
Termination Properties of Transition Rules for Indirect Effects

Anonymous submission

Abstract

Indirect effects of agent’s actions have traditionally been for-
malized as condition-effect rules that always fire whenever
applicable, after each action taken by the agent. In this work,
we investigate a core problem of indirect effects, the possibil-
ity of infinitely long sequences of rule firings. Specifically we5

investigate the termination of rule firings, as well as their con-
fluence, that is, the uniqueness of the state that is ultimately
reached. Both problems are PSPACE-complete, and hence far
more challenging than what existing literature suggest. To
tackle this complexity, we devise practically interesting syn-10

tactic and structural restrictions that guarantee polynomial-
time termination and confluence tests. Finally, in the context
of planning languages that support indirect effects, we pro-
pose new implementation technologies.

1 Introduction15

Actions that an agent takes can have un-anticipated, complex
indirect effects. Formalizing them as part of the direct effects
can be impractical, requiring representing them separately.
Indirect effects can be formalized as condition-effect rules
similarly to agents’ actions, but with the requirement that20

they are fired whenever their condition part is true (Kartha
and Lifschitz 1994).

Much of the expressive power of indirect effects, and the
conceptual and computational complexity that follows from
this power, has been earlier ignored. Earlier works either25

pose strong syntactic restrictions on indirect effects, limiting
both their power and the complexity dramatically, or have
left the problem unexplored.

The two core questions, which are now addressed in this
work, are the possibility of infinitely long sequences of in-30

direct effects, and the impact of different orderings in which
the rules for indirect effects are fired. These questions are
respectively known as termination and confluence.

Non-termination is the result of indirect effects generating
an infinitely long state sequence, in which the same rules for35

indirect effects are fired repeatedly.
Confluence is the property of there being a unique termi-

nal state. Conflicting indirect effects may, but do not have
to, lead to two or more different terminal states. Indirect ef-
fects may override each other’s effects, or disable or enable40

each other, so that the order in which they are executed im-
pacts which terminal state is reached in the end. If there is

no unique terminal state, then it is unclear what is a correct
implementation of the indirect effects. Questions about con-
fluence (also known as the Church-Rosser property) have 45

been researched in connection with different types of rewrit-
ing systems (Rosen 1973; Sethi 1974; Keller 1974; Jensen
1980). Our work is the first one to address it explicitly and
in full generality for state-space search problems expressed
as precondition-effect rules, as used in planning, reasoning 50

about action, and related problems.
We first show that testing for both termination and con-

fluence are PSPACE-complete. This entails that there is no
general polynomial-time reduction from planning languages
with indirect effects to languages without them, giving a 55

strong justification for introducing indirect effects as an ex-
plicit concept in modeling languages for planning and re-
lated problems, and motivating at looking at tractable meth-
ods to determine confluence and termination. Despite the
high worst-case complexity, many practically interesting 60

planning problems have indirect effects that can be effec-
tively analyzed and implemented. We investigate structural
properties of rule sets for indirect effects that can be tested
in polynomial-time and which yield sufficient conditions for
confluence and termination. The methods we propose are 65

based on graphs that represent relations between forced ac-
tions, and we obtain tractable termination and confluence
tests by limiting to such graphs that are acyclic, or even more
strictly, trees or chains.

To make our results as broadly applicable as possible, 70

we consider indirect effects in connection with the most ba-
sic model of acting and planning, the classical deterministic
planning model. Our results directly apply to more general
forms of planning that include the classical planning model.

The structure of the paper is as follows. We start by dis- 75

cussing related work in Section 2. Section 3 formally de-
fines the planning problem that interleaves agent’s actions
with the execution of all applicable indirect effects. Sec-
tion 4 defines the termination and confluence properties,
and determines their worst-case complexity. In Section 5 we 80

give computationally easier sufficient conditions for conflu-
ence and termination. Section 6 proposes two approaches to
implement classical planning with indirect effects. Finally,
Section 7 reports on experiments with a basic implementa-
tion, before we conclude the paper in Section 8 by pointing 85

out future work.

2 Related Work
Indirect effects have first been investigated as a part of so-
lutions to the frame problem and the ramification problem
in artificial intelligence (Kartha and Lifschitz 1994). Many90

works have assumed, for simplicity, that the indirect ef-
fects of an action are always mutually consistent, or that
conflicting indirect effects mean that an action cannot be
taken (Giunchiglia and Lifschitz 1998; Gelfond and Lifs-
chitz 1998).95

Planning research has similarly adopted different notion
of indirect effects, often called (exogenous) events. Petrick
and Bacchus (2002) have update rules, which are essen-
tially indirect effects. Fox et al. (2005) require that a rule
for indirect effects is only fired once. Fox and Long (2006)100

introduce event-deterministic events, which exclude simul-
taneously applicable conflicting indirect effects, but do not
give effective ways to achieve this. A variant of Theorem 1
shows that testing if indirect effects are event-deterministic
is PSPACE-complete.1 None of these works analyze the con-105

cept of indirect effects deeper.
Indirect effects in the above works, similarly to ours,

are instantaneous. A different model, used in temporal
planning, assigns a temporal duration to indirect effects
(Gerevini, Saetti, and Serina 2006). Other works consider110

unpredictable and non-deterministic exogenous events (Ioc-
chi, Nardi, and Rosati 2000; Fritz and McIlraith 2008).

3 Preliminaries
Next we define our formal framework. We consider planning
with Boolean state variables only.115

Definition 1 (Effects) Let X be the set of state variables.
Then the following are effects over X .

• x if x ∈ X
• ¬x if x ∈ X
• ϕ ▷ x if ϕ is a propositional formula over X and x ∈ X120

• ϕ▷¬x if ϕ is a propositional formula over X and x ∈ X

The notation ϕ ▷ l is for conditional effects: if ϕ is true,
the literal l will be made true.

Definition 2 (Actions) Let X be the set of state variables.
An action is a pair (p, e) where p is a propositional formula125

over X for the precondition, and e is a finite set of effects
over X .

Assumption 1 For actions (p, e), {x,¬x} ̸⊆ e for all x ∈
X , and if (ϕ ▷ l) ∈ e, then l ̸∈ e and for any (ψ ▷ l) ∈ e, the
precondition satisfies p |= ¬(ϕ∧ψ). So no action can make130

a state variable both true and false at the same time.

Define complement l of literals l by x = ¬x and ¬x = x.
As indirect effects are expressed as condition-effect pairs

similar to the agent’s actions, we call them forced actions, as

1The definition of event-deterministic is stated informally only,
and it could alternatively mean actions being mutex (Blum and
Furst 1997), in which case it is testable in polynomial time.

they must be executed whenever executable. Next we define 135

classical planning extended with forced actions.

Definition 3 (Problem instance) ⟨X, I,A, F,G⟩ is a prob-
lem instance if

• X is a finite set of state variables,
• I ⊆ X is the initial state description, 140

• A is a set of actions,
• F is a set of actions,
• G is a propositional formula over X for the goal states.

Here F are the forced actions which must be fired when-
ever their precondition is true. The initial state description I 145

denotes the unique state s0 such that s0 |= x for all x ∈ I
and s0 |= ¬x for all x ∈ X\I .

Assumption 2 There are no forced actions applicable in the
initial state.

This assumption is just to simplify the presentation, to 150

avoid separately talking about confluence and termination
when forced actions are being triggered before any actions
are taken. One could view the facts in the initial states as the
unconditional effects of a special initial state action, so there
is no loss of generality in this assumption. 155

Assumption 3 Every forced action makes its own precon-
dition immediately false, so that the forced action cannot be
fired multiple times in a sequence without other actions in
between. This can be often achieved with an effect literal l
such that l |= p where p is the precondition. 160

There are other ways to prevent infinite firings of a single
action. First, an action could be fired only when its precon-
dition becomes true. Second, an action could be fired only
when it actually changes the value of at least one state vari-
able (but this would prevent multiple firings only for actions 165

that always have the same effects). But we do not investigate
this further.

Definition 4 (Successor state) s′ = execa(s) is the succes-
sor state of s with respect to action a = (p, e) such that

• s′ |= x if x ∈ e or (ϕ ▷ x) ∈ e and s |= ϕ, 170

• s′ |= ¬x if ¬x ∈ e or (ϕ ▷ ¬x) ∈ e and s |= ϕ,
• s(x) = s′(x) if x ̸∈ e, ¬x ̸∈ e, s ̸|= ϕ for any (ϕ▷x) ∈ e

and (ϕ ▷ ¬x) ∈ e.

The successor state is defined if s |= p.

We define execa1,...,an(s) = execan(· · · execa1(s) · · ·). 175

Definition 5 (Executions) An execution of (forced) actions
in state s0 is a sequence a1, . . . , an of action and a se-
quence s0, s1, . . . , sn of states such that s0 = s and for
all i ∈ {1, . . . , n}, si−1 |= pi (where ai = (pi, ei)) and
si = execai

(si−1). 180

The execution of an agent’s action is followed by the exe-
cution of all applicable forced actions.

Definition 6 (Forced executions) For ⟨X, I,A, F,G⟩ a
forced execution in state s is any sequence a1, . . . , an
of actions with ai ∈ F for all i ∈ {1, . . . , n} such185

that a1, . . . , an is an execution (as in Definition 5) and
execa1,...,an

(s) ̸|= p for all (p, e) ∈ F .

So a forced execution is an execution of forced actions
that ends in a state with no executable forced actions.

Definition 7 (Reachable states) We define reachable states190

for problem instances ⟨X, I,A, F,G⟩ recursively.
• The initial state s0 for I is a reachable state.
• s′ is a reachable state if

– s is a reachable state,
– a ∈ A is an action,195

– a1, . . . , an is a forced execution in execa(s), and
– s′ = execa,a1,...,an

(s).

So a state is reachable if it can be reached by a sequence
of actions from A interleaved with maximal sequences of
actions from F .200

4 Properties: Termination and Confluence
Some sets of forced actions have infinitely long executions.

Example 1 Consider forced actions (a, {¬a}) and
(¬a, {a}). Starting from any state, these two actions have
one execution which is infinitely long.205

So the question of termination of forced actions arises:
are all executions of forced actions finite?

Definition 8 (Termination) Forced actions in a problem
instance are terminating if every forced execution for all
states s that are reachable in ⟨X, I,A, F,G⟩ is finite.210

Often one wishes that the state reached with the forced ac-
tions is unique, the ordering in which the actions have been
tried is therefore irrelevant, and therefore the implementa-
tion of the forced actions can use any ordering with no con-
cerns about it having an impact on the terminal state.215

Example 2 Consider forced actions (a, {¬a, b}) and
(a, {¬a, c}) and a state s such that s |= a ∧ ¬b ∧ ¬c. There
are two forced executions of the actions, each consisting of
one forced action only, leading to two different states.

The property we are after is known as the confluence or220

the Church-Rosser property (Rosen 1973; Sethi 1974), and
shows up prominently for example in the context of the
λ-calculus (Barendregt 1984) and other similar systems in
which tree-like syntactic expressions are transformed by a
sequence of rewriting steps. We adapt this concept to transi-225

tion systems and planning.

Definition 9 (Confluence) Forced actions in a problem in-
stance are confluent if execσ1

(s) = execσ2
(s) for all forced

executions σ1 and σ2 and for all states s that are reachable
in ⟨X, I,A, F,G⟩.230

Theorem 1 Testing for confluence of forced actions is
PSPACE-complete.

Proof: Idea: Construct actions for simulating deterministic
PSPACE Turing machines (Bylander 1994), with two addi-
tional actions, one going from the initial state to a special 235

end state (the short cut), and another going from accepting
state to the same special end state. The short-cut action is al-
ways applicable. If the Turing machine does not accept, then
the execution ends in a non-accepting state different from
the one reached by the short-cut action. Hence the forced 240

actions are confluent if and only if the Turing machine has
an accepting execution. This shows PSPACE-hardness.

PSPACE membership is by finding a reachable state from
which two different terminal states are reachable with forced
actions. This is by nested calls to the standard PSPACE 245

reachability test. □

Theorem 2 Testing for termination is PSPACE-complete.

Proof: Idea: Construct actions for simulating PSPACE Tur-
ing machines (Bylander 1994) with additional two actions 250

that can be repeated indefinitely (similarly to Example 1)
if reaching a non-accepting terminal state. Then the Turing
machine accepts if and only if the rules are terminating.

PSPACE-membership is by finding a reachable state from
which a sequence of forced actions form a cycle in the state 255

space. This is by nested calls to the standard PSPACE reach-
ability test. □

5 Sufficient Conditions for Confluence
We discuss sufficient conditions for confluence that can be 260

tested in polynomial time. The first condition is trivial and
familiar from earlier works, and is given only as a starting
point for the more broadly applicable conditions we develop.

We first formalize four binary relations Rc, Re, Rd, and
Ri, and then derive sufficient conditions for confluence. 265

These relations have the following meanings.

Rc the two actions have conflicting effects, that is, one can
make some state variable true, and the other action can
make it false.

Re One action can enable another action by making the lat- 270

ter’s precondition true.
Rd One action can disable another action by making the lat-

ter’s precondition false.
Ri One action can impact the effects of another action by

changing the truth-value of one of the conditions ϕ in a 275

conditional effect ϕ ▷ l of the latter.

Next we define the relations formally.

Definition 10 (Relation Rc) The relation Rc ⊆ (A ∪ F)2

is defined by a0Rca1 whenever a0 ̸= a1 and atEffs(a0) ∩
{l|l ∈ atEffs(a1)} ≠ ∅. 280

Here atEffs(a) denotes the atomic effects of an action
(p, e), defined as {x|x ∈ e} ∪ {¬x|¬x ∈ e} ∪ {x|(ϕ ▷ x) ∈
e} ∪ {¬x|(ϕ ▷ ¬x) ∈ e}.

The relation for enabling is based on a syntactic condition
that refers to the effects of the first action and the precondi-285

tion of the second.

Definition 11 (Relation Re) a1Rea2 iff a1 ̸= a2 and
1. there is x ∈ atEffs(a1) that occurs positively in the pre-

condition of a2, or
2. there is ¬x ∈ atEffs(a1) that occurs negatively in the290

precondition of a2.

The disabling relation is defined similarly.

Definition 12 (Relation Rd) a1Rda2 iff a1 ̸= a2 and
1. there is x ∈ atEffs(a1) that occurs negatively in the pre-

condition of a2, or295

2. there is ¬x ∈ atEffs(a1) that occurs positively in the
precondition of a2.

Additionally, in the presence of conditional effects ϕ ▷ l,
we need to model the way an action may impact what ef-
fects another action actually has. The impact relation indi-300

cates whether it is possible that an action changes the effects
another action can have.

Definition 13 (Relation Ri) a1Ria2 iff a1 ̸= a2 and x ∈
atEffs(a1) or ¬x ∈ atEffs(a1), and x occurs in ψ for some
effect ψ ▷ l of a2.305

The simplest confluence test is the following.

Theorem 3 For a problem instance ⟨X, I,A, F,G⟩, the
forced actions are confluent if
1. Rc ∩ (F × F) = ∅,
2. Rd ∩ (F × F) = ∅, and310

3. Ri ∩ (F × F) = ∅.

Proof: Idea: The conditions guarantee that no forced action
that is applicable in s or in any state s reached with forced
actions becomes inapplicable after firing other forced ac-
tions, and the effects of no forced action are overwritten by315

other forced actions, and the conditional effects of no action
depend on whether other actions are fired before or after it.
Hence the same actions are fired and the same terminal state
is reached no matter what order the actions are fired in.

Proof sketch: Assume that there are two executions that320

lead to different terminal states. Since none of the actions
override the effects of other actions and since the condi-
tions of the conditional effects have the same values in both,
the terminal states can only differ because one execution in-
cludes at least one action not included in the other.325

Note that because of the requirement on Ri, the formu-
las ϕ in conditional effects ϕ ▷ l are not changed by any of
the forced actions, and hence they are evaluated in the state
where the application of the forced actions begins in.

Let a1, . . . , an and a′1, . . . , a
′
n′ be the two executions, and330

by symmetry we assume that the first execution includes at

least one action not included in the other. Let ai be the first
such an action in that execution. Hence {a1, . . . , ai−1} ⊆
{a′1, . . . , a′n′}. Let j ∈ {1, . . . , n′} be such that a′j = ai−1.
Since the effects of a1, . . . , ai−1 are not overridden by any 335

action in the second execution, nor are any preconditions
of any actions made false, the precondition of ai must be
true right after a′j in the second execution. And later actions
a′k, k > j will not make the precondition of ai false. Hence
ai would continue to be applicable for the rest of the exe- 340

cution, and would have to be included in it. This contradicts
the assumption that ai is not part of the second execution.
Therefore it is not possible that there are two executions that
have different actions. □

345

These conditions are essentially what is required for ac-
tions at the same level in GraphPlan’s plans (Blum and Furst
1997) and also in the planning as satisfiability approach
(Kautz and Selman 1996). The conditions in Theorem 3 are
not necessary for confluence. 350

Example 3 Consider actions (a, {¬b, c}), (a, {b, d}), (c ∧
d, {e, b}). Since the first two have conflicting effects, the con-
ditions of Theorem 3 are not satisfied. Nevertheless, the rules
are confluent, always leading to the same terminal state. The
conflict on b between the first two actions is not important, 355

as b will always be made true by the last action.

Next we look at more powerful polynomial time tests for
confluence. The first issue with Theorem 3 is that it looks at
the set of forced actions as a whole, even though it would be
sufficient to limit to only those forced actions that are fired 360

when one of the agent’s actions is executed.
We denote the transitive closure of a relation R by R+.

Definition 14 (Enabled Forced Actions) Let A be a set of
actions, F a set of forced actions, and a an action. Then
Fa = {a1 ∈ F |(a, a1) ∈ (Re ∩ ((A ∪ F) × F))+} is the 365

set of enabled forced actions for a.

The enabled actions is an over-approximation of the set of
actions that possibly become executable after taking a and
some (possibly empty) sequence of actions.

Theorem 4 Let Π = ⟨X, I,A, F,G⟩ be a problem instance. 370

Π is confluent if for every a ∈ A, the set of enabled forced
actions for a has no pair of actions related byRc,Rd, orRi.

Proof: Like the proof of Theorem 3, restricted to the enabled
forced actions for a. □

375

The requirement of Theorem 4 that no two forced actions
conflict is sometimes too restrictive. Next we present a more
refined condition which is sufficient to determine confluence
for a broader class of problems, including one of our sample
problems that we will discuss later. 380

We identify a broader classes of enabling relations that
yields confluent planning problems even when actions dis-
able other actions or have conflicting effects. Two actions a0

and a1 respectively with conflicting effects ¬x and x in gen-
eral violate confluence because there could be two different385

executions in which these two actions are taken in opposite
orders, either making x true first and then making it false, or
vice versa, leading to different terminal states.

But, we could allow two actions to have conflicting effects
if they are always executed in the same order, and other ac-390

tions cannot impact their execution so that the conflicting
effects could play out in two different ways.

Definition 15 (Enabling Graph) An enabling graph for an
action a is a graph Ga = ⟨G,E⟩ where G = {a} ∪ Fa for
the set of enabled forced actions Fa for the action a, and395

E = Re ∩ (({a} ∪ Fa)× ({a} ∪ Fa)).

Cycles in enabling graphs are a potential indication of
non-termination of forced actions. Enabling graphs in prob-
lems such as the one in Example 1 are clearly cyclic. For
acyclic enabling graphs the executions of forced actions are400

finite, but can be exponentially long.

Example 4 Consider the following forced actions for all
i ∈ {1, . . . , n}.

ai = (xi, {xi+1, x
′
i+1,¬xi})

a′i = (x′i, {xi+1, x
′
i+1,¬x′i})

For an action a with effects x1 and x′1, the graph Ga is
acyclic.405

All of these forced actions are executed after x1 and x′1
become true, but there are several possible executions, and
on some of them some actions are executed an exponential
number of times.

After both an−1 and a′n−1 one can execute an, a
′
n.410

Similarly, after both an−2 and a′n−2 one can execute
an−1, an, a

′
n, a

′
n−1, an, a

′
n. As n increases, the length of ex-

ecutions of this form increases exponentially as 2n+1 − 2.

Acyclicity of Ga only guarantees boundedness of execu-
tions, but does not guarantee the uniqueness of the terminal415

state, as different paths in the graphs may be interleaved to
executions in different ways.

The same holds also if Ga is a tree: even if there are only
two branches in a tree-formed Ga (and the executions are
only polynomially long), the branches can be interleaved in420

an exponential number of different ways, and they could
lead to an exponential number of different terminal states.
So, confluence requires either even stronger restrictions on
Ga, like it being a chain, or other additional restrictions.

Next we focus on graphs that are trees, and restrict the425

properties of forced actions in different branches of the tree
so that confluence is achieved. Note that neither acyclicity
nor being a tree is a necessary condition for confluence or
termination, and we are here interested in practically use-
ful sufficient conditions for these properties, especially ones430

that can be tested in low-polynomial time.
To guarantee confluence we require that any variation in

the order in which the forced actions are executed will never
impact which terminal state is reached. In an extreme case,

the tree consists of a single branch, a totally ordered se-435

quence of forced actions, which can only be executed in
this particular order. Hence confluence trivially follows. If
the tree has several branches, then none of the branches are
allowed to impact how the execution in the other branches
proceeds, and hence interleaving the different branches in 440

arbitrary ways still always leads to the same terminal state.
This is achieved simply by requiring that there is no inter-
branch interaction corresponding to three of the relations we
have defined, Rd for disabling, Ri for changing the condi-
tions of conditional effects, and Rc for having conflicting 445

effects.

Theorem 5 Let Π = ⟨X, I,A, F,G⟩ be a problem instance.
Π is confluent if the enabling graph Ga of every a ∈ A
satisfies the following.

1. Ga is a tree, and 450

2. for every (a0, a1) ∈ (F × F) ∩ (Rd ∪Ri ∪Rc), there is
a directed path from a0 to a1 or from a1 to a0 in Ga.

Proof: Idea: The different maximal paths in the tree do not
interfere with each other (except of course they may share
parts of their initial segment), and attempting execution of 455

any total ordering of the partial order represented by the tree
– ignoring actions with a false precondition – leads to exe-
cuting exactly the same set of actions, with the same termi-
nal state for every execution.

Let s be any reachable state for Π and let a ∈ A be 460

an action applicable in s. Let σ1 = a11, . . . , a
1
n and σ2 =

a21, . . . , a
2
m be sequences of forced actions so that s10, . . . , s

1
n

and s20, . . . , s
2
m are their respective executions starting with

s10 = s = s20, and the sequences are maximal in the sense
that no forced actions are applicable in s1n and s2m. 465

We will next show that {a11, . . . , a1n} = {a21, . . . , a2m} so
that exactly the same forced actions are executed after taking
action a, and that s1n = s2m so that the resulting state is the
same in both cases.

To show that the same actions are in both, we assume that 470

is an action a1i that does not appear in σ2, and choose such
action with the least i. So forced actions a11, . . . , a

1
i−1 occur

also in σ2, including those on the path from the root action
a to a1i . These latter actions cannot interfere with any ac-
tion in σ2, because there is not inter-branch interaction of 475

the forced actions, and hence after the last of those actions
the precondition of a1i is true. But now none of the forced
actions following a1i in Ga can be in σ2 (as only a1i can
make them applicable) and therefore cannot falsify the pre-
condition of a1i , and also forced actions in other branches 480

in Ga cannot falsify the precondition of a1i , so a1i must be
included in σ2 as well, which is a contradiction with the as-
sumption that there is a forced action in σ1 that does not
occur in σ2. Hence all forced actions in σ1 must also be in
σ2. By symmetry, same holds for σ2 and σ1, so hence their 485

forced actions coincide.
It remains to show that both σ1 and σ2 lead to the same

terminal state.
We first prove an auxiliary result by induction on the dis-

tance of the (forced) actions from the root action a in Ga. 490

Induction hypothesis: For any (forced) action with dis-
tance i from the root of Ga that occurs in σ1 and σ2, in both
execution σ1 and in σ2 the action has the same (conditional
and unconditional effects).

Base case i = 0: This action is the root action a, being495

executed in the same state s for both σ1 and σ2, and hence
has the same effects in both cases.

Inductive case i ≥ 1: Let a′ be an action in σ1 and σ2
with distance i from a. All (forced) actions that change state
variables in the conditions c of conditional effects c ▷ e of a′500

before the execution of a′ in σ1 and σ2 have distance < i,
and hence have exactly the same conditional and uncondi-
tional effects in both σ1 and σ2. Hence the effects of a′ are
the same in both executions.

Finally, for every state variable x and every pair of actions505

that change x in σ1 and σ2, these two actions have the same
ordering in both σ1 and σ2, as that ordering is determined
by Ga (actions that have conflicting effects cannot be in un-
ordered in Ga, that is, reside in different branches of the tree
Ga.)510

Hence the final value of x is the same in both executions
σ1 and σ2, and hence the terminal states are the same. □

6 Implementation
Often it can be guaranteed that taking an action can only515

trigger the firing of a small number of forced actions (for
example by using the concept of enabled forced action in
Definition 14). In these cases it is possible to implement the
forced actions by reducing the whole planning problem to a
conventional classical planning problem. If there is only one520

forced action that could become executable after an agent’s
chosen action, then simply compose them together, with the
precondition p of the forced action first moved to the con-
dition part of its effect ϕ ▷ l to obtain (p ∧ ϕ) ▷ l. However,
compiling the potentially applicable forced actions into the525

enabling regular actions is infeasible if there are very many
of them. We have not experimented with this option further.

Next we consider general implementations in two main
frameworks, heuristic state space search (Bonet and Geffner
2000) and the planning as satisfiability approach (Kautz and530

Selman 1996). An underlying assumption in both cases is
confluence (Section 4). If a rule set does not have the conflu-
ence property, the results of the rule firings are not uniquely
determined by the starting state, and will be affected by the
ordering in which forced actions are considered. In the state-535

space search setting the most natural implementations would
follow an arbitrary ordering. SAT-based methods could be
implemented so that all possible firing orderings would be
covered, so that a planner would return a plan whenever a
plan exists for at least one firing ordering for every instance540

of firings, but we will not look at this in more detail.

6.1 Heuristic State Space Search
Implementation with standard state-space search algorithms
in planners such as HSP and FF (Bonet and Geffner 2000;
Hoffmann and Nebel 2001) is straightforward. Followed by545

a regular action, all applicable forced actions are applied un-
til none are applicable. Assuming confluence, the resulting
state is unique.

For computing many well-known heuristics, a straightfor-
ward implementation is to treat forced actions and regular 550

actions alike, so not requiring any modification in the heuris-
tic at all. An intuitively plausible modification would be to
treat forced actions as having cost 0, but we will see in Sec-
tion 7 that sometimes this does not work well.

6.2 Planning as Satisfiability 555

Extending encodings of planning as satisfiability (Kautz and
Selman 1996) with forced actions is slightly more compli-
cated. We need to force the execution of all forced actions
after every regular action. The principles the encoding im-
plements are the following. 560

1. At least one forced action must be taken whenever the
precondition of at least one forced action is true.

2. An ordinary (non-forced) action can be taken only if no
forced action is applicable at the same step.

The first requires firing all applicable forced actions, in 565

one or more steps of a parallel plan (Kautz and Selman
1996). The second means that agent’s actions can only be
considered after all applicable forced actions have been
fired. Next we give an implementation of these principles.

Let there be n forced actions, and let p1, . . . , pn be 570

their respective preconditions and let f1@t, . . . , fn@t be the
atomic propositions indicating whether they are executed at
time point t. Let a1@t, . . . , am@t be the atomic propositions
indicating whether the agent actions are executed.

Requirement 1 is encoded as follows. 575

pi@t→ F@t for all i ∈ {1, . . . , n} (1)
F@t→ (f1@t ∨ · · · ∨ fn@t) (2)

Requirement 2 is encoded as follows.

ai@t→ ¬F@t for all i ∈ {1, . . . ,m} (3)

Here F@t is true if at time step t there are forced actions.
This is the most basic encoding. We can strengthen the

encoding so that forced actions following one regular action
are never unnecessarily spread to more time points than what 580

is necessary. The additional condition that handles this is as
follows.

1b. If the precondition of the forced action is true and no
forced action is executed that either has a conflicting
effect or that is mutex with the forced action, then the 585

forced action must be taken.

This could further be strengthened by removing ambigu-
ity about which maximal consistent set of forced actions is
taken by adding “no forced action with a lower index”, so
that in conflict situations always the lower indexed forced 590

action wins. This condition is encoded as follows.

pi@t→ F@t for all i ∈ {1, . . . , n} (4)pi@t ∧ ¬
∨
j∈Ci

fj@t

 → fi@t (5)

Here Ci is the set of lower-indexed actions that have an ef-
fect that conflicts with the effect of forced action i or that is
mutex with it, in the sense of Graphplan parallelism (Blum
and Furst 1997; Kautz and Selman 1996). 595

7 Experiments
Following Section 6.2, we have implemented forced actions
in FF (Hoffmann and Nebel 2001), a well-known planner
often used for benchmarking, as well as a basic SAT-based
planner. Then we have run experiments, demonstrating two600

uses of forced actions, viewing the distinction between reg-
ular and forced actions as control knowledge, and using
forced actions to describe complex indirect effects of the
agent’s actions.

In our first experiment, we reformulated the well-known605

logistics domain with control knowledge, and then evaluated
it against the original version without control knowledge.

In the second experiment we demonstrate the use of
forced actions in expressing indirect effects that would be
difficult to encapsulate in regular actions. For this, we intro-610

duce a new domain derived from the well-known Game of
Life (Gardner 1970) cellular automaton.

All experiments were run on Intel Xeon E5-2680 CPUs,
with 8 GB of memory and a time limit of 30 minutes.

7.1 Control Knowledge for Logistics615

Forced actions can also be viewed as a form of control
knowledge. Consider the standard logistics domain, with air-
planes and trucks for transporting packages. Some of the ac-
tions can be viewed as forced actions which should be taken
whenever it is possible.620

• A package at its target city but not at its target location
must be loaded into a truck.

• A package not in its target city must be loaded into a
truck if it is not at the airport.

• A package destined to a different city must be unloaded625

from a truck at the airport.
• A package in its target city must be unloaded from the

airplane.
• A package in its target location must be unloaded from a

truck.630

These forced actions refer to the target cities and locations
of the packages, which must be accordingly modeled.

The only actions left to the agent to decide about are the
move actions for trucks and airplanes, and whether to load
a package to an airplane. Loading a package to an arbitrary635

airplane may risk losing optimality of a plan.
Note that these forced actions mostly satisfy the condi-

tions of Theorem 3, except for immediate loads after un-
loads, as in unloading a package from a truck and then load-
ing it into an airplane. The more relaxed conditions of The-640

orem 5 in this case show that confluence indeed holds.
Our experiment uses 200 instances from the year 2000

planning competition Logistics domain, both in the origi-
nal version, and a revised version with many of the actions
turned to forced actions as described above.645

Un.

10
-1

10
0

10
1

10
2

10
3

Un.10
-1

10
0

10
1

10
2

10
3

F
o
rc

e
d
 A

c
ti
o
n

Base

Figure 1: FFF1 and FF runtimes on Logistics

Un.

10
-1

10
0

10
1

10
2

10
3

Un.10
-1

10
0

10
1

10
2

10
3

F
o
rc

e
d
 A

c
ti
o
n

Base

Figure 2: SAT runtimes on Logistics

We first implemented FF with forced actions (which we
call FFF0) according to Section 6.1, so that the heuristic
computation considers the forced actions as having cost 0.
The results turned out to be underwhelming, with FFF0 of-
ten not solving Logistics any better. It turned out that forced 650

actions having cost 0 turns the heuristic uninformative and
makes the search quite blind. Then we modified the im-
plementation so that forced actions are considered by the
heuristic exactly like the rest of the actions, obtaining FFF1.
Figure 1 gives the runtimes of FF on the original instances 655

and FFF1 with the same instances enhanced with forced ac-
tions. Using forced actions as control knowledge decimates
the runtimes also for the very large Logistics instances that
FF would otherwise need tens of minutes to solve.

For the SAT approach, we used a basic SAT-based plan- 660

ner with a standard parallel encoding (Kautz and Selman
1996) as a baseline. Then we extended it, as discussed in
Section 6.2, to support forced actions (the most basic encod-
ing only), and ran it with the same Logistics problems, with
the results given in Figure 2. The experiment used the state- 665

of-the-art KisSAT SAT solver. While the results are not as
impressive as with FFF1, substantial runtime improvement
is still obtained, often by one order of magnitude.

The results show that control knowledge in the form of
forced actions can considerably improve performance when 670

some of the actions can be considered obligatory when-

Figure 3: Our Game of Life problem in a 7 × 7 grid. It takes ten time steps to reach the destination area (rightmost column)
from the source area (leftmost column). The agent sets cells in the source area in the first three steps.

ever they are applicable. Although Logistics is a simple
domain and is solved by many planners very efficiently,
the reduction in the number of decision points, due to the
smaller number of regular actions, still leads to a perfor-675

mance improvement. In some other domains these improve-
ments could be still far bigger.

7.2 Game of Life
Game of Life (Gardner 1970) is a cellular automaton. The
cells in the grid are either live or dead. Given the current680

state, the following three rules determine the next state: Any
cell with three live neighbors will be alive. Any live cell with
two live neighbors will be alive. All other cells will be dead.

For our second experiment, we based a planning prob-
lem on Game of Life. We partition a finite grid into three685

parts: source area, destination area, and the rest. The goal
is to make at least one cell alive in the destination area by
controlling the cells in the source area, and otherwise allow-
ing the automaton run according to its usual rules. Figure 3
demonstrates an example of this problem with its solution.690

We implemented this problem with agent’s actions con-
trolling the source area, and with the cellular automaton
rules implemented as forced actions. We use two copies of
the grid, the old and the new, so that each cell’s new state
only depends on the cells’ old values, with the new grid be-695

coming the next new for the next stage of cell evolution.
This problem is confluent, as the forced actions are used to
determine the unique next state of the grid evolution.

We generated ten problem instances for grid sizes 3 × 3
until 12 × 12. The leftmost column is the source area, and700

the rightmost column is the destination area. The results of
this experiment are shown in Figure 4. There is no baseline
version of this benchmark, as expressing it in standard mod-
eling languages is impractical. Finding cellular automata
states satisfying complex criteria is computationally hard, so705

the runtimes in this problem unsurprisingly grow quickly as
the grid dimensions increase. The SAT implementation finds
solutions up to grid size 10× 10 and FFF1 until 8× 8.

8 Conclusion
We have investigated methods and complexity of testing the710

termination and confluence of indirect effects expressed as
condition-effect rules, showing the main decision problems
PSPACE-complete, and giving incomplete but broadly ap-
plicable polynomial-time heuristic methods. Additionally,
we have presented scalable implementation both for heuris-715

tic state space search and logic-based methods, which have

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 3 4 5 6 7 8 9 10 11 12

R
u

n
ti
m

e
 (

s
e

c
o

n
d

)

length

SAT
FFF1

Figure 4: FFF1 and SAT runtimes on Game of Life

not been presented in earlier research. Indirect effects can
formalize complex uncontrollable but predictable environ-
ments, or they can be understood as control knowledge, as
discussed in our experiments.720

Future work includes further polynomial-time testable
structural properties that guarantee confluence.

References
Barendregt, H. P. 1984. The lambda calculus. North-
Holland. 725

Blum, A. L.; and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence, 90(1-2):
281–300.
Bonet, B.; and Geffner, H. 2000. Planning as heuristic
search: new results. In Recent Advances in AI Planning. 730

5th European Conference on Planning, ECP’99, Durham,
UK, September 8-10, 1999. Proceedings, number 1809 in
Lecture Notes in Artificial Intelligence, 360–372. Springer-
Verlag.
Bylander, T. 1994. The computational complexity of propo- 735

sitional STRIPS planning. Artificial Intelligence, 69(1-2):
165–204.
Fox, M.; Howey, R.; and Long, D. 2005. Validating plans
in the context of processes and exogenous events. In Pro-
ceedings of the 20th National Conference on Artificial Intel- 740

ligence (AAAI-2005), 1151–1156. AAAI Press.
Fox, M.; and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. Journal of Artificial Intel-
ligence Research, 27: 235–297.
Fritz, C.; and McIlraith, S. A. 2008. Planning in the face of 745

frequent exogenous events. In Online Poster Proceedings of

the 18th International Conference on Automated Planning
and Scheduling (ICAPS), 14–18.
Gardner, M. 1970. The fantastic combinations of John Con-
way’s new solitaire game ”Life”. Scientific American, 223: 750

120–123.
Gelfond, M.; and Lifschitz, V. 1998. Action Languages.
Linköping University Electronic Press.
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach
to temporal planning and scheduling in domains with pre-755

dictable exogenous events. Journal of Artificial Intelligence
Research, 25: 187–231.
Giunchiglia, E.; and Lifschitz, V. 1998. An action language
based on causal explanation: Preliminary report. In Pro-
ceedings of the 15th National Conference on Artificial In-760

telligence (AAAI-98) and the 10th Conference on Innovative
Applications of Artificial Intelligence (IAAI-98), 623–630.
AAAI Press.
Hoffmann, J.; and Nebel, B. 2001. The FF planning sys-
tem: fast plan generation through heuristic search. Journal765

of Artificial Intelligence Research, 14: 253–302.
Iocchi, L.; Nardi, D.; and Rosati, R. 2000. Planning with
sensing, concurrency, and exogenous events: logical frame-
work and implementation. In Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Seventh In-770

ternational Conference (KR 2000), 678–689. Morgan Kauf-
mann Publishers.
Jensen, K. 1980. A method to compare the descriptive power
of different types of Petri nets. In International Symposium
on Mathematical Foundations of Computer Science, 348–775

361. Springer-Verlag.
Kartha, G. N.; and Lifschitz, V. 1994. Actions with indi-
rect effects (preliminary report). In Principles of Knowledge
Representation and Reasoning: Proceedings of the Fourth
International Conference (KR ’94), 341–350. Elsevier.780

Kautz, H.; and Selman, B. 1996. Pushing the envelope: plan-
ning, propositional logic, and stochastic search. In Proceed-
ings of the 13th National Conference on Artificial Intelli-
gence and the 8th Innovative Applications of Artificial Intel-
ligence Conference, 1194–1201. AAAI Press.785

Keller, R. M. 1974. A fundamental theorem of asynchronous
parallel computation. In Sagamore Computer Conference,
102–112. Springer-Verlag.
Petrick, R. P. A.; and Bacchus, F. 2002. A knowledge-based
approach to planning with incomplete information and sens-790

ing. In Proceedings of the Sixth International Conference on
Artificial Intelligence Planning Systems, April 23-27, 2002,
Toulouse, France, 212–221. AAAI Press.
Rosen, B. K. 1973. Tree-manipulating systems and Church-
Rosser theorems. Journal of the ACM, 20(1): 160–187.795

Sethi, R. 1974. Testing for the Church-Rosser property.
Journal of the ACM, 21(4): 671–679.

