi for i ∈ J is

δi := 2ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)

our rule for setting dual variables ηj for j ∈ [N] is

ηj :=
1

2
∥eTj (C +

∑
i∈F

2ρ(⟨Ai, V V
T ⟩ − bi)Ai)V ∥

Then our full set of dual variables λ∗ is simply the concatenation (δ, η). Writing out everything
explicitly we obtain the following matrix for∇Fλ∗(Ṽ Ṽ T)

∇Fλ(Ṽ Ṽ
T) = C +

∑
i∈F

ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)Ai +

∑
j∈[N]

1

2
∥eTj (C +

∑
i∈F

2ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)Ai)Ṽ ∥eieTi

Plugging this expression into Lemma B.4 the final bound we evaluate in our code is

OPT ≥ ⟨C, Ṽ Ṽ T ⟩+
∑
i∈F

2ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)2

−
〈
C+

∑
i∈F

ρ(⟨Ai, Ṽ Ṽ
T ⟩− bi)Ai+

∑
j∈[N]

1

2
∥eTj (C+

∑
i∈F

2ρ(⟨Ai, Ṽ Ṽ
T ⟩− bi)Ai)Ṽ ∥eieTi , Ṽ Ṽ T

〉
+λmin

(
C+

∑
i∈F

ρ(⟨Ai, Ṽ Ṽ
T ⟩−bi)Ai+

∑
j∈[N]

1

2
∥eTj (C+

∑
i∈F

2ρ(⟨Ai, Ṽ Ṽ
T ⟩−bi)Ai)Ṽ ∥eieTi

)
N

(71)

24

Under review as a conference paper at ICLR 2024

Figure 2: N=50 p=0.1 SDP vs Opt-GNN Dual Certificate

Figure 3: N=100 p=0.1 SDP vs Opt-GNN Dual Certificate

Which is entirely computed in terms of Ṽ the output embeddings of OptGNN. The resulting plot is
as follows.

Note: The reason for splitting the set of dual variables is because the projection operator onto the
unit ball is hard coded into the architecture of the lift network. Satisfying the constraint set via
projection is different from the soft quadratic penalties on the remaining constraints and require
separate handling.

25

Under review as a conference paper at ICLR 2024

Max Cut Certificate For Max Cut our dual variables are particularly simple as there are no con-
straints ⟨Ai, X⟩ = bi for bi ̸= 0. The dual variables for Max Cut take on the form for all i ∈ [N]

λ∗i =
1

2
∥

∑
j∈N(i)

wijvj∥

It’s certainly possible to come up with tighter certification schemes which we leave to future work.

Intuition: Near global optimality one step of the augmented method of lagrange multipliers ought
to closely approximate the dual variables. After obtaining a guess for the penalized lagrange multi-
pliers we estimate the lagrange multipliers for the norm constraint by approximating∇Rλ(V) = 0.
The alternative would have been to solve the linear system for all the lagrange multipliers at once but
this runs into numerical issues and degeneracies explained below. We run out certification procedure
which we name Opt-GNN-cert and compare it to the SDP certificate. Note, that mathematically we
will always produce a larger (i.e inferior) dual certificate in comparison to the SDP because we are
bounding the distance to the SDP optimum with error in the gradients and hessians of the output
embeddings of OptGNN. Our advantage is in the speed of the procedure. Without having to go
through a primal dual solver, the entire time of producing Opt-GNN-cert is in the time required to
feedforward through Opt-GNN. In this case we train an Opt-GNN-MaxCut with 10 layers, on 1000
Erdos-Renyi graphs, with N = 100 nodes and edge density p = 0.1. We plot the Opt-GNN Max
Cut value (an actual integer cut) on the x-axis and in the y-axis we plot the dual certificate value on
the same graph where we compare the SDP certificate with the Opt-GNN-cert. See 2 for theN = 50
graphs and 3 for the N = 100 graphs.

Note of course the dual certificate for any technique must be larger than the cut value outputted by
Opt-GNN so the scatter plot must be above the x = y axis of the plot. We see as is mathematically
necessary, the Opt-GNN-cert is not as tight as the SDP certificate but certainly competitive and more
importantly it is arrived at dramatically faster. Without any attempt at optimizing the runtime, the
Opt-GNN feedforward and certification takes no more than 0.02 seconds whereas the SDP takes 0.5
seconds on N = 100 node graphs.

B.2 MISCELLANEOUS LEMMAS

Theorem B.2 (perturbed-gd Jin et al. (2017)). Let f be ℓ-smooth (that is, it’s gradient is ℓ-Lipschitz)
and have a γ-Lipschitz Hessian. There exists an absolute constant cmax such that for any δ ∈
(0, 1), ϵ ≤ ℓ2

γ ,∆f ≥ f(X0) − f∗, and constant c ≤ cmax, PGD(X0, ℓ, γ, ϵ, c, δ,∆f) applied to
the cost fucntion f outputs a (γ2, ϵ) SOSP with probability at least 1− δ in

O
((f(X0)− f∗)ℓ

ϵ2
log4(

nkℓ∆f

ϵ2δ
)
)

iterations.
Definition B.1 ((γ, ϵ)-second order stationary point). A (γ, ϵ) second order stationary point of a
function f is a point x satisfying

∥∇f(x)∥ ≤ ϵ

λmin(∇2f(x)) ≥ −√γϵ

C EXPERIMENT DETAILS

In this section we give further details on our experimental results.

C.1 HARDWARE

Our training runs used 20 cores of an Intel Xeon Gold 6248 (for data loading and random graph
generation) and a NVIDIA Tesla V100 GPU. Our Gurobi runs use 8 threads on a Intel Xeon Platinum

26

Under review as a conference paper at ICLR 2024

8260. Our KaMIS runs use an Intel Core i9-13900H. Our LwD and DGL-TREESEARCH runs use
an Intel Core i9-13900H and an RTX 4060.

Parameter Generated TU-small TU-REDDIT
Gradient steps 20,000 100,000 100,000
Validation freq 1,000 1,000 2,000
Batch size 16 16 16
Ranks 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32
Layer counts 8, 16 8, 16 8, 16
Positional encodings RW LE, RW RW

Run count 8 16 8

Table 4: Hyperparameter
range explored for each
group of datasets. For
each NN architecture,
when training on a dataset,
we explored every listed
hyperparameter combina-
tion in the corresponding
column.

C.2 HYPERPARAMETERS

We ran each experiment on a range of hyperparameters. See Table 4 for the hyperparameter listing.
For all training runs, we used the Adam optimizer Kingma & Ba (2014) with a learning rate of
0.001. We used Laplacian eigenvector Dwivedi et al. (2020) (LE) or random walk Dwivedi et al.
(2021) (RW) positional encoding with dimensionality of half the rank, except for rank 32 where we
used 8 dimensions.

Dataset OptGNN

BAa (50,100) 0.998 ± 0.002
BAa (100,200) 0.996 ± 0.003
BAa (400,500) 0.993 ± 0.003

ERa (50,100) 0.998 ± 0.002
ERa (100,200) 0.996 ± 0.002
ERa (400,500) 0.993 ± 0.001

HKa (50,100) 0.998 ± 0.002
HKa (100,200) 0.995 ± 0.003
HKa (400,500) 0.994 ± 0.003

WCa (50,100) 0.998 ± 0.003
WCa (100,200) 0.995 ± 0.003
WCa (400,500) 0.989 ± 0.003

MUTAGb 1.000 ± 0.000
ENZYMESb 0.999 ± 0.003
PROTEINSb 1.000 ± 0.002
IMDB-BINb 1.000 ± 0.001
COLLABb 0.999 ± 0.002

REDDIT-BINc 1.000 ± 0.001
REDDIT-M-12Kc 0.999 ± 0.002
REDDIT-M-5Kc 0.999 ± 0.002

Table 5: Performance of OptGNN
compared to Gurobi running under
an 8 second time limit, expressed as
a ratio. For each dataset, we take the
ratio of the integral values achieved
by OptGNN and Gurobi 8s on each
of the graphs in the test slice. We
present the average and standard de-
viation of these ratios. Here, higher
is better. This table demonstrates
that OptGNN achieves nearly the
same performance, missing on av-
erage 1.1% of the cut value in the
worst measured case.

C.3 RATIO TABLES

In Table 5 and Table 6 we supply the performance of OptGNN as a ratio against the integral value
achieved by Gurobi running with a time limit of 8 seconds. These tables include the standard devi-
ation in the ratio. We note that for Maximum Cut, OptGNN comes within 1.1% of the Gurobi 8s
value, and for minimum Vertex Cover, OptGNN comes within 3.1%.

C.4 VERTEX COVER ALTERNATIVE ARCHITECTURES

Table 7 presents the performance of alternative neural network architectures on minimum vertex
cover.

27

Under review as a conference paper at ICLR 2024

Dataset OptGNN

BAa (50,100) 1.001 ± 0.005
BAa (100,200) 1.003 ± 0.005
BAa (400,500) 1.008 ± 0.011

ERa (50,100) 1.010 ± 0.015
ERa (100,200) 1.031 ± 0.012
ERa (400,500) 1.013 ± 0.006

HKa (50,100) 1.002 ± 0.007
HKa (100,200) 1.004 ± 0.013
HKa (400,500) 1.007 ± 0.011

WCa (50,100) 1.014 ± 0.016
WCa (100,200) 1.016 ± 0.013
WCa (400,500) 1.018 ± 0.007

MUTAGb 1.009 ± 0.027
ENZYMESb 1.000 ± 0.000
PROTEINSb 1.010 ± 0.021
IMDB-BINb 1.002 ± 0.016
COLLABb 1.001 ± 0.003

REDDIT-BINc 1.000 ± 0.002
REDDIT-M-12Kc 1.000 ± 0.001
REDDIT-M-5Kc 1.000 ± 0.001

Table 6: Performance of OptGNN
compared to Gurobi running un-
der an 8 second time limit, ex-
pressed as a ratio. For each dataset,
we take the ratio of the integral
values achieved by OptGNN and
Gurobi 8s on each of the graphs
in the test slice. We present the
average and standard deviation of
these ratios. Here, lower is better.
This table demonstrates that Opt-
GNN achieves nearly the same per-
formance, producing a cover on av-
erage 3.1% larger than Gurobi 8s in
the worst measured case.

Dataset GAT GCNN GIN GatedGCNN OptGNN

ERa (50,100) 58.78 (20) 64.42 (23) 64.18 (20) 56.17 (14) 55.25 (21)
ERa (100,200) 129.47 (20) 141.94 (17) 140.06 (20) 130.32 (20) 126.52 (18)
ERa (400,500) 443.93 (43) 444.12 (33) 442.11 (31) 440.90 (28) 420.70 (41)

MUTAGb 7.79 (19) 8.11 (16) 7.95 (20) 7.79 (17) 7.79 (18)
ENZYMESb 21.93 (24) 25.42 (18) 25.80 (28) 20.28 (14) 20.00 (24)
PROTEINSb 28.19 (23) 31.07 (19) 32.28 (21) 25.25 (19) 25.29 (18)
IMDB-BINb 17.62 (21) 19.22 (19) 19.03 (23) 16.79 (15) 16.78 (18)
COLLABb 68.23 (23) 73.32 (17) 73.82 (26) 72.92 (13) 67.50 (23)

Table 7: Performance of various model architectures compared to OptGNN for selected datasets on
Minimum Vertex Cover. Here, lower is better.

28

Under review as a conference paper at ICLR 2024

Figure 4: Trends in model performance with respect to the number of layers, hidden size, and
positional encoding of the models.

C.5 EFFECTS OF HYPERPARAMETERS ON PERFORMANCE

Figure 4, Figure 5, Figure 6, and Figure 7 present overall trends in model performance across hy-
perparameters.

Train Dataset MUTAG ENZYMES PROTEINS IMDB-BIN COLLAB

BA (50,100) 7.74 20.12 27.66 17.57 74.15
BA (100,200) 7.74 20.35 26.03 16.86 69.29
BA (400,500) 8.05 21.00 26.54 17.34 70.17

ER (50,100) 7.74 20.37 28.17 16.86 69.07
ER (100,200) 8.05 21.52 27.72 16.89 68.83
ER (400,500) 7.79 21.55 28.60 16.78 68.74

HK (50,100) 7.74 20.42 25.60 17.05 69.17
HK (100,200) 7.84 20.43 27.30 17.01 70.20
HK (400,500) 7.95 20.63 26.30 17.15 69.91

WC (50,100) 7.89 20.13 25.46 17.38 70.14
WC (100,200) 7.79 20.30 25.45 17.91 71.16
WC (400,500) 8.05 20.48 25.79 17.12 70.16

MUTAG 7.74 20.83 26.76 16.92 70.09
ENZYMES 7.74 20.60 28.29 16.79 68.40
PROTEINS 7.89 20.22 25.29 16.77 70.26
IMDB-BIN 7.95 20.97 27.06 16.76 68.03
COLLAB 7.89 20.35 26.13 16.76 67.52

Table 8: Models for Vertex Cover trained on ”dataset” were tested on a selection of the TU datasets
(ENZYMES, PROTEINS, MUTAG, IMDB-BINARY, and COLLAB). We observe that the perfor-
mance of the models generalizes well even when they are taken out of their training context.

29

Under review as a conference paper at ICLR 2024

Figure 5: Trends in model performance with respect to the number of layers, hidden size, and
positional encoding of the models.

C.6 GENERALIZABILITY

Models trained on one dataset work quite well on other datasets, suggesting that models have good
ability to generalize to examples outside their training distribution. Please see Table 8.

30

Under review as a conference paper at ICLR 2024

Figure 6: Trends in model performance with respect to the number of layers, hidden size, and
positional encoding of the models.

Figure 7: Trends in model performance with respect to the number of layers, hidden size, and
positional encoding of the models.

31

	Introduction
	Related Work
	An optimal approximation algorithm with graph neural networks
	Solving SDPs with message passing
	OptGNN
	Practical instantiation and Rounding

	Experiments
	Methods
	Performance
	Ablation

	Conclusion
	Vertex Cover and Max Clique
	Optimality of Message Passing for Max-CSP
	Neural Certification Scheme
	Miscellaneous Lemmas

	Experiment details
	Hardware
	Hyperparameters
	Ratio tables
	Vertex cover alternative architectures
	Effects of hyperparameters on performance
	Generalizability

