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ABSTRACT

We investigate the mechanisms behind three puzzling phenomena observed in
transformer-based large language models (LLMs): attention sinks, value-state
drains, and residual-state peaks, collectively referred to the extreme-token phe-
nomena. First, we demonstrate that these phenomena also arise in simpler ar-
chitectures—transformers with one to three layers—trained on a toy model, the
Bigram-Backcopy (BB) task. In this setting, we identify an active-dormant mech-
anism that causes attention heads to become attention sinks for certain domain-
specific inputs while remaining non-sinks for others. We further develop a precise
theoretical characterization of the training dynamics that lead to these phenomena,
revealing that they are driven by a mutual reinforcement mechanism. By small
interventions, we demonstrate ways to avoid extreme-token phenomena during
pre-training. Next, we extend our analysis to pre-trained LLMs, including Llama
and OLMo, revealing that many attention heads are governed by a similar active-
dormant mechanism as in the BB task. We further show that the same mutual rein-
forcement mechanism drives the emergence of extreme-token phenomena during
LLM pre-training. Our results study the mechanisms behind extreme-token phe-
nomena in both synthetic and real settings and offer potential mitigation strategies.

1 INTRODUCTION

Recent analyses of transformer-based open-source large language models (LLMs), such as GPT-2
(Radford et al., 2019), Llama-2 (Touvron et al., 2023), Llama-3 (Dubey et al., 2024), Mixtral (Jiang
et al., 2023), Pythia (Biderman et al., 2023), and OLMo (Groeneveld et al., 2024), have revealed
several intriguing phenomena:

• Attention sinks (Xiao et al., 2023): In many attention heads, the initial token consistently
attracts a large proportion of attention weights. In certain LLMs, other special tokens, such as
the delimiter token, also draw significant attention. We refer to these as sink tokens.

• Value state drains (Guo et al., 2024): The value states of sink tokens are consistently much
smaller than those of other tokens.

• Residual state peaks (Sun et al., 2024): The intermediate representations of sink tokens, ex-
cluding those from the first and last layers, exhibit a significantly larger norm than other tokens.

These phenomena often appear simultaneously, and we collectively refer to them as the extreme-
token phenomena. Figure 1 illustrates these phenomena using a fixed prompt: “⟨s⟩ Summer is
warm. Winter is cold.” in Llama-3.1-8B-Base, where the first token, ⟨s⟩, the beginning-of-sentence
token, serves as the sink token. We note that the first token does not have to be ⟨s⟩ to function
as a sink token, as in GPT-2, where other tokens, being the initial token, can also serve this role.
Furthermore, in models like Llama-2, a delimiter token can also act as the sink token. Despite
the consistency of these observations, no prior work has provided a satisfying explanation for the
mechanisms behind these phenomena. As a tentative explanation, Xiao et al. (2023) suggested that
models tend to dump unnecessary attention values to specific tokens.

This work aims to demystify the extreme-token phenomena in LLMs. We show that the extreme-
token phenomena are manifestations of the active-dormant mechanism of attention heads. We sup-
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(a) Attention weights at L24. (b) Norms of residual states. (c) Norms of value states.

Figure 1: Extreme-token phenomena in Llama 3.1-8B-Base. We evaluate the sentence “⟨s⟩ Summer is
warm. Winter is cold.” on the Llama 3.1-8B-Base model. Left (a): The value of the attention weights across
multiple heads at Layer 24. We demonstrate that there are attention sinks: the key state associated with the
⟨s⟩ token attracts the most attention from query states in these (and most) heads. Middle (b): The norm of
the (residual stream) hidden states, measured at the output of each layer. We observe a residual state peak
phenomenon: the ⟨s⟩ token’s residual states have significantly larger norms than those of other tokens from
layers 1 to 30. Right (c): The distribution of the norms of value states corresponding to each token at all layers
and all heads. We observe the value state drain phenomenon: across many attention heads, the value state of
the ⟨s⟩ token is much smaller than those of other tokens on average.

port this claim through studies on simplified transformer architectures and tasks, a dynamical theory
of simplified models, and experiments on pre-trained LLMs. Our contributions are as follows:

1. In Section 2, we train one-to-three-layer transformers on the Bigram-Backcopy (BB) task,
which also exhibits extreme-token phenomena similar to those observed in LLMs. We show
that attention sinks and value-state drains are driven by the active-dormant mechanism mech-
anism. Both theoretically and empirically, we demonstrate that the mutual reinforcement dy-
namics underpin the extreme-token phenomena: attention sinks and value-state drains reinforce
each other, leading to a stable phase where all query tokens produce identical attention logits
for the keys of extreme tokens. Empirical evidence further shows that residual state peaks result
from the interaction between this mutual reinforcement mechanism and Adam.

2. In Section 3, we demonstrate the active-dormant mechanism mechanism in LLMs by identi-
fying an interpretable active-dormant head (Layer 16, Head 25 in Llama 2-7B-Base (Touvron
et al., 2023)), confirmed through causal intervention analyses. We also discover circuits in
LLMs related to extreme tokens that partially align with models trained on the BB task. Exam-
ining the dynamics of OLMo-7B-0424 (Groeneveld et al., 2024), we observe the same mutual
reinforcement mechanism and stable phase, consistent with predictions from the BB task.

3. Through causal interventions, we isolate the extreme-token phenomena to architecture and op-
timization strategy. Specifically, we show that replacing SoftMax with ReLU activations in
attention heads can eliminate extreme-token phenomena in the BB task, and switching from
Adam to SGD removes the residual-state peak phenomenon in the BB task. Our work demon-
strates potential classes of modifications to mitigate extreme-token phenomena in LLMs.

1.1 NOTATION

We denote the SoftMax attention layer with a causal mask as attn, the MLP layer as mlp, and the
transformer block as TF. The query, key, value states, and residuals of a token v are represented as
Qryv , Keyv , Valv , and Resv , respectively, with the specific layer and head indicated in context. We
use ⟨s⟩ to refer to the "Beginning of Sequence" (bos) token. Throughout the paper, we employ zero-
indexing (i.e., attention head and layer indices start from 0 rather than 1) for consistency between
code and writing.
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(a) The Bigram-Backcopy task
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Figure 2: Experiments on the Bigram-Backcopy task. Left (a): We illustrate the data generation procedure
for the Bigram-Backcopy task, where we fix ’t’, ’e’, and the space character (’ ’) as trigger tokens. The BB task
samples bigram transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): We present
the attention weight heat map of a given prompt, with trigger tokens marked in red. Non-trigger tokens act as
attention sinks. Right (c): We plot the value state norms for the prompt, where the ⟨s⟩ token has a tiny norm.

2 THE BIGRAM-BACKCOPY TASK

The Bigram-Backcopy task consists of two sub-tasks: Bigram-transition and Backcopy. Each input
sequence begins with a ⟨s⟩ token, followed by tokens sampled according to a pre-determined bigram
transition probability P. When some special trigger tokens are encountered, instead of sampling,
the preceding token is copied to the next position. Following Bietti et al. (2024), we select the
transition P and the vocabulary V with |V| = V = 64 based on the estimated character-level bigram
distribution from the tiny Shakespeare dataset. In all experiments, the set of trigger tokens T is fixed
and consists of the |T | = 3 most frequent tokens in the unigram distribution. Thus, the non-trigger
token set, V \ T , comprises 61 tokens.

2.1 ONE-LAYER TRANSFORMER SHOWS ATTENTION SINKS AND VALUE-STATE DRAINS.

On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with only one soft-
max attn head and one mlp layer. Unless otherwise specified, the model is trained with Adam
for 10, 000 steps. We relegate the training details in Appendix C. Figure 2b shows that the trained
transformer also exhibits the attention sink phenomenon, where the ⟨s⟩ token captures a significant
proportion of the attention weights. More importantly, the attention weights reveal interpretable pat-
terns: all non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concen-
trated on their preceding positions. Furthermore, Figure 2c reveals a value state drain phenomenon
similar to LLMs, indicating that on non-trigger tokens, the attn head adds a minimal value to the
residual stream.

The active-dormant mechanism of the attention head: Inspired by the observed interpretable
attention weight patterns, we propose the active-dormant mechanism. For any given token, an at-
tention head is considered active if it contributes significantly to the residual state, and dormant if
its contribution is minimal. As illustrated in Figure 2b, trained on the BB task, the attention head is
active on trigger tokens and dormant on non-trigger tokens.

Figure 3a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head
takes care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains signif-
icantly better than a random guess, but the bigram loss degrades to near-random levels. Conversely,
when the attn layer is zeroed out, the backcopy loss becomes worse than a random guess, while
the bigram loss remains unaffected. This suggests that on trigger tokens, the attn head is active
and handles the backcopy task, whereas on non-trigger tokens, the attn head is dormant, allow-
ing the mlp layer to handle the Bigram task. We summarize the active-dormant mechanism of the
attn head in Claim 1.

Claim 1. In the BB task, the attn head demonstrates active-dormant mechanism, alternating
between two phases:

• Dormant phase: On non-trigger tokens, the attn head puts dominant weights to the ⟨s⟩ token,
adding minimal value to the residual stream, having little impact on the model’s output.
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(a) Excess risk after interventions
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Figure 3: Interventions and dynamics of one-layer transformer on the Bigram-Backcopy task. Left (a):
We display the excess risks for a one-layer model trained on the Bigram-Backcopy (BB) task under various
interventions. Right (b): We plot the excess risks, attention weights, attention logits, and value state norms for
the ⟨s⟩ token along the training dynamics. Each curve is rescaled to fall within a 0 to 1 range, though the trends
remain consistent without rescaling. On the right side of (b), the horizontal axis is logarithmically scaled. The
logit⟨s⟩ curve denotes the mean of attention logits from all given non-trigger query tokens v on the ⟨s⟩ token,
normalized by the mean of attention logits on other tokens. The shaded area gives the 90% confidence interval
on the distribution over all non-trigger tokens.
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Figure 4: The simplified transformer architecture with one mlp-layer and one attn head in parallel.
The predicted probability is the softmax of the output. Assume that the trainable variables are (α,β) ∈
RV × RV , which stands for the attention logits and value states of the ⟨s⟩ tokens.

• Active phase: On trigger tokens, the attn head puts dominant weights to the relevant context
tokens, adding substantial value states to the residual stream, resulting in a significant impact
on the model’s output.

The growth of attention logits on the ⟨s⟩ token and the decrease in the norm of its value state.
Figure 3b displays the training dynamics of excess risks, attention weights, attention logits, and value
state norms for the ⟨s⟩ token. All values are rescaled to highlight the trends. The backcopy excess
risk and the bigram excess risk both drop to zero within the first 1000 steps. As the backcopy risk
decreases, the attention weights on the ⟨s⟩ token increase, suggesting a relationship between the for-
mation of attention sinks and the functional development of the attention heads. For each token vn at
position n in the prompt, we compute logit⟨s⟩ = meann[⟨Qryvn , Key⟨s⟩⟩−meani(⟨Qryvn , Keyvi)⟩],
which serves as a progress measure for attention sinks. Even after the attention weights on the
⟨s⟩ token is nearly 1, logit⟨s⟩ continues to increase. Simultaneously, the norm of the value state of
the ⟨s⟩ token continues to decrease to a small value.

2.2 ANALYSIS OF A MINIMALLY-SUFFICIENT TRANSFORMER ARCHITECTURE

In this section, we analyze the training dynamics on the BB task by simplifying the architecture
while preserving the attention sinks and value state drains phenomena. Let V denote the set of all
tokens except the ⟨s⟩ token, and T denote the set of all trigger tokens. Given any v ∈ V , we denote
pvk = P(k|v) to be the next token Markov transition probability, and pv = [pv1, . . . , pvV ] be the
row vector in the simplex. We assume that the tokens are embedded into V -dimensional space

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

using one-hot encoding, and for notation simplicity, we abuse v to stand for its one-hot encoding
vector ev ∈ RV which is a row vector. The predicted probability of the n + 1 token is given by
SoftMax(TF([⟨s⟩; v1:n−1; v])n), where transformer architecture is given by TF(·) = attn(·) +
mlp(·). Here attn(·) = SoftMax(mask(Qry(·)Key(·)⊤))Val(·) and (Qry, Key, Val) are linear
maps from RV → RV . Since the mlp layer could handle the Bigram task, we assume that mlp
outputs the Markov transition probabilities pv on non-trigger tokens v and zero on trigger tokens.
For the attn head, we assume that the attention logits on the ⟨s⟩ key-token are (αv1 ; . . . ;αvn),
the attention logits on any trigger query-token are (0, . . . , λ, 0) where the second last coordinate
is λ, and assume other logits are zero. Assume that the value state of ⟨s⟩ is β ∈ RV , and the
value state of each non-trigger token v is a one-hot encoding vector ev multiplied by ξv ≥ 0.
Figure 4 illustrates this simplified transformer architecture. These assumptions are summarized in
the following equations.

mlp(v) = logpv · 1{v ̸∈ T } for v ∈ V,
⟨Qry(v), Key(⟨s⟩)⟩ = αv · 1{v ̸∈ T } for v ∈ V,
⟨Qry(v), Key(v′)⟩ = λ · 1{v ∈ T , v′ is the former token of v} for v, v′ ∈ V,
Val(v) = ξvev with ξv = 0 for v ∈ T , and ξv ≥ 0 for v ∈ V \ T .

(1)

Theorem 2 demonstrates the existence of a transformer structure that is equivalent to the simplified
version. We relegate the proof in Section B.
Theorem 2. For any parameters (α ∈ RV ,β ∈ RV , ξ ∈ RV , λ ∈ R), there is a one-layer trans-
former (mlp, Qry, Key, Val) such that Eq. (1) holds. The transformer gives ground truth transition
of the BB model if minv∈V αv → ∞, minv∈V ξv → ∞, λ → ∞, and β = 0.

Throughout we adopt Eq. (1) as our assumption. We further define Wk =
∑n

i=1 1{vi = k},
W = (W1, . . . ,WV ), and W =

∑
k∈V Wk = n. Then for a non-trigger token v, the output of

attention layer with input sequence [⟨s⟩; v1:n−1; v] gives (denoting ξk = 0 for k ∈ T )

TF([⟨s⟩; v1:n−1; v])n = logpv +
eαv

eαv +W
β +

V∑
k=1

Wkξk
eαv +W

· ek.

Therefore, on the non-trigger token v, the cross-entropy loss between the true Markov transition pv

and predicted transition SoftMax(TF([v1:n−1; v])n) is given by

lossv(αv,β) =

V∑
k=1

pvk

{
log
[ V∑

i=1

pvi exp
(eαvβi +Wiξi

eαv +W

)]
− eαvβk +Wkξk

eαv +W
− log pvk

}
.

For simplicity, we neglect the loss on trigger tokens and assume that ({Wi}i∈[V ],W ) are fixed
across different positions in the input sequences1, and consider the total loss to be the losses on each
non-trigger token averaged with its proportion in the stable distribution {πv}v∈V , given by

loss(α,β) =
∑

v∈V\T

πv lossv(αv,β).

Theorem 3. Consider the gradient flow of the loss function loss(α,β). Assume ξv ≥ 0 for any v,
and {Wi · ξi}i∈V are not all equal.

• (Attention logits grow logarithmically reinforced by small value states) Fix β = β · 1 for a
constant β, and consider the gradient flow over α. With any initial value α(0), there exists
r(t) with norm uniformly bounded in time such that

α(t) =
1

2
log t · 1+ r(t).

• (Value state shrinks to a small constant vector reinforced by large attention logits) Fix α = α·1
for a constant α, and define β(0) = V −1[

∑
v βv(0)]. Consider the gradient flow over β. As

t → ∞, we have
β(t) → β⋆ = β(0) · 1− e−α ·W ◦ ξ.

1We note that Reddy (2023) makes similar simplification in analyzing induction heads.
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• (Stable phase: identical attention logits) Consider the gradient flow over variables (α,β). Any
vector of the following form

α = α · 1, β = c · 1− e−α ·W ◦ ξ, α, c ∈ R
is a stationary point. These are all global minimizers of loss(α,β).

The proof of Theorem 3 is provided in Appendix B.2. We give three key remarks: (1) As αv → ∞,
a Taylor expansion of the gradient ∂loss/∂αv suggests that dαv/dt ∝ exp(−2αv), which leads
to the logarithmic growth of αv . Similar logarithmic growth exists in the literature under different
setups (Tian et al., 2023a; Han et al., 2023). (2) For a fixed α = α1, under additional assumptions
on the initial value β(0), we can prove a linear convergence for β. (3) The stable phase described
in Theorem 3 seems to imply that the system could be stable without attention sinks, as it does not
require α to be large. However, in practice, models trained on the BB task tend to converge to a
stable phase where α is relatively large.

The Formation of Attention Sinks and Value State Drains. When β = 0, the attention logits on
the ⟨s⟩ token increase monotonically. This demonstrates that the presence of a small value state of
the ⟨s⟩ token reinforces the formation of attention sinks. When α = α · 1, with α sufficiently large,
β(t) → β(0)1. Given the random Gaussian initialization, ∥β(0)1∥2 ≈ ∥β(0)∥2/

√
d, where d is the

hidden dimension. This demonstrates that the presence of attention sinks reinforces the formation
of value states drains.

Experimental verification. Revisiting Figure 3b, which shows the dynamics of a full transformer
model trained with Adam, we observe that both logit⟨s⟩ and ∥Val⟨s⟩∥2 exhibit growth rates con-
sistent with Theorem 3. The logit⟨s⟩ is equivalent to α in this context, as all other attention logits
are assumed to be zero under the setup of Theorem 3. When plotted on a logarithmic scale, the
logit⟨s⟩ curve grows approximately linearly between 1,000 and 10,000 steps, then accelerates before
stabilizing around 100,000 steps. Meanwhile, the norm of the value state decreases monotonically.
The simultaneous increase in attention weights and decrease in value-state norms suggest that these
phases occur together during the training process. To further validate Theorem 3, we construct a sim-
plified model that aligns with Equ. (1), and train the parameters (α ∈ RV ,β ∈ RV , ξ ∈ RV , λ ∈ R)
with Adam. The resulting training curves are similar to those of a one-layer transformer, also ex-
hibiting the mutual reinforcement mechanism.

Combining theoretical insights and experimental evidence, we summarize the formation of attention
sinks and value state drains as a mutual reinforcement mechanism.
Claim 4 (Mutual reinforcement mechanism). For any attention head given a specific prompt, if
the model can accurately predict the next token without the attention head, but adding any value
state from previous tokens worsens the prediction, the attention head becomes dormant, forming an
attention sink, leading to the mutual reinforcement of attention sinks and value state drains:

1. The SoftMax mechanism pushes the attention weights to the value state drains, reinforcing
attention sinks.

2. The attention sinks on the value state drains further pushes down the value state, reinforcing
value state drains.

The mutual reinforcement stabilizes at the phase when all tokens have identical large attention logits
on the value state drains. Finally, due to the causal mask, the training dynamics favor the ⟨s⟩ token
to become an extreme token.

We expect that the formation of extreme tokens in LLMs follows a similar mutual reinforcement
mechanism. Indeed, although Theorem 3 focuses on a specific BB task with a simplified architecture
and loss function, the same principles can be applied to more general scenarios. Specifically, for an
attention head attn, we assume that (LLM \ attn)(v) = logpv , meaning that the LLM, even if
we zeroed out attn, can still output an accurate next token prediction. Furthermore, we assume
Val(v) = ξvev , indicating that adding the value state from any previous tokens performs a specific
function. Under these assumptions, we expect the same theoretical results to apply to LLMs. In
Section 3, we will explore the formation of attention sinks and value state drains along the training
dynamics of LLMs, where we find empirical evidence that aligns with the theory.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) ReLU attention

0 0.5k 1k
Training Steps

0%
10

0% Backcopy loss
Bigram loss
Attn s

Val s

(b) Interventions on a 3-layer TF

Res s Logit s Val s
0

20

40

60

80

100 Full model
No Layer 0

(c) Eliminating residual state peaks

0 5k 10k
Training Steps

20

80

140

No
rm

s o
f R

es
s

Adam
SGD
SoftMax ReLU

Figure 5: Experiments on massive norms with multi-layer transformers trained on the Bigram-
Backcopy task. Left (a): We present the training dynamics of the ReLU attention for the first 1,000 steps.
Middle (b): We plot the intervention results on the attn+mlp+attn+mlp+mlp structure. Right (c): We
plot the evolution of massive norms in a three-layer transformer trained with Adam, SGD, and using a ReLU
attention structure. Notably, only the three-layer model with softmax attention trained using Adam results in
the emergence of residual state peaks.

Replacing SoftMax by ReLU attention removes extreme-token phenomena. As an implication
of our theory, we predict that training with ReLU attention instead of SoftMax attention will elimi-
nate the extreme-token phenomena. Without the SoftMax, the dynamics no longer push the attention
weights on the ⟨s⟩ token, which remains zero along the training dynamics. Without attention sink,
the dynamics no longer push down the value state norm, and the mutual reinforcement mechanism
breaks. Figure 5a illustrates the training experiment on the BB task replacing SoftMax with ReLU,
showing that both the Bigram and Backcopy risk match the Bayes risk after 200 training steps, but
the attention logits of ⟨s⟩ do not grow, and the value state does not shrink, confirming the prediction.

2.3 THE EMERGENCE OF RESIDUAL STATE PEAKS

The residual state peaks require a three-layer structure. No residual state peaks appear in a
one-layer transformer trained on the BB task. We train various models on the BB task and track
the ⟨s⟩ token’s residual state norms after layer 0. We relegate the experimental results to Appendix
C. We find that a three-layer transformer is enough to produce residual state peaks. If we allow
to skip some mlp or attn layers, the “attn+mlp+attn+mlp+mlp” combination becomes the
simplest model that produces residual state peaks (Figure 10). Circuit analysis also reveals that
LLMs typically add a large vector in the first layer and cancel it in the last layer. We propose that
the add-then-cancel mechanism is essential for residual state peaks and requires at least three layers.

Residual state peak reinforces attention sinks and value state drains in trained models. Figure
5b presents the intervention results on the “‘attn+mlp+attn+mlp+mlp” model. We recenter the
∥Res⟨s⟩∥2 by subtracting the average norm of other tokens from the ⟨s⟩ token norm. The logit⟨s⟩
and ∥Val⟨s⟩∥ are computed in layer 1 following the same ways as in Figure 3b. When layer 0 is
zeroed out, the residual norm returns to normal, attention logits decrease, and the value state norm
rises. It verifies that the residual state peak contributes to the attention sink and value state drain
phenomenon in the trained transformer.

Replacing Adam by SGD removes the linear growth of residual state norm. Figure 5c shows
the ⟨s⟩’s residual state norms at the output of layer 0 of three-layer transformers with different
configurations. Adam leads to a linear increase in residual norms. In contrast, with SGD, attention
sinks persist, but residual state peaks vanish. The ReLU attention, which lacks the active-dormant
mechanism, shows no residual state peaks.

3 EXTENDING PREDICTIONS OF THE BB MODEL TO LLMS

In this section, we examine extreme-token phenomena in open-source pre-trained LLMs. In Sec-
tion 3.1, we analyze the static behavior of these phenomena in Llama 2-7B-Base (Touvron et al.,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2023), confirming that certain attention heads in LLMs exhibit both active and dormant phases. No-
tably, we identify a specific head that is active on GitHub samples but dormant on Wikipedia sam-
ples, illustrating the active-dormant mechanism. In Section 3.2, we explore the dynamic behavior of
extreme-token phenomena during the pre-training process of OLMo-7B (Groeneveld et al., 2024).
We show that the attention logits, value state norms, and residual state norms of the sink token(s) in
OLMo mirror their behavior in the simpler BB model. Specifically, the simultaneous formation of
attention sinks and value state drains gives evidence for the mutual reinforcement mechanism.

3.1 ACTIVE-DORMANT MECHANISM IN LLMS

Our study of the BB model leads to the following prediction about the extreme-token phenomena,
which we hypothesize also applies to LLMs:

Attention heads are controlled by an active-dormant mechanism. Attention sinks and value state
drains indicate that an attention head is in dormant phase.

This hypothesis suggests that in LLMs, attention heads become sinks or not depending on the con-
text: the value vector can be totally non-informative towards picking likely next tokens for token
distributions (e.g., tasks) in a particular context but not in others. This is a concrete instantiation
vis-a-vis large-scale LLMs of the active-dormant dichotomy in Section 2, where this phenomenon
was shown to occur in the context of small next-token predictors and the BB task.

Accordingly, we strive to find instances of heads in pretrained LLMs which satisfy this principle, i.e.,
which are dormant on some domains and active on others. In Figure 6, we show a particular attention
head – Layer 16 Head 25 of Llama 2-7B-Base (Touvron et al., 2023) — which has an extremely clear
active-dormant distinction across two distinct contexts (e.g., tokens from RedPajama (Computer,
2023) drawn from the GitHub subset versus the Wikipedia subset). While there are many such
attention heads which are context-dependent — we provide some in Appendix D — we demonstrate
this one because the conditions under which it is active are simple and interpretable, while others
have more involved or complex criteria to become active. We observe that this attention head is
dormant (i.e., an attention sink) on samples from Wikipedia, which more closely resemble prose,
and active (i.e., not an attention sink) on samples from Github, which more closely resemble code.
We also observe that this attention head, in general, contributes significantly to the performance of
the model on code sequences, but has negligible impact on the performance of the model on prose
sequences (Figure 6b). This is a further justification, from a practical perspective, of why this head
is sometimes dormant and sometimes active — in some contexts we can ablate it from the model
entirely with no effect, but in other contexts ablating the head leads to huge performance drops. We
include more detail in Appendix E, where we extract a circuit for extreme-token phenomena in order
to analyze the dormant-active mechanism and its interaction with the semantics of the input tokens.

3.2 TRAINING DYNAMICS OF EXTREME-TOKEN PHENOMENA IN LLMS

Our study of the BB model leads to the following prediction about the dynamical behavior of the
extreme-token phenomena, which we hypothesize also applies to LLMs:

The attention heads go through a attention-increasing and value-state-shrinking phase. They then
go into a stable phase, with identical attention logits on the ⟨s⟩ token. Meanwhile, the residual

state norm of the ⟨s⟩ token linearly increases during pre-training.

We confirm these predictions below. To observe the training dynamics of a large-scale LLM, we use
the setup of OLMo-7B-0424 (Groeneveld et al., 2024) (henceforth just referred to as OLMo), who
have open-sourced weights at several steps during their training run. For our analysis, we inspect
OLMo at a variety of training steps: every 500 steps throughout the first 10,000 steps, then 25,000
steps, then 50,000 steps, then every 50,000 steps until 449,000 steps (which is roughly the end of
their training). Again, we use the input “Summer is warm. Winter is cold.”.2 Notice that in this
prompt, token 3, namely “.”, is not very semantically meaningful; it becomes a sink token along
with token 0 (c.f. Section 3.1, Appendix E, Appendix F.2).

2Note that OLMo does not have a ⟨s⟩ token, but attention sinks still form in the majority of heads. In
particular, the first token behaves similarly to an attention sink. We discuss this in Appendix F.2.
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(a) Attention weights for GitHub/Wikipedia data. (b) Zero-out-head intervention outcomes.
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Figure 6: Attention heads in LLMs are active on some domains and dormant on others. For example, on
Llama 2-7B-Base, we identify that Layer 16 Head 25 is active when the context contains many tokens related to
programming, and dormant in other contexts such as prose. We use RedPajama-1T (Computer, 2023) Wikipedia
and Github subsets for our data in this figure, truncating all samples to 64 tokens for demonstration purposes.
Left: Sample weights from four randomly selected samples from each domain. Right: Result of an intervention
study, i.e., change in cross-entropy of the input sequence when the attention head’s output (concretely, the value
states for this head) is manually set to zero, across sequences in both domains. We observe that the model’s
performance, measured by cross-entropy, strongly depends on the output of the attention head on coding data.

In Figure 7, we confirm that attention heads go through an attention-increasing and value-state-
shrinking phase, and that the residual state norm of the ⟨s⟩ token increases linearly during pre-
training. We show that, at Layer 24 of OLMo, the average attention on extreme tokens (token 0
and token 3) increases rapidly at the beginning of training and converges to a constant, while the
value state norms of extreme tokens decrease rapidly. Also, the residual states of extreme tokens
also increase linearly, while the rest quickly converge. In Figure 8 we show that attention heads
converge to a stable phase, and that all logits corresponding to the first token’s value states (i.e.,
all tokens’ value of logit0, except possibly the value of logit0 corresponding to token 0 itself) have
similar distributions. These confirm our dynamics insights from the BB model (c.f. Figure 3).

(a) Attention sink dynamics (L24). (b) Value state dynamics (L24). (c) Residual state dynamics (L24).

Figure 7: Attention-increasing and value state-decreasing phase, and residual state norms. Left (a): We
plot the total attention mass on extreme tokens 0 and 3 at Layer 24 and averaged over all attention heads,
during OLMo training. We observe that it increases rapidly and then maintains its value in [0.9, 1] for the rest
of training, which is in line with our predictions. Middle (b): We plot the norm of each token’s value state at
Layer 24 during training, averaged over all heads. We observe that the value states of all tokens shrink initially
and then converge, while the value states of the extreme tokens shrink to much lower than all other tokens.
Right (c): We plot the norm of each token’s residual state at Layer 24 during training. We observe that the
residual state of token 0 increases linearly in magnitude during training.
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(a) Logit dynamics (L24). (b) Logit statics (L24).

Figure 8: Stable phase. Left (a): We plot the normalized attention logits of all tokens’ query states against to-
ken 0’s key state during training. We observe that the logits of all non-extreme tokens’ query states against token
0’s key state in OLMo’s Layer 24 are stable for a large fraction of the training run, after an initialization period.
This echoes the stable phase prediction made in the BB model in Section 2. Note that this prediction makes no
guarantees about the logit corresponding to the zeroth query token and zeroth key token, which will be set to 1
by the softmax and so its behavior is irrelevant for prediction. Also note that we use normalization, similar to
Section 2, to make all terms comparable; namely we have logiti = ⟨Qryi, Key0⟩−meanj(⟨Qryi, Keyj⟩). Right
(b): For this experiment, we generate 128 randomly sampled test tokens with IDs from 100 to 50000 in the
OLMo tokenizer. We append each token separately to the test phrase “Summer is warm. Winter is cold.”, cre-
ating 128 different samples, which we feed to the LLM to record the model behavior. We plot the distribution
of (un-normalized) dot products ⟨Qrytest, Keyj⟩ across all heads at Layer 24 and all test tokens. We observe
that logits of all regular tokens have very similar distributions, and the distributions of the logits corresponding
to extreme tokens 0 and 3 are also similar. This confirms the hypothesis that at the end of training, attention
heads converge to the stable phase, with similar logits on extreme tokens.

4 CONCLUSION

In this work, we investigated the extreme-token phenomena, namely attention sinks, value state
drains, and residual state peaks. We analyzed a simple evocative model called the Bigram-Backcopy
task, and theoretically and empirically showed that it exhibited the same extreme-token phenomena
as in LLMs. Based on the Bigram-Backcopy task, we made several detailed predictions about the
behavior of extreme-token phenomena in LLMs. In particular, we identified the active-dormant
mechanism for attention heads in both the BB model and LLMs, of which attention sinks and value
state drains are indicators, and a mutual reinforcement mechanism by which these phenomena are
induced during pretraining. Using intuition about these mechanisms, we applied minor interventions
to the model architecture and optimization procedure which disabled extreme-token phenomena
within the BB model. Overall, our work uncovers the causes of extreme-token phenomena and
points to possible pathways to eliminate them during LLM training.

We believe the most compelling direction for future work in this area is as follows. Specifically, one
could build more performant and scalable interventions which would eliminate extreme-token phe-
nomena and observe the effect on training dynamics and the finished model. This would make it eas-
ier to understand whether extreme token phenomena are necessary to build a powerful transformer-
based LLM, whether they are merely helpful, or whether they are completely incidental to the par-
ticular architecture and optimization algorithms used by the community.
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A RELATED WORKS

Several studies independently identified the “attention sink” phenomenon in language models and
vision transformers, where attention weights were found to be concentrated on a few tokens (Xiao
et al., 2023; Darcet et al., 2023; Han et al., 2023; Zhai et al., 2023; Elhage et al., 2023; Dettmers
et al., 2022). Recent research has provided more detailed characterizations of this attention pattern
and the attention sink phenomenon (Fu, 2024; Sun et al., 2024). Sun et al. (2024) attributed the
attention sink to the massive activation of the hidden representations of the corresponding tokens.
Both Sun et al. (2024) and Zhai et al. (2023) discussed methods for mitigating the attention sink by
modifying the model and training recipes. Additionally, recent studies have leveraged the attention
sink phenomenon to develop improved quantization and more efficient inference algorithms (Liu
et al., 2024; Chen et al., 2024; Yu et al., 2024; Son et al., 2024).

The dynamics of transformers are studied under various simplifications, including linear attention
structures (Zhang et al., 2023; Ahn et al., 2024), reparametrizations (Tian et al., 2023b), NTK (Deora
et al., 2023), often in the setting of in-context linear regressions (Ahn et al., 2023; Wu et al., 2023;
Zhang et al., 2024) and structured sequence (Bietti et al., 2024; Nichani et al., 2024; Tian et al.,
2023a). Notably, Zhang et al. (2023) proves that a one-layer linear attention head trained with
gradient descent converges to a model that implements the in-context linear regression algorithm.
Huang et al. (2023); Kim et al. (2024) extend this to non-linear settings. Bietti et al. (2024) shows
the fast learning of bigram memorization and the slow development of in-context abilities. Tian et al.
(2023a) shows the scan and snap dynamics in reparametrized one-layer transformers. Reddy (2023)
simplifies the structure of the induction head, showing the connection between the sharp transitions
of in-context learning dynamics and the nested nonlinearities of multi-layer operations.

Mechanistic interpretability is a growing field focused on understanding the internal mechanisms of
language models in solving specific tasks (Elhage et al., 2021; Geva et al., 2023; Meng et al., 2022;
Nanda et al., 2023; Olsson et al., 2022; Bietti et al., 2024; Wang et al., 2022; Feng & Steinhardt,
2023; Todd et al., 2023). This includes mechanisms like the induction head and function vector
for in-context learning (Elhage et al., 2021; Olsson et al., 2022; Todd et al., 2023; Bietti et al.,
2024), the binding ID mechanism for binding tasks (Feng & Steinhardt, 2023), association-storage
mechanisms for factual identification tasks (Meng et al., 2022), and a complete circuit for indirect
object identification tasks (Wang et al., 2022). The task addressed in this paper is closely related to
Bietti et al. (2024), which explored synthetic tasks where tokens are generated from either global
or context-specific bigram distributions. Several other studies have also used synthetic tasks to
investigate neural network mechanisms (Charton, 2022; Liu et al., 2022; Nanda et al., 2023; Allen-
Zhu & Li, 2023; Zhu & Li, 2023; Guo et al., 2023; Zhang et al., 2022).

We note that Gurnee et al. (2024) proposed Attention Deactivation Neurons, a concept similar to
Dormant Attention Heads. Gurnee et al. (2024) hypothesized that when such a head attends to the
first token, it indicates that the head is deactivated and has minimal effect.

B PROOFS

Since we drop the trigger tokens in the loss function, we neglect T throughout the proof for nota-
tional convenience, assuming that V consists of only non-trigger tokens. We provide new notations
which are frequently used in the proofs. Define the full bigram transition probability.

P =

p11 . . . p1V
...

. . .
...

pV 1 . . . pV V

 =

p⊤
1
...

p⊤
V

 . (2)

Given token v, define the predicted probability, which is the logit output passed through the softmax
activation

qv = SoftMax(TF([⟨s⟩; v1:n−1; v])n). (3)
Similarly, define the full output probability matrix.

Q =

q11 . . . q1V
...

. . .
...

qV 1 . . . qV V

 =

q⊤
1
...

q⊤
V

 . (4)
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Given any vector u = [u1; . . . ;ud], define the corresponding diagonal matrix as

diag(u) =


u1 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 ud

 .

Define
GQ

v = diag(qv)− qvq
⊤
v GQ

v = diag(pv)− pvp
⊤
v .

Denote z = W · β −W ◦ ξ. We present a technical lemma.
Lemma 5. The matrices GP

v and GQ
v are positive semi-definite for any v.

Proof. Since we have that
∑V

k=1 pvk = 1 and
∑V

k=1 qvk = 1 for any v,

(GP
v )ii = pi − p2i = pi(

∑
k ̸=i

pk) ≥
∑
k ̸=i

|(GP
v )ik|

(GQ
v )ii = qi − q2i = qi(

∑
k ̸=i

qk) ≥
∑
k ̸=i

|(GQ
v )ik|.

This shows that both GP
v and GQ

v are diagonally dominant matrices. By Corollary 6.2.27 in Horn
& Johnson (2012), they are positive semi-definite.

B.1 PROOF OF THEOREM 2

We denote the hidden dimension as d and the sequence length as N . We begin with the assumption
regarding the transformer’s positional embedding:
Assumption A. For any token v and position i, assume that the encoding combined with the posi-
tional embedding ensures that {ebd(vi)} is linearly independent.

Assumption A requires that d ≥ V N . Given the fact that there are O(exp(d)) approximately linearly
independent vectors for large d (Vershynin, 2018), it is possible to apply approximation theory to
avoid Assumption A. However, since Assumption A pertains only to the construction of λ for trigger
tokens and is unrelated to Theorem 3, we adopt it to simplify the proof of Theorem 2.

Proof. Consider vectors ui ∈ Rd, i ∈ [N ] such that u⊤
i uj = 0, i ̸= j, and u⊤

i ebd(vj) for any
v ∈ V and i, j ∈ [N ]. Adopting Assumption A, there exists a matrix Qry such that

Qry(ebd(vi)) = λui−1 for vi ∈ T , i > 1,

Qry(ebd(vi)) = αviu0 for vi ∈ V \ T , i > 0.
(5)

Define the corresponding key matrix.
Key(ebd(vi)) = ui for vi ∈ V, i > 0,

Key(ebd(⟨s⟩)) = u0.
(6)

There exists a value matrix Val such that
Val(ebd(vi)) = 0 for vi ∈ T , i > 1,

Val(ebd(vi)) = ξviui for vi ∈ V \ T , i > 0,

Val(ebd(⟨s⟩)) = β.

(7)

Further define the matrix M that satisfies
M(ebd(vi)) = logpvi · 1{vi ̸∈ T } for vi ∈ V, i ∈ [N ],

M(ui) = ei for i ∈ [N ].
(8)

Setting mlp(·) = ReLU(M(·)), we can then verify that the residual connection gives that
TF([⟨s⟩; v1:n−1; vn]) = mlp(ebd(vn) + attn(ebd(vn))), which is equivalent to the simplified
model.

When minv∈V αv → ∞, minv∈V ξv → ∞, λ → ∞, and β = 0, if vn ∈ T ,
SoftMax[TF([⟨s⟩; v1:n−1; vn])] = δvn−1

. If vn ∈ V \ T , SoftMax[TF([⟨s⟩; v1:n−1; vn])] = pvn .
All next-token probabilities match those in the data-generating procedure, aligning with the oracle
algorithm.
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B.2 THE STABLE PHASE IN THEOREM 3

Lemma 6 computes the gradient of Q.
Lemma 6. We have

∂qik
∂αv

=
1{i = v}qikeαi

(eαi +W )2

[
Wβk −Wkξk −

V∑
j=1

qij(Wβj −Wjξj)
]
,

∂qik
∂βv

=
eαi

eαi +W
[qik1{k = v} − qikqiv].

Furthermore,
V∑

v=1

∂qik
∂αv

= 0,

V∑
v=1

∂qik
∂βv

= 0.

Proof. We repeatedly use the following two facts:

∂
{
exp

[
Wkξk+eαiβk

eαi+W

]}
∂αv

=
eαv (Wαk −Wkξk)

(eαi +W )2
exp

[Wkξk + eαiβk

eαi +W

]
,

∂
{
exp

[
Wkξk+eαiβk

eαi+W

]}
∂βv

=
1{i = v}eαi

eαi +W
exp

[Wkξk + eαiβk

eαi +W

]
.

When i ̸= v, qik does not include αv , making the gradients as zero. When i = v, we have

∂qvk
∂αv

= qvke
αv

[Wβk −Wkξk
(eαv +W )2

]
−

qvk
∑V

i=1 pvie
αv

[
Wβi−Wiξi
(eαv+W )2

]
exp

[
Wiξi+eαvβi

eαv+W

]
∑V

i=1 pvi exp
[
Wiξi+eαvβi

eαv+W

]
=

eαv

(eαv +W )2

{
qvk[Wβk −Wkξk]− qvk

V∑
j=1

q⊤vj(Wαj −Wjξj)
}
,

and

∂qik
∂βv

=
[ eαi

eαi +W

]
qik1{k = v} −

[
eαi

eαi+W

]
piv exp

[
Wvξv+eαiβv

eαi+W

]
piv exp

[
Wkξk+eαiβk

eαi+W

]
(∑V

j=1 pjvj exp
[
Wjξj+eαiβj

eαi+W

])2
=
[ eαi

eαi +W

]
[qik1{k = v} − qikqiv].

We can verify that
V∑

v=1

∂qik
∂αv

=
eαv

(eαv +W )2

V∑
v=1

{
qvk[Wβk −Wkξk]− qvk

V∑
j=1

q⊤vj(Wαj −Wjξj)
}

=
eαv

(eαv +W )2

{ V∑
v=1

qvk[Wβk −Wkξk]−
V∑

j=1

q⊤vj(Wαj −Wjξj)
}

= 0,

and
V∑

v=1

∂qik
∂βv

=
[ eαi

eαi +W

] V∑
v=1

[qik1{k = v} − qikqiv]

=
[ eαi

eαi +W

]
[qiv − qiv]

= 0.

This finishes the proof of Lemma 6.
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Proposition 7 computes the gradient of loss with respect to α and β, giving the gradient flow.
Proposition 7. The gradient flow of optimizing loss(α,β) is given by

α̇v(t) =
πve

αv

(eαv +W )2

V∑
i=1

(pvi − qvi)(Wβi −Wiξi),

β̇v(t) =

V∑
k=1

{πke
αk [pkv − qkv]

eαk+W

}
.

Proof. The gradient flow gives that

α̇v(t) = −∂loss(α,β)

∂αv
, and β̇v(t) = −∂loss(α,β)

∂βv
.

Taking the derivative of loss(α,β) gives that

∂loss(α,β)

∂αv
= πv

V∑
k=1

pvk · −1

qvi
· ∂qvi
∂αv

=
πve

αv

(eαv +W )2

{ V∑
i=1

qvi[Wβi −Wiξi]−
V∑

k=1

pvk[Wβk −Wkξk]
}

=
πve

αv

(eαv +W )2

V∑
k=1

{
[qvk − pvk][Wβk −Wkξk]

}
.

Similarly, we have that

∂loss(α,β)

∂βv
=

V∑
j=1

πj

V∑
k=1

pjk

{ eαjqjv
eαj +W

− eαj1{k = v}
eαj +W

}

=

V∑
j=1

{πje
αj [qjv − pjv]

eαj +W

}
.

This proves Proposition 7.

Theorem 8 (Restatement the stable phase part in Theorem 3). Consider the gradient flow of opti-
mizing loss(α,β). The gradient flow has sink stationary points

α⋆ = α1, β⋆ = c · 1− e−α ·W ◦ ξ.

Proof. When α = α⋆ and β = β⋆,

qvi =
pvi exp

[
Wiξi+eαβi

eα+W

]
∑V

k=1 pvk exp
[
Wkξk+eαβk

eα+W

]
=

pvi exp
[

c
eα+W

]
∑V

k=1 pvk exp
[

c
eα+W

]
= pvi.

Take qvi’s into ∂loss(α,β)/∂α and ∂loss(α,β)/∂β.

∂loss(α,β)

∂αv

∣∣∣
α⋆,β⋆

=
πve

αv

(eαv +W )2

V∑
k=1

{
(qvk − pvk)[Wβk −Wkξk]

}
= 0,

∂loss(α,β)

∂βv

∣∣∣
α⋆,β⋆

=

V∑
k=1

{πke
αk [qkv − pkv]

eαk +W

}
= 0.
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This shows that the given points are stationary points. We further compute the second-order deriva-
tive using Lemma 6.

∂2loss(α,β)

∂αi∂αv

∣∣∣
α⋆,β⋆

= 1{v = i} · πve
α

(eα +W )2

V∑
k=1

{∂qik
∂αv

[Wβk −Wkξk]
}

= 1{v = i} · −πve
2α

(eα +W )4

{ V∑
k=1

qik(e
−αW +Wk)

2ξ2k −
[ V∑
k=1

qik(e
−αW +Wk)ξk

]2}
,

= 1{v = i} · −πve
2α

(eα +W )4

{ V∑
k=1

pik(e
−αW +Wk)

2ξ2k −
[ V∑
k=1

pik(e
−αW +Wk)ξk

]2}
.

where in the second line, we take β⋆
k = c − e−αξk and use that

∑V
k=1 ∂qik/∂αv = 0. In the last

line, we take Q = P. Similarly, we compute the gradients with respect to αi and βv .

∂2loss(α,β)

∂αi∂βv

∣∣∣
α⋆,β⋆

=
πie

α

(eα +W )2

V∑
k=1

{∂qik
∂βv

[Wβk −Wkξk]
}

=
pivπie

2α

(eα +W )3

{
− (e−αW +Wk)ξk +

V∑
k=1

pik(e
−αW +Wk)ξk

}
.

With the same manner, we compute the gradients with respect to βi and βv .

∂2loss(α,β)

∂βi∂βv

∣∣∣
α⋆,β⋆

=

V∑
k=1

{∂qki
∂βv

πke
α

eα +W

}
=

e2α

(eα +W )2

V∑
k=1

[1{v = i}pkv − pkipkv].

Define z = [z1; . . . ; zV ] so that zk = −(e−αW + Wk)ξk. Combining above computations gives
that

Hessian(loss(α⋆,β⋆)) =

(
∇2

αloss(α,β) ∇α∇β loss(α,β)
∇β∇αloss(α,β) ∇2

αloss(α,β)

)
,

with

∇2
αloss(α,β) =

e2α

(eα +W )4
diag

{
π ◦ [z⊤GP

1 z; . . . ;G
P
V z]
}
,

∇α∇β loss(α,β) =
e2α

(eα +W )3
diag

{
π
}
[z⊤GP

1 ; . . . ; z
⊤GP

V ],

∇2
β loss(α,β) =

e2α

(eα +W )2

V∑
k=1

πkG
P
k .

At last, we diagonalize the Hessian matrix and get that

Diag-Hessian(loss(α⋆,β⋆)) =

(
∇2

αloss(α,β) 0

0 e2α

(eα+W )2H

)
,

where the H is given by

H =

V∑
k=1

πk

(
GP

k − (z⊤GP
k z)

−1GP
k zz

⊤GP
k

)
.

To prove that H is positive semi-definite, consider any vector η with ∥η∥2 = 1.

η⊤Hη =

V∑
k=1

πk

(
η⊤GP

k η − η⊤GP
k zz

⊤GP
k η

z⊤GP
k z

)
.
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Since GP
k ’s are positive semi-definite, the Cauchy inequality gives that

z⊤GP
k η ≤

√
z⊤GP

k zη
⊤GP

k η.

As a result, we have that

η⊤Hη ≥
V∑

k=1

πk

(
η⊤GP

k η − z⊤GP
k zη

⊤GP
k η

z⊤GP
k z

)
= 0.

This shows that H is positive semi-definte. Therefore, Hessian(loss(α⋆,β⋆)) is positive semi-
definte. This proves Theorem 8.

We prove Theorem 8 through direct computation. Due to the non-linearity, it’s unclear whether
other stationary points exist. However, we observe that all of our simulations converge to the given
stationary points.

B.3 ATTENTION SINKS IN THEOREM 3

Theorem 9 (Restatement of the attention sink part in Theorem 3). Fixing β = c · 1, with any initial
value, there exists r(t) with bounded norm such that

α(t) =
1

2
log t · 1+ r(t).

Proof. We separately analyze each entry of α. Focusing on αv , to simplify the notation, we intro-
duce a random variable φ such that P(φ = Wkξk) = pvk. Define

u = eαv .

Therefore, using Lemma 7, we get that

du

dt
=

πve
2αv

(eαv +W )2

V∑
i=1

(qvi − pvi)(Wβi −Wiξi).

We take in β = c and expand the expression of du/dt. This gives us

du

dt
=

πvu
2

(u+W )2

∑V
k=1 pvke

Wkξk/(u+W )Wkξk −
∑V

k=1 pvke
Wkξk/(u+W )

∑V
k=1 Wkξk∑V

k=1 pvke
Wkξk/(u+W )

=
πvu

2

(u+W )2
Cov(e

φ
u+W , φ)

Ee
φ

u+W

.

Since both ex/(u+W ) and x are monotonically increasing with respect to x, u is monotonically
increasing. This means that

u(t)2

[u(t) +W ]2
≥ u(0)2

[u(0) +W ]2
, Ee

φ
u(t)+W ≤ Ee

φ
u(0)+W .

Meanwhile, if we consider the first and second order approximation of eφ/(u+W ),

e
φ

u+W = 1 +
θ1(φ)φ

u+W
, e

φ
u+W = 1 +

φ

u+W
+ θ2(φ)

[ φ

u+W

]2
.

Both θ1(φ) and θ2(φ) are monotonically increasing functions of φ. We also have the bound

θ(φ) ≤ e
maxφ

u(0)+W − 1
maxφ

u(0)+W − 1
= Cθ.

Therefore, we get two more inequalities

Cov(θ1(φ)φ,φ) ≤ Cθ Var(φ), Cov(θ2(φ)φ
2, φ) ≥ 0.
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With all the preparatory works down, we give upper and lower bounds for du/dt. We first upper-
bound du/dt.

du

dt
≤ πvCov(e

φ
u+W , φ)

= πvCov(1 +
θ1(φ)φ

u+W
,φ)

≤ πvCθ Var(φ)

u
.

By solving the corresponding ODE, we get that

1

2
u2 ≤

√
Cθ Var(φ)t+ C.

To give a lower bound, we have that

du

dt
≥ u(0)2

[u(0) +W ]2
πvCov(e

φ
u+W , φ)

Ee
φ

u(0)+W

≥ u(0)2

[u(0) +W ]2
πv

Ee
φ

u(0)+W

Cov(1 +
φ

u+W
+ θ2(φ)

[ φ

u+W

]2
, φ)

≥ u(0)2

[u(0) +W ]2
πv

Ee
φ

u(0)+W

Var(φ)

u+W

≥ u(0)2

[u(0) +W ]2
πv

Ee
φ

u(0)+W

· u(0)

u(0) +W
· Var(φ)

u

= C̃θ
1

u
.

Therefore, u ≥
√
C̃θt+ C̃. In conclusion,

yv = log u =
1

2
log t+ rv,

with rv bounded.

B.4 VALUE STATE DRAINS IN THEOREM 3

Theorem 10 (Restatement of Theorem 3). Fixing α = y1, β = c1−e−αW ◦ξ with c ∈ R. Define
β(t) = V −1

∑V
i=1 βi(t). Then the gradient flow of β(t) converges:

β(t) → β⋆ = β(0)1− e−αW ◦ ξ.

Proof. Theorem 8 has already verified that β = c1− e−αW ◦ ξ are stationary points of loss. In the
proof of Theorem 8, we have derived ∇2

β loss(α,β).

∇2
β loss(α,β) =

V∑
k=1

πkG
Q
k .

Lemma 5 indicates that it is positive semi-definite. Therefore, all stationary points attain the min-
imum of loss(α,β). Suppose β⋆ is a stationary point, we therefore get that qvk = pvk for any
v, k. This implies that eyβ⋆

k + Wkξk are constants across k. We can solve β⋆ and get that
β⋆ = c1 − e−αW ◦ ξ. The convexity of the loss(α,β) guarantees that β always converges to
a stationary point β⋆.

To find the value of c in β⋆, note that
∑V

v=1 β̇v(t) = 0. We get that β
⋆
= β(0). Therefore,

β⋆ = β⋆ = β(0)1− e−αW ◦ ξ.

Remark 11. If we assume that pvk > 0 for any v, k and suppose that the initial value β(0) is close
enough to β⋆, it is possible to prove the fast convergence of β(t) to β⋆.

∥β(t)− β⋆∥22 ≤ δe−µt.
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Figure 9: Attention plots of the one-layer transformer trained on the Bigram-Backcopy task.
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Figure 10: Minimal structures to elicit residual state peaks. We use A + B + C to indicate the model with
structure A, B, C in layers 0, 1, and 2, respectively.

C ABLATIONS

Experimental details. We train transformers with positional embedding, pre-layer norm, SoftMax
activation in attn, and ReLU activation in mlp. We use Adam with constant learning rate 0.0003,
β1 = 0.9, β2 = 0.99, ε = 10−8, and a weight decay of 0.01. We choose a learning rate of 0.03
for the SGD. In each training step, we resample from the BB task with a batch size of B = 512
and sequence length N = 256. Unless otherwise specified, the model is trained for 10, 000 steps.
Results are consistent across different random seeds.

More attention plots : Figure 9 presents more attention-weight heat maps of the one-layer trans-
former model trained on the BB task. All attention maps show the attention sink phenomenon.
Interestingly, the trigger tokens serve as attention sinks in some inputs.

C.1 ABLATIONS OF DIFFERENT MODEL STRUCTURES TRAINED ON THE BIGRAM-BACKCOPY
TASK.

Exploring the minimal structure for massive norms. Figure 10 presents the difference of resid-
ual norms between the ⟨s⟩ token and others (∥Res⟨s⟩∥ − Ev ̸=⟨s⟩[∥Resv∥]), with different combina-
tions of model structures. The 3× TF and 2× TF + mlp are two outliers, showing clear evidence
of residual state peaks.

Attention plots, value state norms, and residual norms for a three-layer transformer trained on
BB task. Figures 11, 12, and 13 show the extreme token phenomena in a three-layer transformer.
The residual state peaks show different phenomena from those in LLMs, with the last layer output
increasing the residual norms of non-⟨s⟩ tokens. Figure 1 demonstrates that the residual state norms
of ⟨s⟩ drop match the magnitudes of other tokens at the last layer.

Statics and dynamics of the simplified model in Theorem 3. With the simplified model structure
in Figure 4, we pre-train the model using Adam with learning rate 0.03. Figure 14 and 15 show
results that match both the theory and the observations of the one-layer transformer.
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Figure 11: Value state norms of three-layer transformer trained on the BB task
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Figure 12: Value state norms of three-layer transformer trained on the BB task

C.2 VARIATIONS OF THE BIGRAM-BACKCOPY TASK

Bigram-Backcopy task without the ⟨s⟩ token. We train a one-layer transformer on the BB task
without the ⟨s⟩ token. Figure 16 shows that the ⟨s⟩ token is perhaps not the extreme token. Instead,
trigger tokens and delimiter tokens seem to become extreme tokens. The results indicate that initial
tokens may not be the only candidates for the extreme token, partially explaining why delimiter
tokens could also be extreme tokens in LLMs.

The Bigram-Skip-one (BS) task. We make slight modifications to the Bigram-Backcopy task.
On trigger tokens, instead of copying the preceding token, we sample from the bigram-probability
of the preceding token P(· | Second-to-last token). We train a one-layer transformer on it using the
same configuration as the BB task. Figure 17 shows that extreme token phenomena are mitigated.
The reason is that trained under BS, both the value states Valv and the token embedding ebdv give
the logit of the bigram transition probability. Therefore, other than having attention sink on the
⟨s⟩ token, self-attention becomes a new possibility to achieve the active-dormant mechanism.

D MORE ATTENTION HEADS IN DORMANT AND ACTIVE PHASE

In this section, we present two more dormant- and active- phase heads in Llama 2-7B-Base, in
Figures 18 and 19, which are more difficult to interpret than Layer 16 Head 25, but go dormant on
some inputs and active on others.

E FINE-GRAINED STATIC MECHANISMS FOR EXTREME-TOKEN
PHENOMENA

In this section, we will identify more fine-grained static mechanisms for extreme-token phenomena
in Llama 3.1-8B-Base. To do this, we identify circuits for the origin of attention sinks and small
value states. Then, using ablation studies, we study the origin of massive norms. Again, we use the
generic test phrase “⟨s⟩ Summer is warm. Winter is cold.”

Attention sinks and global contextual semantics. There are many attention sinks at layer 0, and
the ⟨s⟩ token is always the sink token (see Figure 20). From now on until the end of this section,
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Figure 13: Residual state norms of three-layer transformer trained on the BB task
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Figure 14: The simplified model structure trained on the BB task.

we restrict our attention to Head 31 of Layer 0, which is an attention sink. These attention sinks are
caused by two linear-algebraic factors, demonstrated in Figure 21.

1. The key state of the ⟨s⟩ token has small dot product with all other tokens.

2. The query states of all tokens are nearly orthogonal to the key states of all tokens except
the ⟨s⟩ token.

These two facts combine to ensure that the key state of the ⟨s⟩ token is picked out by each query
state, causing the attention sink. Since these query and key states are produced without any cross-
token interaction, the alignment of different states is caused purely by the token’s global importance
or meaning imparted via pretraining. The ⟨s⟩ token has no semantic meaning in the context of prose
tokens, so its key state is not aligned with key states of meaningful prose tokens. Also, delimiter
tokens, oft considered secondary attention sinks (c.f. Appendix F.2), have the most aligned key states
to the key state of the ⟨s⟩ token, and are also the tokens with the least semantic meaning in the prose
context. Thus, we identify that, at least in this restricted example, query state and key state alignment
depends heavily on the contextual semantics of the token.

Value state drains. The value states of the ⟨s⟩ token at Layer 0 Head 31 are already near zero, as
demonstrated in Figure 22. While the delimiter tokens, which are less semantically meaningful in
the prose context, have smaller value states than the rest, they are not as small as the value state of
the ⟨s⟩ token which is guaranteed to not have any semantics.

Residual state peaks. Residual state peaks are caused by the first two layers’ MLPs. In particular,
we perform several ablations, comparing between the residual state norms in a later layer (24) of an
un-edited forward pass versus forward passes where we force the output of either multiple layers,
a single layer, an attention block, or an MLP to be zero (and hence remove its contribution from
the residual stream). This intervention showed that ablating either Layer 0’s or Layer 1’s MLP is
sufficient to remove the residual state peak. In particular, the second-largest token at Layer 24 in
each ablation (including the original setup) has norm between 29 and 38, so the interventions ensure
that all tokens have similar size.
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Figure 15: The dynamics of the simplified model structure trained on the BB task. Left (a): The training
curves match the one-layer transformer. Right (b): The logit curve is close to the logarithmic growth predicted
in Theorem 3.
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Figure 16: Attention weights and value state norms of a one-layer transformer trained on the BB task without
the ⟨s⟩ token.

F ASSORTED CAVEATS

F.1 MULTIPLE ATTENTION SINKS VS. ONE ATTENTION SINK

As we have seen, attention heads in the BB task (Section 2), Llama 2-7B-Base (Section 3.1), and
OLMo (Section 3.2) exhibit multiple attention sinks. That is, when heads in these models are dor-
mant, they tend to have two attention sinks. For the LLMs in this group, at least on prose data, the
⟨s⟩ token as well as the first delimiter token (e.g., representing . or ;) are sink tokens. Meanwhile,
Llama-3.1-8B-Base (Section 3) only ever has one attention sink on prose data, and the ⟨s⟩ token
is always the sink token. Here, we offer a possible explanation of this phenomenon. For the BB
task, multiple sink tokens are necessary to solve the task. For LLMs, we believe this distinction may
be explained by the relative proportion of coding data, in which delimiters have a greater semantic
meaning than prose, within the training set. For instance, OLMo was trained on DOLMA (Sol-
daini et al., 2024), which has around 411B coding tokens. Meanwhile, Llama 2 used at most (2T ×
0.08 =) 0.16T coding tokens. Finally, Llama 3.1 used around (15.6T × 0.17 =) 2.6T coding tokens
(Dubey et al., 2024). On top of the raw count being larger, coding tokens are a larger proportion of
the whole pre-training dataset for Llama 3.1 compared to other model families. Thus, during train-
ing, the presence of delimiters would not be considered unhelpful towards next-token prediction,
since such delimiters carry plenty of semantics in a wide variety of cases. Our earlier hypothesis in
Section 3.1 proposes that only tokens which lack semantics in almost all cases are made to be sink
tokens. This could be a reason for the distinction.

F.2 THE ROLE OF A FIXED ⟨S⟩ TOKEN IN THE ACTIVE-DORMANT MECHANISM

Some models, such as OLMo, are not trained with a ⟨s⟩ token. Despite this, the first token of the
input still frequently develops into a sink token. We can study the effect of positional encoding
of the tokens on the attention sink phenomenon by shuffling the tokens before inputting them into
the transformer, and observing how and why attention sinks form. If we do this with the phrase
“Summer is warm. Winter is cold.” with OLMo, we observe that at Layer 24, there are many
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Figure 17: Experiments on the Bigram-Skip-one task. All phenomena are close to those in the BB task, but
with diagonal attention sinks and relatively larger ∥Val⟨s⟩∥ compared with Figure 2.
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Figure 18: Layer 16 Head 20 of Llama 2-7B-Base.

attention sink heads where the first token and first delimiter token share attention mass, even if the
sentence is jumbled up and makes no grammatical sense. This points towards the observation that
without a ⟨s⟩ token, the attention sink formation uses both positional data and, to a greater degree,
the semantic data of each token. We leave studying this effect in greater detail to future work.
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Figure 19: Layer 16 Head 28 of Llama 2-7B-Base.
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Figure 20: A visualization of attention heads at Layer 0 of Llama 3.1-8B-Base. Notice that many heads
have the attention sink property, even at Layer 0 without any cross-token interaction. As usual, the test phrase
is “Summer is warm. Winter is cold.” The most clear attention sink is Head 31.

(a) Alignment of query states and key states (L0H31). (b) Alignment of key states and key states (L0H31).

Figure 21: Alignment between query states and key states at Layer 0 Head 31 of Llama 3.1-8B-Base. We
observe that the key state of ⟨s⟩ is orthogonal to all other key states, and heavily aligned with all query states.
Meanwhile, all semantically meaningful (i.e., not delimiter) tokens have aligned key states.
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Figure 22: Value state drains at Layer 0 Head 31 of Llama 3.1-8B-Base. We observe that the value state
associated with ⟨s⟩ is already much smaller than every other semantically meaningful token, and still smaller
than the delimiter tokens in the same sentence.

Figure 23: Ablation study on the cause of the residual state peak in Llama 3.1-8B-Base. We perform a
series of ablations to understand which components of the network promote the residual state peaks. We find
that ablating either the zeroth or first layer’s MLP is sufficient to remove the residual state peak phenomenon,
while no other layer-level ablation can do it.
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Figure 24: Attention sinks with shuffled input in Layer 24 of OLMo. In order to understand the impact
of positional encodings when there is no ⟨s⟩ token, we shuffle the input of the test string “Summer is warm.
Winter is cold.” in OLMo. We observe that there is still an attention sink on token 0, despite it being a random
token that does not usually start sentences or phrases (since it is uncapitalized). This shows that the positional
embedding, say via RoPE, has a large impact on the formation of attention sinks — when the semantics of each
token have switched positions, the attention sink still forms on the zeroth token.
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