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Abstract

Understanding how the test risk scales with model complexity is a central question
in machine learning. Classical theory is challenged by the learning curves observed
for large over-parametrized deep networks. Capacity measures based on parameter
count typically fail to account for these empirical observations. To tackle this
challenge, we consider norm-based capacity measures and develop our study for
random features based estimators, widely used as simplified theoretical models for
more complex networks. In this context, we provide a precise characterization of
how the estimator’s norm concentrates and how it governs the associated test error.
Our results show that the predicted learning curve admits a phase transition from
under- to over-parameterization, but no double descent behavior. This confirms that
more classical U-shaped behavior is recovered considering appropriate capacity
measures based on models norms rather than size. From a technical point of view,
we leverage deterministic equivalence as the key tool and further develop new
deterministic quantities which are of independent interest.

1 Introduction

How the test risk scales with the data size and model size is always a central question in machine
learning, both empirically and theoretically. This is characterized as the shape of generalization, i.e.,
learning curves, that can be formulated as classical U-shaped curves [54], double descent [5], and
scaling laws [27, 59].

In these learning curves, the model size, i.e., the number of parameters, provides a basic measure
of the capacity of a machine learning (ML) model. However it is well known that model size
cannot describe the “true” model capacity [2, 63], especially for over-parameterized neural networks
[4, 62] and large language models (LLMs) [8]. The focus on the number of parameters results in
an inaccurate characterization of the learning curve, and consequently, an improper data-parameter
configuration in practice. For instance, even for the same architecture (model size), the learning curve
can be totally different, e.g., double descent may disappear [39, 40]. A natural question raises that:
What is the shape of generalization under the lens of a suitable model capacity than model size?

∗Most of this work was done when Yichen was a visiting student at University of Warwick. Correspondence
to Fanghui Liu (fanghui.liu@warwick.ac.uk).
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Figure 8.12: Left: The double descent phenomenon, where the number of pa-
rameters is used as the model complexity. Middle: The norm of the learned
model is peaked around n ≈ d. Right: The test error against the norm of
the learnt model. The color bar indicate the number of parameters and the
arrows indicates the direction of increasing model size. Their relationship
are closer to the convention wisdom than to a double descent. Setup: We
consider a linear regression with a fixed dataset of size n = 500. The input
x is a random ReLU feature on Fashion-MNIST, and output y ∈ R10 is the
one-hot label. This is the same setting as in Section 5.2 of Nakkiran et al.
[2020].
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model is peaked around n ≈ d. Right: The test error against the norm of
the learnt model. The color bar indicate the number of parameters and the
arrows indicates the direction of increasing model size. Their relationship
are closer to the convention wisdom than to a double descent. Setup: We
consider a linear regression with a fixed dataset of size n = 500. The input
x is a random ReLU feature on Fashion-MNIST, and output y ∈ R10 is the
one-hot label. This is the same setting as in Section 5.2 of Nakkiran et al.
[2020].

(a) Empirical observations from Figure 8.12 of [43]
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(b) Our theory

Figure 1: Fig. 1(a) presents previous empirical observations from [43, Fig. 8.12] in the random feature
model. Fig. 1(b) precisely characterize the learning curve from our theory and perfectly matches our
experiments (shown by points) with training data {(xi, yi)}ni=1, with n = 300, sub-sampled from
the MNIST [30] with d = 748. The feature map is defined as φ(x,w) = erf(⟨x,w⟩) with random
initialization w ∼ N (0, I). Note that whether the curve is finally lower than before is different
between Fig. 1(a) and Fig. 1(b), mainly because of data, see more discussion in Appendix G.3.

In a ML model, its parameters can be represented as vectors, matrices, or tensors, and hence the
model size is characterized by their dimensions. However, to evaluate the “size” of parameters,
a more suitable metric is their norm. This is termed as normed based capacity, a perspective
pioneered in the classical results indicated by [2]. Indeed, norm based capacity/complexity are widely
considered to be more effective in characterizing generalization behavior; see e.g. [42, 52, 16, 33]
and references therein. For instance, path-norm based model capacity empirically demonstrates
a quite strong correlation to generalization while other metrics of model capacity may not [26].
Additionally, minimum norm-based solution received much attention as a possible way to understand
the learning performance of over-parameterized neural networks in the interpolation regime; see e.g.
[31, 55, 4, 62, 40].

Empirical observations on the learning curve under norm-based capacity have been discussed in the
lecture notes [43, Fig. 8.12], as shown in Fig. 1(a): when changing the model capacity from model
size to parameters’ norm, the learning curve is changed from double descent to a “φ”-shaped curve.
However, a precise mathematical framework on obtaining/understanding this curve is still lacking.
The goal of this paper is to investigate this curve by addressing the following fundamental question:

What is the relationship between test risk and norm-based model capacity, and how can it be
precisely characterized?

In this work, we take the first step toward answering this question, as illustrated in Fig. 1(b).
Compared to the classical double descent curve w.r.t. model size p, we quantitatively characterize
the relationship: test risk vs. norm-based capacity. Our theoretical predictions (shown as curves)
precisely predict the empirical results (shown as points), and the curve is more close to the “φ”-shaped
curve. More broadly, our results address how the learning curve behaves under more suitable model
capacities—specifically, whether classical phenomena such as the U-shaped curve, double descent,
or scaling laws persist or are fundamentally altered. We believe this opens the door to rethinking the
role of model capacity and the nature of learning curves (e.g., scaling laws) in the era of LLMs.

1.1 Contributions and findings

We consider linear and random features models (RFMs) regression to precisely characterize the
relationship between the test risk and the capacity measured by the estimator’s norm. The key
technical tool we leverage is the deterministic equivalence technique from random matrix theory
[10, 14], where the test risk R (depending on data X , target function f∗, and the regularization
parameter λ) can be well approximated by a deterministic quantity R (with data size n and model
size p), i.e.,

R(X, f∗, λ) = (1+O(n−1/2)+O(p−1/2)) ·R(Σ, f∗, λ∗) , asymptotically or non-asymptotically

where R(Σ, f∗, λ∗) is the exact deterministic characterization only depends on f⋆, expected data
covariance Σ, “re-scaled” regularization parameter λ, or other deterministic quantities. In our work,
we aim to build the deterministic equivalents N of the estimator’s ℓ2 norm N , both asymptotically
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Table 1: Summary of our main results for RFMs on deterministic equivalents and their relationship.
Type Results Regularization Deterministic equivalents N Relationship between R and N

Deterministic
equivalence

Theorem 3.1 λ > 0 Asymptotic -

Corollary 3.2 λ → 0 Asymptotic -

Theorem E.2 λ > 0 Non-asymptotic -

Relationship

Proposition 4.1 λ → 0 - Over-parameterized regime

Corollary E.3 λ → 0 - Under Λ = Im (n < m < ∞)

Corollary 4.2 λ → 0 - Under Assumption 2 (power-law)

Proposition 4.3 λ > 0 - Under Assumption 2 (power-law)

and non-asymptotically, and derive a corresponding relationship between R and N, allowing a precise
characterization, i.e.

Our target

N (X, f∗, λ) = (1+O(n−1/2)+O(p−1/2))·N(Σ, f∗, λ∗) =⇒ R = g(N) for some function g.

The main results are given by Table 1 for RFMs, which covers random features ridge regression as
well as min-norm estimator (λ = 0). Results for linear regression are deferred to Appendix D due to
page limit. Deriving results N on norm-based capacity is more chandelling than for test risk. This is
because, we need to explore new deterministic quantities, which are of independent interest and more
broadly useful. Specifically, we derive the deterministic equivalents w.r.t. Tr(AX⊤X(X⊤X+λ)−1)
for any positive semi-definite (PSD) matrixA while previous work only handledA := I [1, 37, 14].
Moreover, non-asymptotic results, those valid for finite n, p = Ω(1) rather than in the asymptotic
regime n, p → ∞, on norm-based capacity require more technical conditions. In particular, they
involve non-asymptotic bounds on deterministic equivalents of differences between random quantities.
Due to the complexity of the formulations, we present these results in the appendix.

After that, we establish the characterization of R = g(N) under isotropic features and further illustrate
the scaling law under classical power law scaling assumptions. The derivation requires non-trivial
calculation and integral approximation by eliminating the model size p. We have the following
findings from this characterization.

• Norm-based capacity suffices to characterize generalization, whereas effective dimen-
sion and smoother do not: Our results on deterministic equivalence demonstrate that the
estimator’s norm includes the information of the test risk’s bias and variance2, respectively.
In contrast, typical model capacity, e.g., effective dimension [63] and smoother [12] can only
characterize the test risk’s variance and thus are insufficient to characterize generalization.

• Phase transition exists but double descent does not exist: There exists a phase transition
from under- to over-parameterized regime, as shown in Fig. 1(b). In the under-parameterized
regime, we still observe the same U-shaped curve, whether we consider the norm N or model
size p as the model capacity. This curve can be precisely described as a hyperbola for the
min-norm interpolator (linear regression) under isotropic features.
But in the over-parameterized regime, when the norm N increases, the test risk R also
increases (almost linearly if the regularization is small). This differs from double descent:
when the model size p increases, the test risk decreases. Our empirical results on Fig. 1
verify this theoretical prediction. More importantly, this curve aligns more with classical
statistical intuition—a U-shaped curve—rather than the double descent phenomenon. We
conclude that with suitably chosen model capacity, the learning curve more closely follows
a U-shape curve than a double descent, potentially observable in more complex models
and real-world datasets, see Appendices H.2 and H.3, respectively.

• Scaling law is not monotone in norm-based capacity: We study the scaling law of RFMs
under norm-based capacity in a multiplication style by taking model size p := nq (q ≥ 0),

2Strictly speaking, it also requires knowing whether the model is under-parameterized or over-parameterized,
as the self-consistent equations differ between these two regimes.
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leading to R = Cn−aNb with a ≥ 0, b ∈ R, and C > 0. Note that b ∈ R can be positive or
negative, resulting in different behaviors of R. This differs from the classical scaling law
that is monotonically decreasing in the model size.

• Controlling norm-based capacity can be achieved by the tuned regularization param-
eter λ: Norm-based capacity appears less intuitive used in practice when compared to
model size. Our results demonstrate that the norm decreases monotonically with increas-
ing λ, and in both under- and over-parameterized regimes. Accordingly, such one-to-one
correspondence allows for controlling norm via λ, related to the known L-curve [21].

We remark that, our theory cannot fully recover the “φ”-curve shown in Fig. 1(a), where the curve in
some over-parameterized regimes is above that in the under-parameterized regime. This is because,
some real-world datasets may not satisfy the well-behaved data assumption in Assumption 1. We
also emphasize that we do not claim that ℓ2 norm-based capacity (or other norm-based capacity) is
the best metric of model capacity. Rather, this work aims to show how the test risk behaves when a
more suitable model capacity than model size is used to measure capacity. For completeness, we
discuss the “φ”-curve under real-world dataset as well as other metrics of model capacity evaluated
in Appendix H. All code and replication materials (including our reproduction of OpenAI’s deep
double-descent results [40]) are available at github.com/yichenblue/norm-capacity.

Notations: In this paper we generally adopt the following convention. Caligraphic letters (e.g.,
Nλ,Rλ,BN ,λ,VR,λ,) denote random quantities, and upright letters (e.g., Nλ, Rλ, BN,λ, VR,λ) denote
their deterministic equivalents. The letters N, R, B, V above (in any font) signify quantities related to
the solution norm, test risk, bias, and variance, respectively. With λ denoting the ℓ2-regularization
parameter, setting λ = 0 corresponds to the min-norm interpolator. The superscripts LS and RFM denote
quantities defined for linear regression and random feature regression, respectively.

We denote by γ the ratio between the parameter size and the data size, i.e., γ := d/n in ridge
regression and γ := p/n in RFMs. For asymptotic results, we adopt the notation u ∼ v, meaning
that the ratio u/v tends to one as the dimensions n, d (p for RFMs) tend to infinity. A complete list
notations can be found in Appendix A.

1.2 Related work

The relationship between the test risk, the data size, and the model size is classically characterized
by the U-shaped curve [54]: larger models tend to overfit. This can not explain the success of deep
learning (with even more parameters than data), leading to a new concept: double descent [5], where
the test risk has a second descent when transitioning from under- to over-parameterized regimes.
Moreover recent scaling law [27] shows that the test risk is monotonically decreasing with model
size, typically in the under-parameterized regime for LLMs.

Model capacity metrics: Beyond model size as a capacity measure, there is considerable effort to
define alternative capacity measures, e.g, degrees of freedom from statistics [17, 18, 47], effective
dimension/rank [63, 3], smoother [12], flatness [48], as well as norm-based capacity [42, 33]. The
norm’s asymptotic characterization is given in specific settings [25] but the risk-norm relationship
is not directly studied. Besides, training strategies can be also explained as implicit regularization
[61, 41], affecting the model capacity as well. We refer to the survey [26] for details.

Deterministic equivalents: Random matrix theory (RMT) provides powerful mathematical tools to
precisely characterize the relationship between the test riskR and n, p, d via deterministic equivalence,
in an asymptotic regime (n, p, d→∞, [35, 20, 57, 60, 1]), or non-asymptotic regime [22, 10, 37].
We refer the reader to [11] for further details. Complementary to RMT approaches, techniques from
statistical physics are also possible to derive the deterministic equivalence, e.g., replica methods
[6, 19, 34] and dynamical mean field theory [28, 36, 38].

2 Preliminaries
We overview RFMs via deterministic equivalents here; see more details in Appendix B with additional
preliminaries on linear regression.

Random features models (RFMs) [49, 32] can be regarded as two-layer neural networks with
f(x;a) = 1√

p

∑p
j=1 ajφ(x,wj), where φ : Rd × Rd → R is a nonlinear activation function. The

first-layer parameters {wi}pi=1 are sampled i.i.d. from a probability measure µw and kept unchanged
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during training. We only train a by solving the following random features ridge regression

â := argmin
a∈Rp

{
n∑
i=1

(yi − f(xi;a))2 + λ∥a∥22

}
=
(
Z⊤Z + λIp

)−1
Z⊤y , Z ∈ Rn×p , (1)

where the feature matrix is [Z]ij = p−1/2φ(xi;wj) and λ ≥ 0 is the regularization parameter. We
also consider min-ℓ2-norm solution (λ = 0), i.e., âmin = argmina ∥a∥2, s.t.Za = y.

Following [14], under proper assumptions on φ (e.g., bounded, squared-integrable), we can define a
compact integral operator T : L2(µx)→ V ⊆ L2(µw) for any f ∈ L2(µx) such that

(Tf)(w) :=

∫
Rd

φ(x;w)f(x)dµx , T =

∞∑
k=1

ξkψkϕ
∗
k ,

where (ξk)k≥1 ⊆ R are the eigenvalues and (ψk)k≥1 and (ϕk)k≥1 are orthonormal bases of L2(µx)
and V for spectral decomposition respectively. We denote Λ := diag(ξ21 , ξ

2
2 , . . .) ∈ R∞×∞ and

assume all eigenvalues are non-zero and arranged in non-increasing order.

Accordingly, the covariate feature matrix can be represented as G := [g1, . . . , gn]
T ∈Rn×∞ with

gi := (ψk(xi))k≥1 and the weight feature matrix is F := [f1, . . . ,fp]
T ∈ Rp×∞ with fj :=

(ξkϕk(wj))k≥1. Then the feature matrix can be denoted by Z = 1√
pGF

T ∈ Rn×p. Note that f has

covariance matrix E[ffT] = Λ, and we further introduce Λ̂F := Ez[zz
T|F ] = 1

pFF
T ∈ Rp×p.

Assuming that f∗ ∈ L2(µx) admits f∗(x) =
∑
k≥1 θ∗,kψk(x), we have a bias-variance decomposi-

tion of the excess risk

RRFM := Eε
∥∥∥∥θ∗ − 1√

p
F Tâ

∥∥∥∥2
2

=

∥∥∥∥θ∗ − 1√
p
F TEε[â]

∥∥∥∥2
2

+Tr
(
Λ̂FCovε(â)

)
,

where the first RHS term is the bias, denoted by BRFMR,λ, and the second term is the variance, denoted
by VRFMR,λ. Similarly, under proper assumptions (to be detailed later), they admit the following
deterministic equivalents, asymptotically [53] and non-asymptotically [14]

BRFMR,λ ∼ BRFM
R,λ :=

ν22
1−Υ(ν1, ν2)

[
⟨θ∗, (Λ+ ν2I)

−2θ∗⟩+ χ(ν2)⟨θ∗,Λ(Λ+ ν2I)
−2θ∗⟩

]
,

VRFMR,λ ∼ VRFM
R,λ :=

σ2Υ(ν1, ν2)

1−Υ(ν1, ν2)
, (2)

where (ν1, ν2) satisfy the self-consistent equations

n− λ

ν1
=Tr(Λ(Λ+ ν2I)

−1) , p− pν1
ν2

=Tr(Λ(Λ+ ν2I)
−1) , (3)

and Υ(ν1, ν2) and χ(ν2) are defined as

Υ(ν1, ν2) :=
p

n

[(
1− ν1

ν2

)2

+

(
ν1
ν2

)2 Tr
(
Λ2(Λ+ ν2)

−2
)

p−Tr (Λ2(Λ+ ν2)−2)

]
, χ(ν2) :=

Tr
(
Λ(Λ+ ν2)

−2
)

p− Tr (Λ2(Λ+ ν2)−2)
.

3 Deterministic equivalents under norm-based capacity

To mathematically characterize the phenomena in Fig. 1 under norm-based capacity, in this section,
we firstly derive the bias-variance decomposition for the norm Eε∥â∥22 =: N RFM

λ = BRFMN ,λ + VRFMN ,λ

(with definition later), then relate BRFMN ,λ and VRFMN ,λ to their respective deterministic equivalents BRFM
N,λ

and VRFM
N,λ. In the next section, we aim to precisely characterize the learning curves under norm-based

capacities via deterministic equivalence.

To derive the deterministic equivalence, we need the following assumption on well-behaved data and
random features.
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Assumption 1 (Concentration of the eigenfunctions [14]). Recall the random vectors ψ :=
(ξkψk(x))k≥1 and ϕ := (ξkϕk(w))k≥1. There exists C∗ > 0 such that for any PSD matrix
A ∈ R∞×∞ with Tr(ΛA) <∞ and any t ≥ 0, we have

P
(∣∣ψ⊤Aψ − Tr(ΛA)

∣∣ ≥ t∥Λ1/2AΛ1/2∥F
)
≤ C∗e

− t
C∗ ,

P
(∣∣ϕ⊤Aϕ− Tr(ΛA)

∣∣ ≥ t∥Λ1/2AΛ1/2∥F
)
≤ C∗e

− t
C∗ .

This assumptions holds for sub-Gaussian distributions and more generally, distributions that satisfy a
log-Sobolev or convex Lipschitz concentration inequality [10]. Next we present the deterministic
equivalence results of N RFM

λ , deferring the proof to Appendix E.1.
Theorem 3.1 (Deterministic equivalence of N RFM

λ ). Given RFMs in Section 2, the bias-variance
decomposition of its norm Eε∥â∥22 is given by Eε∥â∥22 =: N RFM

λ = BRFMN ,λ + VRFMN ,λ, where BRFMN ,λ and
VRFMN ,λ are defined as

BRFMN ,λ := ⟨θ∗,G⊤Z(Z⊤Z + λI)−2Z⊤Gθ∗⟩ , VRFMN ,λ := σ2Tr
(
Z⊤Z(Z⊤Z + λI)−2

)
.

Under Assumption 1, we have the following asymptotic deterministic equivalents BRFMN ,λ ∼ BRFM
N,λ,

VRFMN ,λ ∼ VRFM
N,λ and thus N RFM

λ ∼ NRFM
λ := BRFM

N,λ + VRFM
N,λ

BRFM
N,λ :=

p⟨θ∗,Λ(Λ+ ν2I)
−2θ∗⟩

p− Tr (Λ2(Λ+ ν2I)−2)
+

pχ(ν2)

n
·
ν2
2

[
⟨θ∗, (Λ+ ν2I)

−2θ∗⟩+ χ(ν2)⟨θ∗,Λ(Λ+ ν2I)
−2θ∗⟩

]
1−Υ(ν1, ν2)︸ ︷︷ ︸

BRFM
R,λ

,

VRFM
N,λ :=

pχ(ν2)

nΥ(ν1, ν2)
· σ2Υ(ν1, ν2)

1−Υ(ν1, ν2)︸ ︷︷ ︸
VRFM
R,λ

. (4)

Remark: This theorem establishes asymptotic equivalence; a more complex non-asymptotic analysis
is developed in Appendix E.2. Numerical validation is provided through experiments on synthetic
and real-world datasets in Appendix H.1 and Appendix H.2, respectively.

By comparing Eq. (2) (test risk) and Eq. (4) (norm) via deterministic equivalence, we conclude that

• Bias: the test risk’s bias in Eq. (2) has been included in the the second term of BRFM
N,λ (see the

red area in Eq. (4)) with a rescaled factor pχ(ν2)n .

• Variance: we find that the variance term of the norm VRFM
N,λ equals the variance term of the

test risk VRFM
R,λ (see the blue area in Eq. (4)) in Eq. (2) multiplied by a factor pχ(ν2)

nΥ(ν1,ν2)
.

Hence norm-based capacity (on the second layer) suffices to characterize the test risk in RFMs. Here
we discuss whether other classical metrics of model capacity can characterize the generalization.

• Effective dimension [63]: It is defined as Tr(Λ(Λ+ ν1(2)I)
−1) or similar formulation, e.g.,

Tr(Λ2(Λ + ν1(2)I)
−2). These effective dimensions increase monotonically with p, thus

exhibit double descent.
• Smoother [12]: It is defined as nTr(Λ̂FZ

⊤Z(Z⊤Z + λ)−2), which corresponds to the
variance of the test risk VRFMR scaled by the factor n

σ2 . Therefore, it first increases and then
decreases with p, reaching a peak near at the interpolation threshold (p = n).

The above two metrics offer a variance-based measure of model capacity: they capture the variance
component of test risk but contain no information about the target function θ∗, and thus cannot fully
characterize generalization. In summary, norm-based capacity suffices to characterize generalization,
whereas effective dimension and smoother do not.

Norm-based capacity over different layers: In RFMs, if we use the norm of the first layer, i.e.,
∥W ∥F as model capacity, we will obtain a reshaped double descent curve as Fig. 15. This is because,
the first layer’s parameters are with random Gaussian initialization and then untrained, we directly
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have E[∥W ∥F] =
√
2 ·Γ( dp+1

2 )/Γ( dp
2 ) ≈

√
dp− 1

2 , increasing with p. For two-layer neural networks
with both trained layers, path norm is empirically verified as the most suitable (data-independent)
model capacity for neural networks. We find that the curve aligns more closely with the norm-
based capacity in RFMs of the second-layer parameters, rather than that of the first layer, see more
discussion in Appendix H.3.

For better illustration, we consider a special case of Theorem 3.1, the min-norm estimator (λ = 0),
which will be used later, and derive its deterministic equivalence; see the proof in Appendix E.1.
Corollary 3.2 (Asymptotic deterministic equivalence of NRFM

0 ). Under Assumption 1, for the min-ℓ2-
norm estimator âmin, in the under-parameterized regime (p < n), we have

BRFMN ,0 ∼
p⟨θ∗,Λ(Λ+ λpI)

−2θ∗⟩
n− Tr(Λ2(Λ+ λpI)−2)

+
p⟨θ∗, (Λ+ λpI)

−1θ∗⟩
n− p , VRFMN ,0 ∼

σ2p

λp(n− p)
,

where λp is from Tr(Λ(Λ+ λpI)
−1) ∼ p. In the over-parameterized regime (p > n), we have

BRFMN ,0 ∼
p⟨θ∗, (Λ+ λnI)

−1θ∗⟩
p− n , VRFMN ,0 ∼

σ2p

λn(p− n)
,

where λn is defined by Tr(Λ(Λ+ λnI)
−1) ∼ n.

Remark: VRFMN ,0 admits the similar formulation in under-/over-parameterized regimes but differs in
λn and λp. An interesting point to note is that, in the over-parameterized regime, λn is a constant
when n constant. Therefore, BRFMN ,0 and VRFMN ,0 are proportional to each other.

We need to analyze RFMs separately in the under-/over-parameterized regimes when λ→ 0, leading
to different self-consistent equations in these two settings.

• In the under-parameterized regime, ν1 converges to 0, and ν2 converges to a value λp
satisfying Tr(Λ(Λ+ λpI)

−1) = p.
• In the over-parameterized regime, ν2 converges to a constant λn satisfying Tr(Λ(Λ +
λnI)

−1) = n, and ν1 converges to ν2(1− n/p).

These differing asymptotic behaviors of ν1 and ν2 between the two regimes enable a more precise
characterization of the risk–norm relationship, which will be described in the next section.

4 Characterization of learning curves
By giving the deterministic equivalents of the norm, we are ready to plot the learning curve under
norm-based capacity, see Fig. 1(b) for illustration. In some special cases, the mathematical formu-
lation of learning curves can be given. Accordingly, in this section, we firstly discuss the shape of
learning curves from the lens of norm-based capacity in Section 4.1. Then we take the example of
min-ℓ2-norm interpolator, and precisely characterize the learning curve by reshaping scaling laws in
Section 4.2.

4.1 The shape description of learning curves
Here we conduct the bias-variance decomposition, and track how bias and variance behave w.r.t.
model size, norm, and the regularization parameter λ, as shown in Fig. 2, which will provide a more
detailed description and understanding on learning curves.

Reshape bias-variance trade-offs and double descent: We plot the bias and variance components
of the test risk over model size p and norm, see Fig. 2(a) and Fig. 2(b), respectively. Note that,
our theory (shown in curve) can precisely predict experimental results (shown by points). Fig. 2(a)
aligns closely with [35, Figure 6] on the double descent when increasing the model size p from the
under- to over-parameterized regimes. However, even in the classical under-parameterized setting,
the conventional bias-variance trade-off no longer holds: the bias follows a U-shaped curve, whereas
the variance grows monotonically. This was discussed recently by [56, 50] on “whether we should
remove bias-variance trade-offs from ML textbooks”.

When examining bias-variance vs. norm (see Fig. 2(b)), we observe that: i) in the under-parameterized
regime, bias exhibits a U-shaped dependence on norm, while variance increases monotonically. This
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Figure 2: The curves of bias and variance in RFMs are over model size p in Fig. 2(a) and over norm
Eε∥â∥22 in Fig. 2(b), respectively. Fig. 2(c) establishes a one-to-one correspondence between the
norm and λ for a fixed p across varying λ values. Fig. 2(d) examines the relationship between risk and
norm under the same conditions. Training data {(xi, yi)}i∈[n], n = 100, sampled from the model
yi = g

⊤
i θ∗ + εi, σ2 = 0.04, gi ∼ N (0, I), fi ∼ N (0,Λ), with ξ2k(Λ) = k−3/2 and θ∗,k = k−1.

result matches with that for model size in Fig. 2(a); ii) in the over-parameterized regime, both bias
and variance increase monotonically with norm. These findings reshape the traditional understanding
of bias-variance trade-offs and double descent.

Since the self-consistent equation differs from under-parameterized to over-parameterized regimes,
the learning curve plotted against the norm (see Fig. 1(b) and Fig. 2(d)) is not single-valued because
of such phase transition: a single norm value may correspond to two distinct error levels in the
under- and over-parameterized regimes. However, when analyzed separately, each regime exhibits a
one-to-one relationship between test risk and norm. Notably, our analytical and empirical findings
suggest that i) sufficient over-parameterization is always better than under-parameterization in terms
of lower test risk, which also coincides with [53]. ii) More importantly, this curve aligns more
with classical statistical intuition—a U-shaped curve—rather than the double descent phenomenon.
We conclude that with suitably chosen model capacity, the learning curve more closely follows
a U-shape than a double descent. We conjecture that this behavior is universal in more complex
models and real-world datasets; see Appendices H.2 and H.3 for details.

Control the norm via regularization. Norm-based capacity appears less intuitive used in practice
when compared to model size. To control model norm, one can either fix the regularization parameter
and vary the model size p or fix p and constrain the weight norm, The latter approach is mathematically
equivalent to tuning the regularization parameter λ in random feature ridge regression, as evidenced by
the equivalence to the constrained optimization problem: minβ ∥y −Za∥2 s.t. ∥a∥2 = B. This
yields a ridge-type solution: â = (Z⊤Z+λI)−1Z⊤y subject to ∥â∥2 = B, where λ is uniquely
determined by the norm constraint B (with ∂∥â∥22/∂λ < 0 guaranteeing a one-to-one mapping). We
empirically verified this in the random feature model by fixing the training sample size n and ratio
γ, and varying λ to control the estimator norm. As shown in Fig. 2(c) (under-parameterized with
γ = 0.5) and Fig. 2(d) (over-parameterized with γ = 1.5), the norm decreases monotonically with
increasing λ, and in both under- and over-parameterized regimes, the test risk exhibits a U-shaped
dependence on norm capacity, consistent with the known L-curve behavior [21]. Further discussion
can be found in Appendix G.1.

4.2 Mathematical formulation of learning curves

Firstly, we show that the risk-norm relationship is linear in over-parameterized regime, see the proof
in Appendix E.3.
Proposition 4.1 (Linear learning curve). The deterministic equivalents RRFM

0 and NRFM
0 , in over-

parameterized regimes (p > n) admit the linear relationship with the constant slope λn
RRFM
0 = λnN

RFM
0 + Cθ∗,Λ,n,σ , (5)

where λn satisfying Tr(Λ(Λ+ λnI)
−1) ∼ n and Cθ∗,Λ,n,σ are two constants independent of p but

dependent on θ∗,Λ, n, and σ, as defined in Appendix E.3.

Remark: Characterizing the relationship between risk and norm for ridge estimators (λ > 0) becomes
particularly challenging. As shown in Eq. (3), the parameters p, λ, ν1, and ν2 are intricately coupled,
making it extremely difficult to solve for ν1 and ν2—let alone derive an explicit (even approximate)
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Figure 3: Fig. 3(a) and Fig. 3(b): Validation of Corollary 4.2. The solid line represents the result
of the deterministic equivalents, well approximated by the red dashed line of Eq. (6) in the over-
parameterized regime, and the blue dashed line of Eq. (6) when p→ n in the under-parameterized
regime. Fig. 3(c): The value of exponents γn and γN in different regions (divided by q and ℓ) for
r ∈ (0, 12 ). Variance dominated region is colored by orange, yellow and brown, bias dominated
region is colored by blue and green.

relationship between risk and norm. In the case of linear regression, a complete description of the
risk-norm relationship under ridge regularization can be established, as presented in Appendix D.

The relationship in the under-parameterized regime is also complicated as well. We consider the
special case of isotropic features in Corollary E.3 and give an approximation in Corollary 4.2 under
the power-law assumption, given as below.

Assumption 2 (Power-law, [14]). We assume that {ξ2k}∞k=1 in Λ and θ∗ satisfy

ξ2k = k−α, θ∗,k = k−
1+2ατ

2 ,with α > 1, r > 0 .

The assumption coincides with the source condition ∥Λ−rθ∗∥2 <∞ (r > 0) and capacity condition
Tr(Λ1/α) < ∞ (α > 1) [9]. Under power-law, we need to handle the self-consistent equations to
approximate the infinite summation. We have the following approximation.

Corollary 4.2 (Relationship for min-ℓ2 norm interpolator under power law). Under Assumption 2, the
deterministic equivalents RRFM

0 and NRFM
0 admit 3 the following relationship with Cn,α,r,1 < Cn,α,r,2

RRFM
0 ≈ (n/Cα)

−α
+

{
Cn,α,r,1 if p > n ,

Cn,α,r,2 if p→ n− .
(6)

where Cn,α,r,1(2) are constants (see Appendix E.3 for details) that only depend on n, α and r. The
notation p→ n− means that p approaches to n in the under-parameterized regime (p < n).

Remark: In the over-parameterized regime, the relationship between RRFM
0 and NRFM

0 is a mono-
tonically increasing linear function, with a growth rate controlled by the factor decaying with n.
In the under-parameterized regime, as p → n (which also leads to RRFM

0 and NRFM
0 → ∞), RRFM

0
still grows linearly w.r.t NRFM

0 , with the same growth rate factor decaying with n. Furthermore,
since Cn,α,r,1 < Cn,α,r,2, the test risk curve shows that over-parameterization is better than under-
parameterization. This approximation is also empirically verified to be precise in Fig. 3.

To study scaling law, we follow the same setting of [14] by choosing p = nq and λ = n−(ℓ−1) with
q, l ≥ 0. We have the scaling law as below; see the proof in Appendix F.

Proposition 4.3. Under Assumption 2, for r ∈ (0, 12 ), taking p = nq and λ = n−(ℓ−1) with q, l ≥ 0,
we formulate the scaling law under norm-based capacity in different areas as

RRFM
λ = Θ

(
nγn ·

(
NRFM
λ

)γN) , γn ≤ 0, γN ∈ R ,

where the rate {γn, γN} in different areas is given in Fig. 3(c).

3The symbol ≈ here denotes using an integral to approximate an infinite sum when calculating Tr(·).
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Remark: In all regions of Fig. 3(c), γn ≤ 0, which aligns with the classical scaling law—that
increasing the number of training samples leads to a reduction in test risk. As for γN, in regions
①, ②, ③, and ④, γN > 0, indicating that when q is large (i.e., p is large), the test risk increases
monotonically with the norm. In contrast, in region ⑤, γN < 0, meaning that when q is small (i.e.,
p is small), the risk decreases monotonically with the norm. This again resembles the traditional
U-shaped curve. These findings highlight the dual role of model norm in generalization: while a
larger norm can be beneficial in low-complexity regimes, it becomes detrimental when the model is
already sufficiently complex.

5 Conclusion and future work

This paper derives a precise characterization of the learning curve under the ℓ2-norm based capacity
for both linear models and RFMs. It implies that, with suitably chosen model capacity, the learning
curve more closely follows a U-shape than a double descent, and accordingly reshapes scaling laws.
One limitation may be that the studied model is relatively simple, however, deterministic equivalence
on complex models requires more exploration [13].

In future work, we will investigate the relationship between test risk and model complexity under
(stochastic) gradient descent training. Leveraging recent advances in characterizing learning dynamics
[45, 44, 7], we aim to precisely analyze the evolution of model norms and establish rigorous theoretical
connections between norm dynamics and generalization behavior. Besides, our new deterministic
quantities provide a possible way to study distribution shift and out-of-distribution (OOD) [46] with a
precise estimation, which requires the deterministic equivalence of Tr(A(X⊤X+λI)−1B(X⊤X+
λI)−1) for two matricesA andB.
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a complete (and correct) proof?
Answer: [Yes]
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Justification: We clearly state all of the required assumptions, and provide the complete and
correct proof in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The complete experimental setup is clearly described, and all experiments are
faithfully reproduced accordingly.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is included in the supplemental material and can be used to reproduce
the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have added a detailed discussion of the experiments in the captions and
Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experiments are used to validate our theory instead of providing promising
performance when compared to previous algorithms. Therefore, the error bar and statistical
significance are not required.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
The experiments are straightforward illustrations of the results. They are lightweight enough
to be run on a standard laptop with a CPU (16 GB memory) within a few hours, without
requiring GPU acceleration.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper complies with the NeurIPS Code of Ethics
in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This theoretical study aims to improve foundational understanding in machine
learning. While it may inform future system design, we do not foresee direct positive or
negative societal impacts.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly cited the sources of the relevant data and other materials used in
the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLMs were not used in any part that affects the core methodology, scientific
rigor, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notations

Table 2 summarizes the notations used throughout the main text and appendices.

Table 2: Core notations used the main text and appendix.
Notation Dimension(s) Definition

N LS
λ - The ℓ2 norm of the linear regression estimator under regularization λ for linear regression

BLS
N ,λ - The bias of N LS

λ

VLS
N ,λ - The variance of N LS

λ

NLS
λ - The deterministic equivalent of N LS

λ

BLS
N,λ - The deterministic equivalent of BLS

N ,λ

VLS
N,λ - The deterministic equivalent of VLS

N ,λ

∥v∥2 - Euclidean norms of vectors v
∥v∥Σ -

√
v⊤Σv

n - Number of training samples
d - Dimension of the data for linear regression
p - Number of features for random feature model
λ - Regularization parameter
λ∗ - Effective regularization parameter for linear ridge regression

ν1 , ν2 - Effective regularization parameters for random feature ridge regression
σk(M) - The k-th eigenvalue of M

x Rd The data vector
X Rn×d The data matrix
Σ Rd×d The covariance matrix of x
y R The label
y Rn The label vector
β∗ Rd The target function for linear regression
β̂ Rd The estimator of ridge regression model

β̂min Rd The min-ℓ2-norm estimator of ridge regression model
ε R The noise
εi R The i-th noise
ε Rn The noise vector
σ2 R The variance of the noise

wi Rd The i-th weight vector for random feature model
φ(·; ·) - Nonlinear activation function for random feature model
zi Rp The i-th feature for random feature model
Z Rn×p Feature matrix for random feature model
â Rp The estimator of random feature ridge regression model

âmin Rp The min-ℓ2-norm estimator of random feature ridge regression model

f∗(·) - The target function
µx - The distribution of x
µw - The distribution of w
T - An integral operator defined by (Tf)(w) :=

∫
Rd φ(x;w)f(x)dµx , ∀f ∈ L2(µx)

V - The image of T
ξk R The k-th eigenvalue of T, defined by T =

∑∞
k=1 ξkψkϕ

∗
k

ψk - The k-th eigenfunction of T in the space L2(µx), defined by the decomposition T =
∑∞

k=1 ξkψkϕ
∗
k

ϕk - The k-th eigenfunction of T in the space V , defined by the decomposition T =
∑∞

k=1 ξkψkϕ
∗
k

Λ R∞×∞ The spectral matrix of T, Λ = diag(ξ21 , ξ
2
2 , . . .) ∈ R∞×∞

gi R∞ gi := (ψk(xi))k≥1

fi R∞ fi := (ξkϕk(wi))k≥1

G Rn×∞ G :=[g1, . . . , gn]
⊤∈Rn×∞ with gi := (ψk(xi))k≥1

F Rp×∞ F :=[f1, . . . , fp]
⊤∈Rp×∞

Λ̂F Rp×p Λ̂F := Ez[zz
⊤|F ] = 1

pFF⊤ ∈ Rp×p

θ∗,k R The coefficients associated with the eigenfunction ψk in the expansion of f∗(x) =
∑

k≥1 θ∗,kψk(x)

θ∗ R∞ θ∗ = (θ∗,k)k≥1

1 Replacing N with R (N with R), we get the notations associated to the test risk.
2 Replacing λ with 0, we get the notations associated to the min-ℓ2-norm solution.
3 Replacing LS with RFM, we get the notations associated to random feature regression.
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B Preliminary and background

We provide an overview of the preliminary results used in this work. For self-contained completeness,
we include results on asymptotic deterministic equivalence in Appendix B.1, results on ridge regres-
sion in Appendix B.2, and results on random feature ridge regression in Appendix B.3. Additionally,
Appendix B.4 presents results on non-asymptotic deterministic equivalence, along with definitions of
quantities required for these results. Finally, Appendix B.5 introduces key results for deriving the
scaling law.

B.1 Asymptotic deterministic equivalence

For the ease of description, we include preliminary results on asymptotic deterministic equivalence
here. In fact, these assumptions and results can be recovered from non-asymptotic results, e.g., [37].

For linear regression, the asymptotic deterministic equivalence aim to find BLSR,λ ∼ BLS
R,λ, VLSR,λ ∼

VLS
R,λ, where BLS

R,λ and VLS
R,λ are some deterministic quantities. For asymptotic results, a series of

assumptions in high-dimensional statistics via random matrix theory are required, on well-behaved
data, spectral properties of Σ under nonlinear transformation in high-dimensional regime. We put the
assumption from [1] here that are also widely used in previous literature [15, 51].
Assumption 3. [1, Well-behaved data] We assume that:

(A1) The sample size n and dimension d grow to infinity with d
n → γ > 0.

(A2) X = TΣ1/2, where T ∈ Rn×d has i.i.d. sub-Gaussian entries with zero mean and unit
variance.

(A3) Σ is invertible with ∥Σ∥op < ∞ and its spectral measure 1
d

∑d
i=1 δσi converges to a

compactly supported probability distribution µ on R+.

(A4) ∥β∗∥2 < ∞ and the measure
∑d
i=1(v

⊤
i β∗)

2δσi
converges to a measure ν with bounded

mass, where vi is the unit-norm eigenvector of Σ related to its respective eigenvalue σi.
Definition B.1 (Effective regularization). For n, Σ, and λ ≥ 0, we define the effective regularization
λ∗ to be the unique non-negative solution to the self-consistent equation

n− λ

λ∗
∼ Tr(Σ(Σ+ λ∗)

−1). (7)

Definition B.2 (Degrees of freedom).

df1(λ∗) := Tr(Σ(Σ+ λ∗)
−1), df2(λ∗) := Tr(Σ2(Σ+ λ∗)

−2).

Proposition B.3. [1, Restatement of Proposition 1] Assume (A1), (A2), (A3), we consider A
and B with bounded operator norm, admitting the convergence of the empirical measures, i.e.,∑d
i=1 v

⊤
i Avi · δσi

→ νA and
∑d
i=1 v

⊤
i Bvi · δσi

→ νB with bounded total variation, respectively.
Then, for λ ≥ 0, with λ∗ satisfying Eq. (7), we have the following asymptotic deterministic
equivalence

Tr(AX⊤X(X⊤X + λ)−1) ∼ Tr(AΣ(Σ+ λ∗)
−1) , (8)

Tr(AX⊤X(X⊤X + λ)−1BX⊤X(X⊤X + λ)−1) ∼ Tr(AΣ(Σ+ λ∗)
−1BΣ(Σ+ λ∗)

−1)

+λ2∗Tr(A(Σ+ λ∗)
−2Σ) · Tr(B(Σ+ λ∗)

−2Σ) · 1

n− df2(λ∗)
,

(9)

Tr(A(X⊤X + λ)−1) ∼ λ∗
λ
Tr(A(Σ+ λ∗)

−1) , (10)

Tr(A(X⊤X + λ)−1B(X⊤X + λ)−1) ∼ λ2∗
λ2

Tr(A(Σ+ λ∗)
−1B(Σ+ λ∗)

−1)

+
λ2∗
λ2

Tr(A(Σ+ λ∗)
−2Σ) · Tr(B(Σ+ λ∗)

−2Σ) · 1

n− df2(λ∗)
.

(11)
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Proposition B.4. [1, Restatement of Proposition 2] Assume (A1), (A2), (A3), we considerA andB
with bounded operator norm, admitting the convergence of the empirical measures, i.e.,

∑d
i=1 v

⊤
i Avi·

δσi
→ νA and

∑d
i=1 v

⊤
i Bvi · δσi

→ νB with bounded total variation, respectively. Then, for
λ ∈ CackslashR+, with λ∗ satisfying Eq. (7), we have the following asymptotic deterministic
equivalence

Tr(AT⊤(TΣT⊤ + λ)−1T ) ∼ Tr(A(Σ+ λ∗)
−1), (12)

Tr(AT⊤(TΣT⊤ + λ)−1TBT⊤(TΣT⊤ + λ)−1T ) ∼ Tr(A(Σ+ λ∗)
−1B(Σ+ λ∗)

−1)

+λ2∗Tr(A(Σ+ λ∗)
−2) · Tr(B(Σ+ λ∗)

−2) · 1

n− df2(λ∗)
.

(13)

Note that the results in Proposition B.3, B.4 still hold even for the random features model. We will
explain this in details in Appendix E.

B.2 Deterministic equivalence for ridge regression

We consider n samples {xi}ni=1 sampled i.i.d. from a distribution µx over Rd with covariance matrix
Σ := E[xx⊤] ∈ Rd×d. The label yi is generated by a linear target function parameterized by
β∗ ∈ Rd, i.e., yi = x⊤i β∗ + εi, where εi is additive noise independent of xi satisfying E[εi] = 0 and
var(εi) = σ2. We can write the model in a compact form as y = Xβ∗ + ε, where the data matrix
as X ∈ Rn×d, the label vector y ∈ Rn, and the noise vector as ε ∈ Rn. The estimator of ridge
regression is given by β̂ =

(
X⊤X + λI

)−1
X⊤y. We also consider min-ℓ2-norm solution in the

over-parameterized regime, i.e., β̂min = argminβ ∥β∥2, s.t. Xβ = y. The excess risk of β̂ admits
a bias-variance decomposition

RLS := Eε∥β∗ − β̂∥2Σ=∥β∗ − Eε[β̂]∥2Σ +Tr(ΣCovε(β̂)) ,

where the first RHS term is the bias, denoted by BLSR,λ, and the second term is the variance, denoted
by VLSR,λ. Accordingly, the bias-variance decomposition is given by

BLSR,λ := ∥β∗ − Eε[β̂]∥2Σ = λ2⟨β∗, (X
⊤X + λI)−1Σ(X⊤X + λI)−1β∗⟩ , (14)

VLSR,λ := Tr
(
ΣCovε(β̂)

)
= σ2Tr(ΣX⊤X(X⊤X + λI)−2) . (15)

Under proper assumptions (to be detailed later), we have the following deterministic equivalents,
asymptotically [1] and non-asymptotically [10]

BLS
R,λ∼BLS

R,λ :=
λ2
∗⟨β∗,Σ(Σ+ λ∗I)

−2β∗⟩
1− n−1Tr(Σ2(Σ+ λ∗I)−2)

, VLS
R,λ∼VLS

R,λ :=
σ2Tr(Σ2(Σ+ λ∗I)

−2)

n− Tr(Σ2(Σ+ λ∗I)−2)
, (16)

where λ∗ is the non-negative solution to the self-consistent equation n− λ
λ∗

= Tr(Σ(Σ+ λ∗I)
−1).

Accordingly, the risk admits the following deterministic equivalents via bias-variance decomposition.
Proposition B.5. [1, Restatement of Proposition 3] Given the bias variance decomposition in Eq. (14)
and Eq. (15), X , Σ and β∗ satisfy Assumption 3, we have the following asymptotic deterministic
equivalentsRLS

λ ∼ RLS
λ := BLS

R,λ +VLS
R,λ such that BLSR,λ ∼ BLS

R,λ, VLSR,λ ∼ VLS
R,λ, where BLS

R,λ and VLS
R,λ

are defined by Eq. (16).
Proposition B.6. [1, Restatement of results in Sec 5] Under the same assumption as Proposition B.5,
for the minimum ℓ2-norm estimator β̂min, we have for the under-parameterized regime (d < n):

BLSR,0 = 0, VLSR,0 ∼ σ2 d

n− d .

In the over-parameterized regime (d > n), we have

BLSR,0 ∼
λ2n⟨β∗,Σ(Σ+ λnI)

−2β∗⟩
1− n−1Tr(Σ2(Σ+ λnI)−2)

, VLSR,0 ∼
σ2Tr(Σ2(Σ+ λnI)

−2)

n− Tr(Σ2(Σ+ λnI)−2)
,

where λn defined by Tr(Σ(Σ+ λnI)
−1) ∼ n.
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B.3 Deterministic equivalence for random feature ridge regression

Recall Eq. (1), the parameter a can be learned by the following empirical risk minimization with an
ℓ2 regularization

â := argmin
a∈Rp


n∑
i=1

yi − 1√
p

p∑
j=1

ajφ(x,wj)

2

+ λ∥a∥22

 = (Z⊤Z + λI)−1Z⊤y .

Assuming that the target function f∗ ∈ L2(µx) admits f∗(x) =
∑
k≥1 θ∗,kψk(x), the excess risk

RRFM := Eε
∥∥∥θ∗ − F⊤â√

p

∥∥∥2
2

admits the following bias-variance decomposition

BRFMR,λ :=

∥∥∥∥θ∗ − F⊤Eε[â]√
p

∥∥∥∥2
2

=
∥∥∥θ∗ − p−1/2F⊤(Z⊤Z + λI)−1Z⊤Gθ∗

∥∥∥2
2
, (17)

VRFMR,λ := Tr
(
Λ̂FCovε(â)

)
= σ2Tr(Λ̂FZ

⊤Z(Z⊤Z + λI)−2) . (18)

Accordingly, the risk admits the following deterministic equivalents via bias-variance decomposition.

Proposition B.7. [14, Asymptotic version of Theorem 3.3] Given the bias variance decomposition
in Eq. (17) and Eq. (18), under Assumption 1, we have the following asymptotic deterministic
equivalents RRFM

λ ∼ RRFM
λ := BRFM

R,λ + VRFM
R,λ such that BRFMR,λ ∼ BRFM

R,λ, VRFMR,λ ∼ VRFM
R,λ, where BRFM

R,λ and
VRFM
R,λ are defined by Eq. (2).

Note that the above results are delivered in a non-asymptotic way [14], but more notations and
technical assumptions are required. We give an overview of non-asymptotic deterministic equivalence
as below.

B.4 Non-asymptotic deterministic equivalence

Regarding non-asymptotic results, we require a series of notations and assumptions. We give a brief
introduction here for self-completeness. More details can be found in [10, 37, 14].

Given x ∈ Rd with d ∈ N, the associated covariance matrix is given by Σ = E[xx⊤]. We denote the
eigenvalue of Σ in non-increasing order as σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σd.

We introduce the non-asymptotic version of Eq. (7) as below.

Definition B.8 (Effective regularization). Given n, Σ, and λ ≥ 0, the effective regularization λ∗ is
defined as the unique non-negative solution of the following self-consistent equation

n− λ

λ∗
= Tr

(
Σ(Σ+ λ∗)

−1
)
.

Remark: Existence and uniqueness of λ∗ are guaranteed since the left-hand side of the equation is
monotonically increasing in λ∗, while the right-hand side is monotonically decreasing.

In the next, we introduce the following definitions on “effective dimension”, a metric to describe the
model capacity, widely used in statistical learning theory.

Define rΣ(k) :=
Tr(Σ≥k)

∥Σ≥k∥op
=

∑d
j=k σj

σk
as the intrinsic dimension, we require the following definition

ρλ(n) := 1 +
nσ⌊η∗·n⌋

λ

{
1 +

rΣ(⌊η∗ · n⌋) ∨ n
n

log
(
rΣ(⌊η∗ · n⌋) ∨ n

)}
, (19)

where η∗ ∈ (0, 1/2) is a constant that will only depend on C∗ defined in Assumption 4. And we used
the convention that σ⌊η∗·n⌋ = 0 if ⌊η∗ · n⌋ > d.
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In this section we consider functionals that depend onX and deterministic matrices. For a general
PSD matrixA ∈ Rd×d, define the functionals

Φ1(X;A, λ) := Tr
(
AΣ1/2(X⊤X + λ)−1Σ1/2

)
, (20)

Φ2(X;A, λ) := Tr
(
AX⊤X(X⊤X + λ)−1

)
, (21)

Φ3(X;A, λ) := Tr
(
AΣ1/2(X⊤X + λ)−1Σ(X⊤X + λ)−1Σ1/2

)
, (22)

Φ4(X;A, λ) := Tr

(
AΣ1/2(X⊤X + λ)−1X

⊤X

n
(X⊤X + λ)−1Σ1/2

)
. (23)

These functionals can be approximated through quantities that scale proportionally to

Ψ1(λ∗;A) := Tr
(
AΣ(Σ+ λ∗I)

−1
)
, (24)

Ψ2(λ∗;A) :=
1

n
· Tr

(
AΣ2(Σ+ λ∗I)

−2
)

n− Tr (Σ2(Σ+ λ∗I)−2)
. (25)

The following theorem gathers the approximation guarantees for the different functionals stated
above, and is obtained by modifying [14, Theorem A.2]. We generalize Eq. (28) for any PSD matrix
A, which will be required for our results on the deterministic equivalence of ℓ2 norm. The proof can
be found in Appendix C.

Theorem B.9 (Dimension-free deterministic equivalents, Theorem A.2 of [14]). Assume the features
{xi}i∈[n] satisfy Assumption 4 with a constant C∗ > 0. Then for any D,K > 0, there exist constants
η∗ ∈ (0, 1/2), CD,K > 0 andC∗,D,K > 0 ensuring the following property holds. For any n ≥ CD,K
and λ > 0, if the following condition is satisfied:

λ · ρλ(n) ≥ ∥Σ∥op · n−K , ρλ(n)
5/2 log

3/2(n) ≤ K√n, (26)

then for any PSD matrixA, with probability at least 1− n−D, we have that

|Φ1(X;A, λ)− λ∗
λ
Ψ1(λ∗;A)| ≤ C∗,D,K

ρλ(n)
5/2 log

3/2(n)√
n

· λ∗
λ
Ψ1(λ∗;A), (27)

|Φ2(X; I, λ)−Ψ1(λ∗; I)| ≤ C∗,D,K
ρλ(n)

4 log
3/2(n)√

n
Ψ1(λ∗; I), (28)

|Φ3(X;A, λ)−
(
nλ∗
λ

)2

Ψ2(λ∗;A)| ≤ C∗,D,K
ρλ(n)

6 log
5/2(n)√

n
·
(
nλ∗
λ

)2

Ψ2(λ∗;A), (29)

|Φ4(X;A, λ)−Ψ2(λ∗;A)| ≤ C∗,D,K
ρλ(n)

6 log
3/2(n)√

n
Ψ2(λ∗;A). (30)

Next, we present some of the concepts to be used in deriving random feature ridge regression. Similar
to how ridge regression depends on λ∗, as defined in Definition B.8, the deterministic equivalence of
random feature ridge regression relies on ν1 and ν2, which are the solutions to the coupled equations

n− λ

ν1
= Tr

(
Λ(Λ+ ν2)

−1
)
, p− pν1

ν2
= Tr

(
Λ(Λ+ ν2)

−1
)
. (31)

Writing ν1 as a function of ν2 produces the equations as below

1+
n

p
−
√(

1− n

p

)2

+4
λ

pν2
=

2

p
Tr
(
Λ(Λ+ ν2)

−1
)
, ν1 :=

ν2
2

1− n

p
+

√(
1− n

p

)2

+ 4
λ

pν2

 .
(32)

For random features, our results also depend on the capacity of Λ. Recall the definition of rΛ(k) :=
Tr(Λ≥k)
∥Λ≥k∥op

as the intrinsic dimension of Λ at level k, we sequentially define the following quantities
that can be found in [37, 14].
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MΛ(k) = 1 +
rΛ(⌊η∗ · k⌋) ∨ k

k
log (rΛ(⌊η∗ · k⌋) ∨ k) , (33)

ρκ(p) = 1 +
p · ξ2⌊η∗·p⌋

κ
MΛ(p) , (34)

ρ̃κ(n, p) = 1 + 1{n ≤ p/η∗} ·
{
nξ2⌊η∗·n⌋

κ
+
n

p
· ρκ(p)

}
MΛ(n) , (35)

where the constant η∗ ∈ (0, 1/2) only depends on C∗ introduced in Assumption 1.

For an integer m ∈ N, we split the covariance matrix Λ into low degree part and high degree part as

Λ0 := diag(ξ21 , ξ
2
2 , . . . , ξ

2
m) , Λ+ := diag(ξ2m+1, ξ

2
m+2, . . .) .

After we define the high degree feature covariance Λ+, we can define the function γ(κ) := κ +
Tr(Λ+). To simplify the statement, we assume that we can choose m such that p2ξ2m+1 ≤ γ(pλ/n),
which is always satisfied under Assumption 1. For convenience, we will further denote

γ+ := γ(pν1), γλ := γ(pλ/n). (36)

For random feature ridge regression, we will first demonstrate that the ℓ2 norm concentrates around a
quantity that depends only on Λ̂F . To this end, we define the following functionals with respect to Z.

Φ3(Z;A, κ) := Tr
(
AΛ̂

1/2
F (Z⊤Z + κ)−1Λ̂F (Z

⊤Z + κ)−1Λ̂
1/2
F

)
,

Φ4(Z;A, κ) := Tr

(
AΛ̂

1/2
F (Z⊤Z + κ)−1Z

⊤Z

n
(Z⊤Z + κ)−1Λ̂

1/2
F

)
.

(37)

Given that Z consists of i.i.d. rows with covariance Λ̂F = FF⊤/p, we will demonstrate that the
aforementioned functionals can be approximated by those of F , which, in turn, can be represented
using the following functionals:

Φ̃5(F ;A, κ) :=
1

n
· Φ̃6(F ;A, κ)

n− Φ̃6(F ; I, κ)
,

Φ̃6(F ;A, κ) := Tr
(
A(FF⊤)2(FF⊤ + κ)−2

)
.

(38)

Proposition B.10 (Deterministic equivalents for Φ(Z) conditional on F , Proposition B.6 of [14]).
Assume {zi}i∈[n] and {f}i∈[p] satisfy Assumption 1 with a constant C∗ > 0, and F ∈ AF defined
in [14, Eq. (79)]. Then for any D,K > 0, there exist constants η∗ ∈ (0, 1/2), CD,K > 0 and
C∗,D,K > 0 ensuring the following property holds. Let ρκ(p) and ρ̃κ(n, p) be defined as per Eq. (34)
and Eq. (35), γ+ be defined as Eq. (36). For any n ≥ CD,K and λ > 0, if the following condition is
satisfied:

λ ≥ n−K , ρ̃λ(n, p)
5/2 log3/2(n) ≤ K√n , ρ̃λ(n, p)

2 · ργ+(p)5/2 log3(p) ≤ K
√
p ,

then for any PSD matrixA ∈ Rp×p (independent of Z conditional on F ), we have with probability
at least 1− n−D that

∣∣∣∣Φ3(Z;A, λ)−
(nν1
λ

)2
Φ̃5(F ;A, pν1)

∣∣∣∣ ≤ C∗,D,K · E1(n, p) ·
(nν1
λ

)2
Φ̃5(F ;A, pν1), (39)∣∣∣Φ4(Z;A, λ)− Φ̃5(F ;A, pν1)

∣∣∣ ≤ C∗,D,K · E1(n, p) · Φ̃5(F ;A, pν1), (40)

where the rate E1(n, p) is given by E1(n, p) := ρ̃λ(n,p)
6 log5/2(n)√
n

+
ρ̃λ(n,p)

2·ργ+ (p)5/2 log3(p)
√
p .
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B.5 Scaling law

For the derivation of the scaling law, we use the results in [14, Appendix D]. We define T sδ,γ(ν) as

T sδ,γ(ν) :=

∞∑
k=1

k−s−δα

(k−α + ν)γ
, s ∈ 0, 1, 0 ≤ δ ≤ γ.

Under Assumption 2, according to [14, Appendix D], we have the following results

T sδγ(ν) = O
(
ν

1/α[s−1+α(δ−γ)]∧0
)
. (41)

Next, we present some rates of the quantities used in the deterministic equivalence of random feature
ridge regression. The rate of ν2 is given by

ν2 ≈ O
(
n−α(1∧q∧

ℓ/α)
)
, (42)

and in particular, for Υ(ν1, ν2) and χ(ν2), we have

1−Υ(ν1, ν2) = O(1) , (43)

χ(ν2) = n−qO
(
ν
−1−1/α
2

)
. (44)

C Proofs on additional non-asymptotic deterministic equivalents

In this section, we aim to generalize Eq. (28) for any PSD matrixA, i.e.∣∣Φ2(X;A)−Ψ2(µ∗;A)
∣∣ ≤ Õ(n− 1

2 ) ·Ψ2(µ∗;A) ,

that is required to derive our non-asymptotic deterministic equivalence for the bias term of the ℓ2
norm.

By introducing a change of variable µ∗ := µ∗(λ) = λ/λ∗, we find that µ∗ satisfies the following
fixed-point equation:

µ∗ =
n

1 + Tr(Σ(µ∗Σ+ λ)−1)
. (45)

We define t and T as follows

t = Σ−1/2x , T =XΣ−1/2 .

And the following resolvents are also defined

R := (X⊤X + λ)−1 , R := (µ∗Σ+ λ)−1 , M := Σ
1/2RΣ

1/2 , M := Σ
1/2RΣ

1/2.

Since the proof relies on a leave-one-out argument, we define X− ∈ R(n−1)×d as the data matrix
obtained by removing one data. We also introduce the associated resolvent and rescaled resolvent:

R− := (X⊤
−X−+λ)

−1,R− :=

(
n

1 + κ
Σ+ λ

)−1

,M− := Σ
1/2R−Σ

1/2,M− := Σ
1/2R−Σ

1/2,

where κ = E[Tr(M−)].

For the sake of narrative convenience, we introduce a functional used in [37]

Ψ1(µ∗;A) := Tr(AΣ(µ∗Σ+ λ)−1) .

Next, we give the proof of Eq. (28). We consider the functional

Φ2(X;A) = Tr(AΣ−1/2X⊤X(X⊤X + λ)−1Σ
1/2) = Tr(AT⊤TM).

Remark: Note that, to align more closely with the proof in [37], the Φ2(X;A) defined here differs
slightly from the Φ2(X;A, λ) in Eq. (28). However, the two definitions are equivalent if we takeA
here asA = Σ−1/2BΣ1/2, which recovers the formulation in Eq. (28).

We show that Φ2(X;A) is well approximated by the following deterministic equivalent:

Ψ2(µ∗;A) = Tr(Aµ∗Σ(µ∗Σ+ λ)−1) = Tr(AΣ(Σ+ λ∗)
−1).
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Theorem C.1 (Deterministic equivalent for Tr(AT⊤TM)). Assume the features {xi}i∈[n] satisfy
Assumption 4 with a constant C∗ > 0. Then for any D,K > 0, there exist constants η ∈ (0, 1/2),
CD,K > 0, and C∗,D,K > 0 ensuring the following property holds. For any n ≥ CD,K and λ > 0,
if the following condition is satisfied:

λ · ρλ(n) ≥ n−K , ρλ(n)
2 log

3
2 (n) ≤ K√n, (46)

then for any PSD matrixA, with probability at least 1− n−D, we have that

∣∣Φ2(X;A)−Ψ2(µ∗;A)
∣∣ ≤ C∗,D,K

ρλ(n)
4 log

3
2 (n)√

n
Ψ2(µ∗;A). (47)

Remark: Theorem C.1 generalizes Eq. (28). Note that there are some differences between ρλ as
defined in Eq. (19) and νλ as defined in [37]. However, based on the discussion in [14, Appendix A],
νλ can be easily adjusted to match ρλ. Therefore, while we follow the argument in [37], we use ρλ
directly in this work to minimize additional notation.

Following the approach outlined in [37], our proof involves separately bounding the deterministic
and martingale components. This is accomplished in the following two propositions.

Proposition C.2 (Deterministic part of Tr(AT⊤TM)). Under the same assumption as Theorem C.1,
there exist constants CK and C∗,K , such that for all n ≥ CK and λ > 0 satisfying Eq. (46), and for
any PSD matrixA, we have∣∣E[Φ2(X;A)]−Ψ2(µ∗;A)

∣∣ ≤ C∗,K
ρλ(n)

4

√
n

Ψ2(µ∗;A). (48)

Proposition C.3 (Martingale part of Tr(AT⊤TM)). Under the same assumption as Theorem C.1,
there exist constants CK,D and C∗,D,K , such that for all n ≥ CK,D and λ > 0 satisfying Eq. (46),
and for any PSD matrixA, we have with probability at least 1− n−D that

∣∣Φ2(X;A)− E[Φ2(X;A)]
∣∣ ≤ C∗,D,K

ρλ(n)
3 log

3
2 (n)√

n
Ψ2(µ∗;A). (49)

Theorem C.1 is obtained by combining the bounds (48) and (49). Next, we prove the two propositions
above separately.

Proof of Proposition C.2. First, by Sherman-Morrison identity

M =M− −
M−tt

⊤M−

1 + t⊤M−t
, and Mt =

M−t

1 + t⊤M−t
,

we decompose E[Φ2(X;A)] as

E
[
Tr(AT⊤TM)

]
= nE

[
t⊤M−At

1 + S

]
= n

E[Tr(AM−)]

1 + κ
+ nE

[
κ− S

(1 + κ)(1 + S)
t⊤M−At

]
,

where we denoted S = t⊤M−t. Therefore, bounding the following two terms is sufficient

|E[Φ2(X;A)]−Ψ2(µ∗;A)|

≤
∣∣∣∣nE[Tr(AM−)]

1 + κ
−Ψ2(µ∗;A)

∣∣∣∣+ ∣∣∣∣nE [ κ− S
(1 + κ)(1 + S)

t⊤M−At

]∣∣∣∣ . (50)

For the first term, recall that µ̃∗ is the solution of the equation (45) where we replaced n by n− 1,
and µ̃− := n/(1 + κ). By [37, Proposition 2], we have

|E[Tr(AM−)]−Ψ1(µ̃∗;A)| ≤ E(D)
1,n−1 ·Ψ1(µ̃∗;A) ,
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where E(D)
1,n−1 = C∗,K

ρλ(n)
5/2

√
n−1

. For n ≥ C, we have E(D)
1,n−1 ≤ CE(D)

1,n and by [37, Lemma 3], we
have

|Ψ1(µ̃∗;A)−Ψ1(µ∗;A)| ≤ C ρλ(n)
n

Ψ1(µ∗;A) .

Combining the above bounds, we obtain

|E[Tr(AM−)]−Ψ1(µ∗;A)| ≤ E(D)
1,n ·Ψ1(µ∗;A) .

Furthermore, from the proof of [37, Proposition 4, Claim 3], we have

|µ∗ − µ̃−|
µ̃−

≤ C∗,K
ρλ(n)

5/2

√
n

.

Then we conclude that

|µ∗ − µ̃−| ≤ C∗,K
ρλ(n)

5/2

√
n

· µ̃−

≤ C∗,K
ρλ(n)

5/2

√
n

·
(
1 + C∗,K

ρλ(n)
5/2

√
n

)
µ∗

≤ C∗,K
ρλ(n)

5/2

√
n

· µ∗,

where we use condition (46) in the last inequality.

Combining this inequality with the previous bounds, we obtain∣∣∣∣nE[Tr(AM−)]

1 + κ
−Ψ2(µ∗;A)

∣∣∣∣ = |µ̃−E[Tr(AM−)]− µ∗Ψ1(µ∗;A)|

≤ µ̃− |E[Tr(AM−)]−Ψ1(µ∗;A)|+ |µ̃− − µ∗|
µ∗

· µ∗Ψ1(µ∗;A)

≤ CE(D)
1,n · µ∗Ψ1(µ∗;A)

= CE(D)
1,n ·Ψ2(µ∗;A) .

In the next, we aim to estimate the second term in Eq. (50). Here we can reduceA to be a rank-one
matrixA := vv⊤ following [37, Eq. (77)]. We simply apply Hölder’s inequality and obtain

n

∣∣∣∣E [ κ− S
(1 + κ)(1 + S)

t⊤M−At

]∣∣∣∣
= nE

[∣∣∣∣ κ− S
(1 + κ)(1 + S)

t⊤M−vv
⊤t

∣∣∣∣]
≤ nEM−

[
Et

[
(κ− S)2

]1/2 Et

[
(t⊤M−vv

⊤t)2
]1/2]

≤ nEM−

[
Et

[
(κ− S)2

]]1/2 EM−

[
Et

[
(t⊤M−vv

⊤t)2
]]1/2

≤ nEM−

[
Et

[
(κ− S)2

]]1/2 EM−

[
Et

[
(t⊤M−v)

4
]1/2 Et

[
(v⊤t)4

]1/2]1/2
.

Each of these terms can be bounded, according to the proof of [37, Proposition 2], for the first term,
we get

EM−

[
Et

[
(t⊤M−t− κ)2

]]1/2 ≤ C∗,K
ρλ(n)√

n
.

For the second term, first according to [37, Lemma 2], we have

Et

[
(t⊤M−v)

4
]1/2 ≤ C∗,Kv

⊤M2
−v ,

Et

[
(v⊤t)4

]1/2 ≤ C∗,Kv
⊤v .
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Thus we have

EM−

[
Et

[
(t⊤M−v)

4
]1/2 Et

[
(v⊤t)4

]1/2]1/2 ≤ EM−

[
C∗,Kv

⊤M2
−vv

⊤v
]1/2

= C∗,KEM−

[
Tr(AM2

−A)
]1/2

.

Then according to [37, Lemma 4.(b)], we have

EM−

[
Tr(AM2

−A)
]
≤ C∗,Kρ

2
λ(n)Tr(AM

2

−A) = C∗,Kρ
2
λ(n)Tr(AM−)

2,

where the last inequality holds due toAM− being a rank-1 matrix. Combining the bounds for the
second term, we have

EM−

[
Et

[
(t⊤M−v)

4
]1/2 Et

[
(v⊤t)4

]1/2]1/2 ≤ C∗,Kρλ(n)Tr(AM−) ≤ C∗,Kρ
2
λ(n)Tr(AM).

By combining the above bounds for the first and second term, we have

n

∣∣∣∣E [ κ− S
(1 + κ)(1 + S)

T⊤M−AT

]∣∣∣∣ ≤ C∗,K
ρ3λ(n)√

n
nTr(AM)

≤ C∗,K
ρ4λ(n)√

n
µ∗Tr(AM),

where we use µ∗ = n
1+Tr(M)

≥ n
2ρλ(n)

according to [37, Lemma 3] in the last inequality.

Combining the above bounds concludes the proof.

Proof of Proposition Proposition C.3. The martingale argument follows a similar approach to the
proofs of [37, Propositions 3 and 5]. The key remaining steps are to adjust Step 2 in [37, Proposition
3] and establish high-probability bounds for each term in the martingale difference sequence.

We rewrite this term as a martingale difference sequence

Sn := Tr(AT⊤TM)− E[Tr(AT⊤TM)] =

n∑
i=1

(Ei − Ei−1) Tr(AT
⊤TM) =:

n∑
i=1

∆i ,

where Ei is denoted as the expectation over {xi+1, · · · ,xn}.
We show below that |∆i| ≤ R with probability at least 1− n−D with

R = C∗,D,K
ρλ(n)

2 log(n)

n
Ψ2(µ∗;A). (51)

For Step 3 and bounding Ei−1[∆i1∆i ̸∈[−R,R]], observe that with probability at least 1 − n−D, by
[37, Lemma 4.(b)]

Ei−1[∆
2
i ]

1/2 ≤ 2Ei−1

[
(t⊤M−At)

2

(1 + S)2

]1/2

≤ C∗,D,K
ρλ(n)

3 log1/2(n)

n
µ∗Tr(AM)

≤ C∗,D,K
ρλ(n)

3 log1/2(n)

n
Ψ2(µ∗;A).

We establish a high-probability bound for ∆i by first decomposing it and strategically adding and
subtracting carefully chosen terms. Observing that

∆i = (Ei − Ei−1) Tr(AT
⊤TM) = (Ei − Ei−1)

(
Tr(AT⊤TM)− Tr(AT⊤

i TiMi)
)
,

where Mi is the rescaled resolvent removes xi, and we used that Ei
[
AT⊤

i TiMi

]
=

Ei−1

[
AT⊤

i TiMi

]
, and we’ll write (recall that Si = t⊤iMiti)

Tr(AT⊤TM)− Tr(AT⊤
i TiMi) = Tr(A(tit

⊤
i + T⊤

i Ti)M)− Tr(AT⊤
i TiMi)

= t⊤iMAti +Tr(AT⊤
i TiM)− Tr(AT⊤

i TiMi)

=
1

(1 + Si)

{
t⊤iMiAti − Tr(AT⊤

i TiMitit
⊤
iMi)

}
=

1

(1 + Si)
Tr(tit

⊤
iMiA(I − T⊤

i TiMi)).
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Observing that
I − T⊤

i TiMi = λΣ−1Mi,

we can write for j ∈ {i− 1, i}, with probability at least 1− n−D,∣∣∣∣Ej [ 1

(1 + Si)
Tr(tit

⊤
iMiA(I − T⊤

i TiMi))

]∣∣∣∣ ≤λEj [|t⊤iMiAΣ−1Miti|
]

≤ Ej
[
|t⊤iMiAti|

]
≤ C∗,D log(n)Ej [Tr(AMi)]

≤ C∗,Dρλ(n) log(n)Tr(AM)

≤ C∗,D
ρλ(n)

2 log(n)

n
µ∗Tr(AM)

= C∗,D
ρλ(n)

2 log(n)

n
Ψ2(µ∗;A),

where we used that Mi ⪯ Σ/λ by definition in the second inequality, [37, Lemma 4.(b)] in the
fourth inequality, and µ∗ = n

1+Tr(M)
≥ n

2ρλ(n)
in the last inequality.

Applying a union bound and adjusting the choice of D, we conclude that with probability at least
1− n−D, the following holds for all i ∈ [n]:

|∆i| ≤ C∗,D,K
ρλ(n)

2 log(n)

n
Ψ2(µ∗;A) .

D Main results and proofs for linear regression

In this section, we study the asymptotic and non-asymptotic deterministic equivalent of the
(ridge/ridgeless) estimator norm for linear regression. Based on these results, we are able to mathe-
matically characterize the test risk under norm-based capacity. Table 3 presents our main results for
linear regression.

Table 3: Summary of our main results for Linear Regression.
Type Results Regularization Deterministic equivalents N Relationship between R and N

Deterministic
equivalence

Proposition D.4 λ > 0 Asymptotic -

Corollary D.5 λ → 0 Asymptotic -

Theorem D.6 λ > 0 Non-asymptotic -

Relationship

Proposition D.7 λ > 0 - Under Σ = Id

Proposition D.9 λ → 0 - Under-parameterized regime

Corollary D.8 λ → 0 - Under Σ = Id

Proposition D.10 λ → 0 - Under Assumption 6 (power-law)

To deliver our results, we need the following lemma for the bias-variance decomposition of the
estimator’s norm.
Lemma D.1 (Bias-variance decomposition of N LS

λ ). We have the bias-variance decomposition
Eε∥β̂∥22 =: N LS

λ = BLSN ,λ + VLSN ,λ, where BLSN ,λ and VLSN ,λ are defined as

BLSN ,λ := ⟨β∗, (X
⊤X)2(X⊤X + λI)−2β∗⟩ , VLSN ,λ := σ2Tr(X⊤X(X⊤X + λI)−2) .

And we present the proof of Lemma D.1 as below.

Proof of Lemma D.1. Here we give the bias-variance decomposition of Eε∥β̂∥22. The formulation of
Eε∥β̂∥22 is given by

Eε∥β̂∥22 = ∥
(
X⊤X + λI

)−1
X⊤y∥22 ,
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which can be decomposed as

Eε∥β̂∥22 = Eε∥
(
X⊤X + λI

)−1
X⊤(Xβ∗ + ε)∥22

= ∥
(
X⊤X + λI

)−1
X⊤Xβ∗∥22 + Eε∥

(
X⊤X + λI

)−1
X⊤ε∥22

= ⟨β∗, (X
⊤X)2(X⊤X + λI)−2β∗⟩+ σ2Tr(X⊤X(X⊤X + λI)−2)

=: BLSN ,λ + VLSN ,λ .

Accordingly, we can see that it shares the similar spirit with the bias-variance decomposition.

Our first goal is to relate BLSN ,λ and VLSN ,λ to their respective deterministic equivalents. And next, we
will present the results for both asymptotic and non-asymptotic regime separately.

D.1 Asymptotic deterministic equivalence for ridge regression

In this section, we establish the asymptotic approximation guarantees for linear regression, focusing
on the relationships between the ℓ2 norm of the estimator and its deterministic equivalent. These
results can be recovered by our non-asymptotic results, but we put them here just for completeness.

Before presenting the results on deterministic equivalence for ridge regression and their proofs, we
begin by introducing a couple of useful corollaries from Propositions B.3 and B.4.

Corollary D.2. Under the same condition of Proposition B.3, we have

Tr(AX⊤X(X⊤X + λ)−2) ∼ Tr(AΣ(Σ+ λ∗I)
−2)

n− df2(λ∗)
. (52)

Specifically, ifA = Σ, we have

Tr(ΣX⊤X(X⊤X + λ)−2) ∼ df2(λ∗)

n− df2(λ∗)
. (53)

Corollary D.3. Under the same condition of Proposition B.4, we have

Tr(AT⊤(TΣT⊤ + λ)−2T ) ∼ Tr(A(Σ+ λ∗)
−2)

n− df2(λ∗)
. (54)

Using the equation

Tr(AX⊤X(X⊤X+λ)−2) =
1

λ

(
Tr(AX⊤X(X⊤X + λ)−1)− Tr(A(X⊤X)2(X⊤X + λ)−2)

)
,

we can directly obtain Corollaries D.2 and D.3 from Propositions B.3 and B.4.

Now we are ready to derive the deterministic equivalence, i.e., Eε∥β̂∥22, under the bias-variance
decomposition. Our results can handle ridge estimator β̂ in Proposition D.4 and interpolator β̂min in
Corollary D.5, respectively.

Proposition D.4 (Asymptotic deterministic equivalence of N LS
λ .). Given the bias variance decompo-

sition of Eε∥β̂∥22 in Lemma D.1, under Assumption 3, we have the following asymptotic deterministic
equivalents N LS

λ ∼ NLS
λ := BLS

N,λ + VLS
N,λ such that BLSN ,λ ∼ BLS

N,λ, VLSN ,λ ∼ VLS
N,λ, where these

quantities are from Lemma D.1 and Eq. (55).

BLS
N,λ := ⟨β∗,Σ

2(Σ+ λ∗I)
−2β∗⟩+

Tr(Σ(Σ+ λ∗I)
−2)

n
· λ2∗⟨β∗,Σ(Σ+ λ∗I)

−2β∗⟩
1− n−1Tr(Σ2(Σ+ λ∗I)−2)︸ ︷︷ ︸

BLS
R,λ

,

VLS
N,λ :=

Tr(Σ(Σ+ λ∗I)
−2)

Tr(Σ2(Σ+ λ∗I)−2)
· σ2Tr(Σ2(Σ+ λ∗I)

−2)

n− Tr(Σ2(Σ+ λ∗I)−2)︸ ︷︷ ︸
VLS
R,λ

. (55)
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We remark that, by checking Eq. (16) and Eq. (55), norm-based capacity suffices to characterize
generalization while effective dimension can not, where effective dimension is defined as Tr(Σ(Σ+
λ∗I)

−1) [63] or similar formulation, e.g., Tr(Σ2(Σ+ λ∗I)
−2).

• Bias: for the bias term, we find that the second term of BLS
N,λ rescales BLS

R,λ in Eq. (16) by a

factor Tr(Σ(Σ+λ∗I)
−2)

n .

• Variance: we find that the variance term of the norm VLS
N,λ equals the variance term of the test

risk VLS
R,λ in Eq. (16) multiplied by a factor Tr(Σ(Σ+λ∗I)

−2)
Tr(Σ2(Σ+λ∗I)−2) . That means, under isotropic

features Σ = Id, they are the same.

Accordingly, the norm-based capacity is able to characterize the bias and variance of the excess risk.
We provide a quantitative analysis of this relationship in Appendix D.3.2. Below, we present the
proof of Proposition D.4.

Proof of Proposition D.4. We give the asymptotic deterministic equivalents for BLSN ,λ and VLSN ,λ,
respectively. For the bias term BLSN ,λ, we use Eq. (9) by taking A = β∗β

⊤
∗ and B = I and thus

obtain
BLSN ,λ = ⟨β∗, (X

⊤X)2(X⊤X + λI)−2β∗⟩
= Tr(β∗β

⊤
∗ (X

⊤X)2(X⊤X + λI)−2)

∼ Tr(β∗β
⊤
∗Σ

2(Σ+ λ∗I)
−2)

+ λ2∗Tr(β∗β
⊤
∗Σ(Σ+ λ∗I)

−2) · Tr(Σ(Σ+ λ∗I)
−2) · 1

n− Tr(Σ2(Σ+ λ∗I)−2)

= ⟨β∗,Σ
2(Σ+ λ∗I)

−2β∗⟩+
Tr(Σ(Σ+ λ∗I)

−2)

n
· λ2∗⟨β∗,Σ(Σ+ λ∗I)

−2β∗⟩
1− n−1Tr(Σ2(Σ+ λ∗I)−2)

=: BLS
N,λ .

For the variance term VLSN , we use Eq. (52) by takingA = I and obtain

VLSN = σ2Tr(X⊤X(X⊤X + λI)−2) ∼ σ2Tr(Σ(Σ+ λ∗I)
−2)

n− Tr(Σ2(Σ+ λ∗I)−2)
=: VLS

N,λ .

The deterministic equivalent of the norm for the min-ℓ2-norm estimator. We have the following
results on the characterization of the deterministic equivalence of ∥β̂min∥2.
Corollary D.5 (Asymptotic deterministic equivalence of the norm of interpolator). Under Assump-
tion 3, for the minimum ℓ2-norm estimator β̂min, we have the following deterministic equivalence:
for the under-parameterized regime (d < n), we have

BLSN ,0 = ∥β∗∥22 , VLSN ,0 ∼
σ2

n− dTr(Σ
−1) .

In the over-parameterized regime (d > n), we have

BLSN ,0 ∼ ⟨β∗,Σ(Σ+ λnI)
−1β∗⟩ ,

VLSN ,0 ∼
σ2Tr(Σ(Σ+ λnI)

−2)

n− Tr(Σ2(Σ+ λnI)−2)
=
σ2

λn
,

where λn is defined by Tr(Σ(Σ+ λnI)
−1) ∼ n.

Remark: The asymptotic behavior of λ∗ differs between the under-parameterized and over-
parameterized regimes as λ → 0, though the ridge regression estimator β̂ converges to the
min-ℓ2-norm estimator β̂min. To be specific, in the under-parameterized regime, λ∗ converges
to 0 as λ → 0; while in the over-parameterized regime, λ∗ converges to a constant that admits
Tr(Σ(Σ+ λnI)

−1) ∼ n when λ→ 0. Accordingly, for the minimum ℓ2-norm estimator, it is neces-
sary to analyze the two regimes separately. And we show that the solution λn to the self-consistent
equation Tr(Σ(Σ+ λnI)

−1) ∼ n can be obtained from the variance VLS
N,0 = σ2/λn.

36



Proof of Corollary D.5. We separate the results in the under-parameterized and over-parameterized
regimes.

In the under-parameterized regime (d < n), for minimum norm estimator β̂min, we have (forX⊤X
is invertible)

β̂min =
(
X⊤X

)−1
X⊤y =

(
X⊤X

)−1
X⊤(Xβ∗ + ε) = β∗ +

(
X⊤X

)−1
X⊤ε .

Accordingly, we can directly obtain the bias-variance decomposition as well as their deterministic
equivalents

BLSN ,0 = ∥β∗∥22 , VLSN ,0 = σ2Tr(X⊤X(X⊤X)−2) ∼ σ2Tr(Σ
−1)

n− d ,

where we use Eq. (52) and take λ→ 0 for the variance term.

In the over-parameterized regime (d > n), we take the limit λ→ 0 within ridge regression and use
Proposition D.4. Define λn as Tr(Σ(Σ+ λnI)

−1) ∼ n, we have for the bias term

BLSN ,0 ∼ ⟨β∗,Σ
2(Σ+ λnI)

−2β∗⟩+
Tr(Σ(Σ+ λnI)

−2)

n
· λ2n⟨β∗,Σ(Σ+ λnI)

−2β∗⟩
1− n−1Tr(Σ2(Σ+ λnI)−2)

= ⟨β∗,Σ(Σ+ λnI)
−1β∗⟩ − λn⟨β∗,Σ(Σ+ λnI)

−2β∗⟩

+
Tr(Σ(Σ+ λnI)

−2)

n
· λ2n⟨β∗,Σ(Σ+ λnI)

−2β∗⟩
1− n−1Tr(Σ2(Σ+ λnI)−2)

= ⟨β∗,Σ(Σ+ λnI)
−1β∗⟩ .

For the variance term, we have

VLSN ,0 ∼
σ2Tr(Σ(Σ+ λnI)

−2)

n− Tr(Σ2(Σ+ λnI)−2)
.

Finally we conclude the proof.

D.2 Non-asymptotic analysis on the deterministic equivalents of estimator’s norm

To derive the non-asymptotic results, we make the following assumption on well-behaved data.
Assumption 4 (Data concentration [37]). There existC∗ > 0 such that for any PSD matrixA ∈ Rd×d
with Tr(ΣA) <∞ and t ≥ 0, we have

P
(∣∣X⊤AX − Tr(ΣA)

∣∣ ≥ t∥Σ1/2AΣ1/2∥F
)
≤ C∗e

− t
C∗ .

Assumption 5 ([14]). There exists C > 1

⟨β∗,Σ(Σ+ λ∗)
−1β∗⟩

⟨β∗,Σ2(Σ+ λ∗)−2β∗⟩
≤ C .

Remark: This assumption holds in many settings of interest, such as power law assumptions like
those in Assumption 6, since under this assumption the numerator and denominator are bounded sums
of finite terms. It is a technical assumption used to address the difference between two deterministic
equivalents that are needed in our work for norm-based capacity. In fact, this assumption is used for
RFMs in [14] as the authors also face with the issue on the difference between two deterministic
equivalents.

Based on the above two assumptions, we are ready to deliver the following result, our results can also
numerically validated by Fig. 11 in Appendix H.2.
Theorem D.6 (Deterministic equivalents of the ℓ2-norm of the estimator.). Assume well-behaved
data {xi}ni=1 satisfy Assumption 4 and Assumption 5. Then for any D,K > 0, there exist constants
η∗ ∈ (0, 1/2) and C∗,D,K > 0 ensuring the following property holds. For any n ≥ C∗,D,K , λ > 0,
if the following condition is satisfied:

λ ≥ n−K , ρλ(n)
5/2 log3/2(n) ≤ K√n ,
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then with probability at least 1− n−D, we have that∣∣BLSN ,λ − BLS
N,λ

∣∣ ≤ Cx,D,K ρλ(n)6 log3/2(n)√
n

BLS
N,λ ,

∣∣VLSN ,λ − VLS
N,λ

∣∣ ≤ Cx,D,K ρλ(n)6 log3/2(n)√
n

VLS
N,λ .

Next, we give the proof of Proposition D.4 below.

Proof of Theorem D.6. Part 1: Deterministic equivalents for the bias term.

Here we prove the deterministic equivalents of BLSN ,λ and VLSN ,λ. First, we decompose BLSN ,λ into

BLSN ,λ = Tr
(
β∗β

⊤
∗X

⊤X(X⊤X + λ)−1
)
− λTr

(
β∗β

⊤
∗X

⊤X(X⊤X + λ)−2
)
,

= Φ2(X; Ã1, λ)− nλΦ4(X; Ã2, λ) ,

where Ã1 := β∗β
⊤
∗ , Ã2 := Σ−1/2β∗β

⊤
∗Σ

−1/2. Therefore, using Theorem B.9, with probability at
least 1− n−D, we have∣∣∣Φ2(X; Ã1, λ)−Ψ1(λ∗; Ã1)

∣∣∣ ≤ Cx,D,K ρλ(n)5/2 log3/2(n)√
n

Ψ1(λ∗; Ã1) ,∣∣∣nλΦ4(X; Ã2, λ)− nλΨ2(λ∗; Ã2)
∣∣∣ ≤ Cx,D,K ρλ(n)6 log3/2(n)√

n
nλΨ2(λ∗; Ã2) .

Combining the above bounds, we deduce that∣∣∣BLSN ,λ −
(
Ψ1(λ∗; Ã1)− nλΨ2(λ∗; Ã2)

)∣∣∣
≤ Cx,D,K

ρλ(n)
6 log3/2(n)√
n

(
Ψ1(λ∗; Ã1) + nλΨ2(λ∗; Ã2)

)
.

Note that
Ψ1(λ∗; Ã1)− nλΨ2(λ∗; Ã2) = BLS

N,λ .

For nλΨ2(λ∗; Ã2), recall that Ψ2(λ∗;A) := 1
n

Tr(AΣ2(Σ+λ∗I)
−2)

n−Tr(Σ2(Σ+λ∗I)−2) , and according to Definition B.8
and Assumption 5, we have

nλΨ2(λ∗; Ã2) = λ
Tr(β∗β

⊤
∗Σ(Σ+ λ∗I)

−2)

n− Tr(Σ2(Σ+ λ∗I)−2)

≤ λ∗Tr(β∗β
⊤
∗Σ(Σ+ λ∗I)

−2)

= Tr(β∗β
⊤
∗Σ(Σ+ λ∗I)

−1)− Tr(β∗β
⊤
∗Σ

2(Σ+ λ∗I)
−2)

≤
(
1− 1

C

)
Tr(β∗β

⊤
∗Σ(Σ+ λ∗)

−1) ,

and therefore

Ψ1(λ∗; Ã1) + nλΨ2(λ∗; Ã2) ≤
(
2− 1

C

)
Tr(β∗β

⊤
∗Σ(Σ+ λ∗)

−1)

≤ (2C − 1)
1

C
Tr(β∗β

⊤
∗Σ(Σ+ λ∗)

−1)

≤ (2C − 1)
(
Ψ1(λ∗; Ã1)− nλΨ2(λ∗; Ã2)

)
.

Then we conclude that ∣∣BLSN ,λ − BLS
N,λ

∣∣ ≤ Cx,D,K ρλ(n)6 log3/2(n)√
n

BLS
N,λ,

with probability at least 1− n−D.

38



Part 2: Deterministic equivalents for the variance term. Next, we prove the deterministic
equivalent of VLSN ,λ. First, note that VLSN ,λ can be written in terms of the functional Φ4(X;A, λ)
defined in Eq. (23)

VLSN ,λ = nσ2
εΦ4(X;Σ−1, λ) .

Thus, under the assumptions, we can apply Theorem B.9 to obtain that with probability at least
1− n−D∣∣nσ2

εΦ4(X;Σ−1, λ)− nσ2
εΨ2(λ∗;Σ

−1)
∣∣ ≤ Cx,D,K ρλ(n)6 log3/2(n)√

n
nσ2

εΨ2(λ∗;Σ
−1) .

Recall that Ψ2(λ∗;A) := 1
n

Tr(AΣ2(Σ+λ∗I)
−2)

n−Tr(Σ2(Σ+λ∗I)−2) , then we have

∣∣VLSN ,λ − VLS
N,λ

∣∣ ≤ Cx,D,K ρλ(n)6 log3/2(n)√
n

VLS
N,λ ,

with probability at least 1− n−D.

D.3 Characterization of learning curves

By deriving deterministic equivalents for the norm in linear regression, we can now analyze learning
curves through the lens of norm-based capacity. In certain cases, these learning curves can even be
expressed in closed form.

In this section, we first examine the general characteristics of learning curves from a norm-based
capacity perspective in Appendix D.3.1. We then provide a precise characterization of these curves in
Appendix D.3.2.

D.3.1 The shape description of learning curves

We plot the bias and variance components of the test risk over γ := d
n and norm, see Fig. 4(a) and

Fig. 4(b), respectively. Note that, our theory (shown in curve) can precisely predict experimental
results (shown by points).

Fig. 4(a) reveals a clear bias-variance tradeoff in the over-parameterized regime (where γ > 1, as
shown in the right portion of Fig. 4(a)). Specifically, we observe that: i) The bias exhibits a strictly
increasing relationship with the parameter γ. ii) The variance demonstrates a corresponding strictly
decreasing trend.

However, in the under-parameterized regime (γ < 1), both bias and variance increase monotonically
with γ, therefore the bias-variance tradeoff does not exist. In particular, for the min-ℓ2-norm
interpolator, since the bias equals 0, the risk is entirely composed of variance.

Because the self-consistent equation differs between the under- and over-parameterized regimes, the
learning curve plotted against the norm (see Fig. 4(b)) is not single-valued—this is due to the phase
transition between regimes. Specifically, a single norm value can correspond to two distinct error
levels, depending on whether the model is under- or over-parameterized. However, when examined
separately, each regime displays a one-to-one relationship between test risk and norm.

D.3.2 Mathematical formulation of learning curves

In this section, we give the mathematical formulation of learning curves in several settings of interest.
First we give some concrete examples on the relationship between R and N in terms of isotropic
features.
Proposition D.7 (Isotropic features for ridge regression, see Fig. 5). Consider covariance matrix
Σ = Id, the deterministic equivalents RLS

λ and NLS
λ satisfy

(
∥β∗∥22−RLS

λ −NLS
λ

) (
∥β∗∥22+RLS

λ −NLS
λ

)2
d+2∥β∗∥22

((
∥β∗∥22+RLS

λ −NLS
λ

)2
−4∥β∗∥22R

LS
λ

)
λ=2

((
RLS
λ −NLS

λ

)2
−∥β∗∥42

)
dσ

2
.

Remark: RLS
λ and NLS

λ formulates a third-order polynomial. When λ → ∞, it degenerates to
RLS
λ = (∥β∗∥2 −

√
NLS
λ )2 when NLS

λ ≤ ∥β∗∥22. Hence RLS
λ is monotonically decreasing with respect

to NLS
λ , empirically verified by Fig. 5. Besides, if we take λ = dσ2

∥β∗∥2
2

, which is the optimal
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Figure 4: The relationship between the test risk R, norm N, their bias and variance (BR, VR, BN,
VN), and the ratio γ := d

n for linear regression model. Training data {(xi, yi)}i∈[n], d = 1000,
sampled from a linear model yi = x⊤i β∗ + εi, σ2 = 0.0004, xi ∼ N (0,Σ), with σk(Σ) = k−1,
β∗,k = k−3/2. The ridge λ = 0.005. Note that in the under-parameterized regime (d < n), the bias
of the test risk is zero.

regularization parameter discussed in [57, 39], the relationship in Proposition D.7 will become
RLS
λ = ∥β∗∥22 − NLS

λ , which corresponds to a straight line. This is empirically shown in Fig. 5 with
λ = 50. In addition to isotropic features, we further examine the relationship under the power-law
assumption for the data.

Apart from sufficiently large λ and optimal λ mentioned before, below we consider min-ℓ2-norm
estimator. Note that when λ → 0, the ridge regression estimator β̂ converges to the min-ℓ2-norm
estimator β̂min. However, the behavior of λ∗ differs between the under-parameterized and over-
parameterized regimes as λ→ 0. Thus, the min-ℓ2-norm estimator requires separate analysis of the
two regimes.

0 5 10 15 20
NLS

0

5
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20

RL
S

ridgeless
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= 20
= 50
= 100
= 500
= 1e + 16

Figure 5: Relationship between RLS
λ and NLS

λ under the linear model yi = x⊤i β∗ + εi, with d = 500,
Σ = Id, ∥β∗∥22 = 10, and σ2 = 1. The dashed line corresponds to the ridgeless regression curve.

Proof of Proposition D.7. According to the formulation of BLS
N,λ and VLS

N,λ in Eq. (55), for Σ = Id,
we have

BLS
N,λ =

1

(1 + λ∗)2
∥β∗∥22 +

d

n(1 + λ∗)2
·
λ2∗

1
(1+λ∗)2

∥β∗∥22
1− d

n(1+λ∗)2

, VLS
N,λ =

σ2 d
(1+λ∗)2

n− d
(1+λ∗)2

,

NLS
λ =

d

(1 + λ∗)2
∥β∗∥22 +

d

n(1 + λ∗)2
·
λ2∗

d
(1+λ∗)2

∥β∗∥22
1− d

n(1+λ∗)2

+
σ2 d

(1+λ∗)2

n− d
(1+λ∗)2

,
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where λ∗ admits a closed-form solution

λ∗ =
d+ λ− n+

√
4λn+ (n− d− λ)2
2n

.

Recall the formulation BLS
R,λ and VLS

R,λ (for test risk) in Eq. (16), for Σ = Id, we have

BLS
R,λ =

λ2∗
1

(1+λ∗)2
∥β∗∥22

1− d
n(1+λ∗)2

, VLS
R,λ =

σ2 d
(1+λ∗)2

n− d
(1+λ∗)2

, RLS
λ =

λ2∗
d

(1+λ∗)2
∥β∗∥22

1− d
n(1+λ∗)2

+
σ2 d

(1+λ∗)2

n− d
(1+λ∗)2

.

Accordingly, to establish the relationship between RLS
λ and NLS

λ , we combine their formulation and
eliminate n to obtain6

2((RLS
λ − NLS

λ )2 − ∥β∗∥42)dσ2 = (∥β∗∥22 − RLS
λ − NLS

λ )(∥β∗∥22 + RLS
λ − NLS

λ )2d

+ 2∥β∗∥22((∥β∗∥22 + RLS
λ − NLS

λ )2 − 4∥β∗∥22RLS
λ )λ .

Corollary D.8 (Isotropic features for min-ℓ2-norm interpolator, see Fig. 5). Consider covariance ma-
trix Σ = Id, the relationship between RLS

0 and NLS
0 from under-parameterized to over-parameterized

regimes admit

RLS
0 =

 NLS
0 − ∥β∗∥22 , if d < n (under-parameterized);√
[NLS

0 − (∥β∗∥22 − σ2)]
2
+ 4∥β∗∥22σ2 − σ2 , o/w .

For the variance part of RLS
0 and NLS

0 , we have VLS
R,0 = VLS

N,0; For the respective bias part, we have
BLS
R,0 + BLS

N,0 = ∥β∗∥22.

Remark: In the under-parameterized regime, the test error RLS
0 is a linear function of the norm NLS

0 .
In the over-parameterized regime, RLS

0 and NLS
0 formulates a rectangular hyperbola: RLS

0 decreases
with NLS

0 if NLS
0 < ∥β∗∥22 − σ2 while RLS

0 increases with NLS
0 if NLS

0 > ∥β∗∥22 − σ2.

Proof of Corollary D.8. According to Proposition B.6 and Corollary D.5, for minimum ℓ2-norm
estimator and Σ = Id, for the under-parameterized regime (d < n), we have

BLS
R,0 = 0 , VLS

R,0 =
σ2d

n− d ; BLS
N,0 = ∥β∗∥22 , VLS

N,0 =
σ2d

n− d .

From these expressions, we can conclude that

RLS
0 = BLS

R,0 + VLS
R,0 =

σ2d

n− d ; NLS
0 = BLS

N,0 + VLS
N,0 = ∥β∗∥22 +

σ2d

n− d .

Finally, in the under-parameterized regime, it follows that

RLS
0 = NLS

0 − ∥β∗∥22 .

In the over-parameterized regime (d > n), the effective regularization λ∗ will have an explicit
formulation as λ∗ = d−n

n , thus for the bias and variance of the test error, we have

BLS
R,0 =

λ2n⟨β∗,Σ(Σ+ λnI)
−2β∗⟩

1− n−1Tr(Σ2(Σ+ λn)−2)
=
λ2n

1
(1+λn)2

∥β∗∥22
1− 1

n
d

(1+λn)2

= ∥β∗∥22
d− n
d

,

VLS
R,0 =

σ2Tr(Σ2(Σ+ λnI)
−2)

n− Tr(Σ2(Σ+ λnI)−2)
=

σ2 d
(1+λn)2

n− d
(1+λn)2

= σ2 n

d− n ,

and combining the bias and variance, we have

RLS
0 = BLS

R,0 + VLS
R,0 = ∥β∗∥22

d− n
d

+ σ2 n

d− n . (56)

6Due to the complexity of the calculations, we use Mathematica Wolfram to eliminate n. The same approach
is applied later whenever n or p elimination is required.
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For the bias and variance of the norm, we have

BLS
N,0 = ⟨β∗,Σ(Σ+ λnI)

−1β∗⟩ =
1

1 + λn
∥β∗∥22 = ∥β∗∥22

n

d
,

VLS
N,0 =

σTr(Σ(Σ+ λnI)
−2)

n− Tr(Σ2(Σ+ λnI)−2)
=

σ2 d
(1+λn)2

n− d
(1+λn)2

= σ2 n

d− n ,

and combining the bias and variance, we have

NLS
0 = BLS

N,0 + VLS
N,0 = ∥β∗∥22

n

d
+ σ2 n

d− n . (57)

Finally, combining Eq. (56) and Eq. (57), we eliminate n and thus obtain

RLS
0 =

√
(NLS

0 )2−2(∥β∗∥22−σ2)NLS
0 + (∥β∗∥22+σ2)2−σ2 .

By taking the derivative of RLS
0 with respect to NLS

0 , we get

∂RLS
0

∂NLS
0

=
NLS

0 − (∥β∗∥22 − σ2)√
(NLS

0 )2 − 2(∥β∗∥22 − σ2)NLS
0 + (∥β∗∥22 + σ2)2

.

From the derivative function, we observe that RLS
0 decreases monotonically with NLS

0 when NLS
0 <

∥β∗∥22 − σ2, and increases monotonically with NLS
0 when NLS

0 > ∥β∗∥22 − σ2.

Relationship for min-ℓ2-norm interpolator in the under-parameterized regime. Next, we con-
sider the min-norm estimator, and we find that for the min-norm estimator, in the under-parameterized
regime, the relationship between risk and norm is linear, and this linearity is independent of the data
distribution.

Proposition D.9 (Relationship for min-ℓ2-norm interpolator in the under-parameterized regime).
The deterministic equivalents RLS

0 and NLS
0 , in under-parameterized regimes (d < n) admit the linear

relationship
RLS
0 = d

(
NLS

0 − ∥β∗∥22
)
/Tr(Σ−1) .

Proof of Proposition D.9. According to Proposition B.6 and Corollary D.5, for minimum ℓ2-norm
estimator, in the under-parameterized regime (d < n), we have

BLS
R,0 = 0 , VLS

R,0 =
σ2d

n− d ; BLS
N,0 = ∥β∗∥22 , VLS

N,0 =
σ2Tr(Σ−1)

n− d .

From these expressions, we can conclude that

RLS
0 = BLS

R,0 + VLS
R,0 =

σ2d

n− d ; NLS
0 = BLS

N,0 + VLS
N,0 = ∥β∗∥22 +

σ2Tr(Σ−1)

n− d .

Finally, combing the above equation and eliminate n, in the under-parameterized regime, it follows
that

RLS
0 =

d

Tr(Σ−1)

(
NLS

0 − ∥β∗∥22
)
. (58)

The relationship in the over-parameterized regime is more complicated. We present it in the special
case of isotropic features in Corollary D.8 of Proposition D.7, and we also give an approximation in
Proposition D.10 under the power-law assumption.

Assumption 6 (Power-law assumption). For the covariance matrix Σ and the target function β∗, we
assume that σk(Σ) = k−α, α > 0 and β∗,k = k−αβ/2, β ∈ R.

This assumption is close to classical source condition and capacity condition [9] and is similarly used
in [45, Assumption 1].
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Relationship under power-law assumption. Instead of assuming Σ = Id, we next consider
power-law features in Assumption 6 and characterize the relationship.
Proposition D.10 (Power-law features for min-ℓ2 norm estimator). Under Assumption 6, in the
over-parameterized regime (d > n), we consider some special cases for analytic formulation: if
α = 1 and β = 0, when n→ d, we have7

VLS
R,0 ≈

2(VLS
N,0)

2

dVLS
N,0 − d2σ2

, BLS
R,0≈

2BLS
N,0(d− BLS

N,0)

d2
.

Remark: The relationship between RLS
0 and NLS

0 is still linear in the under-parameterized regime, but
is quite complex in the over-parameterized regime.

Proof of Proposition D.10. In the over-parameterized regime (d > n), according to Proposition B.6
and Corollary D.5, under Assumption 6, we have

BLS
R,0 =

λ2n⟨β∗,Σ(Σ+ λnI)
−2β∗⟩

1− n−1Tr(Σ2(Σ+ λnI)−2)
=

λ2nTr(Σ
1+β(Σ+ λnI)

−2)

1− n−1Tr(Σ2(Σ+ λnI)−2)
,

VLS
R,0 =

σ2Tr
(
Σ2(Σ+ λnI)

−2
)

n− Tr (Σ2(Σ+ λnI)−2)
,

BLS
N,0 = ⟨β∗,Σ(Σ+ λnI)

−1β∗⟩ = Tr(Σ1+β(Σ+ λnI)
−1) ,

VLS
N,0 =

σ2Tr
(
Σ(Σ+ λnI)

−2
)

n− Tr (Σ2(Σ+ λnI)−2)
.

To compute these quantities, here we introduce the following continuum approximations to eigensums.∫ d+1

1

k−α

k−α + λn
dk ≤ Tr(Σ(Σ+ λn)

−1) =

d∑
i=1

σi
σi + λn

≤
∫ d

0

k−α

k−α + λn
dk , (59)

due to the fact that the integrand is non-increasing function of k. Similarly, we also have∫ d+1

1

k−2α

(k−α + λn)2
dk ≤ Tr(Σ2(Σ+ λn)

−2) =

d∑
i=1

σ2
i

(σi + λn)2
≤
∫ d

0

k−2α

(k−α + λn)2
dk . (60)

We consider some special cases that are useful for discussion. When α = 1, we have

log(1 + dλn + λn)− log(1 + λn)

λn
≤ Tr(Σ(Σ+ λn)

−1) ≤ log(1 + dλn)

λn
, (61)

d+ 1

λnd+ λn + 1
− 1

λn + 1
≤ Tr(Σ2(Σ+ λn)

−2) =

d∑
i=1

σ2
i

(σi + λn)2
≤ d

1 + dλn
. (62)

Recall that λn is defined by Tr(Σ(Σ+ λnI)
−1) = n. Using Eq. (59), we have

log(1 + dλn)

λn
≈ n.

Observe that as n→ d, λn → 0, allowing us to apply a Taylor expansion:

log(1 + dλn)

λn
≈ dλn − 1

2 (dλn)
2

λn
= d− 1

2
d2λn.

Based on this approximation, λn can be expressed as

λn ≈
2(d− n)

d2
.

7The symbol ≈ here represents two types of approximations: i) approximation for self-consistent equations;
ii) Taylor approximation of logarithmic function around zero (related to n → d).
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In the following discussion, we consider the case n→ d. Thus, we have the approximation

Tr(Σ(Σ+ λn)
−1) ≈ n , Tr(Σ2(Σ+ λn)

−2) ≈ d

1 + dλn
.

Then we have

VLS
R,0 =

σ2Tr
(
Σ2(Σ+ λnI)

−2
)

n− Tr (Σ2(Σ+ λnI)−2)
≈

σ2 d
1+dλn

n− d
1+dλn

=
σ2d

n+ d(nλn − 1)
,

VLS
N,0 =

σ2Tr
(
Σ(Σ+ λnI)

−2
)

n− Tr (Σ2(Σ+ λnI)−2)
≈
σ2 1

λn
(d− 1

2d
2λn − d

1+dλn
)

n− d
1+dλn

=
σ2d2(dλn − 1)

2(n+ d(nλn − 1))
.

Use these two formulation to eliminate n, we obtain

VLS
R,0 ≈

2(VLS
N,0)

2

dVLS
N,0 − d2σ2

.

Next we discuss the situation under different β.

For β = 0, we have

BLS
R,0 =

λ2nTr(Σ(Σ+ λnI)
−2)

1− n−1Tr(Σ2(Σ+ λnI)−2)
≈
λn(d− 1

2d
2λn − d

1+dλn
)

1− d
n(1+dλn)

= nλn ,

BLS
N,0 = Tr(Σ(Σ+ λnI)

−1) ≈ d− 1

2
d2λn ,

Use these two formulation to eliminate n, we obtain

BLS
R,0 ≈

2BLS
N,0(d− BLS

N,0)

d2
.

For β = 1, we have

BLS
R,0 =

λ2nTr(Σ
2(Σ+ λnI)

−2)

1− n−1Tr(Σ2(Σ+ λnI)−2)
≈

λ2n
d

1+dλn

1− d
n(1+dλn)

=
ndλ2n

n(1 + dλn)− d
,

BLS
N,0 = Tr(Σ2(Σ+ λnI)

−1) = Tr(Σ)− λnTr(Σ(Σ+ λnI)
−1) ≈ Tr(Σ)− nλn .

Use these two formulation to eliminate n, we obtain

BLS
R,0 ≈

2
√
(BLS

N,0)
2 − 2Tr(Σ)BLS

N,0 +Tr(Σ)2√
d2 + 2d2BLS

N,0 − 2d2Tr(Σ)
=

2(BLS
N,0 − Tr(Σ))

d
√
1 + 2BLS

N,0 − 2Tr(Σ)
.

For β = −1, we need to use another two continuum approximations to eigensums

Tr((Σ+ λn)
−1) =

d∑
i=1

1

σi + λn
≈
∫ d

0

1

k−α + λn
dk =

dλn − log(1 + dλn)

λ2n
,

Tr((Σ+ λn)
−2) =

d∑
i=1

1

(σi + λn)2
≈
∫ d

0

1

(k−α + λn)2
dk =

dλn(2+dλn)
1+dλn

− 2 log(1 + dλn)

λ3n
.

Once again, we apply the Taylor expansion, but this time expanding to the third order

log(1 + dλn) ≈ dλn −
1

2
(dλn)

2 +
1

3
(dλn)

3 .

Then we have

Tr((Σ+ λn)
−1) ≈ dλn − log(1 + dλn)

λ2n
≈ 1

2
d2 − 1

3
d3λn ,
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Tr((Σ+ λn)
−2) ≈

dλn(2+dλn)
1+dλn

− 2 log(1 + dλn)

λ3n
=

1
3d

3 − 2
3d

4λn

1 + dλn
.

Using the approximation sated above, we have

BLS
R,0 =

λ2nTr((Σ+ λnI)
−2)

1− n−1Tr(Σ2(Σ+ λnI)−2)
≈ λ2n((

1
3d

3− 2
3d

4λn)/(1+dλn))

1− d
n(1+dλn)

,

BLS
N,0 = Tr((Σ+ λnI)

−1) =
1

2
d2 − 1

3
d3λn .

Use these two formulation to eliminate n, we obtain

BLS
R,0 ≈

216(BLS
N,0)

4−324d2(BLS
N,0)

3+126d4(BLS
N,0)

2+d6BLS
N,0−5d8

2d5(6BLS
N,0 − d2)

.

Here we present some experimental results to check the relationship between BLS
R,0 and BLS

N,0, as well
as VLS

R,0 and VLS
N,0, see Fig. 6. We can see that our approximate relationship on variance (see the red

line in Fig. 6(d)) provides the precise estimation. For the bias (see the left three figures of Fig. 6), our
approximate relationship is accurate if BLS

N,0 is large.
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Figure 6: The left three figures (a) (b) (c) show the relationship between BLS
R,0 and BLS

N,0 when α = 1

and β takes on different values. The figure (d) shows the relationship between VLS
R,0 and VLS

N,0 when
α = 1. The blue line is the relationship obtained by deterministic equivalent experiments, and the red
line is the approximate relationship we give.

E Proofs for random feature ridge regression

In this section, we provide the proof of deterministic equivalence for random feature ridge regression
in both the asymptotic (Appendix E.1) and non-asymptotic (Appendix E.2) settings. Additionally,
we provide the proof of the relationship between test risk and the ℓ2 norm given in the main text, as
detailed in Appendix E.3.

Though the results [1] are for linear regression, we can still use the results for RFMs, which requires
some knowledge from Eqs. (27) and (28).

We firstly confirm that Assumption 3 in Appendix B.1, used to derive all asymptotic results, can be
replaced by the Hanson-Wright assumption employed in the non-asymptotic analysis. It is evident
that Eqs. (8) and (10) are obtained directly by taking the limits of Eqs. (27) and (28) as n→∞.

Additionally, a key step in the proof of Eqs. (9) and (11) in [1] involves showing that ∆ is almost
surely negligible, where ∆ is defined as

∆ =
1

n

n∑
i=1

xix
⊤
i (Σ̂−i − zI)−1 −Σ(Σ̂− zI)−1

1 + x⊤i (nΣ̂−i − nzI)−1xi
,

with Σ̂ = 1
n

∑n
i=1 xix

⊤
i , Σ̂−i =

1
n

∑
j ̸=i xjx

⊤
j , and z ∈ R.

In the analysis of [1], the negligibility of ∆ arises from the assumption that the components of xi
follow a sub-Gaussian distribution, which leads to the Hanson-Wright inequality

P
[∣∣x⊤i xi − tr(Σ)

∣∣ ≤ c(t∥Σ∥op +
√
t∥Σ∥F

)]
≥ 1− 2e−t.
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In this way, Assumption 4 is also sufficient to establish the negligibility of ∆.

After obtaining Eqs. (8) and (10) and the negligibility of ∆, we can follow the argument of [1] and
derive the rest asymptotic deterministic equivalence.

Finally, with these observations, we can eliminate the reliance on Assumption 3 and instead rely
solely on Assumption 4 to derive all the asymptotic results.

E.1 Asymptotic deterministic equivalence for random features ridge regression

In this section, we establish the asymptotic approximation guarantees for random feature regression
in terms of its ℓ2-norm based capacity. Before presenting the proof of Theorem 3.1, we firstly give
the proof of the bias-variance decomposition.

Proof. Here we give the bias-variance decomposition of Eε∥â∥22. The formulation of Eε∥â∥22 is
given by

Eε∥â∥22 = Eε∥(Z⊤Z + λI)−1Z⊤y∥22 ,
which admits a similar bias-variance decomposition

Eε∥â∥22 = Eε∥(Z⊤Z + λI)−1Z⊤(Gθ∗ + ε)∥22
= ∥(Z⊤Z + λI)−1Z⊤Gθ∗∥22 + Eε∥(Z⊤Z + λI)−1Z⊤ε∥22
= ⟨θ∗,G⊤Z(Z⊤Z + λI)−2Z⊤Gθ∗⟩+ σ2Tr

(
Z⊤Z(Z⊤Z + λI)−2

)
=: BRFMN ,λ + VRFMN ,λ .

Accordingly, we conclude the proof.

Now we are ready to present the proof of Theorem 3.1 as below.

Proof of Theorem 3.1. We give the asymptotic deterministic equivalents for the norm from the bias
BRFMN ,λ and variance VRFMN ,λ, respectively. We provide asymptotic expansions in two steps, by first
considering the deterministic equivalent overG, and then over F .

Under Assumption 1, we can apply Propositions B.3 and B.4 and Corollaries D.2 and D.3 directly in
the proof below.

Deterministic equivalent over G: For the bias term, we use Eq. (13) in Proposition B.4 with
T = G, Σ = F⊤F ,A = θ∗θ

⊤
∗ andB = F⊤F and obtain

BRFMN ,λ = ⟨θ∗,G⊤Z(Z⊤Z + λI)−2Z⊤Gθ∗⟩
= Tr(θ⊤∗G

⊤Z(Z⊤Z + λI)−2Z⊤Gθ∗)

= pTr(θ∗θ
⊤
∗G

⊤(GF⊤FG⊤ + pλI)−1GF⊤FG⊤(GF⊤FG⊤ + pλI)−1G)

∼ pTr(θ∗θ⊤∗ (F⊤F + ν1I)
−1F⊤F (F⊤F + ν1I)

−1)︸ ︷︷ ︸
I1

+ pν21 Tr(θ∗θ
⊤
∗ (F

⊤F + ν1I)
−2)︸ ︷︷ ︸

:=I2

·Tr(F⊤F (F⊤F + ν1I)
−2)︸ ︷︷ ︸

:=I3

· 1

n− d̂f2(ν1)
,

(63)

where ν1 defined by ν1(1− 1
n d̂f1(ν1)) ∼

pλ
n , d̂f1(ν1) and d̂f2(ν1) are degrees of freedom associated

to F⊤F in Definition B.2.

For the variance term, we use Eq. (54) with T = G in Proposition B.4,A = F⊤F , Σ = F⊤F and
obtain

VRFMN ,λ = σ2Tr
(
Z⊤Z(Z⊤Z + λI)−2

)
= σ2Tr

(
ZZ⊤(ZZ⊤ + λI)−2

)
= σ2pTr

(
GF⊤FG⊤(GF⊤FG⊤ + pλI)−2

)
∼ σ2p

Tr(F⊤F (F⊤F + ν1I)
−2)

n− d̂f2(ν1)
.
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Deterministic equivalent over F : In the next, we aim to eliminate the randomness over F in
Eq. (63) from the bias part. First our result depends on the asymptotic equivalents for d̂f1(ν1) and
d̂f2(ν1). For d̂f1(ν1), we use Eq. (8) in Proposition B.3 withX = F and obtain

d̂f1(ν1) = Tr(F⊤F (F⊤F + ν1I)
−1) ∼ Tr(Λ(Λ+ ν2I)

−1) = df1(ν2) ,

where ν2 defined by ν2(1− 1
pdf1(ν2)) ∼ ν1

p . Hence ν1 can be defined by ν1(1− 1
ndf1(ν2)) ∼

pλ
n

from Eq. (3).

For d̂f2(ν1), we use Eq. (9) in Proposition B.3 withX = F ,A = B = I and obtain

d̂f2(ν1) = Tr(F⊤F (F⊤F + ν1I)
−1F⊤F (F⊤F + ν1I)

−1)

∼ Tr(Λ2(Λ+ ν2I)
−2) + ν22Tr(Λ(Λ+ ν2I)

−2) · Tr(Λ2(Λ+ ν2I)
−2) · 1

p− df2(ν2)

=: nΥ(ν1, ν2) .
(64)

For I3 := Tr(F⊤F (F⊤F + ν1I)
−2), we use Eq. (52) withX = F and obtain

Tr(F⊤F (F⊤F + ν1I)
−2) ∼ Tr(Λ(Λ+ ν2I)

−2) · 1

p− df2(ν2)
. (65)

Then we use Eq. (52) again withX = F ,A = θ∗θ
⊤
∗ to obtain the deterministic equivalent of I1

Tr(θ∗θ
⊤
∗ (F

⊤F + ν1I)
−1F⊤F (F⊤F + ν1I)

−1) = Tr(θ∗θ
⊤
∗F

⊤F (F⊤F + ν1I)
−2)

∼ Tr(θ∗θ
⊤
∗Λ(Λ+ ν2I)

−2) · 1

p− df2(ν2)

= θ⊤∗Λ(Λ+ ν2I)
−2θ∗ ·

1

p− df2(ν2)
.

Further, for I2, use Eq. (11) withA = θ∗θ
⊤
∗ andB = I , we obtain

Tr(θ∗θ
⊤
∗ (F

⊤F + ν1I)
−2) ∼ ν22

ν21
Tr(θ∗θ

⊤
∗ (Λ+ ν2I)

−2)

+
ν22
ν21

Tr(θ∗θ
⊤
∗ (Λ+ ν2I)

−2Λ) · Tr((Λ+ ν2I)
−2Λ) · 1

p− df2(ν2)
.

Finally, combine the above equivalents, for the bias, we obtain

BRFMN ,λ ∼ pθ⊤∗Λ(Λ+ ν2I)
−2θ∗ ·

1

p− df2(ν2)

+ pν21

(
ν22
ν21

Tr(θ∗θ
⊤
∗ (Λ+ ν2I)

−2) +
ν22
ν21

Tr(θ∗θ
⊤
∗ (Λ+ ν2I)

−2Λ) · Tr((Λ+ ν2I)
−2Λ)

p− df2(ν2)

)
· Tr(Λ(Λ+ ν2I)

−2) · 1

p− df2(ν2)
· 1

n− nΥ(ν1, ν2)

= pθ⊤∗Λ(Λ+ ν2I)
−2θ∗ ·

1

p− df2(ν2)

+
p

n

(
ν22θ

⊤
∗ (Λ+ ν2I)

−2θ∗ + ν22θ
⊤
∗Λ(Λ+ ν2I)

−2θ∗ ·
Tr(Λ(Λ+ ν2I)

−2)

p− df2(ν2)

)
· Tr(Λ(Λ+ ν2I)

−2) · 1

p− df2(ν2)
· 1

1−Υ(ν1, ν2)

=
p⟨θ∗,Λ(Λ+ ν2I)

−2θ∗⟩
p− Tr (Λ2(Λ+ ν2I)−2)

+
pχ(ν2)

n
· ν

2
2

[
⟨θ∗, (Λ+ ν2I)

−2θ∗⟩+χ(ν2)⟨θ∗,Λ(Λ+ ν2I)
−2θ∗⟩

]
1−Υ(ν1, ν2)

.
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Similarly, for the variance, using Eq. (64) and Eq. (65) for I3, we have

VRFMN ,λ ∼ σ2pTr(Λ(Λ+ ν2I)
−2) · 1

p− df2(ν2)
· 1

n− nΥ(ν1, ν2)

∼ σ2
p
nχ(ν2)

1−Υ(ν1, ν2)
.

Accordingly, we finish the proof.

In the next, we present the proof for min-ℓ2-norm interpolator under RFMs.

Proof of Corollary 3.2. Similar to linear regression, we separate the two regimes p < n and p > n
as well. For both of them, we provide asymptotic expansions in two steps, first with respect toG and
then F in the under-parameterized regime and vice-versa for the over-parameterized regime.

Under-parameterized regime: Deterministic equivalent overG For the variance term, we can
use Eq. (54) with T = G, Σ = F⊤F ,A = F⊤F and obtain

VRFMN ,0 = σ2 · Tr(Z⊤Z(Z⊤Z + λI)−2)

= σ2 · pTr(FG⊤GF⊤(FG⊤GF⊤ + pλI)−2)

= σ2 · pTr(F⊤FG⊤(GF⊤FG⊤ + pλI)−2G)

∼ σ2 · pTr(F⊤F (F⊤F + λ̃I)−2) · 1

n− p
∼ σ2 · Tr((FF⊤)−1) · p

n− p ,

where λ̃ is defined by

λ̃(1− 1

n
d̃f1(λ̃)) ∼

pλ

n
, (66)

where d̃f1(λ̃) and d̃f2(λ̃) are degrees of freedom associated to F⊤F . In the under-parameterized
regime (p < n), when λ goes to zero, we have λ̃→ 0 and d̃f2(λ̃)→ p [1].

For the bias term, we use Eq. (13) with T = G, Σ = F⊤F ,A = θ∗θ
⊤
∗ ,B = F⊤F and then obtain

BRFMN ,0 = Tr(θ⊤∗G
⊤Z(Z⊤Z + λI)−2Z⊤Gθ∗)

= pTr(θ⊤∗G
⊤GF⊤(FG⊤GF⊤ + pλI)−2FG⊤Gθ∗)

= pTr(θ∗θ
⊤
∗G

⊤(GF⊤FG⊤ + pλI)−1GF⊤FG⊤(GF⊤FG⊤ + pλI)−1G)

∼ pTr(θ∗θ⊤∗ (F⊤F + λ̃I)−1F⊤F (F⊤F + λ̃I)−1)

+ pλ̃2Tr(θ∗θ
⊤
∗ (F

⊤F + λ̃I)−2) · Tr(F⊤F (F⊤F + λ̃I)−2) · 1

n− p
∼ pTr(θ∗θ⊤∗F⊤(FF⊤)−2F ) + pTr(θ∗θ

⊤
∗ (I − F⊤(FF⊤)−1F )) · Tr((FF⊤)−1) · 1

n− p .

In the next, we are ready to eliminate the randomness over F .

Under-parameterized regime: deterministic equivalent over F For the variance term, from [1,
Sec 3.2] we know that 1/λp is almost surely the limit of Tr((FF⊤)−1), thus we have

Tr((FF⊤)−1) ∼ 1

λp
,

where λp defined by df1(λp) = p, where df1(λp) and df2(λp) are degrees of freedom associated to
Λ. Hence we can obtain

VRFMN ,0 ∼ σ2 · 1

λp
· p

n− p =
σ2p

λp(n− p)
.
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For the bias term, denote D := FΛ−1/2, we first use Eq. (54) with T = D, Σ = Λ, A =
Λ1/2θ∗θ

⊤
∗Λ

1/2 and obtain the deterministic equivalent of the first term in BRFMN ,0

Tr(θ∗θ
⊤
∗F

⊤(FF⊤)−2F ) = Tr(Λ1/2θ∗θ
⊤
∗Λ

1/2D⊤(DΛD⊤)−2D)

∼ Tr(θ∗θ
⊤
∗Λ(Λ+ λp)

−2) · 1

n− df2(λp)
.

Then we use Eq. (13) with T =D, Σ = Λ,A = Λ1/2θ∗θ
⊤
∗Λ

1/2 and obtain

Tr(θ∗θ
⊤
∗F

⊤(FF⊤)−1F ) = Tr(Λ1/2θ∗θ
⊤
∗Λ

1/2D⊤(DΛD⊤)−1D) ∼ Tr(θ∗θ
⊤
∗Λ(Λ+ λp)

−1) ,

Then the deterministic equivalent of the second term in BRFMN ,0 is given by

Tr(θ∗θ
⊤
∗ (I − F⊤(FF⊤)−1F )) ∼ λpθ⊤∗ (Λ+ λp)

−1θ∗.

Finally, combine the above equivalents and we have

BRFMN ,0 ∼ θ⊤∗Λ(Λ+ λp)
−2θ∗ ·

p

n− df2(λp)
+ θ⊤∗ (Λ+ λp)

−1θ∗ ·
p

n− p

=
p⟨θ∗,Λ(Λ+ λp)

−2θ∗⟩
n− Tr(Λ2(Λ+ λnI)−2)

+
p⟨θ∗, (Λ+ λp)

−1θ∗⟩
n− p .

Over-parameterized regime: deterministic equivalent over F DenoteK := Λ1/2G⊤GΛ1/2,
for the variance term, we use Eq. (54) with T =D, Σ = A =K and obtain

VRFMN ,0 = σ2 · pTr(FG⊤GF⊤(FG⊤GF⊤ + pλI)−2)

= σ2 · pTr(KD⊤(DKD⊤ + pλI)−2D)

∼ σ2 · pTr(K(K + λ̂I)−2) · 1

p− n
∼ σ2 · Tr((GΛG⊤)−1) · p

p− n ,

where λ̂ is defined by

λ̂(1− 1

n
d̂f1(λ̂)) ∼

pλ

n
, (67)

where d̂f1(λ̂) and d̂f2(λ̂) are degrees of freedom associated toK. In the over-parameterized regime
(p > n), when λ goes to zero, we have λ̂→ 0 and d̂f2(λ̂)→ n [1].

For the bias term, we use Eq. (54) with T = D, Σ = K, A = Λ1/2G⊤Gθ∗θ
⊤
∗G

⊤GΛ1/2 and
obtain

BRFMN ,0 = pTr(θ⊤∗G
⊤GF⊤(FG⊤GF⊤ + pλI)−2FG⊤Gθ∗)

= pTr(Λ1/2G⊤Gθ∗θ
⊤
∗G

⊤GΛ1/2D(DKD⊤ + pλI)−2D)

∼ pTr(Λ1/2G⊤Gθ∗θ
⊤
∗G

⊤GΛ1/2(K + λ̂I)−2) · 1

p− n
∼ Tr(θ∗θ

⊤
∗G

⊤(GΛG⊤)−1G) · p

p− n .

Over-parameterized regime: deterministic equivalent overG For the variance term, we have

VRFMN ,0 ∼ σ2 · 1

λn
· p

p− n =
σ2p

λn(p− n)
.

For the bias term, we have

BRFMN ,0 ∼ Tr(θ∗θ
⊤
∗ (Λ+ λn)

−1) · p

p− n
= θ⊤∗ (Λ+ λn)

−1θ∗ ·
p

p− n

=
p⟨θ∗, (Λ+ λn)

−1θ∗⟩
p− n .

Finally, we conclude the proof.
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To build the connection between the test risk and norm for the min-ℓ2-norm estimator for random
features regression, we also need the deterministic equivalent of the test risk as below.
Proposition E.1 (Asymptotic deterministic equivalence of the test risk of the min-ℓ2-norm inter-
polator). Under Assumption 1, for the minimum ℓ2-norm estimator âmin, we have the following
deterministic equivalence: for the under-parameterized regime (p < n), we have

BRFMR,0 ∼
nλp⟨θ∗, (Λ+ λpI)

−1θ∗⟩
n− p , VRFMR,0 ∼

σ2p

n− p ,

where λp is defined by Tr(Λ(Λ+ λpI)
−1) ∼ p. In the over-parameterized regime (p > n), we have

BRFMR,0 ∼
nλ2n⟨θ∗, (Λ+ λnI)

−2θ∗⟩
n− Tr(Λ2(Λ+ λnI)−2)

+
nλn⟨θ∗, (Λ+ λnI)

−1θ∗⟩
p− n ,

VRFMR,0 ∼
σ2Tr(Λ2(Λ+ λnI)

−2)

n− Tr(Λ2(Λ+ λnI)−2)
+

σ2n

p− n ,

where λn is defined by Tr(Λ(Λ+ λnI)
−1) ∼ n.

Proof of Proposition E.1. For the proof, we separate the two regimes p < n and p > n. For both
of them, we provide asymptotic expansions in two steps, first with respect to G and then F in the
under-parameterized regime and vice-versa for the over-parameterized regime.

Under-parameterized regime: deterministic equivalent over G For the variance term, in
the under-parameterized regime, when λ → 0, the variance term will become VRFMR,0 = σ2 ·
Tr(Λ̂F (Z

⊤Z)−1). Accordingly, using [1, Eq. (12)], we have

VRFMR,0 = σ2 · Tr(Λ̂F (Z
⊤Z)−1)

= σ2 · Tr(FF⊤(FG⊤GF⊤)−1)

∼ σ2

n− p · Tr(FF
⊤(FF⊤)−1)

=
σ2p

n− p .

For the bias term, it can be decomposed into
BRFMR,0 = ∥θ∗ − p−1/2F⊤(Z⊤Z + λI)−1Z⊤Gθ∗∥22

= θ⊤∗θ∗ − 2p−1/2θ⊤∗F
⊤(Z⊤Z + λI)−1Z⊤Gθ∗

+ θ⊤∗G
⊤Z(Z⊤Z + λI)−1Λ̂F (Z

⊤Z + λI)−1Z⊤Gθ∗.

For the second term: p−1/2θ⊤∗F
⊤(Z⊤Z + λI)−1Z⊤Gθ∗, we can use Eq. (12) with T = G,

Σ = F⊤F ,A = θ∗θ
⊤
∗F

⊤F and obtain

p−1/2θ⊤∗F
⊤(Z⊤Z + λI)−1Z⊤Gθ∗ = Tr(θ∗θ

⊤
∗F

⊤FG⊤(GF⊤FG⊤ + pλI)−1G)

∼ Tr(θ∗θ
⊤
∗F

⊤F (F⊤F + λ̃I)−1)

∼ Tr(θ∗θ
⊤
∗F

⊤(FF⊤)−1F ) ,

where the implicit regularization parameter λ̃ is defined by Eq. (66).

For the third term: θ⊤∗G
⊤Z(Z⊤Z + λI)−1Λ̂F (Z

⊤Z + λI)−1Z⊤Gθ∗, we can use Eq. (13) with
T = G, Σ = F⊤F ,A = θ∗θ

⊤
∗ ,B = F⊤FF⊤F and obtain

θ⊤∗G
⊤Z(Z⊤Z + λI)−1Λ̂F (Z

⊤Z + λI)−1Z⊤Gθ∗

= Tr(θ∗θ
⊤
∗G

⊤GF⊤(FG⊤GF⊤ + pλI)−1FF⊤(FG⊤GF⊤ + pλI)−1FG⊤G)

= Tr(θ∗θ
⊤
∗G

⊤(GF⊤FG⊤ + pλI)−1GF⊤FF⊤FG⊤(GF⊤FG⊤ + pλI)−1G)

∼ Tr(θ∗θ
⊤
∗ (F

⊤F + λ̃I)−1F⊤FF⊤F (F⊤F + λ̃I)−1)

+ λ̃2Tr(θ∗θ
⊤
∗ (F

⊤F + λ̃I)−2) · Tr(F⊤FF⊤F (F⊤F + λ̃I)−2) · 1

n− p
∼ Tr(θ∗θ

⊤
∗F

⊤(FF⊤)−1F ) + Tr(θ∗θ
⊤
∗ (I − F⊤(FF⊤)−1F )) · p

n− p .
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Combining the above equivalents, we have

BRFMR,0 = θ⊤∗θ∗ − Tr(θ∗θ
⊤
∗F

⊤(FF⊤)−1F ) + Tr(θ∗θ
⊤
∗ (I − F⊤(FF⊤)−1F )) · p

n− p
= θ⊤∗θ∗ ·

n

n− p − Tr(θ∗θ
⊤
∗F

⊤(FF⊤)−1F ) · n

n− p .

Under-parameterized regime: deterministic equivalent over F For the bias term, we can use
Eq. (12) with T =D := FΛ−1/2,A = Λ1/2θ∗θ

⊤
∗Λ

1/2 and obtain

Tr(θ∗θ
⊤
∗F

⊤(FF⊤)−1F ) = Tr(Λ1/2θ∗θ
⊤
∗Λ

1/2D⊤(DΛD⊤)−1D)

∼ Tr(Λ1/2θ∗θ
⊤
∗Λ

1/2(Λ+ λp)
−1)

= θ⊤∗Λ(Λ+ λp)
−1θ∗ .

Thus, we finally obtain

BRFMR,0 ∼ θ⊤∗θ∗ ·
n

n− p − θ
⊤
∗Λ(Λ+ λp)

−1θ∗ ·
n

n− p
= λpθ

⊤
∗ (Λ+ λp)

−1θ∗ ·
n

n− p

=
nλp⟨θ∗, (Λ+ λpI)

−1θ∗⟩
n− p .

Over-parameterized regime: deterministic equivalent over F For the variance term, with
D := FΛ−1/2 andK := Λ1/2G⊤GΛ1/2 we can obtain

VRFMR,0 = σ2 · Tr(Λ̂FZ
⊤Z(Z⊤Z + λI)−2)

= σ2 · Tr(FF⊤FG⊤GF⊤(FG⊤GF⊤ + pλI)−2)

= σ2 · Tr(DΛD⊤DΛ1/2G⊤GΛ1/2D⊤(DΛ1/2G⊤GΛ1/2D⊤ + pλI)−2)

= σ2 · Tr(ΛD⊤(DKD⊤ + pλI)−1DKD⊤(DKD⊤ + pλI)−1D) ,

then we directly use Eq. (13) with T =D, Σ =K,A = Λ,B =K and obtain
Tr(ΛD⊤(DKD⊤ + pλI)−1DKD⊤(DKD⊤ + pλI)−1D)

∼ Tr(Λ(K + λ̂I)−1K(K + λ̂I)−1) + λ̂2Tr(Λ(K + λ̂I)−2) · Tr(K(K + λ̂I)−2) · 1

p− n
∼ Tr(Λ2G⊤(GΛG⊤)−2G)+Tr(Λ(I −Λ1/2G⊤(GΛG⊤)−1GΛ1/2))·Tr((GΛG⊤)−1)· 1

p− n ,

where the implicit regularization parameter λ̂ is defined by Eq. (67).

For the bias term, first we have
p−1/2θ⊤∗F

⊤(Z⊤Z + λI)−1Z⊤Gθ∗ = Tr(θ∗θ
⊤
∗F

⊤(FG⊤GF⊤ + pλI)−1FG⊤G)

= Tr(Λ1/2G⊤Gθ∗θ
⊤
∗Λ

1/2D⊤(DKD⊤ + pλI)−1D) ,

then we use Eq. (12) with T =D, Σ =K,A = Λ1/2G⊤Gθ∗θ
⊤
∗Λ

1/2 and obtain

Tr(Λ1/2G⊤Gθ∗θ
⊤
∗Λ

1/2D⊤(DKD⊤ + pλI)−1D) ∼ Tr(θ∗θ
⊤
∗ΛG

⊤(GΛG⊤)−1G) .

Furthermore, we use Eq. (13) with T =D, Σ =K,A = Λ1/2G⊤Gθ∗θ
⊤
∗G

⊤GΛ1/2,B = Λ and
obtain

θ⊤∗G
⊤Z(Z⊤Z + λI)−1Λ̂F (Z

⊤Z + λI)−1Z⊤Gθ∗

= Tr(Λ1/2G⊤Gθ∗θ
⊤
∗G

⊤GΛ1/2D⊤(DKD⊤ + pλI)−1DΛD⊤(DKD⊤ + pλI)−1D)

∼ Tr(Λ1/2G⊤Gθ∗θ
⊤
∗G

⊤GΛ1/2(K + λ̂I)−1Λ(K + λ̂I)−1)

+ λ̂2Tr(Λ1/2G⊤Gθ∗θ
⊤
∗G

⊤GΛ1/2(K + λ̂I)−2) · Tr(Λ(K + λ̂I)−2) · 1

p− n
∼ Tr(θ∗θ

⊤
∗G

⊤(GΛG⊤)−1GΛ2G⊤(GΛG⊤)−1G)

+ Tr(θ∗θ
⊤
∗G

⊤(GΛG⊤)−1G) · Tr(Λ(I −Λ1/2G⊤(GΛG⊤)−1GΛ1/2)) · 1

p− n .

In the next, we are ready to eliminate the randomness overG.
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Over-parameterized regime: deterministic equivalent over G For the variance term, we use
Eq. (54) to obtain

Tr(Λ2G⊤(GΛG⊤)−2G) ∼ df2(λn)

n− df2(λn)
.

Then we use Eq. (12) to obtain

Tr(Λ2G⊤(GΛG⊤)−1G) ∼ Tr(Λ2(Λ+ λn)
−1),

where λn is defined by df1(λn) = n. Hence we have

Tr(Λ(I −Λ1/2G⊤(GΛG⊤)−1GΛ1/2)) ∼ nλn.
Combine the above equivalents, we have

VRFMR,0 ∼ σ2 · df2(λn)

n− df2(λn)
+ σ2 · n

p− n

=
σ2Tr(Λ2(Λ+ λnI)

−2)

n− Tr(Λ2(Λ+ λnI)−2)
+

σ2n

p− n .

For the bias term, we first use Eq. (12) to obtain

Tr(θ∗θ
⊤
∗ΛG

⊤(GΛG⊤)−1G) ∼ Tr(θ∗θ
⊤
∗Λ(Λ+ λn)

−1) .

Moreover, we use Eq. (13) to obtain

Tr(θ∗θ
⊤
∗G

⊤(GΛG⊤)−1GΛ2G⊤(GΛG⊤)−1G)

∼ Tr(θ∗θ
⊤
∗Λ

2(Λ+ λn)
−2) + λ2n · Tr(θ∗θ⊤∗ (Λ+ λn)

−2) · df2(λn)

n− df2(λn)
.

Accordingly, we finally conclude that

BRFMR,0 ∼ λ2nθ⊤∗ (Λ+ λnI)
−2θ∗ ·

n

n− df2(λn)
+ λnθ

⊤
∗ (Λ+ λnI)

−1θ∗ ·
n

p− n

=
nλ2n⟨θ∗, (Λ+ λnI)

−2θ∗⟩
n− Tr(Λ2(Λ+ λnI)−2)

+
nλn⟨θ∗, (Λ+ λnI)

−1θ∗⟩
p− n .

E.2 Non-asymptotic deterministic equivalence for random features ridge regression

Here we present the proof for the non-asymptotic results on the variance and then discuss the related
results on bias due to the insufficient deterministic equivalence.

E.2.1 Proof on the variance term

Theorem E.2 (Deterministic equivalence of variance part of the ℓ2 norm). Assume the features
{zi}i∈[n] and {fj}j∈[p] satisfy Assumption 1 with a constant C∗ > 0. Then for any D,K > 0,
there exist constant η∗ ∈ (0, 1/2) and C∗,D,K > 0 ensuring the following property holds. For any
n, p ≥ C∗,D,K , λ > 0, if the following condition is satisfied:

λ ≥ n−K , γλ ≥ p−K , ρ̃λ(n, p)
5/2 log3/2(n) ≤ K√n , ρ̃λ(n, p)

2·ργ+(p)7 log4(p) ≤ K
√
p ,

then with probability at least 1− n−D − p−D, we have that∣∣VRFMN ,λ − VRFM
N,λ

∣∣ ≤ Cx,D,K · EV (n, p) · VRFM
N,λ .

where the approximation rate is given by

EV (n, p) :=
ρ̃λ(n, p)

6 log5/2(n)√
n

+
ρ̃λ(n, p)

2 · ργ+(p)7 log3(p)√
p

.
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Proof of Theorem E.2. First, note that VRFMN ,λ can be written in terms of the functional Φ4 defined in
Eq. (37):

VRFMN ,λ = σ2 · nΦ4(Z; Λ̂−1
F , λ).

Recall that AF is the event defined in [14, Eq. (79)]. Under the assumptions, we have

P(AF ) ≥ 1− p−D.
Hence, applying Proposition B.10 for F ∈ AF and via union bound, we obtain that with probability
at least 1− p−D − n−D,∣∣∣nΦ4(Z; Λ̂−1

F , λ)− nΦ̃5(F ; Λ̂−1
F , pν1)

∣∣∣ ≤ C∗,D,K · E1(p, n) · nΦ̃5(F ; Λ̂−1
F , pν1), (68)

and we recall the expressions

nΦ̃5(F ; Λ̂−1
F , pν1) =

Φ̃6(F ; Λ̂−1
F , pν1)

n− Φ̃6(F ; I, pν1)
, Φ̃6(F ; Λ̂−1

F , pν1) = pTr
(
FF⊤(FF⊤ + pν1)

−2
)
.

From [14, Lemma B.11], we have with probability at least 1− p−D∣∣pTr(FF⊤(FF⊤ + pν1)
−2)− p2Ψ3(ν2;Λ

−1)
∣∣ ≤ C∗,D,K · ργ+(p) · E3(p) · p2Ψ3(ν2;Λ

−1) ,

where the approximation rate E3(p) is given by

E3(p) :=
ργ+(p)

6 log3(p)
√
p

.

Furthermore, from the proof of [14, Theorem B.12], we have with probability at least 1− p−D,∣∣∣(1− n−1Φ̃6(F ; I, pν1))
−1 − (1−Υ(ν1, ν2))

−1
∣∣∣ ≤ C∗,D,K ·ρ̃λ(n, p)ργ+(p)E3(p)·(1−Υ(ν1, ν2))

−1.

Combining those two bounds, we obtain∣∣∣∣∣ Φ̃6(F ; Λ̂−1
F , pν1)

n− Φ̃6(F ; I, pν1)
− p2Ψ3(ν2;Λ

−1)

n− nΥ(ν1, ν2)

∣∣∣∣∣ ≤ C∗,D,K · ρ̃λ(n, p)ργ+(p)E3(p) ·
p2Ψ3(ν2;Λ

−1)

n− nΥ(ν1, ν2)
.

Finally, we can combine this bound with Eq. (68) to obtain via union bound that with probability at
least 1− n−D − p−D,∣∣∣∣nΦ4(Z; Λ̂−1

F , λ)− p
2Ψ3(ν2;Λ

−1)

n− nΥ(ν1, ν2)

∣∣∣∣≤C∗,D,K
{
E1(p, n)+ρ̃λ(n, p)ργ+(p)E3(p)

} p2Ψ3(ν2;Λ
−1)

n− nΥ(ν1, ν2)
.

Replacing the rate Ej by their expressions conclude the proof of this theorem.

E.2.2 Discussion on the bias term

We present the deterministic equivalence of the bias term as an informal result, without a Existing
deterministic equivalence results appear insufficient to directly establish this desired bias result.
While we believe this is doable under additional assumptions, a complete proof is beyond the scope
of this paper..

In the proof of the bias term, deterministic equivalences for functionals of the form

Tr
(
A
(
X⊤X

)2
(X⊤X + λ)−2

)
are required. However, such equivalences are currently unavailable, necessitating the introduction of
technical assumptions to leverage the deterministic equivalences of Φ2(X;A, λ) and Φ4(X;A, λ).

Furthermore, the proof of the bias term in [14] suggests that deriving deterministic equivalences for
the bias of the ℓ2 norm, analogous to [14, Proposition B.7], is also required but remains unresolved.

Addressing these gaps in deterministic equivalence is an important direction for future work, particu-
larly to establish rigorous proofs for the currently missing results.
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E.3 Proofs on relationship in RFMs

To derive the relationship between test risk and norm for the random feature model, we first examine
the linear relationship in the over-parameterized regime. Next, we analyze the case where Λ = Im
with n < m <∞ (finite rank), followed by the relationship under the power-law assumption.

E.3.1 Proof for min-norm interpolator in the over-parameterized regime

According to the formulation in Corollary 3.2 and Proposition E.1, we have for the under-
parameterized regime (p < n), we have

BRFMN ,0 ∼BRFM
N,0 =

p⟨θ∗,Λ(Λ+ λpI)
−2θ∗⟩

n− Tr(Λ2(Λ+ λpI)−2)
+
p⟨θ∗, (Λ+ λpI)

−1θ∗⟩
n− p ,

VRFMN ,0 ∼VRFM
N,0 =

σ2p

λp(n− p)
,

BRFMR,0 ∼ BRFM
R,0 =

nλp⟨θ∗, (Λ+ λpI)
−1θ∗⟩

n− p , VRFMR,0 ∼ VRFM
R,0 =

σ2p

n− p .

In the over-parameterized regime (p > n), we have

BRFMN ,0 ∼ BRFM
N,0 =

p⟨θ∗, (Λ+ λnI)
−1θ∗⟩

p− n , VRFMN ,0 ∼ VRFM
N,0 =

σ2p

λn(p− n)
,

BRFMR,0 ∼ BRFM
R,0 =

nλ2n⟨θ∗, (Λ+ λnI)
−2θ∗⟩

n− Tr(Λ2(Λ+ λnI)−2)
+
nλn⟨θ∗, (Λ+ λnI)

−1θ∗⟩
p− n ,

VRFMR,0 ∼ VRFM
R,0 =

σ2Tr(Λ2(Λ+ λnI)
−2)

n− Tr(Λ2(Λ+ λnI)−2)
+

σ2n

p− n .

With these formulations we can introduce the relationship between test risk and norm in the over-
parameterized regime as follows.

Proof of Proposition 4.1. In the over-parameterized regime (p > n), we have

NRFM
0 = BRFM

N,0 + VRFM
N,0 =

p⟨θ∗, (Λ+ λnI)
−1θ∗⟩

p− n
+

σ2p

λn(p− n)
=

[
⟨θ∗, (Λ+ λnI)

−1θ∗⟩+
σ2

λn

]
p

p− n
.

RRFM
0 =

nλ2
n⟨θ∗, (Λ+ λnI)

−2θ∗⟩
n− Tr(Λ2(Λ+ λnI)−2)

+
nλn⟨θ∗, (Λ+ λnI)

−1θ∗⟩
p− n

+
σ2Tr(Λ2(Λ+ λnI)

−2)

n− Tr(Λ2(Λ+ λnI)−2)
+

σ2n

p− n

=
nλ2

n⟨θ∗, (Λ+ λnI)
−2θ∗⟩+σ2Tr(Λ2(Λ+ λnI)

−2)

n− Tr(Λ2(Λ+ λnI)−2)
+
[
nλn⟨θ∗, (Λ+ λnI)

−1θ∗⟩+ σ2n
] 1

p− n
.

Then we eliminate p and obtain that the deterministic equivalents of the estimator’s test risk and
norm, RRFM

0 and NRFM
0 , in over-parameterized regimes (p > n) admit

RRFM
0 =λnN

RFM
0 −

[
λn⟨θ∗, (Λ+ λnI)

−1θ∗⟩+ σ2]+ nλ2
n⟨θ∗, (Λ+ λnI)

−2θ∗⟩+ σ2Tr(Λ2(Λ+ λnI)
−2)

n− Tr(Λ2(Λ+ λnI)−2)
.

E.3.2 Isotropic features with finite rank

Corollary E.3 (Isotropic features for min-ℓ2-norm interpolator). Consider covariance matrix Λ =
Im (n < m <∞), in the over-parameterized regime (p > n), the deterministic equivalents RRFM

0 and
NRFM

0 specifies the linear relationship in Eq. (5) as RRFM
0 = m−n

n NRFM
0 + 2n−m

m−n σ
2.

While in the under-parameterized regime (p < n), we focus on bias and variance separately

Variance:
(
VRFM
R,0

)2
=
m− n
n

VRFM
R,0V

RFM
N,0 +

mσ2

n
VRFM
N,0 ,

Bias: (m− n)BRFM
N,0(mBRFM

R,0 − n∥θ∗∥22)(m(BRFM
R,0)

2 − n∥θ∗∥42)
= nm(BRFM

R,0 − ∥θ∗∥22)2[m(BRFM
R,0)

2 + n∥θ∗∥22BRFM
R,0 − 2n∥θ∗∥42].
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Remark: In the under-parameterized regime, VRFM
R,0 and VRFM

N,0 are related by a hyperbola, the asymptote
of which is VRFM

R,0 = m−n
n VRFM

N,0 + m
m−nσ

2. Further, for p → n, we have BRFM
R,0 ≈ m−n

n BRFM
R,0 +

2(m−n)
m ∥θ∗∥22, see discussion in Appendix E.3.

Next we present the proof of Corollary E.3 with Λ = Im.

Proof of Corollary E.3. Here we consider the case where Λ = Im. Under this condition, the
definitions of λp and λn above are simplified to m

1+λp
= p and m

1+λn
= n, respectively. Consequently,

λp and λn have explicit expressions given by λp = m−p
p and λn = m−n

n , respectively.

First, in the over-parameterized regime (p > n), we have

BRFM
N,0 =

p 1
1+λn

∥θ∗∥22
p− n =

np

m(p− n)∥θ∗∥
2
2 , VRFM

N,0 =
σ2p

λn(p− n)
=

σ2np

(m− n)(p− n) .

BRFM
R,0 =

nλ2n
1

(1+λn)2
∥θ∗∥22

n− m
(1+λn)2

+
nλn

1
1+λn

∥θ∗∥22
p− n =

p(m− n)
m(p− n)∥θ∗∥

2
2 ,

VRFM
R,0 =

σ2 m
(1+λn)2

n− m
(1+λn)2

+
σ2n

p− n =
σ2n

m− n +
σ2n

p− n .

We eliminate p and obtain that the relationship between VRFM
R,0 and VRFM

N,0 is

VRFM
R,0 =

m− n
n

VRFM
N,0 +

2n−m
m− n σ

2 .

similarly, the relationship between BRFM
R,0 and BRFM

N,0 is

BRFM
R,0 =

m− n
n

BRFM
N,0 .

Combining the above two relationship, we obtain the relationship between test risk RRFM
0 and norm

NRFM
0 as

RRFM
0 =

m− n
n

NRFM
0 +

2n−m
m− n σ

2.

Accordingly, in the under-parameterized regime (p < n), we have

BRFM
N,0 =

p 1
(1+λp)2

∥θ∗∥22
n− m

(1+λp)2
+
p 1
1+λp

∥θ∗∥22
n− p =

p

m

(
p2

nm− p2 +
p

n− p

)
∥θ∗∥22 ,

VRFM
N,0 =

σ2p

λp(p− n)
=

σ2p2

(m− p)(n− p) .

BRFM
R,0 =

nλp
1

1+λp
∥θ∗∥22

n− p =
n(m− p)
m(n− p)∥θ∗∥

2
2 , VRFM

R,0 =
σ2p

n− p .

Then we eliminate p and obtain that, in the under-parameterized regime (p < n), the relationship
between VRFM

R,0 and VRFM
N,0 is

VRFM
R,0 =

(m− n)VRFM
N,0 +

√
(m− n)2(VRFM

N,0)
2 + 4nmσ2VRFM

N,0

2n
,

which can be further simplified as a hyperbolic function(
VRFM
R,0

)2
=
m− n
n

VRFM
R,0V

RFM
N,0 +

mσ2

n
VRFM
N,0 ,

and the asymptote of this hyperbola is VRFM
R,0 = m−n

n VRFM
N,0 +

m
m−nσ

2.
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Besides, we eliminate p and obtain the relationship between BRFM
R,0 and BRFM

N,0 as

∥θ∗∥62n2

(
2∥θ∗∥22 + BRFM

N,0 −
BRFM
N,0n

m

)
m

=(BRFM
R,0)

4n+ (BRFM
R,0)

2∥θ∗∥22n
(
∥θ∗∥22 + BRFM

N,0 −
4∥θ∗∥22n

m
−

BRFM
N,0n

m

)
+ BRFM

R,0∥θ∗∥42n
(
BRFM

N,0 +
5∥θ∗∥22n

m
−

BRFM
N,0n

m

)
+ (BRFM

R,0)
3

(
−BRFM

N,0m− 2∥θ∗∥22n+ BRFM
N,0n+

∥θ∗∥22n2

m

)
,

which can be simplified to

BRFM
N,0(m− n)(mBRFM

R,0 − n∥θ∗∥22)(m(BRFM
R,0)

2 − n∥θ∗∥42)
= nm(BRFM

R,0 − ∥θ∗∥22)2(m(BRFM
R,0)

2 − 2n∥θ∗∥42 + n∥θ∗∥22BRFM
R,0) .

We can find that in this case, the relationship can be easily written as

BRFM
N,0 =

nm(BRFM
R,0 − ∥θ∗∥22)2(m(BRFM

R,0)
2 − 2n∥θ∗∥42 + n∥θ∗∥22BRFM

R,0)

(m− n)(mBRFM
R,0 − n∥θ∗∥22)(m(BRFM

R,0)
2 − n∥θ∗∥42)

.

Next we will show that when p → n, which also implies that BRFM
N,0 → ∞ and BRFM

R,0 → ∞, this
relationship is approximately linear.

Recall that the relationship between BRFM
R,0 and BRFM

N,0 is given by BRFM
R,0 = (m−n)

n BRFM
N,0, and is equivalent

to BRFM
N,0 = n

(m−n)B
RFM
R,0 := f(BRFM

R,0). We then do a difference and get

BRFM
N,0 − f(BRFM

R,0) =
nm(BRFM

R,0 − ∥θ∗∥22)2(m(BRFM
R,0)

2 − 2n∥θ∗∥42 + n∥θ∗∥22BRFM
R,0)

(m− n)(mBRFM
R,0 − n∥θ∗∥22)(m(BRFM

R,0)
2 − n∥θ∗∥42)

− n

m− nB
RFM
R,0 ,

then take BRFM
R,0 →∞ and we get

lim
BRFM
R,0→∞

BRFM
N,0 − f(BRFM

R,0) = −
2n

m
∥θ∗∥22 .

Finally, organizing this equation and we get

BRFM
R,0 ≈

m− n
n

BRFM
N,0 +

2(m− n)
m

∥θ∗∥22 .

E.3.3 Proof on features under power law assumption

Proof of Corollary 4.2. First, we use integral approximation to give approximations to some quanti-
ties commonly used in deterministic equivalence to prepare for the subsequent derivations.

According to the integral approximation in [53, Lemma 1], we have

Tr(Λ(Λ+ν2)
−1)≈C1ν

− 1
α

2 , Tr(Λ2(Λ+ν2)
−2)≈C2ν

− 1
α

2 , Tr(Λ(Λ+ν2)
−2)≈(C1−C2)ν

− 1
α
−1

2 , (69)

where C1 and C2 are

C1 =
π

α sin (π/α)
, C2 =

π(α− 1)

α2 sin (π/α)
, with C1 > C2 . (70)

Besides, according to definition of T (ν) Appendix B.5, we have

⟨θ∗, (Λ+ ν2)
−1θ∗⟩ = T 1

2r,1(ν2) ≈ C3ν
(2r−1)∧0
2 ,

⟨θ∗,Λ(Λ+ ν2)
−2θ∗⟩ = T 1

2r+1,2(ν2) ≈ C4ν
(2r−1)∧0
2 .

When r ∈ (0, 12 ), according to the integral approximation, we have

C3 =
π

α sin(2πr)
, C4 =

2πr

α sin(2πr)
, with C3 > C4. (71)
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Otherwise, if r ∈ [ 12 ,∞), we have
1

α(2r − 1)
< C3 <

1

α(2r − 1)
+ 1 ,

1

α(2r − 1)
< C4 <

1

α(2r − 1)
+ 1 , with C3 > C4.

For ⟨θ∗, (Λ+ ν2)
−2θ∗⟩, we have to discuss its approximation in the case r ∈ (0, 12 ), r ∈ [ 12 , 1) and

r ∈ [ 12 ,∞) separately.

⟨θ∗, (Λ+ ν2)
−2θ∗⟩ ≈


(C3 − C4)ν

2r−2
2 , if r ∈ (0, 12 ) ;

C5ν
2r−2
2 , if r ∈ [ 12 , 1) ;

C6, if r ∈ [1,∞) ,

where 1
2α(r−1) < C6 <

1
2α(r−1) + 1.

With the results of the integral approximation above, we next derive the relationship between RRFM
0

and NRFM
0 separately in over-parameterized regime (p > n) and under-parameterized regime

(p < n).

The relationship in over-parameterized regime (p > n) According to the self-consistent equation

1 +
n

p
−
√(

1− n

p

)2

+
4λ

pν2
=

2

p
Tr
(
Λ (Λ+ ν2)

−1
)
,

ν1 =
ν2
2

1− n

p
+

√(
1− n

p

)2

+
4λ

pν2

 ,
In the over-parameterized regime (p > n), as λ→ 0, for the first equation, 4λ

pν2
will approach 0, and

Tr(Λ(Λ+ ν2)
−1) will converge to n. Consequently, by Eq. (69), ν2 will converge to the constant

( nC1
)−α. Furthermore, from the second equation, ν1 will converge to ν2(1− n

p ). Thus, according to
Eq. (69), we have

Tr(Λ(Λ+ ν2)
−1) ≈ n, Tr(Λ2(Λ+ ν2)

−2) ≈ C2

C1
n, Tr(Λ(Λ+ ν2)

−2) ≈ (C1 − C2)(
n

C1
)α+1.

Thus, in the over-parameterized regime

Υ(ν1, ν2) =
p

n

[(
1− ν1

ν2

)2

+

(
ν1
ν2

)2 Tr
(
Λ2(Λ+ ν2)

−2
)

p− Tr (Λ2(Λ+ ν2)−2)

]

≈ p

n

[(
n

p

)2

+

(
1− n

p

)2 Tr
(
Λ2(Λ+ ν2)

−2
)

p− Tr (Λ2(Λ+ ν2)−2)

]

≈
C2

C1
p− 2C2

C1
n+ n

p− C2

C1
n

,

χ(ν2) =
Tr(Λ(Λ+ ν2)

−2)

p− Tr(Λ2(Λ+ ν2)−2)
≈

(C1 − C2)(
n
C1

)α+1

p− C2

C1
n

.

According to the approximation, we have the deterministic equivalents of variance terms

VRFM
R,0 = σ2 Υ(ν1, ν2)

1−Υ(ν1, ν2)
≈ σ2 (C1 − 2C2)n+ C2p

(C1 − C2)(p− n)
,

VRFM
N,0 = σ2 p

n

χ(ν2)

1−Υ(ν1, ν2)
≈ σ2

( nC1
)αp

p− n .

Then recall Eq. (70), we eliminate p and obtain

VRFM
R,0 ≈

(
n

C1

)−α

VRFM
N,0 + σ2 2C2 − C1

C1 − C2
=

(
n

C1

)−α

VRFM
N,0 + σ2(α− 2) . (72)

For the bias terms, due to the varying approximation behaviors of the quantities containing θ∗ for
different values of r, we have to discuss their approximations in the conditions r ∈ (0, 12 ), r ∈ [ 12 , 1)

and r ∈ [ 12 ,∞) separately.
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Condition 1: r ∈ (0, 12 )

BRFM
R,0 =

ν22
1−Υ(ν1, ν2)

[
⟨θ∗, (Λ+ ν2)

−2θ∗⟩+ χ(ν2)⟨θ∗,Λ(Λ+ ν2)
−2θ∗⟩

]
≈

(
n
C1

)−2αr

((C1C4 − C2C3)n+ C1(C3 − C4)p)

(C1− C2)(p− n) ,

BRFM
N,0 =

ν2
ν1
⟨θ∗, (Λ+ ν2)

−1θ∗⟩ −
λ

n

ν22
ν21

⟨θ∗, (Λ+ ν2)
−2θ∗⟩+ χ(ν2)⟨θ∗,Λ(Λ+ ν2)

−2θ∗⟩
1−Υ(ν1, ν2)

≈ ν2
ν1
⟨θ∗, (Λ+ ν2)

−1θ∗⟩

≈

(
n
C1

)−α(2r−1)

C3p

p− n .

Then we eliminate p and obtain

BRFM
R,0 ≈

(
n

C1

)−α

BRFM
N,0 +

(
n

C1

)−2αr
C2C3 − C1C4

C1 − C2
. (73)

Condition 2: r ∈ [ 12 , 1)

BRFM
R,0 =

ν22
1−Υ(ν1, ν2)

[
⟨θ∗, (Λ+ ν2)

−2θ∗⟩+ χ(ν2)⟨θ∗,Λ(Λ+ ν2)
−2θ∗⟩

]

≈

(
n
C1

)−α(
C1

(
C4n+ C5

(
n
C1

)−α(2r−1)

p

)
− C2n

(
C4 + C5

(
n
C1

)−α(2r−1)
))

(C1− C2)(p− n) ,

BRFM
N,0 = ⟨θ∗,Λ(Λ+ ν2)

−2θ∗⟩ ·
p

p− df2(ν2)

+
p

n
ν22
(
⟨θ∗, (Λ+ ν2)

−2θ∗⟩+ χ(ν2)⟨θ∗,Λ(Λ+ ν2)
−2θ∗⟩

)
· χ(ν2)

1−Υ(ν1, ν2)

≈

(
C4 + C5

(
n
C1

)−α(2r−1)
)
p

p− n .

Then we eliminate p and obtain

BRFM
R,0 ≈

(
n

C1

)−α

BRFM
N,0 +

(
n

C1

)−α −C1C4 + C2C4 + C2C5

(
n
C1

)−α(2r−1)

C1 − C2

≈
(
n

C1

)−α

BRFM
N,0 −

(
n

C1

)−α

C4 .

The last “≈” holds because
(
n
C1

)−α(2r−1)

= o(1).
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Condition 3: r ∈ [1,∞)

BRFM
R,0 =

ν22
1−Υ(ν1, ν2)

[
⟨θ∗, (Λ+ ν2)

−2θ∗⟩+ χ(ν2)⟨θ∗,Λ(Λ+ ν2)
−2θ∗⟩

]
≈

(
n
C1

)−2α (
C1

(
C4n

(
n
C1

)α
+ C6p

)
− C2n

(
C6 + C4

(
n
C1

)α))
(C1− C2)(p− n) ,

BRFM
N,0 = ⟨θ∗,Λ(Λ+ ν2)

−2θ∗⟩ ·
p

p− df2(ν2)

+
p

n
ν22
(
⟨θ∗, (Λ+ ν2)

−2θ∗⟩+ χ(ν2)⟨θ∗,Λ(Λ+ ν2)
−2θ∗⟩

)
· χ(ν2)

1−Υ(ν1, ν2)

≈

(
C4 + C6

(
n
C1

)−α)
p

p− n .

Then we eliminate p and obtain

BRFM
R,0 ≈

(
n

C1

)−α

BRFM
N,0 +

(
n

C1

)−α −C1C4 + C2C4 + C2C6

(
n
C1

)−α
C1 − C2

≈
(
n

C1

)−α

BRFM
N,0 −

(
n

C1

)−α

C4 .

The last “≈” holds because
(
n
C1

)−α(2r−1)

= o(1).

Combining the above condition r ∈ [ 12 , 1) and r ∈ [1,∞), we have for r ∈ [ 12 ,∞)

BRFM
R,0 ≈

(
n

C1

)−α

BRFM
N,0 −

(
n

C1

)−α

C4 . (74)

From Eqs. (72) to (74), we know that the relationship between RRFM
0 and NRFM

0 in the over-parameterized
regime can be written as

RRFM
0 ≈ (n/Cα)

−α NRFM
0 + Cn,α,r,1 .

The relationship in under-parameterized regime (p < n) While in the under-parameterized
regime (p < n), When λ→ 0, Tr(Λ(Λ+ ν2)

−1) will converge to p, which means ν2 will converge
to ( pC1

)−α and ν1 will converge to 0, with λ
ν1
→ n− p.

Accordingly, in the under-parameterized regime

Υ(ν1, ν2) =
p

n

[(
1− ν1

ν2

)2

+

(
ν1
ν2

)2 Tr
(
Λ2(Λ+ ν2)

−2
)

p− Tr (Λ2(Λ+ ν2)−2)

]
→ p

n
,

χ(ν2) =
Tr
(
Λ(Λ+ ν2)

−2
)

p− Tr (Λ2(Λ+ ν2)−2)
→ 1

ν2
≈ (

p

C1
)α .

Then we can further obtain that, for the variance

VRFM
R,0 = σ2 Υ(ν1, ν2)

1−Υ(ν1, ν2)
≈ σ2 p

n− p ,

VRFM
N,0 = σ2 p

n

χ(ν2)

1−Υ(ν1, ν2)
≈ σ2C−α

1

pα+1

n− p .

For the relationship in the under-parameterized regime, we separately consider two cases, i.e. p≪ n
and p→ n.
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First, we derive the relationship in the under-parameterized regime (p < n) as p→ n, based on the
relationship in the over-parameterized regime. Recall the relationship between VRFM

R,0 and VRFM
N,0 in the

over-parameterized regime, as presented in Eq. (72), given by

VRFM
R,0 ≈

(
n

C1

)−α

VRFM
N,0 + σ2(α− 2) =: h(VRFM

N,0) .

Substituting the expression for VRFM
N,0 in the under-parameterized regime into this relationship, we

obtain

VRFM
R,0 ≈

(
n

C1

)−α

σ2C−α
1

pα+1

n− p + σ2(α− 2) ,

then we compute VRFM
R,0 − h(VRFM

N,0) and obtain

VRFM
R,0 − h(VRFM

N,0) = σ2 p

n− p −
(
n

C1

)−α

σ2C−α
1

pα+1

n− p − σ
2(α− 2)

= σ2

(
p− pα+1n−α

n− p

)
− σ2(α− 2) .

Taking limits on the left and right sides of the equation, we get

lim
p→n

(
VRFM
R,0 − h(VRFM

N,0)
)
= 2σ2 .

Then when p→ n, we have

VRFM
R,0 ≈

(
n

C1

)−α

VRFM
N,0 + σ2α . (75)

For p≪ n, we have 1
n−p ≈ 1

n , then

VRFM
R,0 = σ2 Υ(ν1, ν2)

1−Υ(ν1, ν2)
≈ σ2 p

n
,

VRFM
N,0 = σ2 p

n

χ(ν2)

1−Υ(ν1, ν2)
≈ σ2C−α

1

pα+1

n
.

Eliminate p and we have
VRFM
R,0 ≈

(
σ2
) α

α+1 C
α

α+1

1

(
VRFM
R,0

) 1
α+1 .

Next, for the bias term we have

BRFM
R,0 =

ν22
1−Υ(ν1, ν2)

[
⟨θ∗, (Λ+ ν2)

−2θ∗⟩+ χ(ν2)⟨θ∗,Λ(Λ+ ν2)
−2θ∗⟩

]
≈ ν2

1−Υ(ν1, ν2)
⟨θ∗, (Λ+ ν2)

−1θ∗⟩

≈ n

n− pC3ν
2r∧1
2 .

BRFM
N,0 = p⟨θ∗,Λ(Λ+ ν2)

−2θ∗⟩ ·
1

p− df2(ν2)

+
p

n
χ(ν2)

ν22
1−Υ(ν1, ν2)

[
⟨θ∗, (Λ+ ν2)

−2θ∗⟩+ χ(ν2)⟨θ∗,Λ(Λ+ ν2)
−2θ∗⟩

]
≈ p⟨θ∗,Λ(Λ+ ν2)

−2θ∗⟩ ·
1

p− df2(ν2)
+
p

n
χ(ν2)

ν2
1−Υ(ν1, ν2)

⟨θ∗, (Λ+ ν2)
−1θ∗⟩

≈ p

p− C2

C1
p
C4ν

(2r−1)∧0
2 +

p

n− pC3ν
(2r−1)∧0
2

≈
(

C1C4

C1 − C2
+

p

n− pC3

)
ν
(2r−1)∧0
2 .

Then we use the approximation ν2 ≈ ( pC1
)−α and obtain

BRFM
R,0 ≈

n

n− pC3ν
2r∧1
2 ≈ n

n− pC3

(
p

C1

)−α(2r∧1)

,
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BRFM
N,0 ≈

(
C1C4

C1 − C2
+

p

n− pC3

)
ν
(2r−1)∧0
2 ≈

(
C1C4

C1 − C2
+

p

n− pC3

)(
p

C1

)−α[(2r−1)∧0]

.

Similarly to the bias term, we derive the relationship in the under-parameterized regime (p < n) as
p→ n, based on the relationship in the over-parameterized regime. And we discuss the relationship
when r ∈ (0, 12 ) and r ∈ [ 12 ,∞) separately.

Condition 1: r ∈ (0, 12 ). Recall the relationship between BRFM
R,0 and BRFM

N,0 in the over-parameterized
regime, as presented in Eq. (73), given by:

BRFM
R,0 =

(
n

C1

)−α

BRFM
N,0 +

(
n

C1

)−2αr
C2C3 − C1C4

C1 − C2
=: f(BRFM

N,0).

Substituting the expression for BRFM
N,0 in the under-parameterized regime into this relationship, we

obtain:

f(BRFM
N,0) =

(
n

C1

)−α(
C1C4

C1 − C2
+

p

n− pC3

)(
p

C1

)−α(2r−1)

+

(
n

C1

)−2αr
C2C3 − C1C4

C1 − C2
,

then we compute BRFM
R,0 − f(BRFM

N,0) and obtain

BRFM
R,0 − f(BRFM

N,0) = C2αr
1

( n

n− pC3p
−2αr − C1C4

C1 − C2
p−α(2r−1)n−α

− p

n− pC3p
−α(2r−1)n−α − C2C3 − C1C4

C1 − C2
n−2αr

)
.

To simplify this equation, we begin by computing n
n−pC3p

−2αr − p
n−pC3p

−α(2r−1)n−α and obtain

n

n− pC3p
−2αr − p

n− pC3p
−α(2r−1)n−α = C3p

−α(2r−1)

(
n

n− pp
−α − p

n− pn
−α
)

= C3p
−α(2r−1)np

−α − pn−α

n− p ,

where np−α−pn−α

n−p is monotonically decreasing in p (monotonicity can be obtained by simple deriva-
tives), and by applying L’Hôpital’s rule, we have:

lim
p→n

np−α − pn−α

n− p = lim
p→n

−αnp−α−1 − n−α
−1 = (α+ 1)n−α.

Thus we have

lim
p→n

C3p
−α(2r−1)np

−α − pn−α

n− p = (α+ 1)C3n
−2αr.

Thus we have

lim
p→n

C2αr
1

(
C3p

−α(2r−1)np
−α − pn−α
n− p − C1C4

C1 − C2
p−α(2r−1)n−α − C2C3 − C1C4

C1 − C2
n−2αr

)
= C2αr

1

(
(α+ 1)C3n

−2αr − C1C4

C1 − C2
n−2αr − C2C3 − C1C4

C1 − C2
n−2αr

)
= C2αr

1 C3n
−2αr

(
(α+ 1)− C2

C1 − C2

)
.

Recall that from Eq. (70) we have

C1 =
π

α sin (π/α)
, C2 =

π(α− 1)

α2 sin (π/α)
,

thus

(α+ 1)− C2

C1 − C2
= (α+ 1)−

π(α−1)
α2 sin(π/α)

π
α sin(π/α) −

π(α−1)
α2 sin(π/α)

= 2.
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Finally, we have

lim
p→n

(
BRFM
R,0 − f(BRFM

N,0)
)
= 2C2αr

1 C3n
−2αr = 2C3

(
n

C1

)−2αr

,

and then the relationship between BRFM
R,0 and BRFM

N,0 is

BRFM
R,0 ≈

(
n

C1

)−α

BRFM
N,0 +

(
n

C1

)−2αr
C2C3 − C1C4

C1 − C2
+ 2C3

(
n

C1

)−2αr

≈
(
n

C1

)−α

BRFM
N,0 +

(
n

C1

)−2αr
2C1C3 − C2C3 − C1C4

C1 − C2
.

(76)

Condition 2: r ∈ [ 12 ,∞). In this condition, the approximation of BRFM
R,0 and BRFM

N,0 can be simplified
to

BRFM
R,0 ≈

n

n− pC3ν
2r∧1
2 ≈ n

n− pC3

(
p

C1

)−α(2r∧1)

=
n

n− pC3

(
p

C1

)−α

,

BRFM
N,0 ≈

(
C1C4

C1 − C2
+

p

n− pC3

)
ν
(2r−1)∧0
2

≈
(

C1C4

C1 − C2
+

p

n− pC3

)(
p

C1

)−α[(2r−1)∧0]

=
C1C4

C1 − C2
+

p

n− pC3 .

Recall the relationship between BRFM
R,0 and BRFM

N,0 in the over-parameterized regime is presented in
Eq. (74), given by:

BRFM
R,0 ≈

(
n

C1

)−α

BRFM
N,0 −

(
n

C1

)−α

C4 =: g(BRFM
N,0) .

Substituting the expression for BRFM
N,0 in the under-parameterized regime into this relationship, we

obtain:

g(BRFM
N,0) =

(
n

C1

)−α(
C1C4

C1 − C2
+

p

n− pC3

)
−
(
n

C1

)−α

C4 ,

then we compute BRFM
R,0 − g(BRFM

N,0) and obtain

BRFM
R,0 − g(BRFM

N,0) = C3C
α
1

np−α − pn−α

n− p −
(
n

C1

)−α(
C2C4

C1 − C2

)
.

Thus we have

lim
p→n

(
BRFM
R,0 − f(BRFM

N,0)
)
=

(
n

C1

)−α(
(α+ 1)C3 −

C2C4

C1 − C2

)
≈
(
n

C1

)−α(
(α+ 1)C4 −

C2

C1 − C2
C4

)
=

(
n

C1

)−α

2C4 ,

and the relationship between BRFM
R,0 and BRFM

N,0 is

BRFM
R,0 ≈

(
n

C1

)−α

BRFM
N,0 −

(
n

C1

)−α

C4 +

(
n

C1

)−α

2C4

≈
(
n

C1

)−α

BRFM
N,0 +

(
n

C1

)−α

C4 .

(77)

When p≪ n, we discuss cases r ∈ (0, 12 ) and r ∈ ( 12 ,∞) separately.
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If r ∈ (0, 12 ), we have n
n−p ≈ 1 and p

n−p ≈ 0, then

BRFM
R,0 ≈ C3ν

2r∧1
2 ≈ C3

(
p

C1

)−α2r

,

BRFM
N,0 ≈

C1C4

C1 − C2
ν
(2r−1)∧0
2 ≈ C1C4

C1 − C2

(
p

C1

)−α(2r−1)

.

Then we eliminate p and obtain

BRFM
R,0 ≈ C3

(
C1 − C2

C1C4

)2r/(2r−1) (
BRFM
N,0

)2r/(2r−1)
.

If 2r ≥ 1, we have

BRFM
R,0 ≈

n

n− pC3ν2 ≈
n

n− pC3

(
p

C1

)−α

,

BRFM
N,0 ≈

C1C4

C1 − C2
+

p

n− pC3.

Then we eliminate p and obtain

BRFM
R,0 ≈

(
C1C3 − C2C3 − C1C4

C1 − C2
+ BRFM

N,0

) n
(
BRFM
N,0 − C1C4

C1−C2

)
C1

(
C3 + BRFM

N,0 − C1C4

C1−C2

)
−α

.

From Eqs. (75) to (77), we know that the relationship between RRFM
0 and NRFM

0 in the under-
parameterized regime when p→ n can be written as

RRFM
0 ≈ (n/Cα)

−α NRFM
0 + Cn,α,r,2 .

F Scaling laws

To derive the scaling laws based on norm-based capacity, we first give the decay rate of the ℓ2 norm
w.r.t. n.

The rate of the deterministic equivalent of the random feature ridge regression estimator’s ℓ2 norm is
given by

NRFM
λ = Θ

(
n
−γBRFM

N,λ + σ2n
−γVRFM

N,λ

)
= Θ

(
n
−γNRFM

λ

)
,

where γNRFM
λ

:= γBRFM
N,λ
∧ γVRFM

N,λ
for σ2 ̸= 0.

F.1 Variance term

Using Eqs. (42) to (44), we have

VRFM
N,λ = σ2 p

n

χ(ν2)

1−Υ(ν1, ν2)
= nq−1n−qO

(
ν
−1−1/α
2

)
= O

(
n−(1−(α+1)(1∧q∧ℓ/α))

)
.

Hence, the variance term of the norm decays with n with rate

γVRFM
N,λ

(ℓ, q) = 1− (α+ 1)

(
ℓ

α
∧ q ∧ 1

)
.
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F.2 Bias term

First, one could notice, using the integral approximation and Eqs. (41) and (42), that

p

p− df2(ν2)
=
(
1 + n−qO

(
ν
−1/α
2

))
=
(
1 +O

(
n−qn(1∧q∧

ℓ/α)
))

= O (1) .

Thus for the bias term, using Eqs. (41) to (44) we have

BRFM
N,λ = ⟨θ∗,Λ(Λ+ ν2)

−2θ∗⟩ ·
p

p− df2(ν2)

+
p

n
ν22
(
⟨θ∗, (Λ+ ν2)

−2θ∗⟩+ χ(ν2)⟨θ∗,Λ(Λ+ ν2)
−2θ∗⟩

)
· χ(ν2)

1−Υ(ν1, ν2)

= T 1
2r+1,2(ν2) + nq−1ν22

(
T 1
2r,2(ν2) + χ(ν2)T

1
2r+1,2(ν2)

)
χ(ν2)

= ν
(2r−1)∧0
2 + nq−1ν22O

(
ν
(2r−2)∧0
2 + n−qν

−1−1/α+(2r−1)∧0
2

)
n−qO

(
ν
−1−1/α
2

)
= ν

(2r−1)∧0
2 + n−1O

(
ν2r∧2
2 + n−qν

−1/α+2r∧1
2

)
O
(
ν
−1−1/α
2

)
= O

(
n−α(1∧q∧

ℓ/α)[(2r−1)∧0]
)

+O
(
n−α(1∧q∧

ℓ/α)[(2r−1)∧1]+(1∧q∧ℓ/α)−1 + n−α(1∧q∧
ℓ/α)[(2r−1)∧0]+2(1∧q∧ℓ/α)−1−q

)
= O

(
n−α(1∧q∧

ℓ/α)[(2r−1)∧0] + n−α(1∧q∧
ℓ/α)[(2r−1)∧1]+(1∧q∧ℓ/α)−1

)
= O

(
n−α(1∧q∧

ℓ/α)[(2r−1)∧0]
)
.

Hence, the bias term of the norm decays with n with rate

γBRFM
N,λ

(ℓ, q) = α (1 ∧ q ∧ ℓ/α) [(2r − 1) ∧ 0] .

Recalling that we have
γNRFM

λ
:= γBRFM

N,λ
∧ γVRFM

N,λ
,

according to which, we obtain the norm exponent γNRFM
λ

as a function of ℓ and q, showing in Fig. 7. As
observed in Fig. 7, γNRFM

λ
is non-positive across all regions, indicating that the norm either increases or

remains constant with n in every case.
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Figure 7: The norm rate γNRFM
λ

as a function of (ℓ, q). Variance dominated region is colored by orange,
yellow and brown, bias dominated region is colored by blue and green.

Next for the condition r ∈ (0, 12 ), we derive the scaling law under norm-based capacity.

Region 1: ℓ > α and q > 1 In this region, according to [14, Corollary 4.1], we have

RRFM
λ = Θ

(
n−0

)
= Θ(1) ,
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and according to Fig. 7, we have
NRFM
λ = Θ(nα) ,

combing the above rate, we can obtain that

RRFM
λ = Θ

(
n−α · NRFM

λ

)
.

Region 2: α
2αr+1 < ℓ < α and q > ℓ

α In this region, according to [14, Corollary 4.1], we have

RRFM
λ = Θ

(
n−(1−

ℓ
α )
)
,

and according to Fig. 7, we have

NRFM
λ = Θ

(
n−(1−

(α+1)ℓ
α )

)
,

combing the above rate, we can obtain that

RRFM
λ = Θ

(
n−ℓ · NRFM

λ

)
.

Region 3: 1
2αr+1 < q < 1 and q < ℓ

α In this region, according to [14, Corollary 4.1], we have

RRFM
λ = Θ

(
n−(1−q)

)
,

and according to Fig. 7, we have

NRFM
λ = Θ

(
n−(1−(α+1)q)

)
,

combing the above rate and eliminate q, we can obtain that

RRFM
λ = Θ

(
n−

α
α+1 ·

(
NRFM
λ

) 1
α+1

)
.

Region 4: ℓ < α
2αr+1 and q > ℓ

α In this region, according to [14, Corollary 4.1], we have

RRFM
λ = Θ

(
n−2ℓr

)
,

and according to Fig. 7, we have

NRFM
λ = Θ

(
n−ℓ(2r−1)

)
,

combing the above rate, we can obtain that

RRFM
λ = Θ

(
n−1 · NRFM

λ

)
.

Region 5: q < 1
2αr+1 and q < ℓ

α In this region, according to [14, Corollary 4.1], we have

RRFM
λ = Θ

(
n−2αqr

)
,

and according to Fig. 7, we have

NRFM
λ = Θ

(
n−αq(2r−1)

)
,

combing the above rate, we can obtain that

RRFM
λ = Θ

(
n0 ·

(
NRFM
λ

)− 2r
1−2r

)
.

G Discussion

In this section, we discuss several issues related to the shape of generalization curves, norm control,
and model complexity. In Appendix G.1, we examine the shape of generalization curves under
various settings, emphasizing when theoretical predictions align with or diverge from empirical
observations, particularly across synthetic and real-world datasets. In Appendix G.2, we analyze a
practical approach to modifying norm by fixing the parameter count and imposing a norm constraint,
and demonstrate its equivalence to adjusting the regularization strength. Finally, in Appendix G.3,
we compare norm-based capacity with alternative complexity measures, including smoother-based
metrics and degrees of freedom, and highlight their limitations in capturing test risk behavior.
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Table 4: Generalization curves (test loss vs. ℓ2 norm) under different activation functions in RFMs.
Training data {(xi, yi)}i∈[n] are generated from a teacher-student model yi = tanh(⟨β,xi⟩), where
xi ∼ i.i.d.N (0, Id) with d = 100. The number of training samples is fixed at n = 300. The random
feature map is defined as φ(x,w) = φ(⟨w,x⟩) with random Gaussian initialization w ∼ N (0, Id),
where the activation function φ(·) is chosen from ReLU, erf, tanh, or sigmoid.
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G.1 Discussion on the shape of the generalization curve in Fig. 1

As illustrated in Fig. 1(a), and based on empirical observations from [43, Figure 8.12], the test risk in
the over-parameterized regime initially exceeds that of the under-parameterized regime. However, as
over-parameterization increases, the test risk begins to decrease. Eventually, in a sufficiently over-
parameterized regime, the test risk becomes lower than in the under-parameterized case—indicating
that sufficient over-parameterization can outperform under-parameterization.

In contrast, our experimental results in Fig. 1(b) reveal a slightly different behavior: the learning curve
in the over-parameterized regime consistently remains below its under-parameterized counterpart
throughout. This phenomenon presents an intriguing contrast, and the central question we address
in this section is: What underlying factors cause this fundamental difference in behavior - where in
some cases the over-parameterized curve initially above then crosses the under-parameterized curve,
while in others it stays strictly lower?

We first conduct experiments on synthetic datasets to validate our theoretical findings. We generate
training samples {(xi, yi)}i∈[n] using a teacher-student model: yi = tanh(⟨β,xi⟩), where input

features xi
i.i.d∼ N (0, Id) with dimension d = 100. As demonstrated in Table 4, our experimental

results reveal that when the input features follow Gaussian distribution, the test loss curves in the
over-parameterized regime consistently lie below those in the under-parameterized regime, regardless
of the activation functions or ridge parameter values. This observation aligns perfectly with our
theoretical predictions.

We further conducted experiments on the FashionMNIST data set [58]. In this practical setting, we
observed a discrepancy between our experimental results and theoretical predictions.

As in Table 5, for cases with substantial ridge regularization, the test error curves in the over-
parameterized regime remained below those in the under-parameterized regime, consistent with our
synthetic data experiments. However, in the ridgeless case (corresponding to minimum-ℓ2-norm
interpolators), we discovered a different phenomenon:

• Initially, the over-parameterized regime exhibited higher test error than the under-
parameterized regime.

• As the number of parameters p increased, the over-parameterized curve crossed under the
under-parameterized curve. And this interaction formed a distinctive φ-shaped learning
curve.
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We attribute this behavior to the non-Gaussian distribution of input images x in FashionMNIST,
which may violates our theoretical assumption like Assumption 1.

Table 5: Generalization curves (test error vs. ℓ2 norm) under different activation functions. Training
data {(xi, yi)}i∈[n] are sampled from the FashionMNIST data set [58], with input vectors normalized
and flattened to [−1, 1]d for d = 748. The random feature map is defined as φ(x,w) = φ(⟨w,x⟩)
with random Gaussian initialization w ∼ N (0, Id), where the activation function φ(·) is chosen
from ReLU, erf, tanh, or sigmoid. The number of training samples is fixed at n = 300.
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In summary, while our theoretical framework may not fully capture the generalization behavior when
the dataset or activation functions deviate significantly from our assumptions, this does not undermine
the core contributions of our work. When the data is well-behaved and aligns with our assumptions,
our theory provides a highly accurate and effective characterization of the generalization curves under
norm-based capacity control in the under-parameterized regime.

G.2 Discussion on approaches to modifying the norm

Regarding approaches to controlling model norm, one method involves fixing the regularization
strength while varying the model parameter count p, which serves as the primary focus of this paper.
Alternatively, one can fix p and constrain the weight norm to specific magnitudes. We later show
that this approach is mathematically equivalent to fixing the parameter count while varying the
regularization strength. In this section, we primarily focus on the latter approach.

We consider the problem of minimizing the squared loss under an ℓ2-norm constraint on the coeffi-
cients:

min
a
∥y −Za∥2 subject to ∥a∥22 = B2.

To incorporate the constraint, we introduce a Lagrange multiplier λ and define the Lagrangian:

L(a, λ) = ∥y −Za∥2 + λ
(
∥a∥22 −B2

)
.

Taking the gradient of L with respect to a and setting it to zero yields the first-order optimality
condition:

∇aL = −2Z⊤y + 2Z⊤Za+ 2λa = 0.

Solving this equation gives the solution:

â = (Z⊤Z + λI)−1Z⊤y, subject to ∥â∥22 = B2.

Relation to Ridge Regression: The solution resembles ridge regression, but λ is chosen to strictly
satisfy ∥â∥2 = B rather than being a hyperparameter. λ corresponds one-to-one with B, since λ
and ∥â∥22 are in one-to-one correspondence if λ ≥ 0 (∂∥â∥

2
2

∂λ = −2y⊤Z(Z⊤Z + λI)−3Z⊤y ≤ 0).
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Therefore, we can say that changing the constraint B (the restriction on ∥a∥2) is equivalent to
changing the regularization strength λ.

We conducted experiments on the random feature model by fixing the number of training samples and
the aspect ratio γ, and varying the regularization parameter λ to control the norm of the estimator. We
then plotted the curves showing the relationships among test risk, norm, and λ as in Fig. 8 (Figs. 8(a)
to 8(c) for under-parameterized regimes and Figs. 8(d) to 8(f) for over-parameterized regimes). We
can find that the norm is monotonically decreasing with the increasing λ, see Figs. 8(b) and 8(e). In
fact, the relationship between the estimator’s norm and the regularization parameter is called L-curve
[21]. in both under- and over-parameterized (λ < 1 or λ > 1), the test risk is always a U-shaped
curve of the regularization parameter λ or norm, see Figs. 8(a) and 8(c) and Figs. 8(d) and 8(f),
respectively.

To validate these observations on real data, we also conducted complementary experiments using the
MNIST data set [30]. As shown in Fig. 9, all of the above phenomena persist.

Moreover, in modern ML practice, capacity can be steered by standard regularization—e.g., weight
decay and early stopping—which explicitly or implicitly constrain model norms. Optimization
itself also induces implicit regularization, notably with SGD. Recent work has begun to precisely
characterize test risk under SGD for linear models [45, 44]. Extending our deterministic-equivalent
framework to incorporate such optimization effects is both important and challenging, and we leave
this for future work.
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Figure 8: Relationship between test risk, ℓ2 norm, and λ for different γ = p
n for random feature

ridge regression. Points in these figures are given by our experimental results, centering around the
curves given by deterministic equivalents we derive. Training data {(xi, yi)}i∈[n], n = 100, sampled
from the model yi = g⊤i θ∗ + εi, σ2 = 0.01, gi ∼ N (0, I), fi ∼ N (0,Λ) (gi and fi is defined in
Section 2), with ξ2k(Λ) = k−3/2 and θ∗,k = k−11/10, given by α = 1.5, r = 0.4 in Assumption 2.

G.3 Discussion with other model capacities

In this section, we discuss two other model capacities: generalized effective number of parameters
and degrees of freedom, which are widely used to describe a model’s generalization ability. From this
discussion, we conclude that these two capacities are less suitable compared to norm-based model
capacity.

Generalized Effective Number of Parameters: The authors [12] assess model complexity from
the perspective of smoother by introducing a variance-based effective-parameter measure, termed the
generalized effective number of parameters. In the context of ridge regression, this measure is
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Figure 9: Relationship between test risk, ℓ2 norm, and λ for different γ = p
n for random feature ridge

regression. Points in these figures are given by our experimental results, centering around the curves
given by deterministic equivalents we derive. Training data {(xi, yi)}i∈[n], n = 300, sub-sampled
from the MNIST data set [30], with feature map given by φ(x,w) = erf(⟨x,w⟩) andw ∼ N (0, I).

given by
ptest
ŝ =

n

|Itest|
∑
j∈Itest

∥xtest
j (X⊤X + λ)−1X⊤∥22 ,

where {xtest
j }j∈Itest is the set of test inputs. Taking the expectation with respect to the test set yields

ptest
ŝ = nExtest

j
∥xtest

j (X⊤X + λ)−1X⊤∥22 = nTr(ΣX⊤X(X⊤X + λ)−2) ,

which corresponds to the variance of the test risk VLSR scaled by the factor n
σ2 .

For the random feature ridge regression, the generalized effective number of parameters can be
similarly given by

ptest
ŝ = nEztest

j
∥ztest
j (Z⊤Z + λ)−1Z⊤∥22 = nTr(Λ̂FZ

⊤Z(Z⊤Z + λ)−2) ,

which corresponds to the variance of the test risk VRFMR scaled by the factor n
σ2 .

The connection between variance and ptest
ŝ enables it to effectively capture the variance of test risk.

However, due to the lack of information about the target function (without label information y), this
model capacity cannot fully describe the behavior of test risk, as it neglects the bias component. This
limitation becomes apparent when the test risk is dominated by bias.

Degrees of freedom For linear ridge regression, another measure of model capacity, known as the
“degrees of freedom” [9, 23, 1], is defined as

df1(λ∗) := Tr(Σ(Σ+ λ∗)
−1) , df2(λ∗) := Tr(Σ2(Σ+ λ∗)

−2) .

df1(λ∗) and df2(λ∗) measures the number of “effective” parameters the model can fit. As the
regularization strength λ increases, model complexity decreases. From Definition B.8, we have
n − λ

λ∗
= Tr(Σ(Σ + λ∗)

−1), implying that an increase in λ raises λ∗, leading to a reduction in
df1(λ∗) and df2(λ∗). This suggests that degrees of freedom can, to some extent, represent model
complexity.

However, it is worth noting that since in linear ridge regression we only vary the number of training
data n, according to the self-consistent equation n − λ

λ∗
= Tr(Σ(Σ + λ∗)

−1) we can tell that λ∗
decreases monotonically as n increases, which leads to df1 and df2 increasing monotonically as n
increases. This monotonic relationship with n suggests that when using degrees of freedom as a
measure of model capacity, the double descent phenomenon still exists, as the effective capacity of
the model continues to increase even beyond the interpolation threshold.

Similar to the generalized effective number of parameters mentioned above, these degrees of freedom
also lack information about the target function, making them insufficient for accurately capturing the
model’s generalization ability.

Fig. 10 illustrates the relationship between test risk and different model capacity for linear ridge
regression. It shows that double descent persists for degrees of freedom df1 and df2, indicating that
degrees of freedom is not an appropriate measure of model capacity.
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Figure 10: Relationship between test risk and different model capacities. Training data {(xi, yi)}i∈[n],
d = 1000, sampled from a linear model yi = x⊤i β∗ + εi, σ2 = 0.0004, xi ∼ N (0,Σ), with
σk(Σ) = k−1, β∗,k = k−3/2.

H Experiment

To systematically validate our theoretical findings, we conduct a comprehensive empirical study
across three distinct settings: (1) synthetic datasets (Appendix H.1), (2) real-world datasets
(MNIST[30]/FashionMNIST[58]) with random features (Appendix H.2), and (3) two-layer neu-
ral networks with various norm-based capacity measures (Appendix H.3). All experiments can be
conducted on a standard laptops with 16 GB memory.

H.1 Experiment on synthetic dataset

To validate our theoretical framework, we conduct comprehensive experiments on synthetic datasets
on linear regression in Fig. 11 and RFMs in Fig. 12, respectively. The strong agreement between
theoretical predictions and empirical results confirms the accuracy of our theoretical analysis.

0 1 2 3
(d
n )

0.0000

0.0015

0.0030

te
st

 ri
sk

ridgeless
= 0.01
= 0.05
= 0.1
= 0.2

= 0.5
= 1
= 2
= 5

(a) Test Risk vs. γ := d/n

0 1 2 3
(d
n )

1.2

1.6

2.0

2 n
or

m

ridgeless
theory
empirical

(b) ℓ2 norm vs. γ

1.2 1.4 1.6
2 norm

0.0000

0.0005

0.0010

0.0015

te
st

 ri
sk

(c) Test Risk vs. ℓ2 norm

 

un
de
r-p
ara
me
ter
iza
tio
n

n=d

over-p
arame

teriza
tion

(d) Risk vs. norm (λ=0.05)

Figure 11: Results for the ridge regression estimator. Points in these four figures are given by our
experimental results, and the curves are given by our theoretical results via deterministic equivalents.
Training data {(xi, yi)}i∈[n], d = 1000, sampled from a linear model yi = x⊤i β∗ + εi, σ2 = 0.0004,
xi ∼ N (0,Σ), with σk(Σ) = k−1, β∗,k = k−3/2.

H.2 Experiment on real-world dataset

To complement the synthetic experiments presented in Appendix H.1, we additionally conducted
experiments on the MNIST (Fig. 13) and FashionMNIST (Fig. 14) datasets [30, 58]. We applied the
empirical diagonalization procedure introduced in [14, Algorithm 1] to estimate the key quantities
Λ and θ∗ required for our analysis. The results on these real-world datasets are largely consistent
with those observed on the synthetic data: in the under-parameterized regime, the curve of test
risk versus norm exhibits a U-shape, while in the over-parameterized regime, the test risk increases
monotonically with the norm and is approximately linear for ridge-less regression.

Notably, our random features model can be interpreted as a two-layer neural network with fixed
first-layer weightsW , where the random features φ(x,wi) correspond to the hidden layer activations.
This connection motivates our investigation of the Frobenius norm ∥W ∥F in Fig. 15, which captures
the effective capacity of the frozen hidden layer. Furthermore, Fig. 16 examines the path norm—a
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Figure 12: Relationship between test risk, ratio γ := p/n, and ℓ2 norm of the random feature ridge
regression estimator (the regularization parameter is defined in Section 2). Points in these four figures
are given by our experimental results, centering around the curves given by deterministic equivalents
we derive. Training data {(xi, yi)}i∈[n], n = 100, sampled from the model yi = g⊤i θ∗ + εi,
σ2 = 0.01, gi ∼ N (0, I), fi ∼ N (0,Λ) (gi and fi is defined in Section 2), with ξ2k(Λ) = k−3/2

and θ∗,k = k−11/10, given by α = 1.5, r = 0.4 in Assumption 2.

natural complexity measure for neural networks that sums over all input-output paths and is defined
as

µpath-norm =

p∑
j=1

a2j∥wj∥22 .

This quantity can be interpreted as the product of the norms of the first-layer and second-layer weights.
Prior empirical work by [26] demonstrates that among various norm-based complexity measures,
the path norm shows the strongest correlation with generalization performance in neural networks.
Motivated by this finding, we investigate the relationship between test risk and path norm in our
setting.

Comparing Fig. 13, Fig. 15, and Fig. 16, we observe that the test risk curve aligns more closely with
the norm-based capacity of the second-layer parameters in the random feature model, rather than
with that of the first-layer weights. Therefore, it is meaningful to study the relationship between the
test risk and the norm of the RFM estimator, i.e., the second-layer parameters, as this quantity plays a
central role in determining the model’s effective capacity and generalization behavior.
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Figure 13: The relationship between test risk, ℓ2 norm and the number of features p. Solid lines are
obtained from the deterministic equivalent, and points are numerical simulations, with the different
curves denoting different regularization strengths. Training data {(xi, yi)}i∈[n], n = 300, sub-
sampled from the MNIST data set [30], with feature map given by φ(x,w) = erf(⟨x,w⟩) and
w ∼ N (0, I/d), where d = 748.

H.3 Norm-based capacity in two-layer neural networks

In this section, we investigate the relationship between test loss and different norm-based capacities
for two-layer fully connected neural networks. Specifically, we evaluate four norm-based capacities:
Frobenius norm, Frobenius distance, spectral complexity, and path norm. Our empirical results
indicate that the path norm is the most suitable model capacity among these three norm-based
capacities, which coincides with [26].

71



0 250 500 750 1000 1250 1500 1750 2000
p

4

6

8

10

12

14

16

18

20

Te
st

 ri
sk

Test risk vs. p
=1e-05
=0.0001
=0.0005

ridgeless

(a) Test risk vs. p

0 250 500 750 1000 1250 1500 1750 2000
p

0.0

0.2

0.4

0.6

0.8

1.0

2 n
or

m

1e6 2 norm vs. p

(b) Norm vs. p

0.0 0.2 0.4 0.6 0.8 1.0
2 norm 1e6

4

6

8

10

12

14

16

18

20

Te
st

 ri
sk

Test risk vs. 2 norm

(c) Test risk vs. Norm

Figure 14: The relationship between test risk, ℓ2 norm and the number of features p. Solid lines are
obtained from the deterministic equivalent, and points are numerical simulations, with the different
curves denoting different regularization strengths. Training data {(xi, yi)}i∈[n], n = 300, sub-
sampled from the FashionMNIST data set [58], with feature map given by φ(x,w) = erf(⟨x,w⟩)
and w ∼ N (0, I/d), where d = 748.
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Figure 15: The relationship between test risk, Frobenius norm of W (the weights in the hidden
layer) and the number of features p. Training data {(xi, yi)}i∈[n], n = 300, sub-sampled from the
MNIST data set [30], with feature map given by φ(x,w) = erf(⟨x,w⟩) andw ∼ N (0, I/d), where
d = 748.
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Figure 16: The relationship between test risk, Path norm and the number of features p. Training data
{(xi, yi)}i∈[n], n = 300, sub-sampled from the MNIST data set [30], with feature map given by
φ(x,w) = erf(⟨x,w⟩) and w ∼ N (0, I/d), where d = 748.

In our experiments, we use a balanced subset of the MNIST data set [30], consisting of 4,000 training
samples from all the 10 classes. To simulate real-world noisy data, a noise level η is introduced,
meaning η · 100% of the training labels are randomly corrupted.

The model is chosen as a two-layer fully connected neural network with parameters including a
bias term. The network is initialized using the Xavier initialization scheme and trained using the
Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.1 and momentum of 0.95 over
2,000 epochs. During training, a batch size of 128 is used.
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To control model complexity, we vary the number of neurons in the hidden layer, thereby adjusting
the number of model parameters. To ensure the robustness of the results, each experiment is repeated
10 times for each hidden layer dimension. The model’s performance is evaluated using the Mean
Squared Error (MSE) loss on both the training and test sets.

Frobenius norm: The parameter Frobenius norm is defined as for such two-layer neural networks

µfro(fw) =

2∑
j=1

∥Wj∥2F ,

whereWj is the parameter matrix of layer j.

Fig. 17 illustrates the relationship between test loss, Frobenius norm µfro, and the number of parame-
ters p. As the number of model parameters increases, the test loss exhibits the typical double descent
phenomenon. However, the Frobenius norm consistently increases monotonically (with a slowdown
in the growth rate in the over-parameterized regime). Consequently, when using the Frobenius norm
as a measure of model capacity, the double descent phenomenon remains observable.
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Figure 17: Experiments on two-layer fully connected neural networks with noise level η = 0.2. The
left figure shows the relationship between test (training) loss and the number of the parameters p.
The middle figure shows the relationship between the Frobenius norm µfro and p. The right figure
shows the relationship between the test loss and µfro.

Frobenius distance: The Frobenius distance is defined as for such two-layer neural networks

µfro-dis(fw) =

2∑
j=1

∥Wj −W 0
j ∥2F ,

whereW 0
j is the initialization ofW 0

j .
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Figure 18: Experiments on two-layer fully connected neural networks with noise level η = 0.2. The
left figure is the same as Fig. 17(a). The middle figure shows the relationship between the Frobenius
distance µfro-dis and p. The right figure shows the relationship between the test loss and µfro-dis .

Fig. 18 illustrates the relationship between test loss, Frobenius distance µfro, and the number of
parameters p. Different from Frobenius norm, Frobenius distance monotonically increases in the
under-parameterized regime, but shows a decrease in the over-parameterized regime. However, since
the change of Frobenius distance in the over-parameterized regime is gentle and even eventually
appears to rise, using Frobenius distance as the model capacity does not reflect the generalization
capacity of the model.

Spectral complexity: The spectral complexity is defined as for such two-layer neural networks

µspec(fw) =

(
2∏
i=1

∥Wi∥
)(

2∑
i=1

∥Wi∥2/32,1

∥Wi∥2/3

)3/2

,
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where ∥ · ∥ denote the spectral norm, and ∥ · ∥p,q denotes the (p, q)-norm of a matrix, defined as
∥M∥p,q := ∥ (∥M:,1∥p, · · · , ∥M:,m∥p) ∥q forM ∈ Rd×m.
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Figure 19: Experiments on two-layer fully connected neural networks with noise level η = 0.2. The
left figure is the same as Fig. 17(a). The middle figure shows the relationship between the path norm
µspec and p. The right figure shows the relationship between the test loss and µspec.

Fig. 19 illustrates the relationship between test loss, Spectral complexity µspec, and the number of
parameters p. We can see that µspec increases monotonically with p, so the same double descent
phenomenon occurs with spectral complexity as model capacity.

Path norm: The path norm is defined as

µpath-norm(fw) =
∑
i

fw2(1)[i],

where w2 = w ◦w is the element-wise square of the parameters, and 1 for all-one vector. The path
norm represents the sum of the outputs of the neural network after squaring all the parameters and
inputting the all-one vector.

Fig. 20 illustrates the relationship between test loss, Path norm µpath, and the number of parameters p.
Path norm increases monotonically in the under-parameterized regime and decreases monotonically
in the over-parameterized regime. This behavior resembles that of the ℓ2 norm of random feature
estimators. Additionally, the relationship between test loss and path norm forms a U-shaped curve in
the under-parameterized regime and increases monotonically in the over-parameterized regime. This
pattern is strikingly similar to the relationship between test loss and the ℓ2 norm in random feature
models.

0 20000 40000 60000 80000 100000 120000
Number of Parameters

0.00

0.02

0.04

0.06

0.08

Lo
ss

Mean and Std of Train and Test Loss vs Number of Parameters

Train Loss (mean)
Train Loss (std)
Test Loss (mean)
Test Loss (std)
Interpolation Threshold

(a) Test (training) Loss vs. p

0 20000 40000 60000 80000 100000 120000
Number of Parameters

0

250

500

750

1000

1250

1500

1750

Pa
th

 N
or

m

Mean and Std of Path Norm vs Number of Parameters
Path Norm (mean)
Path Norm (std)
Interpolation Threshold

(b) µpath-norm vs. p

0 200 400 600 800 1000 1200 1400 1600
Path Norm

0.065

0.070

0.075

0.080

0.085

0.090

Te
st

 L
os

s

Test Loss vs Path Norm

Test Loss vs Path Norm (mean)

(c) Test Loss vs. µpath-norm

Figure 20: Experiments on two-layer fully connected neural networks with noise level η = 0.2. The
left figure is the same as Fig. 17(a). The middle figure shows the relationship between the path norm
µpath-norm and p. The right figure shows the relationship between the test loss and the path norm.
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Figure 21: Experiments on two-layer fully connected neural networks with noise level η = 0.1.

Besides, we also conduct experiments with the noise level η = 0.1 and η = 0.3 in Figs. 21 and 22,
respectively. We can see that, when the noise level increases, we observe stronger peaks in the test
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Figure 22: Experiments on two-layer fully connected neural networks with noise level η = 0.3.

loss for double descent. However, the trend of test loss is similar at different noise levels with Path
norm µpath-norm as the model capacity, i.e., it shows a U-shape at the under-parameterized regime and
an almost linear relationship at the over-parameterized regime.

These observations demonstrates the relationship between the test loss and norm, which is general,
not limited to RFMs in the main text.

H.4 Norm-based capacity in deep neural networks

To assess whether our norm-based capacity view extends beyond linear/RFM models and two-layer
neural networks, we study the relationship between generalization and norm-based capacity on
three deep families: (i) a 3-layer MLP trained on MNIST with 15% symmetric label noise (varying
hidden width), (ii) a 3-layer CNN trained on MNIST with 15% symmetric label noise (varying
channels), and (iii) ResNet18 [24] trained on CIFAR-10 with 15% noise (uniform width scaling
across blocks). We train to (near) zero training error when feasible, then compute the path norm of
the trained network and report test error on the clean test set. All runs are reproducible on a standard
laptop with 16 GB memory. Code, scripts with pinned versions, and trained models are released at
github.com/yichenblue/norm-capacity to facilitate verification and reuse.

MLP. We use MNIST dataset [30] with 16,000 samples and a 25% training split (ntrain = 4,000,
ntest = 12,000). The test set remains clean, while the training labels are corrupted with 15%
symmetric noise: with probability 0.15, each label is replaced by a random class drawn uniformly
from {0, . . . , 9} \ {y}. The model is a three-layer MLP with ReLU activations, trained with SGD
(momentum 0.9), learning rate 0.01, batch size 100, and CrossEntropyLoss for up to 500 epochs.

As shown in Fig. 23(a), plotting test error against width reproduces the familiar double-descent shape
under label noise. When we instead index model capacity by the path norm of the trained network
(also following [26] as in Appendix H.3),

µpath-norm(fw) =
∑
i

fw2(1)[i],

and plot test error against path norm (Fig. 23(c)), the curve exhibits a clear phase transition: a
U-shaped trend in the under-parameterized regime, followed by a joint decrease of risk and norm
once sufficiently over-parameterized. These observations are consistent with our findings in random
feature models.
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Figure 23: Experiments on 3-layer MLP.
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CNN. We next study a three-block CNN on MNIST with the same split and noise. Each block is
Conv1d–ReLU with stride 2 and kernel size 3 (the first layer uses kernel size 5), followed by a linear
classifier; we vary the number of channels to control capacity. We flatten each 28× 28 image into a
1D signal before applying Conv1d. Results are qualitatively similar with Conv2d. Training uses the
same optimizer and schedule as the MLP.

As shown in Fig. 24(a), test error as a function of channel count again shows double descent. In
contrast, plotting against the path norm (Fig. 24(c)) produces the same pattern observed in the
MLP: a U-shaped curve in the under-parameterized regime and a co-decrease of risk and norm
when sufficiently over-parameterized, reinforcing the consistency of norm-based capacity across
architectures.
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Figure 24: Experiments on 3-layer CNN.
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Figure 25: Experiments on ResNet18.

ResNet18. We further evaluate ResNet18 on CIFAR-10 dataset [29] with 15% label noise, following
the setup of OpenAI’s deep double descent [40]. In addition to reproducing the reported deep
double-descent behavior, we compute the path norm. Fig. 25 shows results across different widths.
Based on Fig. 25 we can find that, in the sufficiently over-parameterized regime, the test risk and
norm decrease together, ultimately aligning with the φ-curve. This suggests that double descent is a
transient phenomenon, whereas the phase transition and the φ-shaped trend reflect more fundamental
behavior if a suitable model capacity is used.

These results consistently demonstrate the existence of phase transitions, while double descent
does not always occur—particularly under sufficient over-parameterization. Notably, the φ curve
exhibits a U-shaped trend, aligning with our theoretical predictions. All code and replication
materials (including our reproduction of OpenAI’s deep double-descent results) are available at
github.com/yichenblue/norm-capacity.
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