
Data-E�cient Ranking of Recommendation Models 1

Anonymous1
2

1
Anonymous Institution 3

Abstract Online learning is the cornerstone of applications where data becomes available in sequential 4

order, and models continuously adapt to the shifting data distribution, e.g., in recommen- 5

dation and advertising systems. Model training for such systems is remarkably expensive 6

due to the massive amounts of data used. This cost multiplies during hyperparameter 7

search, where developers run multiple training con�gurations. We aim to reduce the cost 8

of this search process and execute it in two stages: (1) identifying the most promising 9

con�guration(s) and (2) training the most promising candidate con�guration(s) to the best 10

performance. As stage (1) traditionally incurs the dominant cost, we focus our e�orts there, 11

developing advanced data reduction and prediction strategies for e�cient identi�cation of 12

the most promising con�guration(s) from a pool of candidate con�gurations. Note that 13

identifying the most promising con�guration e�ciently is di�erent from achieving the best 14

performance e�ciently, and provides room for signi�cant e�ciency gain albeit with new 15

tools and analyses. Our approach speci�cally overcomes challenges from online learning’s 16

sequential, non-stationary data that are not addressed by conventional “o�ine” hyperpa- 17

rameter optimization. Overall, we reduce the total hyperparameter search cost by up to 10 18

times. 19

1 Introduction 20

Online learning (Hoi et al., 2021) is crucial for applications like recommendation (Naumov et al., 21

2019) and advertising (McMahan et al., 2013) systems, which continuously train on sequential 22

data to adapt to distribution shifts. Periodically, models are updated via an extensive and costly 23

"hyperparameter search" to �nd better con�gurations (e.g., new architectures or hyperparameters). 24

This involves training numerous candidate con�gurations on �xed historical data that mimics the 25

sequential nature of live tra�c. Our goal is to drastically reduce the cost of this search without 26

compromising the quality of the �nal selected model. 27

Prior work on e�cient hyperparameter search (Domhan et al., 2015; Gao et al., 2022) or data- 28

e�cient training (Paul et al., 2021) does not optimally address the unique aspects of our online 29

learning setup described below: 30

Opportunity. Existing work often aims to train all con�gurations more e�ciently while 31

preserving their �nal performance (Jain et al., 2024). Instead, we adopt a two-stage approach: (1) 32

e�ciently identify the top con�gurations, and then (2) fully train only these promising candidates. 33

The key insight is that stage (1) only needs to accurately predict the ranking of con�gurations, not 34

their optimal performance. This allows for far more aggressive cost-saving measures in stage (1), 35

which dominates the overall search cost. 36

Challenge. While two-stage search has been explored, prior work focuses on o�ine learning 37

with stationary data. In contrast, online learning involves a single pass over non-stationary 38

sequential data. This invalidates many existing techniques, like learning curve prediction methods 39

that assume monotonically decreasing loss (Klein et al., 2017; Kadra et al., 2023), or data selection 40

methods that require multiple passes to compute importance scores (Paul et al., 2021; Toneva et al., 41

2019). 42

These challenges and opportunities demand a new approach. We develop novel techniques 43

that yield up to a 10x cost reduction on the Criteo pCTR dataset Criteo (2023). 44

Submitted to AutoML 2025 Non-Archival Track © 2025 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Figure 1: (left) Data distribution shifts over time, shown by changing cluster sizes on Criteo data.

(middle) The loss for di�erent con�gurations follows a strong time-varying pattern (e.g.,

blue variance) that dominates the performance di�erence between con�gurations (green

line). (right) Taking the relative loss with respect to a reference con�guration removes the

common time variation, revealing the true performance di�erences.

Our contributions can be summarized as follows: 45

(1) We introduce novel data reduction strategies (e.g., performance-based stopping, sub- 46

sampling) for online learning. To enable aggressive reduction, we complement them with prediction 47

strategies that estimate full-data performance from data-reduced runs, ensuring we can accurately 48

rank the top con�gurations. 49

(2) Our prediction strategies enable dynamic resource management. We use a performance- 50

based stopping mechanism to terminate non-promising runs early, reallocating resources to more 51

promising candidates. 52

(3) Our key contribution is the strati�cation of predictions via data slicing. By predicting 53

performance on distinct data clusters and aggregating these sliced predictions, we turn a hard 54

overall prediction problem into a set of more tractable sub-problems, boosting e�ectiveness. 55

2 Problem Setup and Preliminaries 56

Let a model be 5 (G, \, l), where G ∈ X is input, ~ ∈ Y is the label, \ ∈ Θ are trainable parameters, 57

and l ∈ Ω is a con�guration (e.g., architecture, hyperparameters). In online learning, we process a 58

sequence of examples (G1, ~1), . . . , (G) , ~)). The model parameters \C at time C depend only on data 59

seen up to C . We evaluate performance using a metric< (e.g., log loss; lower is better), averaged over 60

a �nal evaluation window Weval = [) − Δ,)]. We denote this �nal performance for a con�guration 61

l as<(l). 62

Our Goal: Ranking Con�gurations. Our goal is to e�ciently �nd a ranking A of con�gurations 63

that is close to the true ranking A ∗, which is based on <(l) values from full-data training. We 64

measure e�ciency by the cost ratio � =
cost of obtaining A

cost of obtaining A ∗ . 65

Ranking Metric. While there are several metrics suitable for ranking (see Appendix C), we 66

focus on a metric that measures how well the best con�gurations are identi�ed. To this end, 67

our primary ranking metric is Regret@k, which measures the average performance loss from 68

choosing the top-: con�gurations from our predicted ranking A instead of the true top-: from A ∗: 69

regret@: (A) = 1

:

∑:
8=1max (0,<(A (8)) −<(A ∗(8))) . A lower regret@: indicates a better ranking 70

of top con�gurations. 71

2.1 Time Variation in Online Training Data 72

Online learning data is non-stationary. Figure 1(left) shows how the distribution of data clusters in 73

the Criteo dataset shifts over the 24-day period. This distribution shift causes large �uctuations in 74

the loss during training, as shown in Figure 1(middle). This time variation in a single model’s loss 75

is often much larger than the actual performance di�erence between two distinct con�gurations, 76

making the ranking task di�cult. However, the time variation pattern is remarkably consistent 77

across all con�gurations, regardless of their architecture or hyperparameters. This suggests the 78

2

pattern is inherent to the data’s "hardness" over time. We can exploit this by analyzing the relative 79

performance between con�gurations. As seen in Figure 1(right), plotting the loss di�erence against 80

a reference model cancels out the common time-varying noise, making the true performance 81

di�erences much clearer. Our methods build upon this insight. 82

3 Method 83

In this section, we introduce our data reduction and prediction strategies. 84

3.1 Data Reduction Strategies 85

One-Shot Early Stopping. The simplest strategy is to stop all training runs at an early time Cstop <) 86

and rank con�gurations based on their performance up to that point. The relative cost is � ≈ Cstop

)
. 87

Performance-Based Stopping. Since we only care about the top con�gurations, we can stop non- 88

promising runs even earlier and let promising ones continue. This adaptive strategy allocates 89

resources more e�ectively. At prede�ned checkpoints Cstop ∈ Tstop, we predict the �nal performance 90

of all active con�gurations, permanently stop a fraction d of the worst-performing ones, and 91

continue training the rest. This is a generalization of successive halving (Kumar et al., 2018). The 92

full procedure is in Algorithm 1 in the appendix. More details can be found in Appendices B and C.4. 93

Data Sub-Sampling. Orthogonal to stopping strategies, we can reduce cost by training on a subset 94

of data, for example by uniform sub-sampling or by sub-sampling the majority class (e.g., negative 95

labels). 96

3.2 Prediction Strategies 97

Data reduction requires us to predict the �nal performance< from partial training data up to Cstop. 98

We denote this prediction as <̂Cstop
. 99

Constant Prediction. The baseline prediction is to assume the �nal performance is the same as 100

the most recently observed performance: <̂constant

Cstop

=< [Cstop−Δ,Cstop] . 101

Trajectory Prediction. We can make more sophisticated predictions by �tting a parameterized law 102

5 (�), where � is the fraction of data seen, to the observed performance trajectory. For example, we 103

use an inverse power law 5 (�) := � +�/�U . We then extrapolate to predict the �nal performance, 104

<̂
trajectory

Cstop

= 5 (1). To handle the time variation noise discussed in Section 2.1, we �t the laws not on 105

absolute performance values, but on the pairwise performance di�erences between con�gurations. 106

This is done by jointly optimizing the law parameters for all con�gurations to minimize the error 107

on these relative performance curves, which yields more stable and accurate predictions. 108

Strati�ed Prediction. Our most advanced strategy addresses the fact that di�erent data segments 109

exhibit di�erent distribution shifts (Figure 1(left)). Instead of a single, aggregate prediction, we slice 110

the data into clusters and make separate predictions for each slice. Let S = {((;) }!
;=1

be a partition 111

of the data into ! slices (e.g., based on feature clusters). We predict the performance on each slice, 112

<̂
(;)
Cstop

, using constant or trajectory prediction on the data seen so far within that slice. The �nal 113

prediction is a weighted average of these slice-level predictions, where weights are determined by 114

the prevalence of each slice in the �nal evaluation window: 115

<̂strati�ed

Cstop

=
1

Δ + 1
∑
((;) ∈S

[
<̂
(;)
Cstop

·
)∑

C=)−Δ
1{GC ∈ ((;) }

]
. (1)

This approach transforms a di�cult global prediction problem into a series of simpler, more robust 116

local predictions. More details can be found in Appendix C.6. 117

3

Figure 2: Our proposed method (performance-based stopping with strati�ed prediction on 50 %

negative-subsampled data) compared to baselines. Our method achieves a regret@3 well

below the 0.1% target with up to 10x less data (cost � = 0.1), signi�cantly outperforming

basic early stopping and sub-sampling.

4 Experimental Results 118

Setup. We conduct experiments on the Criteo 1TB pCTR dataset (Criteo, 2023), which spans 24 119

days of chronologically ordered data. We evaluate several architectures: Factorization Machines 120

(FM), Cross Networks (CN), MLP, and Mixture of Experts (MoE), each with a wide range of 121

hyperparameter con�gurations. Our primary metric is normalized regret@3 over the last 3 days 122

of data. As baselines, we use simple uniform sub-sampling and one-shot early stopping with 123

constant prediction since there no existing methods suitable for our setup. For full experimental 124

details, including hyperparameter ranges, clustering methods, and additional metrics, please see 125

Appendix C. 126

Establishing an Acceptable Regret Level. To interpret regret@: , we �rst normalize it by the 127

performance of a reference model. We then measure the inherent performance variability by 128

training the same con�guration with 8 di�erent random seeds. This revealed a typical performance 129

variation of about 0.1%. We therefore set an acceptable "performance loss" from misranking, our 130

target for normalized regret@: , to be 0.1%, as this is on par with noise from training randomness. 131

This target is shown as a black dashed line in our result �gures. 132

Main Result. Our most advanced method, combining performance-based stopping, negative 133

sub-sampling (at 50%), and strati�ed trajectory prediction, dramatically reduces the cost of hy- 134

perparameter search. Figure 2 shows that across all architectures, this approach identi�es the top-3 135

con�gurations with a regret@3 well below our 0.1% target, while using as little as 10% of the 136

original data (a 10x cost reduction). It consistently and signi�cantly outperforms the baselines. 137

Ablation Studies.. We �nd that performance-based stopping consistently outperforms one-shot 138

early stopping, requiring signi�cantly less data to reach the target regret regardless of the prediction 139

strategy used (see Appendix Figure 4). Furthermore, advanced prediction strategies are crucial. Both 140

trajectory and strati�ed predictions signi�cantly outperform constant prediction. Our novel 141

strati�ed prediction provides an additional 10% data reduction over standard trajectory prediction, 142

highlighting the bene�t of handling data heterogeneity via slicing (see Appendix Figure 6 for a 143

detailed comparison). 144

5 Conclusion 145

We introduced a suite of data reduction and prediction strategies tailored for the costly task of 146

hyperparameter search in online learning systems. Our approach of combining performance-based 147

stopping with advanced prediction methods allows for aggressive but intelligent data reduction. 148

The key innovation, strati�ed prediction, e�ectively handles the non-stationarity of online data by 149

breaking the prediction problem into more manageable slices. Together, these methods achieve 150

up to a 10-fold reduction in the computational cost of hyperparameter search, enabling faster and 151

more e�cient development of large-scale recommendation and advertising models. 152

4

References 153

Alain, G., Lamb, A., Sankar, C., Courville, A., and Bengio, Y. (2015). Variance reduction in SGD by 154

distributed importance sampling. arXiv preprint arXiv:1511.06481. 155

Anil, R., Gadanho, S., Huang, D., Jacob, N., Li, Z., Lin, D., Phillips, T., Pop, C., Regan, K., Shamir, 156

G. I., Shivanna, R., and Yan, Q. (2022). On the factory �oor: ML engineering for industrial-scale 157

ads recommendation models. In Proceedings of the 5th Workshop on Online Recommender Systems 158

and User Modeling. 159

Bedi, A. S., Sarma, P., and Rajawat, K. (2018). Tracking moving agents via inexact online gradient 160

descent algorithm. IEEE Journal of Selected Topics in Signal Processing, 12(1):202–217. 161

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of 162

Machine Learning Research, 13(1):281–305. 163

Chandrashekaran, A. and Lane, I. R. (2017). Speeding up hyper-parameter optimization by ex- 164

trapolation of learning curves using previous builds. In Joint European Conference on Machine 165

Learning and Knowledge Discovery in Databases, pages 477–492. Springer. 166

Coleman, B., Kang, W.-C., Fahrbach, M., Wang, R., Hong, L., Chi, E., and Cheng, D. (2024). Uni�ed 167

Embedding: Battle-tested feature representations for web-scale ML systems. Advances in Neural 168

Information Processing Systems, 36. 169

Coleman, C., Yeh, C., Mussmann, S., Mirzasoleiman, B., Bailis, P., Liang, P., Leskovec, J., and 170

Zaharia, M. (2019). Selection via proxy: E�cient data selection for deep learning. arXiv preprint 171

arXiv:1906.11829. 172

Covington, P., Adams, J., and Sargin, E. (2016). Deep neural networks for YouTube recommendations. 173

In Proceedings of the 10th ACM Conference on Recommender Systems, pages 191–198. 174

Criteo (2023). Criteo pctr data - 1tb. https://ailab.criteo.com/ 175

download-criteo-1tb-click-logs-dataset/. 176

Domhan, T., Springenberg, J. T., and Hutter, F. (2015). Speeding up automatic hyperparameter 177

optimization of deep neural networks by extrapolation of learning curves. In IJCAI, volume 15, 178

pages 3460–8. 179

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey. Journal of 180

Machine Learning Research, 20(55):1–21. 181

Fahrbach, M., Javanmard, A., Mirrokni, V., and Worah, P. (2023). Learning rate schedules in the 182

presence of distribution shift. In International Conference on Machine Learning, pages 9523–9546. 183

PMLR. 184

Feurer, M. and Hutter, F. (2019). Hyperparameter optimization. Springer International Publishing. 185

Gao, Q., Luo, Z., Klabjan, D., and Zhang, F. (2022). E�cient architecture search for continual 186

learning. IEEE Transactions on Neural Networks and Learning Systems, 34(11):8555–8565. 187

Hazan, E., Rakhlin, A., and Bartlett, P. (2007). Adaptive online gradient descent. Advances in Neural 188

Information Processing Systems, 20. 189

He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R., Bowers, S., et al. 190

(2014). Practical lessons from predicting clicks on ads at facebook. In Proceedings of the Eighth 191

International Workshop on Data Mining for Online Advertising, pages 1–9. 192

5

https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/

Hoi, S. C., Sahoo, D., Lu, J., and Zhao, P. (2021). Online learning: A comprehensive survey. 193

Neurocomputing, 459:249–289. 194

Jain, K., Xie, J., Regan, K., Chen, C., Han, J., Li, S., Li, Z., Phillips, T., Sussman, M., Troup, M., et al. 195

(2024). Data e�ciency for large recommendation models. arXiv preprint arXiv:2410.18111. 196

Jiang, A. H., Wong, D. L.-K., Zhou, G., Andersen, D. G., Dean, J., Ganger, G. R., Joshi, G., Kaminksy, 197

M., Kozuch, M., Lipton, Z. C., et al. (2019). Accelerating deep learning by focusing on the biggest 198

losers. arXiv preprint arXiv:1910.00762. 199

Kadra, A., Janowski, M., Wistuba, M., and Grabocka, J. (2023). Scaling laws for hyperparameter 200

optimization. Advances in Neural Information Processing Systems, 36:47527–47553. 201

Katharopoulos, A. and Fleuret, F. (2018). Not all samples are created equal: Deep learning with 202

importance sampling. In International Conference on Machine Learning, pages 2525–2534. PMLR. 203

Killamsetty, K., Durga, S., Ramakrishnan, G., De, A., and Iyer, R. (2021a). Grad-match: Gradient 204

matching based data subset selection for e�cient deep model training. In International Conference 205

on Machine Learning, pages 5464–5474. PMLR. 206

Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G., and Iyer, R. (2021b). Glister: Generalization 207

based data subset selection for e�cient and robust learning. In Proceedings of the AAAI Conference 208

on Arti�cial Intelligence, volume 35, pages 8110–8118. 209

Klein, A., Falkner, S., Springenberg, J. T., and Hutter, F. (2017). Learning curve prediction with 210

bayesian neural networks. In International Conference on Learning Representations. 211

Kumar, M., Dahl, G. E., Vasudevan, V., and Norouzi, M. (2018). Parallel architecture and hyperpa- 212

rameter search via successive halving and classi�cation. arXiv preprint arXiv:1805.10255. 213

Kurian, G., Sardashti, S., Sims, R., Berger, F., Holt, G., Li, Y., Willcock, J., Wang, K., Quiroz, H., Salem, 214

A., et al. (2025). Scalable machine learning training infrastructure for online ads recommendation 215

and auction scoring modeling at Google. arXiv preprint arXiv:2501.10546. 216

Linden, G., Smith, B., and York, J. (2003). Amazon. com recommendations: Item-to-item collaborative 217

�ltering. IEEE Internet Computing, 7(1):76–80. 218

Ling, X., Deng, W., Gu, C., Zhou, H., Li, C., and Sun, F. (2017). Model ensemble for click prediction in 219

bing search ads. In Proceedings of the 26th International Conference onWorld WideWeb Companion, 220

pages 689–698. 221

Liu, H., Simonyan, K., and Yang, Y. (2019). Darts: Di�erentiable architecture search. In International 222

Conference on Learning Representations. 223

Liu, Z., Zou, L., Zou, X., Wang, C., Zhang, B., Tang, D., Zhu, B., Zhu, Y., Wu, P., Wang, K., and 224

Cheng, Y. (2022). Monolith: Real time recommendation system with collisionless embedding 225

table. In Proceedings of the 5th Workshop on Online Recommender Systems and User Modeling 226

co-located with the 16th ACM Conference on Recommender Systems, volume 3303. 227

Loshchilov, I. and Hutter, F. (2015). Online batch selection for faster training of neural networks. 228

arXiv preprint arXiv:1511.06343. 229

McMahan, H. B., Holt, G., Young, M., Ebner, D., Grady, J., Nie, L., Phillips, T., Davydov, E., Golovin, 230

D., et al. (2013). Ad click prediction: A view from the trenches. In Proceedings of the 19th ACM 231

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1222–1230. 232

6

Mirzasoleiman, B., Bilmes, J., and Leskovec, J. (2020). Coresets for data-e�cient training of machine 233

learning models. In International Conference on Machine Learning, pages 6950–6960. PMLR. 234

Naumov, M., Mudigere, D., Shi, H.-J. M., Huang, J., Sundaraman, N., Park, J., Wang, X., Gupta, U., 235

Wu, C.-J., Azzolini, A. G., et al. (2019). Deep learning recommendation model for personalization 236

and recommendation systems. arXiv preprint arXiv:1906.00091. 237

Paul, M., Ganguli, S., and Dziugaite, G. K. (2021). Deep learning on a data diet: Finding important 238

examples early in training. Advances in Neural Information Processing Systems, 34:20596–20607. 239

Pooladzandi, O., Davini, D., and Mirzasoleiman, B. (2022). Adaptive second order coresets for data- 240

e�cient machine learning. In International Conference on Machine Learning, pages 17848–17869. 241

PMLR. 242

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A. (2017). 243

Large-scale evolution of image classi�ers. In International Conference on Machine Learning, pages 244

2902–2911. PMLR. 245

Shen, J., Khodak, M., and Talwalkar, A. (2022). E�cient architecture search for diverse tasks. 246

Advances in Neural Information Processing Systems, 35:16151–16164. 247

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine 248

learning algorithms. Advances in neural information processing systems, 25. 249

Toneva, M., Sordoni, A., des Combes, R. T., Trischler, A., Bengio, Y., and Gordon, G. J. (2019). An 250

empirical study of example forgetting during deep neural network learning. In International 251

Conference on Learning Representations. 252

Wistuba, M. and Pedapati, T. (2020). Learning to rank learning curves. In International Conference 253

on Machine Learning, pages 10303–10312. PMLR. 254

Yang, T., Zhang, L., Jin, R., and Yi, J. (2016). Tracking slowly moving clairvoyant: Optimal dynamic 255

regret of online learning with true and noisy gradient. In International Conference on Machine 256

Learning, pages 449–457. PMLR. 257

Yang, Y., Kang, H., and Mirzasoleiman, B. (2023). Towards sustainable learning: Coresets for 258

data-e�cient deep learning. In International Conference on Machine Learning, pages 39314–39330. 259

PMLR. 260

Zinkevich, M. (2003). Online convex programming and generalized in�nitesimal gradient ascent. 261

In Proceedings of the 20th International Conference on Machine Learning, pages 928–936. 262

Zoph, B. and Le, Q. (2022). Neural architecture search with reinforcement learning. In International 263

Conference on Learning Representations. 264

7

A Related Work 265

Recommendation and Advertising Systems. Recommendation and advertising systems form the 266

backbone of many online platforms, such as YouTube (Covington et al., 2016), Facebook ads (He 267

et al., 2014), Bing search (Ling et al., 2017), Google ads (Anil et al., 2022; Coleman et al., 2024; Kurian 268

et al., 2025; McMahan et al., 2013), TikTok (Liu et al., 2022), and Amazon recommendations (Linden 269

et al., 2003). Online learning is particularly relevant in these applications due to the constant in�ux 270

of new data and the need to adapt to evolving user preferences and item popularity Anil et al. (2022); 271

McMahan et al. (2013). This inherent distribution shift in online data introduces unique challenges, 272

necessitating distinct solutions compared to standard “o�ine” learning approaches that assume 273

distributionally stationary data (Bedi et al., 2018; Fahrbach et al., 2023; Hazan et al., 2007; Yang et al., 274

2016; Zinkevich, 2003). Our work addresses one such challenge: e�cient hyperparameter search. 275

While this problem has been extensively studied for o�ine learning, the complexities introduced 276

by the distribution shift demand new analyses and tools. 277

Data-E�cient Training. The increasing scale of modern datasets has driven signi�cant interest 278

in data-e�cient learning techniques. These methods aim to achieve high performance with lim- 279

ited, selectively chosen subset of the full training data. For instance, one line of work selects 280

weighted subsets of the full data that best approximates the full gradient (Killamsetty et al., 2021a,b; 281

Mirzasoleiman et al., 2020; Pooladzandi et al., 2022; Yang et al., 2023). Another approach lever- 282

ages “importance signals”, such as (expected) gradient norm (Alain et al., 2015; Katharopoulos 283

and Fleuret, 2018; Paul et al., 2021), per-example loss (Jiang et al., 2019; Loshchilov and Hutter, 284

2015), and forgettability (Toneva et al., 2019), to guide data reduction by retaining “important” 285

examples. This selection process can occur after some steps of training or after a full training 286

run on some cheaper proxy model (Coleman et al., 2019). While data-e�cient training is a crucial 287

component of our proposal, existing methods do not address the distribution shift inherent in 288

online learning. Consequently, data-e�cient online learning has relied on simpler strategies like 289

uniform or label-dependent sub-sampling of examples at more conservative rates (Jain et al., 2024). 290

Our work overcomes this limitation by enabling a successful hyperparameter search even if the 291

candidate con�gurations do not maintain their best performance on aggressively reduced data. This 292

allows for the exploration of more aggressive data reduction strategies, which, when supported by 293

our prediction strategies, facilitates signi�cantly more e�cient hyperparameter search. 294

Hyperparameter & Architecture Search. Hyperparameter and neural architecture search are 295

critical yet computationally expensive tasks in machine learning. Traditional hyperparameter 296

search methods include grid search, random search (Bergstra and Bengio, 2012), and Bayesian 297

optimization (Snoek et al., 2012). More recent approaches leverage techniques like evolutionary algo- 298

rithms (Real et al., 2017) and gradient-based optimization Liu et al. (2019). Neural architecture search 299

aims to automate the design of neural network architectures, often employing search strategies 300

similar to those used in hyperparameter search (Elsken et al., 2019; Zoph and Le, 2022). While these 301

methods have shown considerable success, they often require substantial computational resources. 302

This has motivated research in e�cient hyperparameter search, aiming to identify the top con�gu- 303

rations with reduced cost (Feurer and Hutter, 2019; Gao et al., 2022; Shen et al., 2022). A common 304

technique adopted by practitioners is early stop the training runs of non-promising con�gurations 305

based on their performance during the initial stages. This strategy can also rely on predicting 306

the con�gurations’ full learning trajectory using Bayesian optimization (Chandrashekaran and 307

Lane, 2017; Klein et al., 2017), autoregressive models (Wistuba and Pedapati, 2020), or scaling 308

laws (Domhan et al., 2015; Kadra et al., 2023). However, such predictions become particularly 309

challenging in online learning, as the loss does not follow a smooth monotonic trend due to the 310

distribution shift in the data. Our work addresses this challenge through several angles, including 311

mitigating the distribution shift with a reference model trained on the same historical data, and 312

8

aggregating predicted “sliced” performance over clusters of examples with similar distributions 313

rather than predicting the overall performance directly. 314

B Performance-Based Stopping 315

Algorithm 1 Performance-Based Stopping

Input: con�gurations Ω, stopping steps Tstop ⊆ {1, . . . ,) }, ratio d of stopped con�gurations at any

stopping step

Output: ranking A

1: Ωremaining ← Ω
2: Initialize ranking sequence A ← [].
3: while Ωremaining ≠ ∅ and C ≤) do
4: Incremental training with (GC , ~C).
5: if C ∈ Tstop then
6: <̂remaining ← PredictPerformance(Ωremaining, C,))
7: Aremaining ← RankConfigurations(Ωremaining, <̂remaining)
8: Ωpruned, Apruned ← last d · |Ωremaining | con�gurations in A and their rankings

9: A ← concatenate(Apruned, A)
10: Ωremaining ← Ωremaining \ Ωpruned

11: <remaining ← ComputePerformance(Ωremaining)
12: return concatenate(RankConfigurations(Ωremaining,<remaining), A)

C Additional Experimental Details 316

C.1 Ranking Metrics 317

In addition to regret@: , we also consider the Pairwise Error Rate (PER), which measures the 318

fraction of all pairs of con�gurations that are incorrectly ordered by a predicted ranking A compared 319

to the ground truth ranking A ∗. 320

PER(A) = 1

1

2
|Ω | (|Ω | − 1)

|Ω |∑
8=1

|Ω |∑
9=8+1

1{<(A (8)) > <(A (9))}, (2)

where 1{%} = 1 when % is true and 0 otherwise. While useful, PER treats all misrankings equally 321

and considers all con�gurations, whereas we are primarily interested in accurately ranking the top 322

con�gurations with signi�cant performance di�erences. For this reason, regret@: is our main 323

metric. We provide corresponding results in Figure 5. 324

C.2 Candidate Con�gurations 325

In the “FM” and “MoE” experiments, we vary optimization parameters: learning rate, weight decay, 326

and �nal learning rate. We sweep through three values for each of these hyperparameters: 327

• learning rate: [10−4, 10−3, 10−2] 328

• weight decay: [10−6, 2 · 10−6, 10−5] 329

• �nal learning rate: [10−3, 10−2, 10−1] 330

In the “FM v2” experiment, in addition to the optimization parameters above, we vary the 331

memory structure of the embeddings. We divide the features into two groups: “high” and “low” 332

9

cardinality features and share the embedding tables among them (using hashing). Then, we vary 333

the embedding dimensions as well as the hash buckets for the high and low cardinality features 334

while maintaining a constant training speed and memory footprint. To ensure that all embeddings 335

have the same dimensions in the FM computation, we project them to the same embedding size. 336

In the “CN” and “MLP” experiments, in addition to the optimization parameters above, we vary 337

the number of layers and hidden dimensions, respectively: 338

• number of layers in CN: [2, 3, 5] 339

• hidden dimensions in MLP: [(598, 598, 598, 598), (1196, 1196, 1196, 1196)] 340

C.3 Compute Resources 341

Without applying our data reduction and prediction strategies, running one con�guration over the 342

24-day Criteo data on 4 TPUv3s takes less than an hour for the architectures and hyperparameters 343

we tried. We manage to reduce this cost up to 10 times with our strategies. Trajectory prediction 344

requires learning the parameters of a predictive law. We did this using CPUs, with less than an 345

hour for learning the trajectory predictions for each con�guration in an experiment of about 100 346

con�gurations in total. 347

C.4 Details on Performance-Based Stopping 348

We provide an outline of our performance-based stopping strategy in Algorithm 1, with two 349

hyperpameters: stopping steps Tstop and ratio of stopped con�gurations at any stopping step d . For 350

all the experiments, we choose d = 0.5. We choose this value since it is a reasonable starting point 351

but it is possible to improve our results with a carefully tuned d . For Tstop, we �x the number of steps 352

between consecutive stopping times in Tstop – i.e., we stop fraction d of remaining con�gurations 353

at equally spaced time steps. By varying the frequency at which we stop the con�gurations, we 354

obtain di�erent points in the performance-based stopping curves in our plots. 355

C.5 Details on Trajectory Prediction 356

Trajectory prediction �ts a law to the recently observed data and makes predictions for the trajectory. 357

In our experiments, we use the last 3 “visited” days in the training data for �tting, by averaging 358

the loss over all the time steps in a day. Then, we use the �tted parameters to predict the loss 359

in the last 3 days, i.e., the evaluation window. In the main body, we use inverse power laws (or 360

InversePowerLaw in Table 1). In Section D.3, we explore other choices of laws, listed in Table 1, 361

and their combinations. 362

Table 1: Other choices of �tting laws for trajectory prediction.

Law Formulation (function of �)

InversePowerLaw � + �
�U

VaporPressure exp (� + �
�
+� · log�)

LogPower �

1+(�
exp�
)U

ExponentialLaw � − exp (−� · �U + �)

C.6 Details on Strati�ed Prediction 363

Strati�ed prediction can be used with both constant or trajectory prediction. In the main body, 364

we exclusively used it with trajectory prediction as we observe better ranking accuracy. Figure 3 365

shows that strati�ed trajectory prediction is consistently better than strati�ed constant prediction 366

across all experiments we consider. Note that in all other plots in the paper, “strati�ed prediction” 367

refers to strati�ed trajectory prediction. 368

10

Figure 3: Comparison between strati�ed constant prediction and strati�ed trajectory prediction. In all

other plots in the paper, “strati�ed prediction” refers to strati�ed trajectory prediction.

D Additional Experimental Results 369

D.1 One-Shot Early Stopping vs Performance-Based Stopping 370

In the main text, we stated that performance-based stopping reaches lower regret@3 with signi�- 371

cantly smaller amount of data used, compared to one-shot early stopping. We now provide the full 372

set of results across all model types in Figure 4. 373

Even though performance-based stopping should not be evaluated with ranking metrics that 374

consider all the con�gurations, like PER, as the core idea behind performance-based stopping is 375

to not worry about poor con�gurations, we still provide a comparison between one-shot early 376

stopping and performance-based stopping based on PER in Figure 5. We note that this is not 377

a fair comparison since performance-based stopping is actually not expected to rank the poor 378

con�gurations that stop early on rank accurately. However, Figure 5 shows that the gap between 379

one-shot early stopping and performance-based stopping is so large that the latter reaches much 380

lower PER. 381

11

Figure 4: regret@3 comparison of one-shot early stopping and performance-based stopping, when

used with (left) constant, (center) trajectory, and (right) strati�ed prediction. Rows represent,

top to bottom: FM, FM v2, CN, MLP, MoE. Performance-based stopping is consistently

superior.

12

Figure 5: PER comparison of one-shot early stopping and performance-based stopping, when used

with (left) constant, (center) trajectory, and (right) strati�ed prediction. Rows represent, top

to bottom: FM, FM v2, CN, MLP, MoE.

13

D.2 Comparison between Prediction Strategies 382

We stated in the main text that advanced prediction strategies are critical, with strati�ed prediction 383

outperforming trajectory prediction, and both being far superior to constant prediction. Figure 6 384

provides the detailed results.

Figure 6: Comparison between our prediction strategies (Constant, Trajectory, Strati�ed) when used

with performance-based stopping, shown for MoE. Strati�ed and Trajectory prediction

consistently outperform Constant prediction, with Strati�ed prediction o�ering the best

performance.

385

D.3 Other Choices of Scaling Laws 386

Figure 7 compares di�erent choices of laws, InversePowerLaw, VaporPressure, LogPower, 387

ExponentialLaw de�ned in Table 1, and their weighted combination, for trajectory prediction. 388

It is seen that they all behave similarly and reach the target regret@3 level around the same data 389

use fraction. In the combined law, we learn both the weights and the parameters of each law jointly. 390

Figure 7: Comparison between di�erent choices of laws for trajectory prediction, with respect to (left)
regret@3 and (right) PER. The simple inverse power law performs as well as more complex

alternatives.

D.4 Late Starting vs Early Stopping 391

Lastly, we explore whether starting some con�guration runs later in training data would provide 392

an improvement in the ranking accuracy vs data reduction tradeo�. Figure 8 shows how one-shot 393

early stopping behaves when the con�gurations start training at di�erent days. Start at day= 0 394

(purple) corresponds to the standard one-shot early stopping that we have been analyzing. The 395

other curves apply the same algorithm but on the runs that start training after some number of 396

days in training data passes. We see no signi�cant di�erence among di�erent start days. 397

14

Figure 8: PER comparison between di�erent starting times, when used with one-shot early stopping.

This comparison checks whether we could get additional data reduction gain by late starting

the con�guration runs. However, our ranking predictions with late-started runs provide

about the same data reduction vs PER tradeo�.

15

	Introduction
	Problem Setup and Preliminaries
	Time Variation in Online Training Data

	Method
	Data Reduction Strategies
	Prediction Strategies

	Experimental Results
	Conclusion
	Related Work
	Performance-Based Stopping
	Additional Experimental Details
	Ranking Metrics
	Candidate Configurations
	Compute Resources
	Details on Performance-Based Stopping
	Details on Trajectory Prediction
	Details on Stratified Prediction

	Additional Experimental Results
	One-Shot Early Stopping vs Performance-Based Stopping
	Comparison between Prediction Strategies
	Other Choices of Scaling Laws
	Late Starting vs Early Stopping

