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Abstract

Deep learning has demonstrated performance001
advantages in a wide range of natural language002
processing tasks, including neural machine003
translation (NMT). Transformer NMT models004
are typically strengthened by deeper encoder005
layers, but deepening their decoder layers usu-006
ally results in failure. In this paper, we first007
identify the cause of the failure of the deep de-008
coder in the Transformer model. Inspired by009
this discovery, we then propose approaches to010
improving it, with respect to model structure011
and model training, to make the deep decoder012
practical in NMT. Specifically, with respect to013
model structure, we propose a cross-attention014
drop mechanism to allow the decoder layers to015
perform their own different roles, to reduce the016
difficulty of deep-decoder learning. For model017
training, we propose a collapse reducing train-018
ing approach to improve the stability and effec-019
tiveness of deep-decoder training. We experi-020
mentally evaluated our proposed Transformer021
NMT model structure modification and novel022
training methods on several popular machine023
translation benchmarks. The results showed024
that deepening the NMT model by increasing025
the number of decoder layers successfully pre-026
vented the deepened decoder from degrading to027
an unconditional language model. In contrast028
to prior work on deepening an NMT model on029
the encoder, our method can deepen the model030
on both the encoder and decoder at the same031
time, resulting in a deeper model and improved032
performance.033

1 Introduction034

With the help of the deep neural network, the035

feature extraction capability of models has been036

substantially enhanced (Schmidhuber, 2015; Le-037

Cun et al., 2015). Deep neural network models038

are also popular for natural language processing039

(NLP) tasks. The most typical deep neural net-040

work model in NLP is based on the convolutional041

neural network (CNN) (Gehring et al., 2017) and042

Transformer (Vaswani et al., 2017) structures, and 043

the deep pretrained Transformer language model 044

has begun to dominate NLP. The deep neural net- 045

work model has also attracted substantial interest 046

in neural machine translation (NMT), for both the- 047

oretical research (Wang et al., 2019; Li et al., 2020, 048

2021; Kong et al., 2021) and competition evalua- 049

tion (Zhang et al., 2020; Wu et al., 2020b,a; Meng 050

et al., 2020). Because it has been demonstrated that 051

deep neural network models can benefit from an 052

enriched representation, deep NMT models also 053

show advantages with respect to translation perfor- 054

mance (Wu et al., 2019; Wei et al., 2020). 055

Although deep models have been extensively 056

studied in machine translation and are frequently 057

used to improve translation performance, almost 058

all work on deepening models has focused on in- 059

creasing the number of encoder layers; there has 060

been very little research on deepening the decoder. 061

Through preliminary experiments on varying the 062

number of decoder layers in the Transformer NMT 063

model, we observed that, when the decoder is deep- 064

ened beyond a certain number of layers, the trans- 065

lation performance of the overall model fails to 066

improve; moreover, it declines rapidly to near zero. 067

This demonstrates that there are flaws in the current 068

structure or training method, and the deep-decoder 069

NMT model cannot be trained. 070

By analyzing the training process of the deep- 071

decoder model, we found that the training perplex- 072

ity of the model was relatively low, but the transla- 073

tion performance of the obtained model was much 074

worse than that of a shallow model. Inspired by this 075

phenomenon, we hypothesize that, as the decoder 076

deepens, the model may increasingly ignore the 077

source inputs and degenerate to an unconditional 078

language model, even though a low perplexity can 079

be obtained on the training set. In this case, the 080

purpose of translation learning is not achieved, and 081

thus the model training fails. 082

According to our hypotheses, preventing the de- 083
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coder from degenerating to an unconditional lan-084

guage model is the key to overcoming the failure of085

deep-decoder NMT model training. Consequently,086

we propose two aspects of model improvement:087

model structure and model training. In model struc-088

ture, the only difference between the decoder of089

the NMT model and that of the unconditional lan-090

guage model is cross-attention; therefore, we focus091

mainly on this structure. In model training, we aim092

to make the decoder output distant from the output093

of the unconditional language model to avoid fit-094

ting the target sentences while ignoring the source095

inputs in the training dataset.096

Specifically, we propose a cross-attention drop097

(CAD) mechanism for the deep-decoder layer struc-098

ture. The original intention of this mechanism is099

that we suspected that the degeneration of the deep100

decoder to an unconditional language model was101

caused by the training difficulties resulting from102

too many cross-attentions. Because the purpose103

of cross-attention is to force the decoder layer to104

obtain features from the source representation, the105

different layers in the deep decoder should per-106

form distinct roles. However, the conventional107

deep decoder requires each layer to extract source108

features similarly, thus increasing the training dif-109

ficulty. As a result, to minimize training loss, the110

model chooses to memorize the training target sen-111

tences directly and ignore the source inputs. In112

this mechanism, we drop the cross-attention in113

some decoder layers to lower the overall train-114

ing difficulty, thereby preventing the failure of115

deep-decoder training. In addition to structural116

changes, we also propose a decoder dropout reg-117

ularization (DDR) loss and anti-LM-degradation118

(ALD) loss for joint model optimization, based119

on contrastive learning; these increase the stability120

of deep-decoder NMT model training and avoid121

degeneration to an unconditional language model.122

Our experiments were conducted mainly on two123

popular machine translation benchmarks: WMT14124

English-to-German and English-to-French. The re-125

sults of the experimental exploration of decoders126

with different depths show that a successfully127

trained depth decoder greatly benefits the overall128

translation performance and can work with the deep129

encoder to achieve higher translation performance.130

Moreover, the novel training approaches that we131

propose both increase the stability of the training132

of the deep-decoder model and enable additional133

improvements.134

2 Related Work 135

Since the emergence of the Transformer-based 136

model (Vaswani et al., 2017), the deep model has 137

become the mainstream baseline model for ma- 138

chine translation. The Transformer NMT model 139

employs a deeper architecture than the RNN-based 140

model, with six encoder layers and six decoder lay- 141

ers. During the same time period, Gehring et al. 142

(2017) introduced an encoder–decoder architecture 143

wholly based on CNNs, which increased both the 144

number of encoder layers and the number of de- 145

coder layers to 20. 146

Because greater model capacity has the potential 147

to contribute significantly to quality improvement, 148

deepening a model is regarded as a good method of 149

boosting the capacity of the model with the same 150

architecture. It has been shown that more expres- 151

sive features are extracted (Mhaskar et al., 2016; 152

Telgarsky, 2016; Eldan and Shamir, 2016), which 153

has resulted in improved performance for vision 154

tasks (He et al., 2016; Srivastava et al., 2015) over 155

the past few years. In Transformer NMT models, 156

there have also been numerous studies on deepen- 157

ing the model for better performance. Bapna et al. 158

(2018) took the first step toward training extraordi- 159

narily deep models by deepening the encoders for 160

translation, but discovered that simply increasing 161

the encoder depth of a basic Transformer model 162

was insufficient. Because of the difficulty of train- 163

ing, models utterly fail to learn. Transparent at- 164

tention has also been proposed to regulate deep- 165

encoder gradients; this eases the optimization of 166

deeper models and results in consistent gains with 167

a 16-layer Transformer encoder. 168

Following research on deepening the encoder 169

to obtain a deep NMT model, as in (Bapna et al., 170

2018), Wu et al. (2019) proposed a two-stage train- 171

ing strategy with three special model structural de- 172

signs for constructing deep NMT models with eight 173

encoder layers. Wang et al. (2019) proposed a dy- 174

namic linear combination mechanism and success- 175

fully trained a Transformer model with a 30-layer 176

encoder, with the proposed mechanism shorten- 177

ing the path from upper-level layers to lower-level 178

layers to prevent the gradient from vanishing or 179

exploding. Zhang et al. (2019) proposed a depth- 180

scale initialization for improving norm preserva- 181

tion and a merged attention sublayer that integrates 182

a simplified average-based self-attention sublayer 183

into the cross-attention module. Fan et al. (2019) 184

employed a layer-drop mechanism to train a 12-6 185
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Transformer NMT model and pruned subnetworks186

during inference without fine-tuning. More re-187

cently, Wei et al. (2020) proposed to attend the188

decoder to multigranular source information with189

different space-scales, thereby boosting the train-190

ing of very deep encoders without special training191

strategies. Li et al. (2020) developed a shallow-to-192

deep training strategy and employed sparse con-193

nections across blocks to successfully train a 48-194

layer encoder model. Kong et al. (2021) studied195

using deep-encoder and shallow-decoder models196

to improve decoding speed while maintaining high197

translation quality. Most of these related studies198

focused on deepening the encoder for deep NMT199

models, whereas there have been very few studies200

on deepening the decoder. Herein lies the most201

significant dissimilarity between our work and this202

related work.203

3 Our Method204

Given bilingual parallel sentences ⟨X,Y⟩, the205

NMT model learns a set of parameters Θ by maxi-206

mizing the likelihood J (Y|X,Θ), which is repre-207

sented as the product of the conditional probabili-208

ties of all target words:209

JNLL(Y|X;Θ) =

|Y|∏
i=1

P (Yi|Y<i,X;Θ)

= −
|Y|∑
i=1

logP (Yi|Y<i,X;Θ),

210

where |Y| represents the sequence length of Y,211

Yi represents the i-th token of sequence Y, and212

Y<i represents all the tokens before the i-th to-213

ken. Encoder–decoder architectures are commonly214

employed in NMT to model the translation condi-215

tional probabilities P (Y|X;Θ), where the encoder216

and decoder can be implemented as RNNs (Wu217

et al., 2016), CNNs (Gehring et al., 2017), or self-218

attention (Vaswani et al., 2017). In this study, we219

used the most recent Transformer NMT model,220

based on a self-attention structure, as our baseline.221

3.1 Transformer NMT Model222

The encoder and decoder in the Transformer NMT223

model both consist of stacked multiple layers, with224

each layer composed of attention networks. The225

following is the basic form of an attention network:226

ATTN(HQ,HKV) = WO

[
Softmax(

QKT

√
d

)V

]
,

Q,K,V = WQHQ,WKHKV,WVHKV,
227

where WQ,WK,WV, and WO are weight pa- 228

rameters, d is the hidden dimension, and HQ and 229

HKV are two input vectors for attention, with HQ 230

serving as a query and HKV serving as key and 231

value. When HQ and HKV are input into the 232

same vector, the attention becomes self-attention: 233

SELFATTN(HQKV) = ATTN(HQKV,HQKV). To 234

improve feature extraction capabilities, Vaswani 235

et al. (2017) advocated using a multihead mecha- 236

nism to enhance the original attention; we omit this 237

here for simplicity. 238

In the encoder, Le identical layers are stacked, 239

and each layer has a self-attention sublayer and 240

a pointwise feedforward sublayer. Layer normal- 241

ization (Ba et al., 2016) and skip residual connec- 242

tion (He et al., 2016) are employed for each sub- 243

layer’s input and output. The process in the l-th 244

encoder layer can be formalized as follows: 245

Ĥl
e = LN

(
SELFATTN(Hl−1

e ) +Hl−1
e

)
,

Hl
e = LN

(
FFN(Ĥl

e) + Ĥl
e

)
,

246

where Hl−1
e denotes the output of the (l-1)-th layer 247

in the encoder, FFN(·) is the pointwise feedforward 248

sublayer with a two-layer feedforward network and 249

ReLU activation function, and H0
e = EMB(X) de- 250

notes the initial representation from the embedding 251

layer. 252

The decoder consists of Ld identical layers. As 253

in the encoder, the self-attention network is used 254

to extract features from the target sequence in each 255

layer; however, in addition, a cross-attention is 256

used to extract features from the source sequence. 257

The process of the l-th layer in the decoder can be 258

formalized as follows: 259

Ĥl
d = LN

(
SELFATTN(CASUALMASK(Hd)) +Hl−1

d

)
,

H̃l
d = LN

(
CROSSATTN(Ĥl

d,H
Le
e ) + Ĥl

d

)
,

Hl
d = LN

(
FFN(H̃l

d) + H̃l
d

)
.

260

where H0
d = EMB(Y), CAUSALMASK(·) repre- 261

sents the causal mask mechanism (to make any i-th 262

token unable to see future tokens, thereby maintain- 263

ing unidirectional translation), CROSSATTN(·) is 264

the same as ATTN(·) in implementation, in which 265

the hidden state on the decoder is input as the query, 266

and the hidden state on the encoder is input as the 267

key and value. The output target sequence is pre- 268

dicted on the output hidden state HLd
d from the top 269

layer of the decoder: 270

P (Y|X;Θ) = Softmax(WDH
Ld
d ), 271
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where WD is the projection weight parameter,272

which maps the hidden state to the probability in273

the vocabulary space.274

3.2 Deep Decoder Collapse275

In theory, we can construct a deeper Transformer276

NMT model by stacking more decoder layers in ad-277

dition to more encoder layers. To illustrate the chal-278

lenge of simply increasing the number of decoder279

layers for a deep NMT model, we conducted a pre-280

liminary experiment using the WMT14 En→De281

translation task.282
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Figure 1: Training perplexity vs. decoder depth and
BLEU score vs. decoder depth on WMT14 En→De
translation task.

Figure 1 shows the relationship between train-283

ing perplexity and BLEU score on the test set with284

different decoder depths after 200K training steps.285

Except for the number of decoder layers, other286

hyperparameters were kept consistent with those287

used in the Transformer-based model setting. The288

figure shows that, as the number of decoder lay-289

ers increased, the training perplexity fell gradually290

and then increased, whereas the BLEU score in-291

creased at first and eventually declined to a very292

low level. This phenomenon is referred to as deep-293

decoder collapse. The perplexity on the training294

set appeared to decrease but the translation per-295

formance was very poor; we hypothesize that this296

phenomenon was caused by the model ignoring the297

source inputs, leading the decoder to degenerate to298

an unconditional language model. To verify our hy-299

pothesis, we made improvements in two respects:300

model structure and model training.301

3.3 Cross-attention Drop302

The sole fundamental difference between the de-303

coder in Transformer NMT and the pure uncondi-304

tional language model, such as GPT2, is the cross-305

attention in Eq. (3.1). The cross-attention forces306

the target representation to include features from307

the source’s representation, rather than relying only 308

on the visible target tokens. Although the presence 309

of cross-attention intuitively prevents the decoder 310

from degenerating to an unconditional language 311

model, we argue that it is the presence of cross- 312

attention that makes the learning more difficult. 313

This is because each layer in the deep decoder plays 314

a more distinct role than in a shallow decoder but 315

each layer is forced to extract features from the 316

source representation. Thus, the decoder may aban- 317

don the cross-attention and act as an unconditional 318

language model, to achieve a lower training loss. 319

We propose a drop-net technique to ensure that 320

the features output by self-attention and the en- 321

coder are fully exploited. This technique, inspired 322

by dropout (Srivastava et al., 2014) and drop-path 323

(Larsson et al., 2017), can be employed to regu- 324

larize the network training. Specifically, for the 325

l-th decoder layer, given a drop-net rate of plnet, we 326

randomly sample a variable U l ∈ [0, 1], and the 327

calculation of H̃l
d in Eq. (3.1) becomes: 328

H̃l
d,drop-net = LN

(
1(U l > plnet) · Ĥl

d+

1(U l > 1− plnet) · (CROSSATTN(Ĥl
d,H

Le
e ) + Ĥl

d)
)
.

329

where 1(·) is an indicator function. For layer l, 330

with probability plnet, only self-attention is used; 331

with probability (1 − plnet), both of the two atten- 332

tions are used. During the inference stage, both 333

attentions are used for the H̃l
d calculation. For 334

the simplicity of implementation, we adopted a 335

same fixed pnet for layers 1 ≤ l ≤ Ldr (i.e. 336

plnet = pnet, 1 ≤ l ≤ Ldr), while set plnet = 1.0 337

for layers l > Ldr. We denote Ldr as the drop 338

depth and pnet as the drop ratio. 339

3.4 Collapse Reducing Training 340

In addition to the model structure, we introduced 341

two extra losses into model training: one for stable 342

optimization and another to minimize the risk of the 343

decoder degenerating to an unconditional language 344

model. These are the DDR loss and ALD loss, both 345

of which are inspired by the concept of contrastive 346

learning. 347

Because of the use of dropout and drop-net in 348

the decoder, we propose a simple regularization 349

loss, DDR loss, which is based on the randomness 350

of the model structure. The purpose of this loss, 351

which is inspired by R-drop (Liang et al., 2021), is 352

to regularize the output predictions from different 353

substructures of the deep decoder and increase the 354

stability of the optimization. Specifically, because 355

4



Systems WMT14 En→De WMT14 En→Fr

Enc. Dec. Ratio Params Time BLEU sacreBLEU Params Time BLEU sacreBLEU

(Vaswani et al., 2017) (BIG) 6 6 1.0 213M N/A 28.40 N/A 222M N/A 41.00 N/A
(Shaw et al. 2018) (BIG) 6 6 1.0 210M N/A 29.20 N/A 222M N/A 41.30 N/A
(Ott et al., 2018) (BIG) 6 6 1.0 210M N/A 29.30 28.6 222M N/A 43.20 41.4
(Wu et al., 2019) (BIG) 8 8 1.0 270M N/A 29.92 N/A 281M N/A 43.27 N/A
(Wang et al., 2019) (BIG, DEEPE) 30 6 5.0 137M N/A 29.30 N/A N/A N/A N/A N/A
(Wei et al., 2020) (BASE, DEEPE) 48 6 8.0 272M N/A 30.19 N/A N/A N/A N/A N/A
(Wei et al., 2020) (BIG, DEEPE) 18 6 3.0 512M N/A 30.56 N/A N/A N/A N/A N/A
(Li et al., 2020) (BASE, DEEPE) 24 6 4.0 118M 6.16 29.02 27.9 124M 33.81 42.42 40.6
(Li et al., 2020) (BASE, DEEPE) 48 6 8.0 194M 10.65 29.60 28.5 199M 55.35 42.82 41.0
(Li et al., 2020) (BIG, DEEPE) 24 6 4.0 437M 18.31 29.93 28.7 N/A N/A N/A N/A

BASE (Pre-Norm) 6 6 1.0 63M 4.79 27.05 26.0 65M 27.11 41.00 39.2
DEEPE 24 6 4.0 118M 8.66 28.95 27.8 119M 48.43 42.40 40.6
DEEPE 48 6 8.0 194M 16.38 29.44 28.3 195M 90.85 42.75 41.0
DEEP 15 15 1.0 123M 9.82 0.55 0.2 124M 49.96 0.93 0.3
DEEP+CAD+CRT 15 15 1.0 123M 10.52 29.09 28.1 124M 50.13 42.86 41.0
DEEP 27 27 1.0 199M 16.56 0.31 0.1 200M 78.82 0.65 0.1
DEEP+CAD+CRT 27 27 1.0 199M 17.92 30.31 28.8 200M 79.96 43.57 41.6

BIG (Pre-Norm) 6 6 1.0 210M 36.05 28.79 27.7 212M 97.51 42.40 40.6
DEEPE 24 6 4.0 437M 42.41 29.90 28.7 439M 102.14 43.11 40.9
DEEP 15 15 1.0 448M 45.32 0.40 0.2 449M 108.02 0.71 0.2
DEEP+CAD+CRT 15 15 1.0 448M 46.52 30.69 29.0 449M 110.5 43.95 41.9

Table 1: Number of model parameters, training time (hours), BLEU scores (%), and sacreBLEU scores (%) of
translation models on WMT14 En→De and En→Fr tasks. We use BASE and BIG to represent the different parameter
settings of the NMT model, DEEP represents the deep NMT model, and DEEPE specifically refers to the deep NMT
model with a deep encoder.

the same source representation and target tokens356

are input twice, the two predicted distributions P1357

and P2 are forced to be mutually consistent. The358

probability forms of two separate passes for the359

decoder only are written as P1(Yi|Y<i,H
Le
e ;Θd)360

and P2(Yi|Y<i,H
Le
e ;Θd), in which Θd denotes361

the parameters of the decoder. The similarity loss362

of the two prediction distributions is implemented363

as the minimization of the bidirectional Kullback–364

Leibler (KL) divergence between the two distribu-365

tions:366

J DDR =
1

2

(
DKL(P1(Yi|Y<i,H

Le
e ;Θd)||P2(Yi|Y<i,H

Le
e ;Θd)+

DKL(P2(Yi|Y<i,H
Le
e ;Θd)||P1(Yi|Y<i,H

Le
e ;Θd)

)
,

367

where DKL(p||q) denotes the logarithmic differ-368

ence between probabilities p and q. A decoder369

with drop-net and dropout can converge stably by370

contrastive learning from the two passes’ output371

distributions of the same input.372

With the DDR loss, regularization training is373

applied to the deep decoder with dropout and drop-374

net to help the decoder converge; however, the375

risk of the model degenerating to an unconditional376

language model remains. To solve this problem,377

we propose the ALD loss, the primary purpose378

of which is to allow the model to be aware that379

the amount of source information used determines 380

the effect on the decoder output, when performing 381

contrastive learning. That is, the output with more 382

source information used should be more similar to 383

the output using full source information than the 384

output with less source information used. 385

The traditional definition of contrastive learn- 386

ing assumes a set of paired examples, D = 387

{(zi, z+i )}Mi=1, where zi and z+i are semantically 388

related. In contrastive learning, z+i is used as a pos- 389

itive instance of zi, and other in-batch examples are 390

used as the negative instances. Specifically, the loss 391

of contrastive learning is realized as a cross-entropy 392

loss, and can be represented as follows: 393

JCL = − log
esim(G(zi),G(z+i ))/τ∑N
j=1 e

sim(G(zi),G(zj))/τ
, 394

where N is the size of a mini-batch, G(·) denotes 395

a function that transforms a sequence input into a 396

final single-vector representation, sim(v1,v2) de- 397

notes the cosine similarity v⊤
1 v2

∥v1∥·∥v2∥ , and τ is a soft- 398

max temperature hyperparameter. In SimCSE (Pan 399

et al., 2021), the G(·) function is implemented as 400

the model with an additional pooling layer that 401

obtains the sentence representation. Because the 402

presence of dropout in the model results in differ- 403

ent outputs for the same input, the input is treated 404

as a positive instance of zi itself. 405
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In ALD loss, our purpose is entirely different406

from the above. We consider using more source407

inputs as positive instances and fewer as negative408

instances of zi, with all source inputs. Specifically,409

for the translation pair ⟨X,Y⟩, we randomly sam-410

ple a ratio γ ∈ [0, pALD), 0 < pALD < 0.5, replace411

the token in X with UNK in the ratio γ to obtain412

X+, and replace the X in the ratio (1 − γ) with413

UNK to obtain X−.414

JALD = − log
esim(G(X,Y),G(X+,Y))/τ∑

∗∈[+,−] e
sim(G(X,Y),G(X∗,Y))/τ

,415

where G(·, ·) denotes average pooling output on the416

hidden state from the top layer of the decoder (i.e.,417

G(X,Y) = AVGPOOL(HLd
d )). When using ALD418

loss, if the decoder ignores the source inputs and419

degenerates to an unconditional language model,420

the source inputs will have very little impact on421

the output: G(X,Y), G(X+,Y), and G(X−,Y)422

will all be similar, resulting in confusion for the423

contrastive learning.424

4 Experiment425

4.1 Setup426

Dataset To compare with previous work, we427

conducted experiments on two classical machine428

translation datasets: WMT14 English-to-German429

(En→De) and English-to-French (En→Fr). The430

corpus sizes are 4.5M and 36M for the En→De431

and En→Fr datasets, respectively. Following432

common practice, we concatenated newstest2012433

and newstest2013 as the validation set and used434

newstest2014 as the test set. We employed435

tokenizer.pl in Moses (Koehn et al., 2007)436

to tokenize En, De, and Fr sentences, and then used437

BPE (Sennrich et al., 2016) to split the words into438

subwords. A joint BPE strategy with 40K merge439

operations between source and target languages440

was adopted to construct the vocabulary.441

Configuration We adopted the most widely442

used Transformer (Vaswani et al., 2017) network443

as our research basis. Two typical parameter444

settings are often used to fulfill various needs:445

Transformer BASE and Transformer BIG. Both446

settings employ a six-layer encoder and a six-447

layer decoder. The differences between them448

are the embedding width, feedforward network449

size, and number of attention heads, which are450

512/1024/8 for BASE and 1024/4096/16 for BIG.451

We used multi-bleu.perl and detokenized452

sacreBLEU1 to evaluate the translation perfor- 453

mance on test sets, for fair comparison with previ- 454

ous work. Other hyperparameter settings for model 455

training were consistent with (Vaswani et al., 2017). 456

The number of training steps was 200K for En→De 457

models and 400K for En→Fr models, the batch size 458

was 4096 tokens per GPU, and the models were 459

trained on eight NVIDIA V100 GPUs. 460

4.2 Main Results 461

Table 1 shows the results of our model on the 462

WMT14 En→De and En→Fr translation tasks. To 463

make it easier to compare the results of NMT mod- 464

els with the same depth, we set the total number 465

of layers of the model to be as consistent as pos- 466

sible with that used in related work. Because the 467

encoder is responsible for encoding the source lan- 468

guage, and the decoder is in charge of encoding the 469

target language, and the depth of the model affects 470

its abstraction ability, we argue that the encoder 471

should have a depth similar to that of the decoder. 472

Therefore, we employed the same number of layers 473

for the encoder and decoder in the NMT model. 474

On the basis of the baseline model, the results for 475

the deepened models (denoted by DEEP) suggest 476

that the training encountered failures, and deeper 477

models achieved worse results. When we applied 478

the CAD and CRT approaches to the Deep mod- 479

els, the training failure problem was resolved: the 480

full model both achieved better results than the 481

corresponding baselines and obtained performance 482

superior to that of the model with a deep encoder 483

only. This demonstrates that a deeper model has 484

performance advantages, and our proposed CAD 485

and CRT methods alleviate the problem of deep- 486

decoder collapse. In addition, it reveals that the 487

architecture with balanced encoder and decoder 488

outperforms the architecture with only a deep en- 489

coder. We also conducted experiments to deepen 490

the NMT models under the BIG parameter setting, 491

and the performance phenomenon was similar to 492

that observed under the BASE parameter setting. 493

Compared with (Wang et al., 2019), our model 494

achieved similar results but with fewer layers (30), 495

and did not require a special model structure design. 496

Our models achieved a better translation effect 497

with fewer parameters compared with the results of 498

(Wei et al., 2020), demonstrating that our proposed 499

method is simple and very effective. In comparison 500

with (Li et al., 2020), our models performed simi- 501

1https://github.com/mjpost/sacreBLEU
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larly in En→De translation under the BASE setting,502

and demonstrated better performance in En→Fr.503

We believe that this is a consequence of the larger504

quantity of training data in En→Fr, which allows505

the decoder to be more fully trained. We obtained506

generally better results in the BIG setting, whereas507

Li et al. (2020)’s results were comparable to those508

of our DEEPE baseline.509

4.3 Further Exploration510

Effects of Drop Depth and Drop Ratio. As ex-511

plained in model part, we propose the CAD ap-512

proach for the deep NMT model structure. To in-513

vestigate the impact of the drop depth and drop ra-514

tio on final translation performance, we conducted515

experiments on the WMT14 En→De task using the516

BASE, DEEP-54L model with both CAD and ALD517

techniques; the experimental results are presented518

in Figure 2. We found that, when the drop depth519

was very small for a 27-layer decoder, the model520

also suffered from the problem of deep-decoder521

collapse, and the translation performance was very522

poor. When we increased the drop depth, the trans-523

lation performance improved progressively, reach-524

ing a peak at the 21st layer, confirming our hypoth-525

esis that cross-attention is a contributing cause to526

the problem of deep-decoder collapse.527

As the drop depth was increased further, perfor-528

mance suffered, even though there was no train-529

ing failure. This demonstrates that cross-attention530

is also an important component of the translation531

model, and insufficient cross-attention also pre-532

vents the model from extracting adequate source533

information. Furthermore, we compared several534

drop ratios and observed that, with a small drop535

depth, pnet = 1.0 indicates that all cross-attention536

drops in the corresponding layer will have a supe-537

rior final effect. Conversely, with a greater drop538

depth, a smaller pnet—which retains some of the539

cross-attention—will achieve better results.540

Hyperparameters in ALD Loss. To analyze the541

effect of the hyperparameters—softmax tempera-542

ture τ and sampling threshold pALD—in the ALD543

loss, we conducted experiments on the WMT14544

En→De task with the BASE, DEEP-30L model.545

The results obtained are presented in Figure 3,546

which shows that increasing the sampling threshold547

improves the BLEU score. This is because a larger548

pALD for UNK replacement can yield a greater di-549

versity of negative examples, which is beneficial550

for contrastive learning. However, if pALD is fur-551

0 3 6 9 12 15 18 21 24 26
0.0
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20.0

30.0

Drop Depth Ldr

B
L

E
U

pnet = 1.0 pnet = 0.9

pnet = 0.8

Figure 2: Influence of different drop ratios and depths
on translation performance of deep NMT model.
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28.5
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E
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Figure 3: Influence of sampling threshold pALD and
temperature parameter τ on translation performance in
ALD loss.

ther increased, the difference between positive and 552

negative examples decreases, which has a detri- 553

mental impact on the final translation performance. 554

Compared with the sampling threshold pALD, the 555

temperature τ has a relatively small effect. The ex- 556

perimental results reveal that the BLEU score with 557

τ = 0.05 is slightly lower than that with τ = 0.1. 558

We believe that, when the value of the temperature 559

parameter is too small, the ALD loss is too large, 560

thus affecting the model’s convergence. 561

Effects of Encoder Depth and Decoder Depth. 562

Because our method allows for a deep encoder and 563

decoder, we investigated the effect of encoder and 564

decoder depth on translation performance. We se- 565

lected the BASE, DEEP-30L model as the basis and 566

conducted experiments on the WMT14 En→De 567

translation task, changing only the depth of the 568

encoder or decoder. The results are illustrated in 569

Figure 4. When the encoder depth was 1, the trans- 570

lation performance was significantly poorer than 571

when the decoder depth was 1, indicating that the 572

encoder has a more obvious performance limit at 573

this shallow level. This is because the encoder is 574

directly responsible for the extraction of the source 575

representation, and a shallow encoder cannot ex- 576
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Figure 4: Effects of different encoder and decoder
depths when using CAD and CRT methods.

Enc. Dec. BLEU sacreBLEU

24 6 28.95 27.8
6 24 28.21 27.0

15 15 29.09 28.1

Table 2: Performance of deep NMT models with differ-
ent combinations of encoder and decoder depth.

tract enough source information. This suggests that,577

if resources are restricted and the number of layers578

needs to be decreased to obtain a smaller model, it579

is more effective to reduce the number of decoder580

layers; this finding is compatible with Kasai et al.581

(2021)’s conclusion. In addition, increasing the582

depth of both the encoder and the decoder improves583

the model’s translation performance, implying that584

increasing the number of decoder layers is effective585

in a deep NMT model.586

The balance between the number of encoder lay-587

ers and the number of decoder layers in a deep588

model is another important consideration. To inves-589

tigate this, we compared translation performance590

in three typical cases on WMT14 En→De with the591

total number of encoder and decoder layers set to592

30. As shown in Table 2, the model with an equal593

number of encoder and decoder layers achieved the594

best results, outperforming the pure deep-encoder595

and deep-decoder models.596

5 Ablation Study597

We conducted ablation studies on the modifications598

that we made to both the model structure and train-599

ing to investigate their respective effects on the600

translation performance. The ablation research was601

conducted on the WMT14 En→De task, as before,602

and the model employed was the BASE, DEEP-30L-603

Full model. We began by adding extra R-Drop,604

DDR, ALD, and CAD techniques to its baseline605

model (BASE, DEEP-30L). The results in Table 3606

show that the baseline training was unsatisfactory,607

System BLEU sacreBLEU

BASE, DEEP-30L 0.55 0.2
+R-Drop 0.97 0.5
+DDR 1.01 0.4
+ALD 1.45 0.7
+CAD 28.35 27.2

BASE, DEEP-30L-Full 29.09 28.1
-CAD 1.39 0.7
-DDR 28.77 27.6
-ALD 28.52 27.4

Table 3: Ablation studies on model structures and train-
ing approaches.

even with the addition of the better training meth- 608

ods (R-Drop, DDR, and ALD). However, when we 609

dropped cross-attention after applying CAD, the 610

model training became normal, indicating that the 611

model structure has a significant impact on its per- 612

formance. When we compared the results of BASE, 613

DEEP-30L+CAD with those of BASE, DEEP-30L- 614

Full, we found that the training methods DDR and 615

CAD were beneficial to improving performance, 616

demonstrating their effectiveness. 617

We also conducted ablation evaluation of the 618

model structure and training method on the en- 619

tire model. According to the results, CAD had 620

the greatest influence on the translation perfor- 621

mance, which is consistent with the conclusion 622

stated above, based on the results in Table 3. Addi- 623

tionally, when comparing DDR and ALD, we found 624

that ALD had a greater influence on translation be- 625

cause it directly mimics the deep-decoder collapse 626

problem, whereas DDR is mostly employed to in- 627

crease the stability of the training of the drop-net 628

mechanism in CAD, by incorporating regulariza- 629

tion. 630

6 Conclusion 631

In this paper, we investigated the problem of deep- 632

decoder collapse in NMT when the decoder is deep- 633

ened. We introduced a CAD mechanism, DDR 634

loss, and ALD loss to solve this problem. Using 635

this model, we demonstrated that a deep model 636

with balanced numbers of encoder and decoder 637

layers outperforms either encoder deepen only or 638

decoder deepen only NMT models. Our model out- 639

performed previous similar models on the WMT14 640

En→De and En→Fr tasks, confirming the effective- 641

ness of our approach. For future work, we intend 642

to incorporate methods from related work on deep 643

NMT to further improve the performance of our 644

translation model. 645
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A Contrastive Learning in NLP815

Contrastive learning (Hadsell et al., 2006) is an ef-816

fective approach to learning and is usually used for817

unsupervised learning because of its unique char-818

acteristics. It has achieved significant success in819

various computer vision tasks (Misra and van der820

Maaten, 2020; Zhuang et al., 2019; Tian et al.,821

2020; He et al., 2020; Chen et al., 2020). Gao822

et al. (2021) introduced a simple contrastive learn-823

ing framework for unsupervised learning of sen-824

tence embedding, which performed as well as pre-825

vious supervised approaches. Wu et al. (2020c)826

employed multiple sentence-level augmentation827

strategies—such as word and span deletion, re-828

ordering, and substitution—with a sentence-level829

contrastive learning objective to pretrain a language830

model for a noise-invariant sentence representation.831

Fang et al. (2020) pretrained language representa-832

tion models using contrastive self-supervised learn-833

ing at the sentence level by predicting whether two834

back-translated sentences originate from the same835

sentence. In (Giorgi et al., 2020), a universal sen-836

tence embedding encoder was trained to minimize837

the distance between the embeddings of textual838

segments randomly sampled from nearby locations839

in the same document by a self-supervised con-840

trastive objective. Pan et al. (2021) demonstrated841

the effectiveness of contrastive learning in NMT,842

particularly for the zero-shot machine translation843

situation. Current contrastive learning for NMT844

primarily employs cross-lingual representation sim-845

ilarity, whereas we aim to prevent the outputs of846

the deep decoder and the unconditional language847

model from becoming too similar, thus prevent-848

ing degradation. Part of our method is similar to849

(Miao et al., 2021) in purpose, but it is designed to850

avoid the NMT model from over-confident, while851

ours is to tackle the problem of the deep decoder852

collapsing into an unconditional language model.853
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