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ABSTRACT

Deep quantization of neural networks below eight bits can lead to superlinear ben-
efits in storage and compute efficiency. However, homogeneously quantizing all
the layers to the same level does not account for the distinction of the layers and
their individual properties. Heterogeneous assignment of bitwidths to the layers is
attractive but opens an exponentially large non-contiguous hyperparameter space
(Available Bitwidths# Layers). Thus, finding the bitwidth while also quantizing the
network to those levels becomes a major challenge. This paper addresses this chal-
lenge through a sinusoidal regularization mechanism, dubbed WaveQ. Adding our
parametrized sinusoidal regularizer enables WaveQ to not only find the quantized
weights, but also learn the bitwidth of the layers by making the period of the si-
nusoidal regularizer a trainable parameter. In addition, the sinusoidal regularizer
itself is designed to align its minima on the quantization levels. With these two
innovations, during training, stochastic gradient descent uses the form of the si-
nusoidal regularizer and its minima to push the weights to the quantization levels
while it is also learning the period which will determine the bitwidth of each layer
separately. As such WaveQ is a gradient-based mechanism that jointly learns the
quantized weights as well as the heterogeneous bitwidths. We show that WaveQ
balances compute efficiency and accuracy, and provides a heterogeneous bitwidth
assignment for quantization of a large variety of deep networks (AlexNet, CIFAR-
10, MobileNet, ResNet-18, ResNet-20, SVHN, and VGG-11) that virtually pre-
serves the accuracy. WaveQ is versatile and can also be used with predetermined
bitwidths by fixing the period of the sinusoidal regularizer. In this case, WaveQ,
on average, improves the accuracy of quantized training algorithms (DoReFa and
WRPN) by∼ 4.8%, and outperforms multiple state-of-the-art techniques. Finally,
WaveQ is applicable to quantizing transformers and yields significant benefits.

1 INTRODUCTION
Quantization, in general, and deep quantization (below eight bits) (Krishnamoorthi, 2018), in par-
ticular, aims to not only reduce the compute requirements of DNNs but also reduce their memory
footprint (Zhou et al., 2016; Judd et al., 2016b; Hubara et al., 2017; Mishra et al., 2018; Sharma
et al., 2018). Nevertheless, without specialized training algorithms, quantization can diminish the
accuracy. As such, the practical utility of quantization hinges upon addressing two fundamental
challenges: (1) discovering the appropriate bitwidth of quantization for each layer while consider-
ing the accuracy; and (2) learning weights in the quantized domain for a given set of bitwidths.

This paper formulates both of these challenges as a gradient-based joint optimization problem by in-
troducing an additional novel sinusoidal regularization term in the training loss, called WaveQ. The
following two main insights drive this work. (1) Sinusoidal functions (sin2) have inherent periodic
minima and by adjusting the period, the minima can be positioned on quantization levels corre-
sponding to a bitwidth at per-layer granularity. (2) As such, sinusoidal period becomes a direct and
continuous representation of the bitwidth. Therefore, WaveQ incorporates this continuous variable
(i.e., period) as a differentiable part of the training loss in the form of a regularizer. Hence, WaveQ
is a differentiable regularization mechanism, it piggy backs on the stochastic gradient descent that
trains the neural network to also learn the bitwidth (the period). Simultaneously this parametric
sinusoidal regularizer pushes the weights to the quantization levels (sin2 minima).

By adding our parametric sinusoidal regularizer to the original training objective function, our
method automatically yields the bitwidths for each layer along with nearly quantized weights for
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those bitwidths. In fact, the original optimization procedure itself is harnessed for this purpose,
which is enabled by the differentiability of the sinusoidal regularization term. As such, quantized
training algorithms (Zhou et al., 2016; Mishra et al., 2018) that still use some form of backpropa-
gation (Rumelhart et al., 1986) can effectively utilize the proposed mechanism by modifying their
loss. Moreover, the proposed technique is flexible as it enables heterogeneous quantization across
the layers. The WaveQ regularization can also be applied for training a model from scratch, or for
fine-tuning a pretrained model.
In contrast to the prior inspiring works (Uhlich et al., 2019; Esser et al., 2019), WaveQ is the only
technique that casts finding the bitwidths and the corresponding quantized weights as a simultane-
ous gradient-based optimization through sinusoidal regularization during the training process. We
also prove a theoretical result to provide an insight on why the proposed approach leads to so-
lutions preserving the original accuracy during quantization. We evaluate WaveQ using different
bitwidth assignments across different DNNs (AlexNet, CIFAR-10, MobileNet, ResNet-18, ResNet-
20, SVHN, and VGG-11). To show the versatility of WaveQ, it is used with two different quan-
tized training algorithms, DoReFa (Zhou et al., 2016) and WRPN (Mishra et al., 2018). Over all
the bitwidth assignments, the proposed regularization, on average, improves the top-1 accuracy of
DoReFa by 4.8%. The reduction in the bitwidth, on average, leads to 77.5% reduction in the en-
ergy consumed during the execution of these networks. Finally, we apply WaveQ to Transformer
DNNs citeppby augmenting their loss with WaveQ parametric sinusiodal regularization. In this case,
the conventional stochastic gradient descent plus WaveQ regularization is used to quantize the big
Transformer model from (Ott et al., 2018) for machine translation on the IWSLT14 German-English
dataset (IWS). For 5, 6, and 7-bit quantization, training with WaveQ yields 0.46, 0.14, 0.04 im-
proved BiLingual Evaluation Understudy (BLEU) score, respectively. As a point of reference, the
original big Transformer model from (Ott et al., 2018) improves the BLEU by only 0.1 over the
state-of-the-art. Code available at https://github.com/waveq-reg/waveq
2 JOINT LEARNING OF LAYER BITWIDTHS AND QUANTIZED PARAMETERS
Our proposed method WaveQ exploits weight regularization in order to automatically quantize a
neural network while training. To that end, Section 2.1 describes the role of regularization in neural
networks and then Section 2.2 explains WaveQ in more details.

2.1 PRELIMINARIES

Quantizer. We discuss how quantization of weight works. Consider a floating-point variable
wf to be mapped into a quantized domain using (b + 1) bits. Let Q be a set of (2k + 1)
quantized values, where k = 2b − 1. Considering linear quantization, Q can be represented as{
−1,−k−1k , ...,− 1

k , 0,
1
k , ...,

k−1
k , 1

}
, where 1

k is the size of the quantization bin. Now, wf can be
mapped to the b-bit quantization Zhou et al. (2016) space as follows.

wqo = 2× quantizeb

(
tanh(wf )

2max(|tanh(Wf )|)
+

1

2

)
− 1 (2.1)

In Equation 2.1, quantizeb(x) =
1

2b−1 round((2
b−1)x), wf is a scalar, Wf is a vector, and wqo is a

scalar in the range [−1, 1]. Then, a scaling factor c is determined per layer to map the final quantized
weight wq into the range [−c,+c]. As such, wq takes the form cwqo, where c > 0, and wqo ∈ Q.
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Figure 1: Sketch for a hypothetical loss surface
(original task loss to be minimized) and an ex-
tra regularization term in 2-D weight space:
for (a) weight decay, and (b) WaveQ.

Soft constraints through regularization and
the loss landscape of neural networks. Neu-
ral networks’ loss landscapes are known to be
highly non-convex and it has been empirically
verified that loss surfaces for large networks
have many local minima that essentially pro-
vide equivalent test errors Choromanska et al.
(2015); Li et al. (2018). This opens up the pos-
sibility of adding soft constrains as extra cus-
tom objectives during the training process, in
addition to the original objective (i.e., to mini-
mize the accuracy loss). The added constraint
could be with the purpose of increasing gener-
alization or imposing some preference on the weights values.
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Figure 2: (a) 3-D visualization of the proposed generalized objective WaveQ. (b) WaveQ 2-D
profile, w.r.t weights, adapting for arbitrary bitwidths, (c) example of adapting to ternary
quantization. (d) WaveQ 2-D profile w.r.t bitwidth. (e) Regularization strengths profiles, λw,
and λβ , across training iterations.
Regularization in action. Regularization effectively constrains weight parameters by adding a
corresponding term (regularizer) to the objective loss function. A classical example is Weight De-
cay Krogh & Hertz (1991) that aims to reduce the network complexity by limiting the growth of
the weights. This soft constraint is realized by adding a term, proportional to the L2 norm of the
weights to the objective function as the regularizer that penalizes large weight values. WaveQ, on
the other hand, uses regularization to push the weights to the quantization levels. For the sake of
simplicity and clarity, Figure 1(a) and (b) illustrate a geometrical sketch for a hypothetical loss sur-
face (original objective function to be minimized) and an extra regularization term in 2-D weight
space, respectively. For weight decay regularization (Figure 1 (a)), the faded circle shows that as we
get closer to the origin, the regularization loss is minimized. The point wopt is the optimum just for
the loss function alone and the overall optimum solution is achieved by striking a balance between
the original loss term and the regularization loss term. Similarly, Figure 1(b) shows a representation
of the proposed periodic regularization for a fixed bitwidth β. A periodic pattern of minima pockets
are seen surrounding the original optimum point. The objective of the optimization problem is to
find the best solution that is the closest to one of those minima pockets where weight values are
nearly matching the desired quantization levels, hence the name quantization-friendly.
2.2 WAVEQ REGULARIZATION

The proposed regularizer is formulated in Equation (2.2) where the first term pushes the weights to
the quantization levels and the second correlated term aims to reduce the bitwidth of each individual
layer heterogeneously.

R(w;β) = λw
∑
i

∑
j

sin2
(
πwij(2

βi − 1)
)

2βi︸ ︷︷ ︸
Weights quantization regularization

+ λβ
∑
i

βi︸ ︷︷ ︸
Bitwidth regularization

(2.2)

In Equation (2.2), λw is the weights quantization regularization strength which governs how strongly
weight quantization errors are penalized, and λβ is the bitwidth regularization strength. The param-
eter βi is proportional to the quantization bitwidth which is elaborated later in this section. Figure 2
(a) shows a 3-D visualization of our regularizer, R. Figure 2 (b), (c) show a 2-D profile w.r.t weights
(w), while (d) shows a 2-D profile w.r.t the bitwidth (β).
Periodic sinusoidal regularization. As shown in Equation equation 2.2, the first regularization
term is based on a periodic function (sinusoidal) that adds a smooth and differentiable term to the
original objective, Figure 2(b). The periodic regularizer induces a periodic pattern of minima that
correspond to the desired quantization levels. Such correspondence is achieved by matching the
period to the quantization step (1/(2βi − 1)) based on a particular number of bits (βi) for a given
layer i.
Learning the sinusoidal period. The parameter βi in (Equation 2.2) controls the period of the
sinusoidal regularizer. Thereby βi is directly proportional to the actual quantization bitwidth (bi) of
layer i as follows:

bi = dβie, and αi = 2bi/2βi (2.3)
In Equation (B.2) where αi ∈ R+ is a scaling factor. Note that bi ∈ Z is the only discrete param-
eter, while βi ∈ R+ is a continuous real valued variable, and d∗e. is the ceiling operator. While
the first term in Equation equation 2.2 is only responsible for promoting quantized weights, the
second term (λβ

∑
i βi) aims to reduce the number of bits for each layer i individually while the
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overall loss is aiming to maximize accuracy. As such, this term is a soft constraint that yields het-
erogeneous bitwidths for different layers. The main insight here is that βi, which also controls the
period of the sinusoidal term, is a continuous valued parameter by definition. As such, βi acts as an
ideal optimization objective constraint and a proxy to minimize the actual quantization bitwidth bi.
Therefore, WaveQ avoids the issues of gradient-based optimization for discrete valued parameters.
Furthermore, the benefit of learning the sinusoidal period is two-fold. First, it provides a smooth
differentiable objective for finding minimal bitwidths. Second, simultaneously learning the scaling
factor (αi) associated with the found bitwidth.

Leveraging the sinusoidal properties, WaveQ learns the following two quantization parame-
ters simultaneously: (1) a per-layer quantization bitwidth (bi) along with (2) a scaling fac-
tor (αi) through learning the period of the sinusoidal function. Additionally, by exploit-
ing the periodicity, differentiability, and the local convexity profile in sinusoidal functions,
WaveQ automatically propels network weights towards values that are inherently closer to
quantization levels according to the jointly learned quantizer’s parameters bi, αi as follows.
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Figure 3: Visualization for three variants of
the proposed regularization objective using dif-
ferent normalizations and their respective first
and second derivatives with respect to β. (a)
R0(w;β), (b) R1(w;β), and (c) R2(w;β).

Mapping this to the quantizer’s design, for (b+
1) bits quantization, k = 2b − 1, and c = α.
These learned parameters (b, α), as explained
above, can be mapped to the quantizer param-
eters explained in Equation equation 2.1. For
(b+1) bits quantization (the extra bit is the sign
bit):

k = 2b − 1, and c = α = 2b/2β (2.4)

Bounding the gradients. The denomina-
tor in the first term of Equation equation 2.2

(
∑
i

∑
j

sin2(πwij(2βi−1))
2βi

) is used to control
the range derivatives of the proposed regular-
ization term with respect to β. This denomina-
tor is chosen to limit vanishing and exploding
gradients during training. To this end, we com-
pared three variants of equation equation 2.2
with different normalization defined, for k = 0,
1, and 2, as:

Rk(w; β) = λw
∑
i

∑
j

sin2
(
πwij(2

βi − 1)
)

2kβi
+ λβ

∑
i

βi

(2.5)

Figure 3 (a), (b), (c) provide a visualization on how each of the proposed scaled variants affect
the first and second derivatives. For Rk=0 and Rk=2, there are regions of vanishing or exploding
gradients. Only the regularization Rk=1 (the proposed one) is free of such issues.

Setting the regularization strengths. The convergence behavior depends on the setting of the
regularization strengths λw and λβ . Our proposed objective seeks to learn multiple quantization
parameterization in conjunction. As such, the learning process can be portrayed as three phases
(Figure 2(e)). In Phase ( 1 ), the learning process optimizes for the original task loss E0. Initially,
the small λw and λβ values allow the gradient descent to explore the optimization surface freely.
As the training process moves forward, we transition to phase ( 2 ) where the larger λw and λβ
gradually engage both the weights quantization regularization and the bitwidth regularization, re-
spectively. Note that, for this to work, the strength of the weights quantization regularization λw
should be higher than the strength of the bitwidth regularization λβ such that a bitwidth per layer
could be properly evaluated and eventually learned during this phase. After the bitwidth regular-
izer converges to a bitwidth for each layer, we transition to phase ( 3 ), where we fix the learned
bitwidths and gradually decay λβ while we keep λw high. The criterion for choosing λw and λβ is
to balance the magnitude of regularization loss to be smaller than the magnitude of accuracy loss.
The mathematical formula used to generate λw and λβ profiles can be found in the supplementary
material. (Figure 8).
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3 THEORETICAL ANALYSIS
The results of this section are motivated as follows. Intuitively, we would like to show that the global
minima of E = E0 + R are very close to the minima of E0 that minimizes R. In other words, we
expect to extract among the original solutions, the ones that are most prone to be quantized. To
establish such result, we will not consider the minima of E = E0 + R, but the sequence Sn of
minima of En = E0+ δnR defined for any sequence δn of real positive numbers. The next theorem
shows that our intuition holds true, at least asymptotically with n provided δn → 0.
Theorem 1. Let E0, R : Rn → [0,∞) be continuous and assume that the set SE0

of the global
minima of E0 is non-empty and compact. As SE0

is compact, we can also define SE0,R ⊆ SE0
as

the set of minima of E0 which minimizes R. Let δn be a sequence of real positive numbers, define
En = E0+δnR and the sequence Sn = SEn of the global minima of En. Then, the following holds
true:

1. If δn → 0 and Sn → S∗, then S∗ ⊆ SE0,R,

2. If δn → 0 then there is a subsequence δnk → 0 and a non-empty set S∗ ⊆ SE0,R so that
Snk → S∗,

where the convergence of sets, denoted by Sn → S∗, is defined as the convergence to 0 of their
Haussdorff distance, i.e., lim

n→∞
dH(Sn, S∗) = 0.

Proof. For the first statement, assume that Sn → S∗. We wish to show that S∗ ⊆ SE0,R. Assume
that xn is a sequence of global minima of F + δnG converging to x∗. It suffices to show that
x∗ ∈ SE0,R. First let us observe that x∗ ∈ SE0 . Indeed, let

λ = inf
x∈Rn

E0(x)

and assume that x ∈ SE0 . Then,
λ ≤ E0(xn) ≤ (E0 + δnR)(xn) ≤ (E0 + δnR)(x) = λ+ δnR(x)︸ ︷︷ ︸

→λ

.

Thus, since E0 is continuous and xn → x∗ we have that E0(x∗) = λ which implies x∗ ∈ SE0
.

Next, define
µ = inf

x∈SE0

R(x).

Let x̂ ∈ SE0,R so that R(x̂) = µ. Now observe that, by the minimality of xn we have that

λ+ δnµ = (E0 + δnR)(x̂) ≥ (E0 + δnR)(xn) ≥ λ+ δnR(xn)

Thus, R(xn) ≤ µ for all n. Since R is continuous and xn → x∗ we have that R(x∗) ≤ µ which
implies that R(x∗) = µ since x∗ ∈ SE0

. Thus, x∗ ∈ SE0,R. The second statement follows from the
standard theory of Hausdorff distance on compact metric spaces and the first statement.
Theorem 1 implies that by decreasing the strength of R, one recovers the subset of the original
solutions that achives the smallest quantization loss. In practice, we are not interested in global
minima, and we should not decrease much the strength of R. In our context, Theorem 1 should
then be understood as a proof of concept on why the proposed approach leads the expected result.
Experiments carried out in the next section will support this claim. Additionally, note that while
the theorem is stated in terms of a limit as the regularization parameter vanishes, the proof in fact
gives a corresponding stability result. Namely, if the regularization parameter is sufficiently small
relative to the main loss then the minimizers will be “almost” quantized. For the interested reader,
we provide a more detailed version of the above analysis in the supplementary material.

4 EXPERIMENTAL RESULTS
To demonstrate the effectiveness of WaveQ, we evaluated it on several deep neural networks with
different Image Classification datasets (CIFAR10, SVHN, and ImageNet), and one Transformer-
based network, which is the big Transformer model from(Ott et al., 2018) on the IWSLT14 German-
English dataset (IWS). We provide results for two different types of quantization. First, we show
quantization results for learned heterogeneous bitwidths using WaveQ and we provide different anal-
yses to asses the quality of these learned bitwidth assignments. Second, we further provide results
assuming a preset homogeneous bitwidth assignment as a special setting of WaveQ. This is, in some
cases, a practical assumption that might stem from particular hardware requirements or constraints.
Table 1 provides a summary of the evaluated networks and datasets for both learned heterogeneous
bitwidths, and the special case of training preset homogeneous bitwidth assignments. We com-
pare our proposed WaveQ method with PACT (Choi et al., 2018a), LQ-Nets (Zhang et al., 2018),
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Table 1: Comparison with state-of-the-art quantization methods on ImageNet. The “ W/A ”
values are the bitwidths of weights/activations.

W/A 
Quantization 

Benchmark AlexNet ResNet-18 MobileNet-V2
Method Assignment Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

W32/A32 Full Precision Homogenous 57.1 80.2 70.1 89.5 71.8 90.3

W3/A3

PACT Homogenous 55.6 - 68.1 88.2 - -
LQ-Nets  Homogenous - - 68.2 87.9 - -

DSQ Homogenous - - 68.7 - - -
DoReFa Homogenous 54.1 75.1 67.9 87.5 58.3 78.1

W3/A3 DoReFa + WaveQ Preset
Homogenous 55.8 77.2 68.9 89.9 60.4 83.1

Improvement 0.2% 2.1% 0.2% 1.7% 2.1% 5.0%

W4/A4

PACT Homogenous 55.7 - 69.2 89.0 61.4 83.7
LQ-Nets  Homogenous - - 69.3 88.8 - -

DSQ Homogenous - - 69.6 - 64.8 -
WRPN Homogenous 54.9 75.4 68.8 88.1 64.3 84.5
DoReFa Homogenous 55.5 76.3 69.1 88.5 64.6 85.1

W4/A4 DoReFa + WaveQ Preset
Homogenous 56.2 79.2 69.8 89.1 65.4 85.5

Improvement 0.5% 2.9% 0.2% 0.1% 0.6% 0.4%

W(Learn)/A4 DoReFa + WaveQ Learned
Heterogenous 

56.5 79.8 70.0 89.3 65.8 85.8
W3.85 W3.57 W3.95

Improvement 0.3% 0.6% 0.2% 0.2% 0.4% 0.3%
Energy Saving 2.08x 1.24x 1.78x
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Figure 4: Quantization bitwidth assignments across layers. (a) AlexNet (average bitwidth =
3.85 bits). (b) ResNet-18 (average bitwidth = 3.57 bits)

DSQ (Gong et al., 2019), and DoReFa, which are current state-of-the-art methods that show re-
sults with homogeneous 3-, and 4-bit weight/activation quantization for various networks (AlexNet,
ResNet-18, and MobileNet).

Table 2: Accuracies of different networks us-
ing plain WRPN, plain DoReFa and DoReFa +
WaveQ on homogeneous weight quantization.

W/A 
Quantization

Benchmark SimpleNet
on CIFAR10

ResNet-20 
on CIFAR10

VGG-11
On CIFAR10

SVHN-8
on SVHN

Method Top-1 Accuracy (%)
W32/A32 Full Precision 74.53 93.3 94.13 96.47

WRPN 63.44 80.28 78.56 79.36

W3/A32
DoReFa 65.13 81.57 78.78 81.45

DoReFa + WaveQ 73.65 92.52 93.18 95.32
Improvement 8.52% 11% 14.4% 13.9%

WRPN 68.23 88.16 85.07 89.24

W4/A32
DoReFa 70.75 89.24 86.98 89.56

DoReFa + WaveQ 74.14 93.01 93.96 96.12
Improvement 3.39% 3.77% 6.98% 6.56%

WRPN 71.17 92.11 91.10 90.84

W5/A32
DoReFa 72.41 92.24 91.68 92.56

DoReFa + WaveQ 74.45 93.13 94.11 96.42
Improvement 2.04% 0.89% 2.43% 3.86%

Experimental setup. We implemented
WaveQ on top of DoReFa inside Dis-
tiller (Zmora et al., 2018), an open source
framework for quantization by Intel that
implements various quantization techniques.
The reported accuracies for DoReFa and
WRPN are with the built-in implementations
in Distiller, which may not exactly match
the accuracies reported in their respective pa-
pers. However, an independent implementa-
tion from a major company provides an un-
biased foundation for comparison. We quan-
tize all convolution and fully connected lay-
ers, except for the first and last layers which
use 8-bits. This assumption is commensurate
with the previous techniques.
4.1 LEARNED HETEROGENEOUS
BITWIDTHS

As for quantizing both weights and activations, Table 1 shows that incorporating WaveQ into the
quantized training process yields best accuracy results outperforming PACT, LQ-Net, DSQ, and
DoReFa with significant margins. Furthermore, it can be seen that the learned heterogeneous
bitwidths yield better accuracy as compared to the preset 4-bit homogeneous assignments, with
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lower, on average, bitwidth (3.85, 3.57, and 3.95 bits for AlexNet, ResNet-18, and MobileNet, re-
spectively). Figure 4(a),(b) (bottom bar graphs) show the learned heterogeneous weight bitwidths
over layers for AlexNet and ResNet-18, respectively. As seen, WaveQ parametric regularization
yields a spectrum of varying bitwidth assignments to the layers which vary from 2 bits to 8 bits
with an irregular pattern. These results demonstrate that the proposed regularization, WaveQ, auto-
matically distinguishes different layers and their varying importance with respect to accuracy while
learning their respective bitwidths. To assess the quality of these bitwidths assignments, we conduct
a sensitivity analysis on the relatively big networks (see next subsection).
Benefits of heterogeneous quantization. Figure 4(a),(b) (top graphs) show various comparisons
and sensitivity results for learned heterogeneous bitwidth assignments for bigger networks (AlexNet
and ResNet-18). It is infeasible to enumerate these networks’ respective quantization spaces. Com-
pared to 4-bit homogeneous quantization, learned heterogeneous assignments achieve better accu-
racy with lower, on average, bitwidth 3.85 bits for AlexNet and 3.57 bits for ResNet-18. This
demonstrates that a homogeneous (uniform) assignment of the bits is not always the desired choice
to minimize accuracy loss. Furthermore, Figure 4 also shows that decrementing the learned bitwidth
for any single layer at a time results in 0.44% and 0.24% average reduction in accuracy for AlexNet
and ResNet-18, respectively. The dotted blue line with � markers shows how differently decrement-
ing the bitwidth of various individual layers affect the accuracy. This trend further demonstrates the
effectiveness of learning with WaveQ to find the lowest bitwidth that maximizes the accuracy.
Energy savings. To demonstrate the energy savings of the solutions found by WaveQ, we evaluate
it on Stripes (Judd et al., 2016a), a custom accelerator designed for DNNs, which exploits bit-serial
computation to support flexible bitwidths for DNN operations. As shown in Table 1, the reduction
in the bitwidth, on average, leads to 77.5% reduction in the energy consumed during the execution
of these networks.

4.2 PRESET HOMOGENOUS BITWIDTH QUANTIZATION

Figure 5: Evolution of weight distributions
over training epochs at different layers and
bitwidths for different networks. (a) CIFAR10,
(b) SVHN, (c) AlexNet, (d) ResNet18.

We also consider a preset homogeneous
bitwidth quantization which can also be sup-
ported by WaveQ under special settings where
we fix β (to a preset bitwidth). Hence, only
the first regularization term is engaged for pro-
pelling the weights to the quantization levels.

Table 2 shows accuracies of different net-
works (SimpleNet-5, ResNet-20, VGG-11, and
SVHN-8) using plain WRPN, plain DoReFa
and DoReFa + WaveQ for 3, 4, and 5 bitwdiths.
As depicted, the results concretely show the ef-
fect of incorporating WaveQ into existing quan-
tized training techniques and how it outper-
forms the previously reported accuracies.
Weight distributions during training. Fig-
ure 5 shows the evolution of weights distribu-
tions over fine-tuning epochs for different lay-
ers of CIFAR10, SVHN, AlexNet, and ResNet-
18 networks. The high-precision weights form
clusters and gradually converge around the
quantization centroids as regularization loss is
minimized along with the main accuracy loss.
4.3 WAVEQ FOR TRANSFORMER
QUANTIZATION Table 3: Performance of WaveQ

for quantizing Transformers.

Bitwidth 

BLEU score

Unregularized 
Training 

(without WaveQ)

Regularized 
Training

(with WaveQ)

Full precision 34.93

7-bit 34.79 34.83 (0.04   )

6-bit 34.39 34.53 (0.14   )

5-bit 32.74 33.20 (0.46   )

Transformers (encoder-decoder architectures) have been
shown to achieve best results for NLP tasks including machine
translation (Vaswani et al., 2017) and automatic speech recog-
nition (Mohamed et al., 2019). A Transformer layer relies on a
key-value self-attention mechanism for learning relationships
between distant concepts, rather than relying on recurrent con-
nections and memory cells. Herein, we extend the application
of WaveQ regularization to improve the accuracy of deeply
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quantized (below 8 bits) Transformer models. We run our experiments on IWSLT 2014 German-
English (DE-EN) dataset. We use the Transformer model implemented in the fairseq-py
toolkit (Ott et al., 2019). All experiments are based on the big transformer model with 6 blocks
in the encoder and decoder networks. Table 3 shows the effect of applying WaveQ regularization
into the training process for 5, 6, and 7-bit quantization on the final accuracy (BLEU score). WaveQ
consistently improves the BLEU score of quantized models at various quantization bitwidths (7-5
bits). Moreover, higher improvements are obtained at lower bitwidths.

5 DISCUSSION

Figure 6: Weight trajectories. The 10 colored
lines in each plot denote the trajectory of 10
different weights.

We conduct an experiment that uses WaveQ for
training from scratch. For the sake of clarity,
we are considering in this experiment the case
of preset bitwidth assignments (i.e., λβ = 0).
Figure 6-Row(I)-Col(I) shows weight trajecto-
ries without WaveQ as a point of reference.
Row(II)-Col(I) shows the weight trajectories
when WaveQ is used with a constant λw.

As the Figure illustrates, using a constant λw
results in the weights being stuck in a re-
gion close to their initialization, (i.e., quanti-
zation objective dominates the accuracy objec-
tive). However, if we dynamically change the
λw following the exponential curve in Figure 6-
Row(III)-Col(I)) during the from-scratch train-
ing, the weights no longer get stuck. Instead,
the weights traverse the space (i.e., jump from wave to wave) as illustrated in Figure 6-Cols(II) and
(III) for CIFAR and SVHN, respectively. In these two columns, Rows (I), (II), (III), correspond
to quantization with 3, 4, 5 bits, respectively. citepInitially, the smaller λw values allow the gra-
dient descent to explore the optimization surface freely, as the training process moves forward, the
larger λw gradually engages the sinusoidal regularizer, and eventually pushes the weights close to
the quantization levels. Further convergence analysis is provided in the supplementary material.

Figure 7: Weight trajectories and training
losses for different λw profiles.

Next, we provide results comparing two profiles of
the regularization strength (λw). Profile 1: λw grad-
ually increases as training proceeds then gradually
decays towards the end of training. (Figure 7(a)).
Profile 2: λw gradually increases as training pro-
ceeds and remains high (Figure 7(c)). Figure 7(a,c)
depicts different loss components and Figure 7(b,d)
visualizes weights trajectories. Both profiles show
that accuracy loss is unimpededly minimized along
with WaveQ loss. Our theoretical results align with
Profile 1 (Figure 7(b))–what reviewer insightfully
pointed out. Although λw decays back towards end
of training, the weights mostly remain tied to their
quantization levels except for a few deflections that cause slight increase of the regularization loss
towards end of training. In terms of test accuracy, both profiles yield similar results (Profile 1,
74.95%) vs (Profile 2, 74.45%). Note that while the theorem is stated in terms of a limit as the
regularization parameter vanishes, the proof in fact gives a corresponding stability result. Namely,
if the regularization parameter is sufficiently small relative to the main loss then the minimizers will
be “almost” quantized.

6 RELATED WORK

This research lies at the intersection of (1) quantized training algorithms and (2) techniques that dis-
cover bitwidth for quantization. The following discusses the most related works in both directions.
Most related methods define a new optimization problem and use a special method for solving it. For
example, (Bai et al., 2019) uses a proximal gradient method (adds a prox step after each stochas-
tic gradient step), (Yang et al., 2020) uses ADMM, and (Tung & Mori, 2018) takes a Bayesian
approach. This only makes the training more difficult, slower and increases the computational com-
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plexity. In contrast, WaveQ exploits the conventional stochastic gradient descent method while
jointly optimizing for the original training loss while softly constraining it to simultaneously learn
the quantized parameters, and more importantly bitwidths. The differentiability of the adaptive sinu-
soidal regularizer enables simultaneously learning both the bitwidths and pushing the weight values
to the quantization levels. As such, WaveQ can be used as a complementary method to some of
these efforts, which is demonstrated by experiments with both DoReFa-Net (Zhou et al., 2016) and
WRPN (Mishra et al., 2018). Our preliminary efforts (Anonymous) and another concurrent work
(Naumov et al., 2018) use a sinusoidal regularization to push the weights closer to the quantization
levels. However, neither of these two works make the period a differentiable parameter nor find
bitwidths during training.
Quantized training algorithms There have been several techniques (Zhou et al., 2016; Zhu et al.,
2017; Mishra et al., 2018) that train a neural network in a quantized domain after the bitwidth of the
layers is determined manually. DoReFa-Net (Zhou et al., 2016) uses straight through estimator (Ben-
gio et al., 2013) for quantization and extends it for any arbitrary k bit quantization in weights, acti-
vations, and gradients. WRPN (Mishra et al., 2018) is training algorithm that compensates for the
reduced precision by increasing the number of filter maps in a layer (doubling or tripling). TTQ (Zhu
et al., 2017) quantizes the weights to ternary values by using per layer scaling coefficients learnt dur-
ing training. These scaling coefficients are used to scale the weights during inference. PACT (Choi
et al., 2018a) proposes a technique for quantizing activations by introducing an activation clipping
parameter α. This parameter (α) is used to represent the clipping level in the activation function and
is learned via back-propagation during training. More recently, VNQ (Achterhold et al., 2018) uses a
variational Bayesian approach for quantizing neural network weights during training. VNQ requires
a careful choice prior distribution of the weights, which is not straightforward, and the model is of-
ten intractable. In contrast, WaveQ is directly applicable without introducing extra hyperparameters
to optimize. Additionally, VNQ takes on a probabilistic approach, while WaveQ is a deterministic
approach towards soft quantization.
Loss-aware weight quantization. Recent works pursued loss-aware minimization approaches for
quantization. (Hou et al., 2017) and (Hou & Kwok, 2018) developed approximate solutions us-
ing proximal Newton algorithm to minimize the loss function directly under the constraints of low
bitwidth weights. One effort (Choi et al., 2018b) proposed to learn the quantization of DNNs through
a regularization term of the mean-squared-quantization error. LQ-Net (Zhang et al., 2018) proposes
to jointly train the network and its quantizers. DSQ (Gong et al., 2019) employs a series of tanh
functions to gradually approximate the staircase function for low-bit quantization (e.g., sign for 1-
bit case), and meanwhile keeps the smoothness for easy gradient calculation. Although some of
these techniques use regularization to guide the process of quantized training, none explores the use
of adaptive sinusoidal regularizers for quantization. Most recently, (Nguyen et al., 2020) suggests
using |cos| function as a regularizer. Moreover, unlike WaveQ, these techniques do not find the
bitwidth for quantizing the layers.
Techniques for discovering quantization bitwidths. A recent line of research focused on methods
which can also find the optimal quantization parameters, e.g., the bitwidth, the stepsize, in parallel to
the network weights. Recent work (Ye et al., 2018) based on ADMM (adm) runs a binary search to
minimize the total square quantization error in order to decide the quantization levels for the layers.
Most recently, (Uhlich et al., 2019) proposed to indirectly learn quantizer’s parameters via Straight
Through Estimator (STE) (Bengio et al., 2013) based approach. In a similar vein, (Esser et al., 2019)
has proposed to learn the quantization mapping for each layer in a deep network by approximating
the gradient to the quantizer step size that is sensitive to quantized state transitions. On another side,
recent works (Elthakeb et al., 2018; Wang et al., November 21, 2018) proposed a reinforcement
learning based approach to find an optimal bitwidth assignment policy.
Quantizing Transformers. FullyQT (Prato et al., 2019) uses a bucketing based uniform quanti-
zation proposed by QSGD (Alistarh et al., 2016) and extends it to Tranformers. Q8BERT (Zafrir
et al., 2019) quantizes all the GEMM (General Matrix Multiply) operations to 8 bit by adding an
additional term for quantization loss during training, which is calculated based on the rounding ef-
fect of floating point values (Shaw et al., 2018). WaveQ, however, uses a sinusoidal regularizer to
automatically push the weights towards the quantization levels.
7 CONCLUSION
This paper devised WaveQ that casts the two problems of finding layer bitwidth and quantized
weights as a gradient-based optimization through parametric sinusoidal regularization. WaveQ pro-
vides significant improvements over the state-of-the-art and is even applicable to the Transformers.
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Supplementary Material for “WaveQ: Gradient-Based Deep
Quantization of Neural Networks through Sinusoidal

Regularization”

A DETAILED THEORETICAL ANALYSIS

A.1 MOTIVATION

The results of this section are motivated by the following question.
Question A.1. Suppose that a function F : Rn → [0,∞) has many global minima and thatQ ⊂ Rn
is closed. How do we isolate the global minima of F that are closest toQwithout actually computing
the full set of global minima of F?

Intuitively, we would like to show that if ε > 0 is very small, then the global minima of the function

F (x) + εd(x,Q)

are very close to the global minima of F closest to Q. To achieve this we will have to introduce first
the concept of convergence of sets and then we will show that our intuition is correct by proving that
the set of global minima to the above relaxed function converges to a subset of global minima of F
closest to Q.

A.2 RELEVANT DEFINITIONS

Definition A.2. If F : Rn → [0,∞) satisfies lim|x|→∞ F (x) = +∞, we will say that F is coercive.

Definition A.3. For a coercive function F : Rn → [0,∞) we let SF = {x ∈ Rn : F (x) =
miny∈Rn F (y)} be coercive.
Lemma A.4. Assume that F : Rn → [0,∞) is continuous and coercive. Then F has at least one
global minimum. That is, SF is non-empty. Furthermore, SF is a compact set.
Definition A.5. Let F,G : Rn → [0,∞) are continuous and assume that F is coercive. Define

SF,G = {x ∈ SF : G(x) = inf
y∈SF

G(y)},

the minima of F which minimize G among the minima of F .
Definition A.6. Let Q ⊂ Rn be a closed set and assume that x ∈ Rn. Define the distance from x to
the set Q to be

d(x,Q) = inf
y∈Q
‖x− y‖.

Observe that since Q is a closed set we have that x ∈ Q if and only if d(x,Q) = 0 and otherwise
d(x,Q) > 0.
Definition A.7. Let A,B ⊂ Rn be compact sets. We define the Hausdorff distance between A and
B by

dH(A,B) = max{sup
x∈B

d(x,A), sup
y∈A

d(y,B)}.

Observe that dH(A,B) = 0 if and only if A = B.
Definition A.8. Let {Sδ}δ>0 be a family of compact subsets of Rn. We say that limδ→0 Sδ = S∗ if

lim
δ→0

dH(Sδ, S∗) = 0.

Lemma A.9. Let Sδ be a family of compact subsets of Rn, then limδ→0 Sδ = S∗ if and only if the
following two conditions hold.

1. If xδ ∈ Sδ converges to x, then x ∈ S∗

2. For every x ∈ S∗, there exists a family xδ ∈ Sδ with xδ → x.

The lemma is just an exercise in the definition.



Under review as a conference paper at ICLR 2021

A.3 STATEMENT OF THE THEOREM

Theorem 2. Let F,G : Rn → [0,∞) are continuous and assume that F is coercive. Consider the
sets SF+δG, the set of points at which F + δG is globally minimum. The following are true:

1. If δn → 0 and SF+δnG → S∗, then

S∗ ⊂ SF,G

2. If δn → 0 then there is a subsequence δnk → 0 and a non-empty set S∗ ⊂ SF,G so that
SF+δnkG

→ S∗.

Proof. The second statement follows from the standard theory of Hausdorff distance on compact
metric spaces and the first statement. For the first statement, assume that SF+δnG → S∗. We wish
to show that S∗ ⊂ SF,G. Assume that xn is a sequence of global minima of F + δnG converging to
x∗. It suffices to show that x∗ ∈ SF,G. First let us observe that x∗ ∈ SF . Indeed, let

λ = inf
x∈Rn

F (x)

and assume that x ∈ SF . Then,

λ ≤ F (xn) ≤ (F + δnG)(xn) ≤ (F + δnG)(x) = λ+ δnG(x)→ λ.

Thus, since F is continuous and xn → x∗ we have that F (x∗) = λ which implies x∗ ∈ SF . Next,
define

µ = inf
x∈SF

G(x).

Let x̂ ∈ SF,G so that G(x̂) = µ. Now observe that, by the minimality of xn we have that

λ+ δnµ = (F + δnG)(x̂) ≥ (F + δnG)(xn) ≥ λ+ δnG(xn)

Thus,
G(xn) ≤ µ

for all n. Since G is continuous and xn → x∗ we have that G(x∗) ≤ µ which implies that G(x∗) =
µ since x∗ ∈ SF . Thus, x∗ ∈ SF,G.

B QUANTIZER

Here, we give an overview about the used quantization method. Consider a floating-point vari-
able wf to be mapped into a quantized domain using (b + 1) bits. Let Q be a set of (2k + 1)
quantized values, where k = 2b − 1. Considering linear quantization, Q can be represented as{
−1,−k−1k , ...,− 1

k , 0,
1
k , ...,

k−1
k , 1

}
, where 1

k is the size of the quantization bin. Now, wf can be
mapped to the b-bit quantization (Zhou et al., 2016) space as follows:

(B.1)wqo = 2× quantizeb

(
tanh(wf )

2max(|tanh(Wf )|)
+

1

2

)
− 1

where quantizeb(x) =
1

2b−1 round((2
b−1)x), wf is a scalar,Wf is a vector, andwqo is a scalar and

tanh is used to limit its range to [−1, 1]. Then, a scaling factor c is determined per layer to map the
final quantized weight wq into the range [−c,+c]. As such, wq takes the form cwqo, where c > 0,
and wqo ∈ Q.

These learned parameters (b, α), as explained in Section 2.2, can be mapped to the quantizer pa-
rameters explained in Equation equation B.1. For (b + 1) bits quantization (the extra bit is the sign
bit):

k = 2b − 1, and c = α = 2b/2β (B.2)
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Table 4: Hyperparameters settings.

C CONVERGENCE ANALYSIS

Figure 8 (a), (b) show the convergence behavior of WaveQ by visualizing both accuracy and regu-
larization loss over finetuning epochs for two networks: CIFAR10 and SVHN. As can be seen, the
regularization loss (WaveQ Loss) is minimized across the finetuning epochs while the accuracy is
maximized. This demonstrates a validity for the proposed regularization being able to optimize the
two objectives simultaneously. Figure 8 (c), (d) contrasts the convergence behavior with and without
WaveQ for the case of training from scratch for VGG-11. As can be seen, at the onset of training,
the accuracy in the presence of WaveQ is behind that without WaveQ. This can be explained as a
result of optimizing for an extra objective in case of with WaveQ as compared to without. Shortly
thereafter, the regularization effect kicks in and eventually achieves ∼ 6% accuracy improvement.

The convergence behavior, however, is primarily controlled by the regularization strengths (λw, λβ).
As briefly mentioned in Section 2.2, (λw, λβ) ∈ [0,∞) is a hyperparameter that weights the relative
contribution of the proposed regularization objective to the standard accuracy objective.

We reckon that careful setting of λw, λβ across the layers and during the training epochs is essential
for optimum results (Choi et al., 2018b).
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Figure 8: Convergence behavior: accuracy and WaveQ regularization loss over fine-tuning epochs
for (a) CIFAR10, (b) SVHN. Comparing convergence behavior with and without WaveQ during
training from scratch (c) accuracy, (d) training loss. Network: VGG-11, 2-bit DoReFa quantization
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Table 5: Performance of WaveQ on BERT.

MODEL: CamemBERT
BITWIDTH: W4,5/A8

SPOKEN PARTUT

UPOS LAS UPOS LAS

Baseline (FP) 96.99 81.37 97.65 93.43

Quantized w/ 
Unregularized Finetuning 89.91 72.32 90.89 84.25

Quantized w/ WaveQ 
Regularized Finetuning 

93.41 79.34 95.76 91.55

Table 6: Validation top-1 accuracy for training from scratch w/ WaveQ vs w/o WaveQ.
CIFAR10 (FP Accuracy = 74.53 %) SVHN (FP Accuracy = 96.4 %)

3 bits 4 bits 5 bits 3 bits 4 bits 5 bits

Training w/o WaveQ 9.6 31.8 70.3 61.7 79.1 90.6

Training w/ WaveQ 44.8 66.6 73.2 79.3 85.1 94.8

Improvement (%) (+35.2) (+34.8) (+2.9) (+17.6) (+6.0) (+4.2)

D WAVEQ PERFORMANCE ON BERT

Additionally, Table 5 provides layer-wise quantization with a heterogeneous mix of 4 and 5 bits for
the BERT model. In all cases, WaveQ improves UPOS and LAS metrics for two French treebanks
(SPOKEN, PARTUT).

E TRAINING FROM SCRATCH

Table 6 shows a comparison between training from scratch with WaveQ vs without. It can be seen
that incorporating WaveQ into the training process achieves strictly better accuracy than the baseline
training without WaveQ across all cases. Moreover, higher improvements are obtained at lower
bitwidths reaching to 35%

F REGULARIZATION STRENGTHS

Having a regularization strength is a normal setting associated with any regularization method. The
criterion for choosing λw and λβ is to balance the magnitude of regularization loss to be smaller
than the magnitude of accuracy loss. We then perform a grid search over a few points and chose the
ones with the best convergence.

From the theoretical perspective, while the theorem is stated in terms of a limit as the regularization
parameter vanishes, the proof in fact gives a corresponding stability result. Namely, if the regular-
ization parameter is sufficiently small relative to the main loss then the minimizers will be “almost”
quantized.

G HETEROGENEOUS COMPARISON

For Mobilenet-V2, WaveQ quantizes the network to an average bitwidth of 3.95(20.66 GBOPS)
compared to 5.90(29.16 GBOPs) reported by Uhlich et al. (2019). Similarly, for Resnet-18, WaveQ
achieves an average bitwidth of 3.57(62.56 GBOPs) compared to 5.47(65.90 GBOPs) by Uhlich
et al. (2019). Table 7 shows this comparison. However this is not a fair comparison since WaveQ is
a regularization method and not a full-blown quantization technique.
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Table 7: Comparison to heuristic-based bitwidth selection method.
MobileNet-V2 ResNet-18

Accuracy
(Learned/FP Baseline) GBOPs Avg. BW Accuracy

(Learned/FP Baseline) GBOPs Avg. BW

Ref [31] (Learned) 70.5%/70.2% 2002.30 5.90 70.6%/70.3% 414.42 5.47

Ours (Learned) 65.8%/71.8% 1418.26 3.95 70.0%/70.1% 392.76 3.57

1
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