Data-Efficient Ranking of Recommendation Models

Anonymous’

! Anonymous Institution

Abstract Online learning is the cornerstone of applications where data becomes available in sequential
order, and models continuously adapt to the shifting data distribution, e.g., in recommen-
dation and advertising systems. Model training for such systems is remarkably expensive
due to the massive amounts of data used. This cost multiplies during hyperparameter
search, where developers run multiple training configurations. We aim to reduce the cost
of this search process and execute it in two stages: (1) identifying the most promising
configuration(s) and (2) training the most promising candidate configuration(s) to the best
performance. As stage (1) traditionally incurs the dominant cost, we focus our efforts there,
developing advanced data reduction and prediction strategies for efficient identification of
the most promising configuration(s) from a pool of candidate configurations. Note that
identifying the most promising configuration efficiently is different from achieving the best
performance efficiently, and provides room for significant efficiency gain albeit with new
tools and analyses. Our approach specifically overcomes challenges from online learning’s
sequential, non-stationary data that are not addressed by conventional “offline” hyperpa-
rameter optimization. Overall, we reduce the total hyperparameter search cost by up to 10
times.

1 Introduction

Online learning (Hoi et al., 2021) is crucial for applications like recommendation (Naumov et al.,
2019) and advertising (McMahan et al., 2013) systems, which continuously train on sequential
data to adapt to distribution shifts. Periodically, models are updated via an extensive and costly
"hyperparameter search” to find better configurations (e.g., new architectures or hyperparameters).
This involves training numerous candidate configurations on fixed historical data that mimics the
sequential nature of live traffic. Our goal is to drastically reduce the cost of this search without
compromising the quality of the final selected model.

Prior work on efficient hyperparameter search (Domhan et al., 2015; Gao et al., 2022) or data-
efficient training (Paul et al., 2021) does not optimally address the unique aspects of our online
learning setup described below:

Opportunity. Existing work often aims to train all configurations more efficiently while
preserving their final performance (Jain et al., 2024). Instead, we adopt a two-stage approach: (1)
efficiently identify the top configurations, and then (2) fully train only these promising candidates.
The key insight is that stage (1) only needs to accurately predict the ranking of configurations, not
their optimal performance. This allows for far more aggressive cost-saving measures in stage (1),
which dominates the overall search cost.

Challenge. While two-stage search has been explored, prior work focuses on offline learning
with stationary data. In contrast, online learning involves a single pass over non-stationary
sequential data. This invalidates many existing techniques, like learning curve prediction methods
that assume monotonically decreasing loss (Klein et al., 2017; Kadra et al., 2023), or data selection
methods that require multiple passes to compute importance scores (Paul et al., 2021; Toneva et al.,
2019).

These challenges and opportunities demand a new approach. We develop novel techniques
that yield up to a 10x cost reduction on the Criteo pCTR dataset Criteo (2023).

Submitted to AutoML 2025 Non-Archival Track © 2025 the authors, released under CC BY 4.0

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

M

2

43

44

https://creativecommons.org/licenses/by/4.0/

2.1

on:

—— config. 1 == config. 1 - config. 5

config. 2 config. 2 - config. 5
—— config. 3 0.010 == config. 3 - config. 5
—— config. 4 = config. 4 - config. 5
config. 5

Cluster ID=4162 Cluster ID=12485 Cluster ID=13180 0.140

gurati

025

o 0.135 \
© I
Son| J) 0.130 ‘\

000
& Cluster'ID=13177 Cluster ID=3955 Cluster 1D=13532

confi

— time variation

l0ss

difference in loss
o
o
o
w

T
Tous 0.125 W ‘] SR - SV
Qo0 | | -
€ \ above: config. i is worse than config. 5
g \\/\\ 0120| 000 TR o, TE b T Gl
R e ha 0 10 20 6 10 20
Day # in 24-day Criteo Data day # in 24-day Criteo data day # in 24-day Criteo data

Figure 1: (left) Data distribution shifts over time, shown by changing cluster sizes on Criteo data.
(middle) The loss for different configurations follows a strong time-varying pattern (e.g.,
blue variance) that dominates the performance difference between configurations (green
line). (right) Taking the relative loss with respect to a reference configuration removes the
common time variation, revealing the true performance differences.

Our contributions can be summarized as follows:

(1) We introduce novel data reduction strategies (e.g., performance-based stopping, sub-
sampling) for online learning. To enable aggressive reduction, we complement them with prediction
strategies that estimate full-data performance from data-reduced runs, ensuring we can accurately
rank the top configurations.

(2) Our prediction strategies enable dynamic resource management. We use a performance-
based stopping mechanism to terminate non-promising runs early, reallocating resources to more
promising candidates.

(3) Our key contribution is the stratification of predictions via data slicing. By predicting
performance on distinct data clusters and aggregating these sliced predictions, we turn a hard
overall prediction problem into a set of more tractable sub-problems, boosting effectiveness.

Problem Setup and Preliminaries

Let a model be f(x, 0,), where x € X is input, y €) is the label, § € © are trainable parameters,
and o € Q is a configuration (e.g., architecture, hyperparameters). In online learning, we process a
sequence of examples (x1,1), - .., (x7, yr). The model parameters 6, at time ¢ depend only on data
seen up to t. We evaluate performance using a metric m (e.g., log loss; lower is better), averaged over
a final evaluation window Weyal = [T — A, T]. We denote this final performance for a configuration
was m(w).

Our Goal: Ranking Configurations. Our goal is to efficiently find a ranking r of configurations

that is close to the true ranking r*, which is based on m(w) values from full-data training. We
cost of obtaining r

cost of obtaining r*

Ranking Metric. While there are several metrics suitable for ranking (see Appendix C), we

focus on a metric that measures how well the best configurations are identified. To this end,
our primary ranking metric is Regret@k, which measures the average performance loss from
choosing the top-k configurations from our predicted ranking r instead of the true top-k from r*:
regret @k(r) = % Zle max (0, m(r(i)) — m(r*(i))) . Alower regret @k indicates a better ranking
of top configurations.

measure efficiency by the cost ratio C =

Time Variation in Online Training Data

Online learning data is non-stationary. Figure 1(left) shows how the distribution of data clusters in
the Criteo dataset shifts over the 24-day period. This distribution shift causes large fluctuations in
the loss during training, as shown in Figure 1(middle). This time variation in a single model’s loss
is often much larger than the actual performance difference between two distinct configurations,
making the ranking task difficult. However, the time variation pattern is remarkably consistent
across all configurations, regardless of their architecture or hyperparameters. This suggests the

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

77

31

3.2

pattern is inherent to the data’s "hardness" over time. We can exploit this by analyzing the relative
performance between configurations. As seen in Figure 1(right), plotting the loss difference against
a reference model cancels out the common time-varying noise, making the true performance
differences much clearer. Our methods build upon this insight.

Method

In this section, we introduce our data reduction and prediction strategies.

Data Reduction Strategies
One-Shot Early Stopping. The simplest strategy is to stop all training runs at an early time fsop < T

and rank configurations based on their performance up to that point. The relative cost is C ~ tﬁ%

Performance-Based Stopping. Since we only care about the top configurations, we can stop non-
promising runs even earlier and let promising ones continue. This adaptive strategy allocates
resources more effectively. At predefined checkpoints tsop € Tstop, We predict the final performance
of all active configurations, permanently stop a fraction p of the worst-performing ones, and
continue training the rest. This is a generalization of successive halving (Kumar et al., 2018). The
full procedure is in Algorithm 1 in the appendix. More details can be found in Appendices B and C.4.

Data Sub-Sampling. Orthogonal to stopping strategies, we can reduce cost by training on a subset
of data, for example by uniform sub-sampling or by sub-sampling the majority class (e.g., negative
labels).

Prediction Strategies

Data reduction requires us to predict the final performance m from partial training data up to tsop.
We denote this prediction as i, .

Constant Prediction. The baseline prediction is to assume the final performance is the same as

s constant _

the most recently observed performance: g2 " = Mz, A, tg0p1-

Trajectory Prediction. We can make more sophisticated predictions by fitting a parameterized law
f (D), where D is the fraction of data seen, to the observed performance trajectory. For example, we

use an inverse power law f(D) := E + A/D*. We then extrapolate to predict the final performance,

jirajectory f(1). To handle the time variation noise discussed in Section 2.1, we fit the laws not on

tstop
absolute performance values, but on the pairwise performance differences between configurations.
This is done by jointly optimizing the law parameters for all configurations to minimize the error

on these relative performance curves, which yields more stable and accurate predictions.

Stratified Prediction. Our most advanced strategy addresses the fact that different data segments
exhibit different distribution shifts (Figure 1(left)). Instead of a single, aggregate prediction, we slice
the data into clusters and make separate predictions for each slice. Let S = {S() }lel be a partition
of the data into L slices (e.g., based on feature clusters). We predict the performance on each slice,
ﬁlgtl > using constant or trajectory prediction on the data seen so far within that slice. The final
prediction is a weighted average of these slice-level predictions, where weights are determined by

the prevalence of each slice in the final evaluation window:

T

A strati 1 ~ (1
mztmz;tﬁed:A-}-l Z m;ﬁlp. Z 1{x; € SO} (1)

shes t=T—-A

This approach transforms a difficult global prediction problem into a series of simpler, more robust
local predictions. More details can be found in Appendix C.6.

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

m

112

113

14

115

116

17

= ours: perf.-based stopping + stratified pred. + neg. sub-sampling === baseline: basic early stopping baseline: basic sub-sampling
FM (27 candidate configs) FM v2 (135 candidate configs) CN (81 candidate configs) MLP (54 candidate configs M0E1(81 candidate configs

1.5 ‘
m e ——
©1.0
2 h
205 1

! I
0.0 ‘ L) | L ‘ L ‘ Lt ‘
0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
fraction of data used: C fraction of data used: C fraction of data used: C fraction of data used: C fraction of data used: C

Figure 2: Our proposed method (performance-based stopping with stratified prediction on 50 %
negative-subsampled data) compared to baselines. Our method achieves a regret @3 well
below the 0.1% target with up to 10x less data (cost C = 0.1), significantly outperforming
basic early stopping and sub-sampling.

Experimental Results

Setup. We conduct experiments on the Criteo 1TB pCTR dataset (Criteo, 2023), which spans 24
days of chronologically ordered data. We evaluate several architectures: Factorization Machines
(FM), Cross Networks (CN), MLP, and Mixture of Experts (MoE), each with a wide range of
hyperparameter configurations. Our primary metric is normalized regret @3 over the last 3 days
of data. As baselines, we use simple uniform sub-sampling and one-shot early stopping with
constant prediction since there no existing methods suitable for our setup. For full experimental
details, including hyperparameter ranges, clustering methods, and additional metrics, please see
Appendix C.

Establishing an Acceptable Regret Level. To interpret regret @k, we first normalize it by the
performance of a reference model. We then measure the inherent performance variability by
training the same configuration with 8 different random seeds. This revealed a typical performance
variation of about 0.1%. We therefore set an acceptable "performance loss" from misranking, our
target for normalized regret @k, to be 0.1%, as this is on par with noise from training randomness.
This target is shown as a black dashed line in our result figures.

Main Result. Our most advanced method, combining performance-based stopping, negative
sub-sampling (at 50%), and stratified trajectory prediction, dramatically reduces the cost of hy-
perparameter search. Figure 2 shows that across all architectures, this approach identifies the top-3
configurations with a regret @3 well below our 0.1% target, while using as little as 10% of the
original data (a 10x cost reduction). It consistently and significantly outperforms the baselines.

Ablation Studies.. We find that performance-based stopping consistently outperforms one-shot
early stopping, requiring significantly less data to reach the target regret regardless of the prediction
strategy used (see Appendix Figure 4). Furthermore, advanced prediction strategies are crucial. Both
trajectory and stratified predictions significantly outperform constant prediction. Our novel
stratified prediction provides an additional 10% data reduction over standard trajectory prediction,
highlighting the benefit of handling data heterogeneity via slicing (see Appendix Figure 6 for a
detailed comparison).

Conclusion

We introduced a suite of data reduction and prediction strategies tailored for the costly task of
hyperparameter search in online learning systems. Our approach of combining performance-based
stopping with advanced prediction methods allows for aggressive but intelligent data reduction.
The key innovation, stratified prediction, effectively handles the non-stationarity of online data by
breaking the prediction problem into more manageable slices. Together, these methods achieve
up to a 10-fold reduction in the computational cost of hyperparameter search, enabling faster and
more efficient development of large-scale recommendation and advertising models.

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

References

Alain, G, Lamb, A., Sankar, C., Courville, A., and Bengio, Y. (2015). Variance reduction in SGD by
distributed importance sampling. arXiv preprint arXiv:1511.06481.

Anil, R., Gadanho, S., Huang, D., Jacob, N., Li, Z., Lin, D., Phillips, T., Pop, C., Regan, K., Shamir,
G. L, Shivanna, R, and Yan, Q. (2022). On the factory floor: ML engineering for industrial-scale
ads recommendation models. In Proceedings of the 5th Workshop on Online Recommender Systems
and User Modeling.

Bedi, A. S., Sarma, P., and Rajawat, K. (2018). Tracking moving agents via inexact online gradient
descent algorithm. IEEE Journal of Selected Topics in Signal Processing, 12(1):202-217.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(1):281-305.

Chandrashekaran, A. and Lane, 1. R. (2017). Speeding up hyper-parameter optimization by ex-
trapolation of learning curves using previous builds. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 477-492. Springer.

Coleman, B., Kang, W.-C., Fahrbach, M., Wang, R., Hong, L., Chi, E., and Cheng, D. (2024). Unified
Embedding: Battle-tested feature representations for web-scale ML systems. Advances in Neural
Information Processing Systems, 36.

Coleman, C., Yeh, C., Mussmann, S., Mirzasoleiman, B., Bailis, P., Liang, P., Leskovec, J., and
Zaharia, M. (2019). Selection via proxy: Efficient data selection for deep learning. arXiv preprint
arXiv:1906.11829.

Covington, P., Adams, J., and Sargin, E. (2016). Deep neural networks for YouTube recommendations.
In Proceedings of the 10th ACM Conference on Recommender Systems, pages 191-198.

Criteo (2023). Criteo pctr data - 1tb. https://ailab.criteo.com/
download-criteo-1tb-click-logs-dataset/.

Dombhan, T., Springenberg, J. T., and Hutter, F. (2015). Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. In IJCAL volume 15,
pages 3460-8.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey. Journal of
Machine Learning Research, 20(55):1-21.

Fahrbach, M., Javanmard, A., Mirrokni, V., and Worah, P. (2023). Learning rate schedules in the
presence of distribution shift. In International Conference on Machine Learning, pages 9523-9546.
PMLR.

Feurer, M. and Hutter, F. (2019). Hyperparameter optimization. Springer International Publishing.

Gao, Q., Luo, Z., Klabjan, D., and Zhang, F. (2022). Efficient architecture search for continual
learning. IEEE Transactions on Neural Networks and Learning Systems, 34(11):8555-8565.

Hazan, E., Rakhlin, A., and Bartlett, P. (2007). Adaptive online gradient descent. Advances in Neural
Information Processing Systems, 20.

He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R,, Bowers, S., et al.
(2014). Practical lessons from predicting clicks on ads at facebook. In Proceedings of the Eighth
International Workshop on Data Mining for Online Advertising, pages 1-9.

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/

Hoi, S. C., Sahoo, D., Lu, J., and Zhao, P. (2021). Online learning: A comprehensive survey.
Neurocomputing, 459:249-2809.

Jain, K., Xie, J., Regan, K., Chen, C., Han, J., Li, S., Li, Z., Phillips, T., Sussman, M., Troup, M., et al.
(2024). Data efficiency for large recommendation models. arXiv preprint arXiv:2410.18111.

Jiang, A. H., Wong, D. L.-K,, Zhou, G., Andersen, D. G., Dean,]., Ganger, G. R., Joshi, G., Kaminksy,
M., Kozuch, M., Lipton, Z. C., et al. (2019). Accelerating deep learning by focusing on the biggest
losers. arXiv preprint arXiv:1910.00762.

Kadra, A., Janowski, M., Wistuba, M., and Grabocka, J. (2023). Scaling laws for hyperparameter
optimization. Advances in Neural Information Processing Systems, 36:47527-47553.

Katharopoulos, A. and Fleuret, F. (2018). Not all samples are created equal: Deep learning with
importance sampling. In International Conference on Machine Learning, pages 2525-2534. PMLR.

Killamsetty, K., Durga, S., Ramakrishnan, G., De, A., and Iyer, R. (2021a). Grad-match: Gradient
matching based data subset selection for efficient deep model training. In International Conference
on Machine Learning, pages 5464-5474. PMLR.

Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G., and Iyer, R. (2021b). Glister: Generalization
based data subset selection for efficient and robust learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 8110-8118.

Klein, A., Falkner, S., Springenberg, J. T., and Hutter, F. (2017). Learning curve prediction with
bayesian neural networks. In International Conference on Learning Representations.

Kumar, M., Dahl, G. E., Vasudevan, V., and Norouzi, M. (2018). Parallel architecture and hyperpa-
rameter search via successive halving and classification. arXiv preprint arXiv:1805.10255.

Kurian, G., Sardashti, S., Sims, R., Berger, F., Holt, G., Li, Y., Willcock, J., Wang, K., Quiroz, H., Salem,
A, etal. (2025). Scalable machine learning training infrastructure for online ads recommendation
and auction scoring modeling at Google. arXiv preprint arXiv:2501.10546.

Linden, G., Smith, B., and York, J. (2003). Amazon. com recommendations: Item-to-item collaborative
filtering. IEEE Internet Computing, 7(1):76-80.

Ling, X., Deng, W., Gu, C., Zhou, H., Li, C., and Sun, F. (2017). Model ensemble for click prediction in
bing search ads. In Proceedings of the 26th International Conference on World Wide Web Companion,
pages 689-698.

Liu, H., Simonyan, K., and Yang, Y. (2019). Darts: Differentiable architecture search. In International
Conference on Learning Representations.

Liu, Z., Zou, L., Zou, X., Wang, C., Zhang, B., Tang, D., Zhu, B., Zhu, Y., Wu, P., Wang, K, and
Cheng, Y. (2022). Monolith: Real time recommendation system with collisionless embedding
table. In Proceedings of the 5th Workshop on Online Recommender Systems and User Modeling
co-located with the 16th ACM Conference on Recommender Systems, volume 3303.

Loshchilov, I. and Hutter, F. (2015). Online batch selection for faster training of neural networks.
arXiv preprint arXiv:1511.06343.

McMahan, H. B, Holt, G., Young, M., Ebner, D., Grady, J., Nie, L., Phillips, T., Davydov, E., Golovin,
D, et al. (2013). Ad click prediction: A view from the trenches. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1222-1230.

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

21

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Mirzasoleiman, B., Bilmes, J., and Leskovec, J. (2020). Coresets for data-efficient training of machine
learning models. In International Conference on Machine Learning, pages 6950-6960. PMLR.

Naumov, M., Mudigere, D., Shi, H.-J. M., Huang, J., Sundaraman, N., Park, J., Wang, X., Gupta, U,
Wu, C.-J., Azzolini, A. G, et al. (2019). Deep learning recommendation model for personalization
and recommendation systems. arXiv preprint arXiv:1906.00091.

Paul, M., Ganguli, S., and Dziugaite, G. K. (2021). Deep learning on a data diet: Finding important
examples early in training. Advances in Neural Information Processing Systems, 34:20596—20607.

Pooladzandi, O., Davini, D., and Mirzasoleiman, B. (2022). Adaptive second order coresets for data-
efficient machine learning. In International Conference on Machine Learning, pages 17848—17869.
PMLR.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A. (2017).
Large-scale evolution of image classifiers. In International Conference on Machine Learning, pages
2902-2911. PMLR.

Shen, J., Khodak, M., and Talwalkar, A. (2022). Efficient architecture search for diverse tasks.
Advances in Neural Information Processing Systems, 35:16151-16164.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25.

Toneva, M., Sordoni, A., des Combes, R. T., Trischler, A., Bengio, Y., and Gordon, G. J. (2019). An
empirical study of example forgetting during deep neural network learning. In International
Conference on Learning Representations.

Wistuba, M. and Pedapati, T. (2020). Learning to rank learning curves. In International Conference
on Machine Learning, pages 10303-10312. PMLR.

Yang, T., Zhang, L., Jin, R., and Yi, J. (2016). Tracking slowly moving clairvoyant: Optimal dynamic
regret of online learning with true and noisy gradient. In International Conference on Machine
Learning, pages 449-457. PMLR.

Yang, Y., Kang, H., and Mirzasoleiman, B. (2023). Towards sustainable learning: Coresets for
data-efficient deep learning. In International Conference on Machine Learning, pages 39314-39330.
PMLR.

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the 20th International Conference on Machine Learning, pages 928-936.

Zoph, B. and Le, Q. (2022). Neural architecture search with reinforcement learning. In International
Conference on Learning Representations.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

A Related Work

Recommendation and Advertising Systems. Recommendation and advertising systems form the
backbone of many online platforms, such as YouTube (Covington et al., 2016), Facebook ads (He
et al., 2014), Bing search (Ling et al., 2017), Google ads (Anil et al., 2022; Coleman et al., 2024; Kurian
et al., 2025; McMahan et al., 2013), TikTok (Liu et al., 2022), and Amazon recommendations (Linden
et al., 2003). Online learning is particularly relevant in these applications due to the constant influx
of new data and the need to adapt to evolving user preferences and item popularity Anil et al. (2022);
McMabhan et al. (2013). This inherent distribution shift in online data introduces unique challenges,
necessitating distinct solutions compared to standard “offline” learning approaches that assume
distributionally stationary data (Bedi et al., 2018; Fahrbach et al., 2023; Hazan et al., 2007; Yang et al.,
2016; Zinkevich, 2003). Our work addresses one such challenge: efficient hyperparameter search.
While this problem has been extensively studied for offline learning, the complexities introduced
by the distribution shift demand new analyses and tools.

Data-Efficient Training. The increasing scale of modern datasets has driven significant interest
in data-efficient learning techniques. These methods aim to achieve high performance with lim-
ited, selectively chosen subset of the full training data. For instance, one line of work selects
weighted subsets of the full data that best approximates the full gradient (Killamsetty et al., 2021a,b;
Mirzasoleiman et al., 2020; Pooladzandi et al., 2022; Yang et al.,, 2023). Another approach lever-
ages “importance signals”, such as (expected) gradient norm (Alain et al., 2015; Katharopoulos
and Fleuret, 2018; Paul et al., 2021), per-example loss (Jiang et al., 2019; Loshchilov and Hutter,
2015), and forgettability (Toneva et al., 2019), to guide data reduction by retaining “important”
examples. This selection process can occur after some steps of training or after a full training
run on some cheaper proxy model (Coleman et al., 2019). While data-efficient training is a crucial
component of our proposal, existing methods do not address the distribution shift inherent in
online learning. Consequently, data-efficient online learning has relied on simpler strategies like
uniform or label-dependent sub-sampling of examples at more conservative rates (Jain et al., 2024).
Our work overcomes this limitation by enabling a successful hyperparameter search even if the
candidate configurations do not maintain their best performance on aggressively reduced data. This
allows for the exploration of more aggressive data reduction strategies, which, when supported by
our prediction strategies, facilitates significantly more efficient hyperparameter search.

Hyperparameter & Architecture Search. Hyperparameter and neural architecture search are
critical yet computationally expensive tasks in machine learning. Traditional hyperparameter
search methods include grid search, random search (Bergstra and Bengio, 2012), and Bayesian
optimization (Snoek et al., 2012). More recent approaches leverage techniques like evolutionary algo-
rithms (Real et al., 2017) and gradient-based optimization Liu et al. (2019). Neural architecture search
aims to automate the design of neural network architectures, often employing search strategies
similar to those used in hyperparameter search (Elsken et al.,, 2019; Zoph and Le, 2022). While these
methods have shown considerable success, they often require substantial computational resources.
This has motivated research in efficient hyperparameter search, aiming to identify the top configu-
rations with reduced cost (Feurer and Hutter, 2019; Gao et al., 2022; Shen et al., 2022). A common
technique adopted by practitioners is early stop the training runs of non-promising configurations
based on their performance during the initial stages. This strategy can also rely on predicting
the configurations’ full learning trajectory using Bayesian optimization (Chandrashekaran and
Lane, 2017; Klein et al., 2017), autoregressive models (Wistuba and Pedapati, 2020), or scaling
laws (Domhan et al., 2015; Kadra et al., 2023). However, such predictions become particularly
challenging in online learning, as the loss does not follow a smooth monotonic trend due to the
distribution shift in the data. Our work addresses this challenge through several angles, including
mitigating the distribution shift with a reference model trained on the same historical data, and

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

C.1

C.2

aggregating predicted “sliced” performance over clusters of examples with similar distributions
rather than predicting the overall performance directly.

Performance-Based Stopping

Algorithm 1 Performance-Based Stopping

Input: configurations Q, stopping steps 7stop C {1,..., T}, ratio p of stopped configurations at any
stopping step

Output: ranking r

: Qremaining — Q

2: Initialize ranking sequence r « [].

3: while Qremaining #0andt < T do

4: Incremental training with (x;, y;).

50 if t € Tgiop then

6:

7

8

9

—_

Mremaining ¢~ PREDICTPERFORMANCE (Qremaining: £ T)
Tremaining <~ RANKCONFIGURATIONS(Qremaininga mremaining)
Qpruneds Tpruned < last p - [Qremaining| configurations in r and their rankings
r < concatenate(7pruned, ')
10: Qremaining « Qremaining \ Qpruned
11: Mremaining < COMPUTEPERFORMANCE(Qremaining)
12: return concatenate(RANKCONFIGURATIONS(2remaining Mremaining)> 7)

Additional Experimental Details

Ranking Metrics

In addition to regret @k, we also consider the Pairwise Error Rate (PER), which measures the
fraction of all pairs of configurations that are incorrectly ordered by a predicted ranking r compared
to the ground truth ranking r*.

1| Q]

3 1@ > mero)H), @

i=1 j=i+1

1

E e
PR = aiier-

where 1{P} = 1 when P is true and 0 otherwise. While useful, PER treats all misrankings equally
and considers all configurations, whereas we are primarily interested in accurately ranking the top
configurations with significant performance differences. For this reason, regret @k is our main
metric. We provide corresponding results in Figure 5.

Candidate Configurations

In the “FM” and “MoE” experiments, we vary optimization parameters: learning rate, weight decay,
and final learning rate. We sweep through three values for each of these hyperparameters:

« learning rate: [107%,1073,107?]
. weight decay: [107%,2-107°,107°]
« final learning rate: [107>,1072,107!]

In the “FM v2” experiment, in addition to the optimization parameters above, we vary the
memory structure of the embeddings. We divide the features into two groups: “high” and “low”

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

C3

C4

C.5

C.6

cardinality features and share the embedding tables among them (using hashing). Then, we vary
the embedding dimensions as well as the hash buckets for the high and low cardinality features
while maintaining a constant training speed and memory footprint. To ensure that all embeddings
have the same dimensions in the FM computation, we project them to the same embedding size.

In the “CN” and “MLP” experiments, in addition to the optimization parameters above, we vary
the number of layers and hidden dimensions, respectively:

« number of layers in CN: [2, 3, 5]
. hidden dimensions in MLP: [(598, 598, 598, 598), (1196, 1196, 1196, 1196)]

Compute Resources

Without applying our data reduction and prediction strategies, running one configuration over the
24-day Criteo data on 4 TPUv3s takes less than an hour for the architectures and hyperparameters
we tried. We manage to reduce this cost up to 10 times with our strategies. Trajectory prediction
requires learning the parameters of a predictive law. We did this using CPUs, with less than an
hour for learning the trajectory predictions for each configuration in an experiment of about 100
configurations in total.

Details on Performance-Based Stopping

We provide an outline of our performance-based stopping strategy in Algorithm 1, with two
hyperpameters: stopping steps 7op and ratio of stopped configurations at any stopping step p. For
all the experiments, we choose p = 0.5. We choose this value since it is a reasonable starting point
but it is possible to improve our results with a carefully tuned p. For Tsop, we fix the number of steps
between consecutive stopping times in Tgp - i.e., we stop fraction p of remaining configurations
at equally spaced time steps. By varying the frequency at which we stop the configurations, we
obtain different points in the performance-based stopping curves in our plots.

Details on Trajectory Prediction

Trajectory prediction fits a law to the recently observed data and makes predictions for the trajectory.
In our experiments, we use the last 3 “visited” days in the training data for fitting, by averaging
the loss over all the time steps in a day. Then, we use the fitted parameters to predict the loss
in the last 3 days, i.e., the evaluation window. In the main body, we use inverse power laws (or
InversePowerLaw in Table 1). In Section D.3, we explore other choices of laws, listed in Table 1,
and their combinations.

Table 1: Other choices of fitting laws for trajectory prediction.

Law Formulation (function of D)
InversePowerlaw E+ %
VaporPressure exp (A + % +C-logD)
LogP —4—
ogPower e
Exponentiallaw E—exp(—-A-D* +B)

Details on Stratified Prediction

Stratified prediction can be used with both constant or trajectory prediction. In the main body,
we exclusively used it with trajectory prediction as we observe better ranking accuracy. Figure 3
shows that stratified trajectory prediction is consistently better than stratified constant prediction
across all experiments we consider. Note that in all other plots in the paper, “stratified prediction”
refers to stratified trajectory prediction.

10

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

D.1

= stratified constant pred. = == stratified trajectory pred.
FM v2 CN MLP MoE

o
o

o
I

regret @3

o
[N

o6).10 0.15 0.20 0.Zp10 0.15 0.20 0.Z610 0.15 0.20 0.Zp10 0.15 0.20 0.Zp10 0.15 0.20 0.25
fraction of data used: @raction of data used: @raction of data used: Graction of data used: @raction of data used: C

Figure 3: Comparison between stratified constant prediction and stratified trajectory prediction. In all
other plots in the paper, “stratified prediction” refers to stratified trajectory prediction.

Additional Experimental Results
One-Shot Early Stopping vs Performance-Based Stopping

In the main text, we stated that performance-based stopping reaches lower regret @3 with signifi-
cantly smaller amount of data used, compared to one-shot early stopping. We now provide the full
set of results across all model types in Figure 4.

Even though performance-based stopping should not be evaluated with ranking metrics that
consider all the configurations, like PER, as the core idea behind performance-based stopping is
to not worry about poor configurations, we still provide a comparison between one-shot early
stopping and performance-based stopping based on PER in Figure 5. We note that this is not
a fair comparison since performance-based stopping is actually not expected to rank the poor
configurations that stop early on rank accurately. However, Figure 5 shows that the gap between
one-shot early stopping and performance-based stopping is so large that the latter reaches much
lower PER.

11

369

370

371

372

373

374

375

376

377

378

379

380

381

constant pred.

trajectory pred.

stratified pred.

8 ===]-shot early stopping
== perf.-based stopping
(18] 6 v
©®
-
24
o
g
2
0-.&-—-—.-- ____&.________________ ___k _______________
0.2 0.4 0.2 0.4 0.2 0.4
fraction of data used: C fraction of data used: C fraction of data used: C
constant pred. trajectory pred. stratified pred.
8 =]-shot early stopping
== perf.-based stopping
(18]
® 6
—
La
o
g
2
N e\ A I N R
0.2 0.4 0.2 0.4 0.2 0.4
fraction of data used: C fraction of data used: C fraction of data used: C
constant pred. trajectory pred. stratified pred.
8 ===]-shot early stopping
=== perf.-based stopping
(18]
® 6
o
Ly
[@2]
g
2
= A
0.2 0.4 0.2 0.4 0.2 0.4
fraction of data used: C fraction of data used: C fraction of data used: C
constant pred. trajectory pred. stratified pred.
8 ===]-shot early stopping
=== perf.-based stopping
m
@° \/\/
e
Ly
[@2]
p
2
0-.:--.%-- -_:\.L.__---_-____---_- ___-_¥_ ________________
0.2 0.4 0.2 0.4 0.2 0.4
fraction of data used: C fraction of data used: C fraction of data used: C
constant pred. trajectory pred. stratified pred.
8 ===]-shot early stopping
=== perf.-based stopping
m
® 6
.
L4
[@2]
g
O____ P I [S——— ____L ________________

0.2 0.4
fraction of data used: C

0.2 0.4
fraction of data used: C

0.2 0.4
fraction of data used: C

Figure 4: regret @3 comparison of one-shot early stopping and performance-based stopping, when
used with (left) constant, (center) trajectory, and (right) stratified prediction. Rows represent,
top to bottom: FM, FM v2, CN, MLP, MoE. Performance-based stopping is consistently
superior.

=
o
o

e
N
v

Pairwise Error Rate (PER)
= o o o
o =) N wn
s) o wu o©

e
N
Sl

Pairwise Error Rate (PER)
= o o o
o =) N %
o o w o

e
<
>

e
N
U

Pairwise Error Rate (PER)
o o
o w
o o

=
=)
o

o
~
u

e
N
U

0.00

Pairwise Error Rate (PER)
=)
w
o

=
=)
o

constant pred.

trajectory pred.

stratified pred.

/

\

—~ X\

===]-shot early stopping
= perf.-based stopping

M\

0.2 0.4
fraction of data used: C

constant pred.

0.2 0.4
fraction of data used: C

trajectory pred.

0.2 0.4
fraction of data used: C

stratified pred.

—_—

—

=]-shot early stopping
== perf.-based stopping

A~

0.2 0.4
fraction of data used: C

constant pred.

0.2 0.4
fraction of data used: C

trajectory pred.

0.2 0.4
fraction of data used: C

stratified pred.

——

SN

==]-shot early stopping
=== perf.-based stopping

-/

AL

0.2 0.4
fraction of data used: C

constant pred.

0.2 0.4
fraction of data used: C

trajectory pred.

0.2 0.4
fraction of data used: C

stratified pred.

f

\

\/\

\

== 1-shot early stopping
=== perf.-based stopping

N

N—

0.2 0.4
fraction of data used: C

constant pred.

0.2 0.4
fraction of data used: C

trajectory pred.

0.2 0.4
fraction of data used: C

stratified pred.

o
~
u

0.25

0.00

Pairwise Error Rate (PER)
o
w
=)

Figure 5: PER comparison of one-shot early stopping and performance-based stopping, when used
with (left) constant, (center) trajectory, and (right) stratified prediction. Rows represent, top

_

—V
)

===]-shot early stopping
=== perf.-based stopping

A

g

0.2 0.4
fraction of data used: C

0.2 0.4
fraction of data used: C

to bottom: FM, FM v2, CN, MLP, MoE.

0.2 0.4
fraction of data used: C

13

D.2 Comparison between Prediction Strategies 382

We stated in the main text that advanced prediction strategies are critical, with stratified prediction s
outperforming trajectory prediction, and both being far superior to constant prediction. Figure 6 s
provides the detailed results.

=== constant pred.
0.4 trajectory pred.
' = stratified pred.

regret @3
©
w

o
]

©
=

0.0

0.10 0.15 0.20 0.25 0.3
fraction of data used: C

Figure 6: Comparison between our prediction strategies (Constant, Trajectory, Stratified) when used
with performance-based stopping, shown for MoE. Stratified and Trajectory prediction
consistently outperform Constant prediction, with Stratified prediction offering the best
performance.

385
D.3 Other Choices of Scaling Laws 386

Figure 7 compares different choices of laws, InversePowerlLaw, VaporPressure, LogPower, sy
ExponentiallLaw defined in Table 1, and their weighted combination, for trajectory prediction. s
It is seen that they all behave similarly and reach the target regret @3 level around the same data 35
use fraction. In the combined law, we learn both the weights and the parameters of each law jointly. 3%

= = = |nversePowerlaw | & .‘_ = = = InversePowerlaw
1.25 = = = VaporPressure o 0.5 B = = = VaporPressure
3 = % L
. - = = = LogPower
1.00 ~E- Logpower- E 0.4 :: =nn [tiallL
m - = = = ExponentialLaw & " xponentialLaw
2075 =% = combined law 5 0.3 gs === combined law
@ pod
— - “ -
g = ‘5 0.2
= v
201
©
a
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
fraction of data used: C fraction of data used: C

Figure 7: Comparison between different choices of laws for trajectory prediction, with respect to (left)

regret @3 and (right) PER. The simple inverse power law performs as well as more complex
alternatives.

D.4 Late Starting vs Early Stopping 1

Lastly, we explore whether starting some configuration runs later in training data would provide 3.
an improvement in the ranking accuracy vs data reduction tradeoff. Figure 8 shows how one-shot s
early stopping behaves when the configurations start training at different days. Start at day=0
(purple) corresponds to the standard one-shot early stopping that we have been analyzing. The s
other curves apply the same algorithm but on the runs that start training after some number of s
days in training data passes. We see no significant difference among different start days. 397

14

Pairwise Error Rate (PER)
© o o o o o
= N w =Y (9] [e)]

o
o

Figure 8: PER comparison between different starting times, when used with one-shot early stopping.

N
e
>
a=d
L]
"
L]

»
-

LI T I
-

0.0

0.2 0.4 0.6 0.8 1.0

fraction of data used: C

= mgn u

start at day=10
start at day=7
start at day=5
start at day=3
start at day=0

This comparison checks whether we could get additional data reduction gain by late starting
the configuration runs. However, our ranking predictions with late-started runs provide
about the same data reduction vs PER tradeoff.

15

	Introduction
	Problem Setup and Preliminaries
	Time Variation in Online Training Data

	Method
	Data Reduction Strategies
	Prediction Strategies

	Experimental Results
	Conclusion
	Related Work
	Performance-Based Stopping
	Additional Experimental Details
	Ranking Metrics
	Candidate Configurations
	Compute Resources
	Details on Performance-Based Stopping
	Details on Trajectory Prediction
	Details on Stratified Prediction

	Additional Experimental Results
	One-Shot Early Stopping vs Performance-Based Stopping
	Comparison between Prediction Strategies
	Other Choices of Scaling Laws
	Late Starting vs Early Stopping

