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Abstract001

Math statements, including definitions, theo-002
rems, axioms, lemmas, formulas, and so on,003
provide a clear and precise way to express math-004
ematical concepts, which helps in constructing005
logical arguments and proofs for mathematical006
reasoning. Currently, there is a lack of system-007
atic research to verify the role of math state-008
ments in solving math problems of Olympiad-009
level difficulty. In this paper, we conducted ex-010
tensive experiments to evaluate the mathemati-011
cal reasoning performance of multiple cutting-012
edge large language models (LLMs) with and013
without math statements as prompts. We found014
that problem-aligned math statements can sub-015
stantially enhance the problem-solving capabil-016
ities of LLMs on complex Olympiad-level math017
problems. Notably, this enhancement is particu-018
larly pronounced in smaller-scale models such019
as Qwen2.5-Math-7B, where our curated math020
statements can achieve accuracy gains of over021
10%. Even advanced deep reasoning models022
such as QwQ-32B still demonstrated a 3.5% ac-023
curacy improvement. Moreover, we construct024
the SA-Math dataset, which comprises 114025
human-annotated Olympiad-level math prob-026
lems, along with 130 domain-relevant math027
statements. We believe that our work can facil-028
itate the math-problem-solving capabilities of029
LLMs.030

1 Introduction031

Mathematical reasoning, as a critical capability032

of LLMs, has garnered significant research atten-033

tion following the emergence of advanced reason-034

ing models such as DeepSeek-R1 (DeepSeek-AI,035

2025) and OpenAI-o1 (Jaech et al., 2024). While036

these models exhibit strong performance on ele-037

mentary mathematical benchmarks, many LLMs038

still struggle with knowledge-intensive problems039

in complex mathematical reasoning tasks, such as040

those found in Mathematical Olympiad competi-041

tions (He et al., 2024). Math statements like the-042

orems, axioms, lemmas, and formulas, describe043

fundamental concepts in mathematics and logic, 044

used to express relationships between mathemati- 045

cal objects or to make assertions about mathemati- 046

cal properties. While humans naturally use these 047

as cognitive scaffolds for problem-solving, current 048

LLM prompting techniques like Chain-of-Thought 049

(COT) often neglect such domain-specific state- 050

ments. This raises our key question: does explicitly 051

encoding human-understandable math statements 052

into prompts can guide LLMs to activate relevant 053

knowledge during reasoning? 054

As shown in Table 1, recent studies have devel- 055

oped various datasets and benchmarks (Chen et al., 056

2023; Lucy et al., 2024; Wu et al., 2024; Zhao 057

et al., 2024) to evaluate LLMs’ ability to leverage 058

mathematical knowledge in reasoning tasks. How- 059

ever, many existing work primarily focuses on K- 060

12 level mathematics, where the limited complexity 061

of elementary problems fails to adequately distin- 062

guish between knowledge-aware and knowledge- 063

agnostic reasoning performance. Moreover, cur- 064

rent practices mainly use math tags, educational 065

curricula or math concepts generated by models 066

or retrieved from websites (Li et al., 2025; Huang 067

et al., 2025) as prompts. These methods may lack 068

the precision, rigor, and completeness offered by 069

manually curated mathematical statements. 070

In this paper, we focus on assessing whether 071

math statements can improve LLM mathematical 072

reasoning performance on Olympiad-level prob- 073

lems. We conducted experiments on multiple rep- 074

resentative open-source and closed-source LLMs 075

using manually verified question-statement-answer 076

triples and prompts with and without human- 077

annotated math statements. Experimental results 078

demonstrate that relevant statements significantly 079

enhance the math-problem-solving capabilities of 080

LLMs, particularly on Olympiad-level problems. 081

We also constructed a Statement-Augmented Math 082

problem dataset (SA-Math) for evaluation. This 083

dataset comprises 130 math statements and 114 084
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Dataset Domain Source Level Including
Statements?

Is
Available?

TheoremQA (Chen et al., 2023) STEM Internet+Expert College ! !

MathFish (Lucy et al., 2024) Math Internet+Expert K-12 % !

ConceptMath (Wu et al., 2024) Math LLM+Expert Grade 1-9 % !

FinanceMath (Zhao et al., 2024) Finance Internet+Expert College ! %

SA-Math Math Expert Olympiad ! !

Table 1: Comparison of SA-Math dataset and other knowledge-intensive mathematical reasoning benchmarks.

curated problems spanning four core mathematical085

domains (Algebra, Geometry, Number Theory, and086

Combinatorics), where all problems are all tagged087

with one or more math statements through expert088

annotation. Furthermore, we propose to transfer089

the statements in SA-Math to existing mathemati-090

cal benchmarks based on the embedding similari-091

ties of problems. This enables boosting LLM per-092

formance through statement integration in public093

datasets.094

The contributions of our work are two-fold:095

• We conduct experiments to assess the effec-096

tiveness of manually annotated math state-097

ments on multiple cutting-edge LLMs and098

Olympiad-Level math problems.099

• We construct SA-Math dataset with 114100

Olympiad-level problems annotated with101

human-verified math statements, which will102

be released at https://anonymous.4open.103

science/r/SA-Math-FFCE.104

2 Related Work105

Current methods for annotating math knowledge106

in mathematical problems primarily adopt two107

paradigms: direct generation via LLMs and knowl-108

edge base retrieval. The former leverages LLMs’109

intrinsic reasoning capabilities to extract math110

knowledge through zero-shot (Zhao et al., 2025)111

or few-shot prompting (Liu et al., 2022; Zhu et al.,112

2024). The latter retrieves relevant math knowl-113

edge through LLM-based relevance evaluation (Li114

et al., 2024b), agentic retrieval-augmented gener-115

ation (RAG) frameworks (Li et al., 2025; Henkel116

et al., 2024), or embedding similarity metrics (Li117

et al., 2024a; Ding et al., 2025). The knowledge118

is subsequently employed to construct skill repos-119

itories (Didolkar et al., 2024) that facilitate either120

problem-solving assistance (Ozyurt et al., 2024) or121

problem generation (Huang et al., 2025).122

Available datasets (Lucy et al., 2024; Wu 123

et al., 2024) with math knowledge often lack de- 124

tailed statements, while those few existing ones 125

(Chen et al., 2023; Zhao et al., 2024) containing 126

math statements are not specifically dedicated to 127

Olympiad-level mathematical problems. In con- 128

trast, our proposed SA-Math dataset incorporates 129

both Olympiad-level mathematical problems and 130

corresponding human-annotated math statements, 131

thereby addressing this critical gap in the field. 132

Math knowledge is typically leveraged to en- 133

hance LLM Reasoning through refined prompting 134

strategies. These strategies encompass concatenat- 135

ing math knowledge with problem text (Liu et al., 136

2022), instructing explicit knowledge reference in 137

outputs (Henkel et al., 2024), or embedding knowl- 138

edge within reasoning paths (Li et al., 2025). How- 139

ever, due to the scarcity of math statements, cur- 140

rent methodologies predominantly employ concise 141

mathematical knowledge to facilitate reasoning in 142

LLMs. This motivates us to systematically evaluate 143

the impact of detailed statements on LLMs’ math- 144

problem-solving capabilities using our dataset. 145

3 SA-Math Dataset 146

The SA-Math dataset is built using expert- 147

annotated Olympiad-level math problems with rele- 148

vant statements, providing a verified benchmark to 149

assess the enhancement of human-annotated math 150

statements on LLM-based mathematical reasoning. 151

Source. We have carefully collected 114 152

Olympiad problems and 130 relevant math state- 153

ments. Each problem is linked to one or more 154

relevant math statements which are annotated with 155

brief titles and detailed descriptions by experts. All 156

the mathematical formulas within the content are 157

preserved in their original LATEX format. 158

Human verification. To mitigate unreasonable 159

reasoning caused by inaccurate text and formulas, 160

we conduct comprehensive content integrity and 161

LATEX format validation on SA-Math. Content in- 162
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Statistics Number

Total problems 114
Algebra 63(55%)
Geometry 12(11%)
Number Theory 14(12%)
Combinatorics 25(22%)

Total math statements 130
Algebra 77(59%)
Geometry 24(18%)
Number Theory 18(14%)
Combinatorics 11(9%)

Average problem tokens 129
Average math statement tokens 37

Table 2: Statistics of SA-Math

tegrity checks address omissions and maintain log-163

ical coherence, while LATEX validation guarantees164

syntax correctness and symbol consistency for for-165

mula readability. Experts further verify the align-166

ment between math statements and problems to167

eliminate mismatches.168

Dataset Description. The details of the SA-169

Math dataset are presented in Table 2. The 114170

problems in SA-Math dataset span 4 major math-171

ematical domains including Algebra, Geometry,172

Number Theory, and Combinatorics (see Appendix173

A for examples). Math statements featuring a174

domain-title-description hierarchical structure can175

provide auxiliary information for LLM reasoning.176

Examples of domain-title structures in math state-177

ments include Number Theory-Chinese Remain-178

der Theorem, Geometry-Principle of Intersecting179

Chords, Combinatorics-The Pigeon-Hole Princi-180

ple, and Algebra-Trigonometric Equations (the de-181

tailed descriptions are provided in Appendix B).182

Additionally, because the SA-Math dataset is con-183

structed from proprietary data sources, the potential184

training data leakage can be substantially mitigated.185

4 Experimental Results186

Evaluation Setting. We evaluated the following187

LLMs on SA-Math. The proprietary LLMs in-188

clude GPT-4 Turbo, o1-preview (Jaech et al., 2024),189

and o3-mini, while open-source LLMs include190

DeepSeekMath-7B-Instruct (Zhihong Shao, 2024)191

QwQ-32B (Team, 2025b), Qwen2.5-32B-Instruct192

(Yang et al., 2024a), Qwen2.5-Math-7B (Yang193

et al., 2024b), Qwen3-8B, Qwen3-14B (Team,194

2025a), and Llama-3.1-70B-Instruct (Grattafiori195

et al., 2024).196

We evaluated the problem-solving capabilities197

of LLMs using Qwen2.5-Math scripts (Yang et al.,198

Prompting without statements

System: Please reason step by step, and put your
final answer within \boxed{}.

User: {Problem Description}

Prompting with statements

System: Please reason step by step, and put your
final answer within \boxed{}.

User: Please answer the following question based on
the konwledge points we have listed.

Knowledge Points:
Knowledge point-1. {Statement Title}
{Statement Description}

Knowledge point-2. {Statement Title}
{Statement Description}

...

Question: {Problem Description}

Figure 1: Template for the two prompting methods.

2024b) and reported the Pass@1 accuracy. For 199

most LLMs, we employ greedy search decoding 200

during inference by setting the temperature to 0 and 201

the top-p to 1. For deep reasoning models such as 202

QwQ-32B, we configure the temperature at 0.7 and 203

the top-p at 0.95 following the recommendations 204

in the Qwen2.5-Math evaluation scripts. All exper- 205

iments in this paper are conducted on a compute 206

node with 8 × H20 80GB GPUs. 207

Methods. We employed two prompting methods 208

respectively for these LLMs. The one is prompt- 209

ing without statements which prompting LLMs 210

to generate step-by-step reasoning procedures in 211

ordinary CoT manners. The other one is prompt- 212

ing with statements which extends CoT reason- 213

ing prompts with problem-specific statement inte- 214

gration, enabling LLMs to contextually leverage 215

domain knowledge for articulated mathematical 216

reasoning. The templates of the two prompting 217

methods are shown in Figure 1. 218

4.1 Main Results 219

Table 3 shows a comprehensive performance com- 220

parison of various LLMs on our SA-Math dataset. 221

Proprietary LLMs. Regardless of whether 222

math statements are embedded in the prompts, deep 223

reasoning models like o3-mini outperform general- 224

purpose chat models such as GPT-4 Turbo on the 225
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Model w/o
Statements

w/
Statements

Proprietary LLMs
GPT-4 Turbo 55.3 57.0(+1.7)

o1-preview 68.4 69.3(+0.9)

o3-mini 71.9 72.8(+0.9)

Open-source LLMs
Qwen2.5-Math-7B 39.5 50.0(+10.5)

Qwen3-8B 59.6 64.0(+4.4)

Qwen3-14B 61.4 66.7(+5.3)

DeepSeekMath-7B-Instruct 31.6 34.2(+2.6)

QwQ-32B* 76.3∗ 79.8∗(+3.5)

Qwen2.5-32B-Instruct 68.4 71.9(+3.5)

Llama-3.1-70B-Instruct 43.0 50.0(+7.0)

Table 3: Experimental results on SA-Math. Qwen2.5-
Math-7B achieves the most notable accuracy improve-
ment (up to 10.5%), while QwQ-32B maintains best
performance both before and after the integration of
math statements.

Model w/o
Statements

w/
Statements

Qwen2.5-Math-7B 19.5 40.2(+20.7)

Qwen3-8B 47.6 48.8(+1.2)

Qwen3-14B 52.4 57.3(+4.9)

DeepSeekMath-7B-Instruct 13.4 17.1(+3.7)

QwQ-32B* 75.6∗ 78.0∗(+2.4)

Qwen2.5-32B-Instruct 46.3 50.0(+3.7)

Llama-3.1-70B-Instruct 29.3 30.4(+1.1)

Table 4: Experimental results on OlympiadBench-
subset which contains 82 problems curated from
OlympiadBench after matching.

SA-Math dataset (by up to 16.6%), highlighting226

their superior capabilities in math problem solving.227

For two prompting methods, our analysis shows228

that embedding domain-specific statements into229

prompts can improve the performance of LLMs on230

Olympiad-level math problems. However, prompt-231

ing with statements yields less pronounced im-232

provements on proprietary models compared to233

their open-source counterparts. This discrepancy234

arises because the frontier proprietary models have235

already internalized the domain knowledge for236

problem-solving, making explicit knowledge in-237

tegration less effective for bridging reasoning gaps.238

Open-source LLMs. Experimental results239

demonstrate that math statements significantly240

enhance the math-problem-solving capabilities241

of LLMs, with Qwen2.5-Math-7B achieving a242

10.5% performance improvement and even deep-243

reasoning models such as QwQ-32B exhibiting a244

3.5% performance gain. This substantiates that cur-245

rent open-source LLMs exhibit intrinsic limitations246

in problem-relevant knowledge. Consequently, the 247

human-annotated statements in SA-Math that are 248

well-aligned with problem exert substantial aug- 249

mentation on the reasoning faculties of LLMs. Be- 250

sides, we find that even the current best performing 251

LLM (i.e., QwQ-32B) achieves an accuracy of less 252

than 80% accuracy on SA-Math. This substanti- 253

ates that the mathematical problems in SA-Math 254

present enough difficulties to evaluate the math- 255

problem-solving capabilities of existing LLMs. 256

4.2 Extension to Public Benchmark 257

Augmentation 258

To demonstrate the potential of the SA-Math 259

dataset, we perform embedding-based matching 260

between its math statements and public benchmark 261

problems. Specifically, we employ the E5-Mistral- 262

7b-instruct (Wang et al., 2023, 2022) to compute 263

embeddings for problems from both the public 264

dataset and SA-Math. For each public problem, 265

we retrieve SA-Math problems with cosine similar- 266

ity scores exceeding a predetermined threshold of 267

0.85 as candidate problems. Finally, we collect the 268

math statements of candidate problems to match tar- 269

get public problem and build statement-augmented 270

prompts following Figure 1. 271

We adopt OlympiadBench (He et al., 2024) as 272

our evaluation dataset due to its comparable prob- 273

lem difficulty to SA-Math. Following the align- 274

ment process, 82 OlympiadBench problems are 275

matched with SA-Math statements, forming the 276

OlympiadBench-subset for LLM evaluation. As ev- 277

idenced by the experimental results in Table 4, the 278

statement-augmented prompting demonstrates per- 279

formance improvements when applied to problems 280

from public datasets. Especially, Qwen2.5-Math- 281

7B achieves a substantial accuracy improvement of 282

20.7%. This not only substantiates the validity of 283

statement-augmented prompting but also demon- 284

strates good compatibility between our math state- 285

ments and the problems in public datasets. 286

5 Conclusion 287

This paper evaluates the effectiveness of manu- 288

ally annotated math statements on Olympiad-level 289

mathematical problems with proposed SA-Math 290

dataset. Our findings demonstrate that incorporat- 291

ing problem-relevant math statements into prompts 292

significantly enhances the math-problem-solving 293

capabilities of LLMs, which paves novel pathways 294

in the field of mathematical reasoning. 295
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Limitations296

In this paper, we proposes to evaluate the enhance-297

ment of the domain-specific math statements in298

math-problem-solving capabilities of LLMs. There299

are still some limitations: (1) Our current bench-300

mark comprises 114 carefully curated problems,301

which may exhibit potential coverage gaps in ex-302

haustively representing the knowledge combina-303

torics inherent in mathematical reasoning tasks.304

(2) The statement-augmented prompting for public305

benchmarks relies on semantic similarities of prob-306

lem embeddings, which may lead to mismatches307

in practice. In future work, we plan to annotate308

more problems to expand the SA-Math and explore309

fine-grained matching mechanisms between math310

statements and problems from public datasets.311
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A Examples of problems in SA-Math 453

Each problem in the SA-Math dataset comprises four components: its affiliated domain, problem formula- 454

tion, verified correct answer, and corresponding titles of math statements. Some exemplar problems is 455

presented below. 456

Example of problem in SA-Math

Domain: Number Theory

Problem: A group of birds satisfy:
(i) Remainder 2 when counted by fives
(ii) Remainder 2 when counted by threes
(iii) Remainder 3 when counted by elevens
Find the smallest number of birds.

Answer:
47

Statements: ["The Chinese Remainder Theorem"]
457

Example of problem in SA-Math

Domain: Geometry

Problem: In a right-angled triangle with a2 + b2 = c2, find r/R where r is inradius and R
circumradius.

Answer:
2ab

c(a+ b+ c)

Statements: ["Triangle angle properties", "Pythagoras’ theorem", "Circle geometry", "Tangent
properties"]

458

Example of problem in SA-Math

Domain: Algebra

Problem: Find the sum: cos2 0◦ + cos2 2◦ + cos2 4◦ + · · ·+ cos2 358◦ + cos2 360◦.

Answer:
91

Statements: ["Inverse Trigonometric Functions", "Trigonometric Equations"]
459
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B Examples of math statements in SA-Math460

Each statement in the SA-Math contains three elements: its affiliated mathematical domain, the title of the461

statement, and its comprehensive description. We show several examples of math statements in following.462

Example of math statement in SA-Math

Domain: Combinatorics

Title: The Pigeon-Hole Principle

Description: 1) Basic Pigeon-Hole Principle: If n objects are placed in fewer than n pigeon-holes,
then at least two objects must occupy the same pigeon-hole. This principle explains results like
having at least two people sharing a birth month in any group of 13 individuals.
2) General Form of the Pigeon-Hole Principle: If mk + 1 objects are distributed into m pigeon-
holes, at least one pigeon-hole must contain at least k + 1 objects. This extends the basic principle
to handle more complex distribution scenarios.
3) Formal Mathematical Statements: If a set of n elements is a union of m < n subsets, at least
one subset contains multiple elements. If a set of mk+ 1 elements is a union of m subsets, at least
one subset contains at least k + 1 elements.
4) Strategic Selection of Objects and Pigeon-Holes: Effective PHP application requires identify-
ing suitable ’objects’ (e.g., people) and ’pigeon-holes’ (e.g., months). Correct pairing ensures
conclusions like shared birthdays or overlapping spatial coordinates.

463

Example of math statement in SA-Math

Domain: Algebra

Title: Binomial Theorem

Description: The Binomial Theorem states that for any natural number n and real numbers x, y,
and

(
n
k

)
= n!

(n−k)!k! :

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

The theorem is proven by induction. The base case n = 1 holds as (x+ y)1 = x+ y. Assuming it
holds for n = t, expanding (x+ y)t+1 and applying Pascal’s rule confirms the inductive step. The
theorem’s shorthand form (1 + x)n =

∑n
k=0

(
n
k

)
xk is useful for large powers, while the explicit

expanded form

1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · ·+ xn

is practical for smaller powers or specific terms.
464
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Example of math statement in SA-Math

Domain: Number Theory

Title: The Chinese Remainder Theorem

Description: The Chinese Remainder Theorem provides a systematic method for solving systems
of congruences with pairwise coprime moduli. Let x be a number satisfying:

x ≡ r1 (mod d1)

x ≡ r2 (mod d2)

...

x ≡ rn (mod dn)

where d1, d2, . . . , dn are pairwise coprime. Let D = d1d2 · · · dn and yi =
D
di

. The theorem states
that if we find integers ai satisfying:

aiyi ≡ 1 (mod di) for each i : 1 ≤ i ≤ n,

then a solution is:

x =

n∑
i=1

aiyiri.

**Proof:** For each modulus dj , all terms in the sum except ajyjrj are multiples of dj due to
yi containing dj as a factor when i ̸= j. The chosen aj ensures ajyjrj ≡ rj (mod dj). Thus, x
satisfies all congruences.
**Remarks:** Solutions are unique modulo D, with the smallest positive solution obtained by
subtracting multiples of D from the initial solution.

465
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