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Abstract

While advances in foundation models have extended to the time series domain,
they have primarily focused on designing model architectures to address external
heterogeneity between datasets, e.g., varying numbers of channels, often overlook-
ing internal heterogeneity, e.g., varying channel dependencies. In this work, we
introduce the concept of partial channel dependence (PCD), which enables a more
sophisticated adjustment of channel dependencies based on dataset-specific infor-
mation. To achieve PCD, we propose a channel mask that captures the relationships
between channels within a dataset using two key components: 1) a correlation
matrix that encodes relative dependencies between channels, and 2) domain pa-
rameters that learn the absolute dependencies specific to each dataset, refining the
correlation matrix. We validate the effectiveness of our method across various
tasks, including forecasting, classification, imputation, and anomaly detection.

1 Introduction
Foundation models (FMs) have emerged in various domains [29, 26, 14], including the time series
(TS) domain [9, 19]. These models are pretrained on diverse datasets and are designed to solve
multiple tasks using a single model. Directly applying FMs to TS is, however, challenging due to
the heterogeneity among TS datasets [9, 31], so that various time series foundation models (TSFMs)
have been proposed. While these approaches mainly focus on explicit heterogeneity, where datasets
differ in observable characteristics such as varying sequence lengths and number of channels in TS,
they tend to overlook implicit heterogeneity, which involves unobservable factors such as differences
in inter-channel dependencies. Furthermore, these methods address heterogeneity by modifying the
model architecture, often overlooking the inherent characteristics of the dataset.
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Figure 1: Varying CD.

In this paper, we consider the implicit heterogeneity among TS datasets
when building a TSFM, specifically the varying channel dependencies
(CD) across datasets, as opposed to prior TSFMs that mainly address the
explicit heterogeneity and TS forecasting models that focus solely on
adjusting the model architecture to capture CD. We argue that addressing
this implicit heterogeneity is crucial for TSFMs because assuming a
uniform model across all datasets can be problematic due to the varying
CD across datasets, as shown in Figure 1. To this end, we introduce
the concept of partial channel dependence (PCD) which adjusts the
CD estimated by the model by leveraging the characteristics of the
dataset, Specifically, we propose a channel mask (CM) that adjusts the
dependencies between channels to achieve PCD. A CM consists of 1) a
correlation matrix to encode relative dependencies between channels and 2) domain parameters
that learn the absolute dependencies specific to each dataset to refine the matrix. The proposed CM,
constructed using dataset-specific information, is multiplied to the (channel-wise) attention matrix
(i.e., CD estimated by the model). The main contributions are summarized as follows:

• We introduce the concept of partial channel dependence (PCD), where the channel dependence
(CD) captured by the model is partially adjusted based on the characteristics of the TS dataset.
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Figure 2: CM for PCD. To achieve PCD, we propose a CM, which consists of a correlation matrix
between channels and domain parameters that refine the matrix based on the dataset.

Figure 3: Domain parameters to adjust correlation matrix. As correlation is a relative measure
depending on the dataset, we refine the correlation matrix using the domain parameters.

• We propose a channel mask (CM) to capture relative dependencies between channels and absolute
dependencies specific to each dataset using correlation matrix and domain parameters, respectively.

• We present extensive experiments with both single-task models and multi-task FMs across four
different tasks under various settings, demonstrating consistent performance gains.

2 Methodology
In this section, we introduce a CM, which employs a correlation matrix to capture relative depen-
dencies between channels and adjusts it with domain parameters to learn absolute dependencies
specific to each dataset. We also introduce a channel dependence ratio (CD ratio), which uses a CM to
quantify the degree of CD for each dataset. The overall framework of a CM is illustrated in Figure 2.
2.1 Components of Channel Mask
As shown in Figure 2, a CM consists of two components: 1) correlation matrix (R) between channels,
and 2) domain parameters (α and β), which scale and shift the matrix according to the dataset’s
characteristics, along with a sigmoid function to normalize the values between 0 and 1.
Correlation matrix. Correlation measures the relationships between channels and has been used
in previous works to analyze CD [35, 38]. Building on these approaches, we employ a correlation
matrix (R) between channels to create a CM. However, high correlation does not always indicate a
strong positive relationship, as the values range from −1 to 1, with strong negative relationships near
−1. To address this issue, we use the absolute value of the matrix |R|.
Domain parameters. We argue that |R| alone might be insufficient for modeling a CM for the
following reasons: First, correlation is a relative measure that depends on the dataset. As shown in
the first panel of Figure 3, different datasets exhibit different distributions of the elements of |R|. To
align these differences, we normalize |R| by subtracting the mean value, resulting in R̄, as shown in
the second panel of Figure 3. Second, the relationship between correlation and CD may vary across
datasets (i.e., the same correlation can correspond to different levels of CD depending on the dataset).
To deal with this discrepancy among datasets, we introduce two learnable domain parameters, α
and β, which scale and shift |R|, respectively, as shown in the third panel of Figure 3. Using these
parameters along with a sigmoid function, we model a CM for achieving PCD as M = σ(α · R̄+ β).
2.2 Channel Mask with Attention Matrix
The proposed CM adjusts the CD estimated by the model by performing element-wise multiplication
with the attention matrix of Transformers, with the general adjustment modeled by A:

Attn(Q,K,V) = Softmax

(
A⊙ QK⊤

√
dk

)
·V, where A =


IC×C if CI,
1C×C if CD,
M = σ(α · R̄+ β) if PCD,

(1)

and C is the number of channels. Note that Equation 1 incorporates both CI and CD frameworks
within a single expression: As shown in Figure 2, A is the identity matrix (IC×C ) in the CI framework,
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Figure 4: Global and local CD. (a) shows a CM and an attention matrix, which capture the global
and local dependencies between channels, respectively. (b) illustrates the global and local correlations
between two channels of ETTh1 [39], revealing that local correlations can vary by input TS.

while A is a matrix of ones (1C×C ) in the CD framework. In contrast, our PCD framework represents
A as M = σ(α · R̄+ β), enabling a more refined adjustment of CD tailored to the dataset.
Global and local CD. As a correlation matrix is calculated based on the entire TS dataset, a CM
captures the global CD, which represents the CD shared across all time steps. This complements
the local CD captured by an attention matrix, which represents the CD that varies by input time
step. As shown in Figure 4(a), our PCD framework captures both global and local CDs through the
element-wise multiplication of a CM and an attention matrix (QK⊤/

√
dk). Furthermore, Figure 4(b),

which illustrates two channels of ETTh1 [39], shows that the dependency can differ across time steps
even within the same dataset, underscoring the need to capture both global and local CDs. Further
analysis on the necessity of capturing both CDs is discussed in Table 6.
2.3 Channel Dependence Ratio

Figure 5: CD ratio of CI/PCD/CD.

To quantify the degree of CD for each dataset, we propose
to measure the channel dependence ratio (CD ratio), a
metric based on a CM. The CD ratio of M, denoted as
r(M), is the average of the off-diagonal elements of M,
excluding the autocorrelations of their respective channels.
This metric yields a value of 0 for CI cases and 1 for CD
cases, with higher values indicating a greater preference
for interaction between channels. Figure 5 shows the visualization of M and its corresponding CD
ratio for ETTh1 [39], with a ratio of 0.717 for PCD. We find that M effectively captures the degree
of CD for each dataset, as datasets with higher r(M) tend to have greater performance gains with
CD architecture compared to CI architecture, as illustrated in Figure G.2.

3 Experiments
We demonstrate the effectiveness of our method by applying it to both single-task and multi-task
models in either supervised (SL) or self-supervised (SSL) settings, with iTransformer (iTrans.) [18]
for single-task SL, TimeSiam [6] for single-task SSL, and UniTS [7] for multi-task SSL. As shown in
Table 1, we perform four different tasks: forecasting (FCST), classification (CLS), imputation (IMP),
and anomaly detection (AD), across various data ratios including few-shot and zero-shot settings.
As evaluation metrics, we use the mean squared error (MSE) and mean absolute error (MAE) for
FCST and IMP, accuracy (Acc.) for CLS, and F1 score for AD. Dataset statistics and implementation
details can be found in Appendix A and B, respectively.

Model
TS downstream tasks

Data %
Section

FCST CLS IMP AD Summary Full

Single-task
SL iTransformer ✓ - - -

Full
Table 3 Appendix D

SSL TimeSiam ✓ - - - - Appendix F

Multi-task
(FM) SSL UniTS

✓ ✓ - - Full Table 4 Appendix E.1

✓ ✓ ✓ ✓ Few-shot Appendix E.2 Appendix E.3

✓ - - - Zero-shot - Appendix E.4

Table 1: Summary of experiments.
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20 Tasks

Shared (1 model) Task-specific (20 models)

UniTS + CM UniTS iTransformer TimesNet PatchTST GPT4TS

Sup. PT Sup. PT Sup. FT

Dataset H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

NN5 112 0.641 0.568 0.586 0.536 0.635 0.556 0.611 0.552 0.623 0.554 0.629 0.541 0.634 0.568 0.623 0.545

ECL

96 0.176 0.278 0.168 0.272 0.172 0.273 0.174 0.277 0.204 0.288 0.184 0.289 0.212 0.299 0.198 0.285
192 0.188 0.287 0.184 0.286 0.185 0.284 0.189 0.289 0.208 0.294 0.204 0.307 0.213 0.303 0.200 0.288
336 0.199 0.295 0.199 0.301 0.196 0.297 0.205 0.304 0.224 0.310 0.217 0.320 0.228 0.317 0.214 0.302
720 0.230 0.321 0.231 0.326 0.238 0.321 0.251 0.340 0.265 0.341 0.284 0.363 0.270 0.348 0.254 0.333

ETTh1

96 0.388 0.405 0.389 0.408 0.390 0.408 0.390 0.411 0.382 0.399 0.478 0.448 0.389 0.400 0.396 0.413
192 0.438 0.436 0.432 0.432 0.428 0.432 0.432 0.439 0.431 0.426 0.561 0.504 0.440 0.43 0.458 0.448
336 0.478 0.455 0.475 0.451 0.462 0.451 0.480 0.460 0.476 0.449 0.612 0.537 0.482 0.453 0.508 0.472
720 0.483 0.472 0.515 0.492 0.489 0.476 0.532 0.500 0.495 0.487 0.601 0.541 0.486 0.479 0.546 0.503

Exchange 192 0.231 0.340 0.210 0.330 0.239 0.342 0.221 0.337 0.175 0.297 0.259 0.370 0.178 0.301 0.177 0.300
336 0.431 0.472 0.387 0.451 0.479 0.486 0.387 0.453 0.322 0.409 0.478 0.501 0.328 0.415 0.326 0.414

ILI 60 2.02 0.885 2.15 0.923 2.48 0.944 2.45 0.994 1.99 0.905 2.37 0.966 2.31 0.970 1.90 0.868

Traffic

96 0.486 0.322 0.483 0.324 0.496 0.325 0.502 0.330 0.606 0.389 0.611 0.336 0.643 0.405 0.524 0.351
192 0.492 0.325 0.500 0.330 0.497 0.327 0.523 0.331 0.592 0.382 0.643 0.352 0.603 0.387 0.519 0.346
336 0.506 0.331 0.520 0.337 0.509 0.328 0.552 0.338 0.600 0.384 0.662 0.363 0.612 0.389 0.530 0.350
720 0.523 0.340 0.575 0.362 0.525 0.350 0.626 0.369 0.633 0.401 0.678 0.365 0.652 0.406 0.562 0.366

Weather

96 0.165 0.211 0.166 0.219 0.161 0.211 0.175 0.214 0.193 0.232 0.169 0.220 0.194 0.233 0.182 0.222
192 0.210 0.254 0.216 0.261 0.212 0.255 0.226 0.266 0.238 0.269 0.223 0.264 0.238 0.268 0.228 0.261
336 0.266 0.294 0.273 0.300 0.266 0.295 0.280 0.303 0.291 0.306 0.279 0.302 0.290 0.304 0.282 0.299
720 0.342 0.343 0.350 0.349 0.343 0.344 0.352 0.350 0.365 0.354 0.359 0.355 0.363 0.35 0.359 0.349

Best Count (/20) 8 11 4 2 5 4 0 0 4 5 0 0 0 0 - -

Average 0.445 0.382 0.452 0.384 0.469 0.386 0.478 0.393 0.466 0.394 0.525 0.412 0.488 0.401 0.449 0.386

Table 2: Results of multi-task forecasting.
ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL Traffic Avg.

iTrans. 0.457 0.384 0.408 0.293 0.142 0.121 0.102 0.254 0.368 0.260 0.234 0.179 0.428 0.279
+ CM 0.444 0.383 0.398 0.289 0.124 0.098 0.082 0.152 0.363 0.250 0.228 0.168 0.422 0.261
Impr. 2.8% 0.3% 2.5% 1.4% 12.7% 19.0% 19.6% 40.2% 1.4% 3.8% 2.6% 6.1% 1.4% 6.3%

Table 3: Results of single-task forecasting.
UniTS + CM Impr.

FCST
(MSE)

Sup. 0.469 0.445 5.1%
PT 0.478 0.452 5.4%

CLS
(Acc.)

Sup. 80.6 82.0 1.7%
PT 75.1 78.3 4.3%

Table 4: 20 FCST and 18 CLS tasks.

Components
M

FCST (20) CLS (18)

Corr. Domain MSE MAE Acc.

1 0.478 0.393 75.1%
✓ |R| 0.474 0.390 78.8%
✓ R̄ 0.471 0.388 78.1%

✓ σ (α · I+ β) 0.497 0.406 76.2%
✓ ✓ σ

(
α · R̄+ β

)
0.452 0.384 80.6%

Table 5: Ablation study of CM.

Global Local ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL Traffic Avg.

✓ 0.466 0.383 0.398 0.289 0.206 0.116 0.101 0.162 0.363 0.259 0.233 0.176 0.429 0.275

✓ 0.457 0.384 0.408 0.293 0.142 0.121 0.102 0.254 0.368 0.260 0.234 0.179 0.428 0.279

✓ ✓ 0.444 0.383 0.398 0.289 0.124 0.098 0.082 0.152 0.363 0.250 0.228 0.168 0.422 0.261

Table 6: Effect of capturing global and local CD.

Application to iTransformer. To show the effectiveness of CMs, we apply CMs to iTransformer to
solve TS forecasting tasks on 13 different datasets. Table 3 shows the result with the average MSE
and MAE across four different horizons, showing consistent improvement across all datasets.
Application to UniTS. To validate the effectiveness of our method on TSFM, we apply CMs to
UniTS which solves diverse tasks without the need for fine-tuning, relying solely on prompt-tuning.
Table 4 shows the brief results of 20 FCST tasks and 18 CLS tasks under both supervised (Sup.) and
prompt-tuning (PT) settings, where full results are shown in Table 2 and Appendix E.1, respectively.
The results indicate that applying our method improves performance in all 20 FCST tasks compared to
not using our method, and enhances 13 CLS tasks for UniTS. Additionally, compared to GPT4TS [40],
which is a TSFM that reprograms the pretrained GPT-2 model [25], our method achieves superior
performance with less than 1% of the parameters (164.5M vs. 1.57M).
Effect of CM. To demonstrate the effectiveness of CMs, we conduct ablation studies based on the use
of correlation matrix and domain parameters with UniTS under the prompt-tuning setting. To isolate
the effect of using only the domain parameters, we replace R̄ with the identity matrix I. Table 5
shows the result, indicating that incorporating both components leads to the best performance.
Global & local CD. To demonstrate the effect of attention matrices capturing the local CD of the
input TS and CMs capturing the global CD of the entire TS, we conduct an ablation study, as shown
in Table 6. Specifically, to observe the local, global, and combined effects, we use the attention
weights W in Attn(Q,K,V) = Softmax (W) ·V in the following manner: QK⊤/

√
dk for local

CD, M for global CD, and M⊙QK⊤/
√
dk for both. The results show the average MSE for four

different horizons, indicating that using both components yields the best results.
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A Dataset Description
A.1 Dataset for Single-task Model: iTransformer
For TS forecasting in a single-task setting, we evaluate the effectiveness of our proposed method
using 13 datasets, with their statistics described in Table A.1. We adhere to the same data processing
and train-validation-test split protocol as iTransformer [18], ensuring that the training, validation,
and test sets are separated in chronological order. The input length is consistently set to 96 across
all datasets. Note that N and C denote the size of the dataset and number of channels in a dataset,
respectively.

Dataset C Prediction Length (Ntrain, Nval, Ntest)

ETTh1 [39] 7 {96, 192, 336, 720} (8545, 2881, 2881)

ETTh2 [39] 7 {96, 192, 336, 720} (8545, 2881, 2881)

ETTm1 [39] 7 {96, 192, 336, 720} (34465, 11521, 11521)

ETTm2 [39] 7 {96, 192, 336, 720} (34465, 11521, 11521)

Exchange [33] 8 {96, 192, 336, 720} (5120, 665, 1422)

Weather [33] 21 {96, 192, 336, 720} (36792, 5271, 10540)

ECL [33] 321 {96, 192, 336, 720} (18317, 2633, 5261)

Traffic [33] 862 {96, 192, 336, 720} (12185, 1757, 3509)

Solar-Energy [15] 137 {96, 192, 336, 720} (36601, 5161, 10417)

PEMS03 [17] 358 {12, 24, 48, 96} (15617, 5135, 5135)

PEMS04 [17] 307 {12, 24, 48, 96} (10172, 3375, 3375)

PEMS07 [17] 883 {12, 24, 48, 96} (16911, 5622, 5622)

PEMS08 [17] 170 {12, 24, 48, 96} (10690, 3548, 3548)

Table A.1: Single-task forecasting datasets.
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A.2 Dataset for Multi-task Model: UniTS
The datasets used in the experiment are aggregated from the Monash Forecasting Repository [8], the
Time Series Classification Website [22], and the Time Series Library [32]. The combined training
set includes more than 35 million time steps and over 6,000 variables (channels). Note that N , L, C
denote the training size, input length, and number of channels in a dataset, respectively.

A.2.1 Multi-task Learning
For TS forecasting and classification in a multi-task setting, we evaluate the effectiveness of our
proposed method using 20 datasets for forecasting and 18 datasets for classification. The statistics of
these datasets are summarized in Table A.2 and A.3, respectively.

Category Dataset Prediction Length N L C

Finance
NN5 [28] 112 409 112 111

Exchange [33] 192 5024 96 8336 4880

Electricity

ECL [33]

96 18221

96 321192 18125
336 17981
720 17597

ETTh1 [39]

96 8449

96 7192 8353
336 8209
720 7825

Illness ILI [33] 60 581 36 7

Traffic Traffic [33]

96 12089

96 862192 11993
336 11849
720 11465

Weather Weather [33]

96 36696

96 21192 36600
336 36456
720 36072

Table A.2: Multi-task forecasting datasets.

Category Dataset # classes N L C

Finance SharePriceIncrease [5] 2 965 60 1

Audio
JapaneseVowels [3] 9 270 29 12
SpokenArabicDigits [3] 10 6599 93 13
Heartbeat [3] 2 204 405 61

ECG ECG5000 [5] 5 500 140 1
NonInvasiveFetalECGThorax1 [5] 52 1800 750 1

EEG
Blink [3] 2 500 510 4
FaceDetection [3] 2 5890 62 144
SelfRegulationSCP2 [3] 2 200 1152 7

Sensors
ElectricDevices [5] 7 8926 96 1
Trace [5] 4 100 275 1
FordB [5] 2 3636 500 1

Human Activity
MotionSenseHAR [3] 6 966 200 12
EMOPain [3] 3 968 180 30
UWaveGestureLibrary [3] 8 120 315 3

Traffic
Chinatown [5] 2 20 24 1
MelbournePedestrian [5] 10 1194 24 1
PEMS-SF [3] 7 267 144 963

Table A.3: Multi-task classification datasets.
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A.2.2 Few-shot Learning
For TS forecasting, classification, imputation, and anomaly detection in a few-shot setting, we
evaluate the effectiveness of our proposed method using nine datasets for forecasting, six datasets for
classification, four datasets for imputation, and five datasets for anomaly detection. The statistics of
these datasets related to forecasting and classification are summarized in Table A.4, Table A.5, A.6,
and A.7, respectively.

Category Dataset Prediction Length N L C

Electricity

ETTh2 [39]

96 8449

96 7192 8353
336 8209
720 7825

ETTm1 [39]

96 34369

96 7192 34273
336 34129
720 33745

Weather SaugeenRiverFlow [21] 24 18921 48 1

Table A.4: Few-shot forecasting datasets.

Category Dataset # classes N L C

ECG ECG200 [5] 2 100 96 1

EEG SelfRegulationSCP1 [3] 2 268 896 6

Human
Activity

RacketSports [3] 4 151 30 6
Handwriting [3] 26 150 152 3
Epilepsy [3] 4 137 207 3

Sensor StarLightCurves [5] 3 1000 1024 1

Table A.5: Few-shot classification datasets.

Category Dataset L C

Electricity
ETTm1 [39] 96 7
ETTh1 [39] 96 7
ECL [33] 96 321

Weather Weather [33] 96 21

Table A.6: Few-shot imputation datasets.

Category Dataset L C

Machine SMD [27] 96 38
PSM [1] 96 25

Spacecraft MSL [10] 96 55
SMAP [10] 96 25

Infrastructure SWaT [20] 96 51

Table A.7: Few-shot anomaly detection datasets.
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A.2.3 Zero-shot Learning
For TS forecasting in a zero-shot setting, we evaluate the effectiveness of our proposed method using
six datasets. Three of these datasets are used for the zero-shot setting with unseen datasets, while the
remaining four datasets are used for the zero-shot setting with new prediction lengths. The statistics
for the three unseen datasets are summarized in Table A.8.

Category Dataset Prediction Length L C

Electricity Solar [24] 64 128 137
Weather SaugeenRiverFlow [21] 128 256 1

Healthcare Hospital [11] 16 32 767

Table A.8: Zero-shot forecasting datasets.

B Implementation Details
It is important to note that we follow the experimental settings of iTransformer for single-task and
UniTS for multi-task settings, respectively. The following sections outline the specific settings we
adhered to.

B.1 Implementation for Single-task Model: iTransformer
Following iTransformer [18], we use the Adam optimizer [13] and L2 loss for model optimization.
The batch size is consistently set to 32, and the number of training epochs is fixed at 10. Since our
approach is plug-and-play, we do not adjust any hyperparameters for our method; instead, we use the
same hyperparameters employed by iTransformer.

B.2 Implementation for Multi-task Model: UniTS
Model architecture. In a multi-task setting, the UniTS network consists of three UniTS blocks,
along with one GEN tower and one CLS tower. For each data source, specific prompt and task tokens
are assigned, with forecasting tasks on the same source but with varying forecast lengths using the
same prompt and GEN token. To enable zero-shot learning on new datasets, a shared prompt and GEN
token are applied across all data sources. The embedding dimensions are set to 64 for the supervised
version, and 32 for the prompt-tuning version, and all blocks in UniTS retain the same feature shape.
Model training. In multi-task settings, models are trained jointly on multiple tasks following a
unified protocol. To match the largest dataset, samples from each dataset are repeated within each
epoch. Supervised training is conducted over 5 epochs with gradient accumulation, yielding an
effective batch size of 1024. The initial learning rate is set at 3.2e-2 and is adjusted using a multi-step
decay schedule. For self-supervised pretraining, the models training with an are trained for 10 epochs
with effective batch size of 4096, starting with a learning rate of 6.4e-3, which is adjusted using a
cosine decay schedule.
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C Related Works

C.1 MTS Forecasting Models
can be categorized into CI and CD models, where CI models process channels independently without
accounting for dependencies between them, whereas CD models account for these dependencies.
For CI models, DLinear [36] employs a linear model along the time dimension, and PatchTST [23]
divides TS into patches and feeds them into a Transformer [30] in a CI manner, and PITS [16]
combines channel independent and patch independent architectures with multi-layer perceptrons
(MLPs). For CD models, Crossformer [37] employs a two-stage attention mechanism to capture both
temporal and channel dependenciesand TSMixer [4] utilizes MLPs combined with patching to capture
both dependencies. Recently, iTransformer [18] inverts the traditional Transformer framework in TS
domain by treating each channel as a token instead of each patch, thereby shifting the focus from
capturing temporal dependencies to channel dependencies. However, these models primarily focus
on architectural solutions for handling CD and often overlook the characteristics of TS datasets,
motivating us to consider CD varying across datasets.

C.2 TS Foundation Models
often borrow knowledge from other fields, such as natural language processing, primarily due to the
lack of large-scale datasets in the TS domain. In response to this challenge, there have been efforts to
adapt large language models (LLMs) for TS tasks: GPT4TS [40] fine-tunes the embedding layers
of LLMs and Time-LLM [12] aligns TS data with LLM-based text prototypes to address TS tasks.
Recent works have focused on pretraining TSFMs exclusively on TS datasets from various sources.
MOMENT [9] and Timer [19] collect extensive and heterogeneous sets of TS datasets to pretrain
Transformer-based TSFMs, while MOIRAI [31] enhances the Transformer architecture to address
domain-specific challenges in constructing TSFMs. UniTS [7] proposes a TSFM that handles various
tasks with a single architecture through prompt-tuning. However, these models do not account for the
heterogeneity among datasets in terms of CD, while different TS datasets exhibit varying degrees of
CD. This motivates us to adjust CD in TSFMs based on the characteristics of each dataset.
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D Application to iTransformer
To demonstrate the effectiveness of our method, we apply our method to iTransformer [18] to solve
TS forecasting tasks on 13 datasets. Table 3 presents the average MSE and MAE across four different
horizons (H), showing consistent improvement across all datasets. Specifically, the performance
gains in MSE on the PEMS datasets [17] (03, 04, 07, 08) are significantly large (12.7%, 19.0%,
19.6%, 40.2%), whereas the gains on the ETT datasets [39] (h1, h2, m1, m2) are relatively small
(2.8%, 0.3%, 2.5%, 1.4%), suggesting a potential variation in the need for a CM across different
datasets. Full results are described in Table D.1.

Metric
iTransformer + CM

MSE MAE MSE MAE

ETTh1

96 0.387 0.405 0.385 0.404
192 0.441 0.436 0.438 0.434
336 0.491 0.462 0.475 0.454
720 0.509 0.494 0.477 0.474
Avg. 0.457 0.449 0.444 0.441

ETTh2

96 0.301 0.350 0.295 0.347
192 0.381 0.399 0.380 0.397
336 0.423 0.432 0.427 0.434
720 0.430 0.446 0.432 0.445
Avg. 0.384 0.407 0.383 0.406

ETTm1

96 0.342 0.377 0.331 0.369
192 0.383 0.396 0.372 0.390
336 0.418 0.418 0.412 0.414
720 0.487 0.456 0.479 0.453
Avg. 0.408 0.412 0.398 0.406

ETTm2

96 0.186 0.272 0.184 0.272
192 0.254 0.314 0.251 0.311
336 0.317 0.353 0.312 0.350
720 0.416 0.409 0.412 0.408
Avg. 0.293 0.337 0.289 0.335

Exchange

96 0.086 0.206 0.085 0.205
192 0.181 0.303 0.180 0.302
336 0.338 0.422 0.337 0.421
720 0.869 0.704 0.850 0.696
Avg. 0.368 0.409 0.363 0.406

Weather

96 0.174 0.215 0.165 0.209
192 0.224 0.258 0.213 0.251
336 0.281 0.298 0.274 0.296
720 0.359 0.351 0.350 0.346
Avg. 0.260 0.281 0.250 0.275

Solar

96 0.201 0.234 0.197 0.231
192 0.238 0.263 0.232 0.260
336 0.248 0.273 0.241 0.270
720 0.249 0.275 0.241 0.273
Avg. 0.234 0.261 0.228 0.258

Metric
iTransformer + CM

MSE MAE MSE MAE

PEMS03

12 0.071 0.174 0.063 0.168
24 0.097 0.208 0.087 0.197
48 0.161 0.272 0.133 0.250
96 0.240 0.338 0.212 0.316

Avg. 0.142 0.248 0.124 0.231

PEMS04

12 0.081 0.188 0.075 0.181
24 0.099 0.211 0.086 0.196
48 0.133 0.246 0.108 0.222
96 0.172 0.283 0.125 0.242

Avg. 0.121 0.232 0.098 0.210

PEMS07

12 0.067 0.165 0.061 0.157
24 0.088 0.190 0.076 0.179
48 0.113 0.218 0.086 0.188
96 0.140 0.246 0.104 0.208

Avg. 0.102 0.205 0.082 0.183

PEMS08

12 0.088 0.193 0.085 0.190
24 0.138 0.243 0.126 0.234
48 0.334 0.353 0.178 0.241
96 0.458 0.436 0.221 0.260

Avg. 0.254 0.306 0.152 0.231

ECL

96 0.148 0.240 0.140 0.235
192 0.167 0.258 0.158 0.252
336 0.179 0.272 0.172 0.267
720 0.220 0.310 0.202 0.295
Avg. 0.179 0.270 0.168 0.262

Traffic

96 0.395 0.268 0.391 0.266
192 0.417 0.277 0.409 0.275
336 0.433 0.283 0.426 0.282
720 0.467 0.300 0.460 0.300
Avg. 0.428 0.282 0.422 0.281

Table D.1: TS forecasting results with 13 datasets.
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E Application to UniTS
To demonstrate the effectiveness of our method on a TS foundation model, we apply it to four different
TS tasks using UniTS [7] on datasets from various domains, under multiple settings, including multi-
task, few-shot, and zero-shot settings. All experimental settings follow those outlined in UniTS [7].
The sections and tables outlining the full experiment results are listed in Table E.1.

Settings Section
TS downstream tasks

FCST CLS IMP AD

Multi-task E.1 Table 2 Table E.2 - -

Few-shot E.3 Table E.4,E.5,E.6 Table E.7,E.8,E.9 Table E.10 Table E.11

Zero-shot E.4 Table 2,2 - - -

Table E.1: Summary of experiments.

E.1 Multi-task Learning
For experiments under multi-task settings, we perform 20 TS forecasting and 18 classification tasks,
where the full results are shown in Tables 2 and E.2, respectively.

18 Tasks

Shared (1 model) Task-specific (18 models)

UniTS + CM UniTS iTransformer TimesNet PatchTST Pyraformer Autoformer GPT4TS

Sup. PT Sup. PT Sup. FT

Heartbeat 67.3 70.2 59.0 69.3 66.8 72.7 65.9 72.7 71.7 69.8
JapaneseVowels 94.1 93.2 93.5 90.8 95.9 97.6 94.1 85.4 94.1 94.6
PEMS-SF 83.2 82.1 83.2 85.0 83.2 77.5 83.8 83.2 79.2 79.2
SelfRegulationSCP2 58.3 51.7 47.8 53.3 48.9 52.8 48.9 56.7 45.0 45.6
SpokenArabicDigits 97.1 93.5 97.5 92.0 97.8 98.7 97.5 92.1 97.3 97.5
UWaveGestureLibrary 84.4 83.8 79.1 75.6 82.2 84.4 81.9 72.2 42.2 81.9
ECG5000 93.4 93.4 92.6 93.4 93.3 92.6 94.3 91.4 91.9 93.0
NonInvasiveFetalECGThorax1 89.5 55.2 90.5 27.1 88.2 88.9 86.5 21.4 21.7 89.7
Blink 99.1 95.6 99.1 91.1 93.3 87.6 89.6 88.2 63.1 92.4
FaceDetection 64.7 54.6 64.1 57.6 66.0 66.2 63.9 67.3 59.2 66.1
ElectricDevices 62.4 60.5 60.3 55.4 57.3 49.5 59.5 65.4 56.1 62.9
Trace 99.0 93.0 91.0 82.0 79.0 91.0 77.0 74.0 60.0 96.0
FordB 76.2 64.2 76.0 62.8 72.7 68.9 61.4 55.3 66.4 77.7
MotionSenseHAR 92.8 94.3 92.8 93.2 93.6 90.6 75.8 88.7 30.2 96.2
EMOPain 75.5 80.8 78.0 80.3 79.4 78.0 79.2 81.4 69.9 79.4
Chinatown 97.7 98.0 97.7 98.0 97.4 97.7 97.7 27.4 96.8 96.5
MelbournePedestrian 89.3 78.3 87.3 77.0 89.3 95.7 80.4 52.3 75.0 94.0
SharePriceIncrease 62.9 66.6 61.9 68.4 61.9 65.0 68.0 63.1 61.5 63.7

1st Count (/18) 5 2 2 2 0 5 2 4 0 -
2nd Count (/18) 6 5 3 1 5 2 2 2 1 -

Average Score 82.0 78.3 80.6 75.1 80.3 80.9 78.1 68.8 65.6 82.0

Table E.2: Results of multi-task classification.
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E.2 Few-shot Settings: Summary Results
For the tasks under the few-shot settings, we conduct four different tasks (FCST, CLS, IMP, AD),
following the experimental settings of UniTS.
Few-shot FCST and CLS. We experiment nine forecasting tasks and six classification tasks under
the few-shot settings with data ratios of 5%, 15%, and 20%. Table E.3a presents the results, which
indicates that our method outperforms both iTransformer and UniTS in both PT and fine-tuning (FT)
settings.
Few-shot IMP. We experiment six imputation tasks under the few-shot setting with a data ratio of
10%, where the goal is to impute 25% and 50% of missing data points. Table E.3b presents the
results, indicating that our method outperforms UniTS and other state-of-the-art (SOTA) single-task
models [32, 23, 18] in both PT and FT settings.
Few-shot AD. We experiment five anomaly detection tasks under the few-shot setting with a data
ratio of 5%, where the results in Table E.3c indicate that our method outperforms UniTS and other
SOTA methods in both PT and FT settings.

Ratio Model MSE Acc.

5%

iTransformer FT 0.598 51.4

UniTS PT 0.549 49.4
FT 0.505 53.8

UniTS + CM PT 0.546 54.9
FT 0.489 54.8

15%

iTransformer FT 0.524 56.5

UniTS PT 0.525 53.2
FT 0.487 59.7

UniTS + CM PT 0.522 55.4
FT 0.481 60.4

20%

iTransformer FT 0.510 59.9

UniTS PT 0.525 58.9
FT 0.486 63.6

UniTS + CM PT 0.453 60.0
FT 0.425 64.8

(a) 9 FCST and 6 CLS tasks.

Ratio Model MSE

25%

TimesNet
FT

0.246
PatchTST 0.191

iTransformer 0.186

UniTS PT 0.179
FT 0.167

UniTS + CM PT 0.179
FT 0.158

50%

TimesNet
FT

0.292
PatchTST 0.236

iTransformer 0.226

UniTS PT 0.232
FT 0.213

UniTS + CM PT 0.225
FT 0.201

(b) 6 IMP tasks.

Model F1

ADTrans. - 79.2
TimesNet FT 74.2
PatchTST FT 84.3

iTransformer FT 83.1

UniTS PT 81.7
FT 85.6

UniTS + CM PT 82.0
FT 86.6

(c) 5 AD tasks.

Table E.3: Four tasks under few-shot settings.
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E.3 Few-shot Settings: Full Results
For the few-shot tasks, we conduct four distinct tasks: FCST, CLS, IMP, and AD, which are discussed
in Sections E.3.1, E.3.2, E.3.3, and E.3.4, respectively.

E.3.1 Few-shot Forecasting
The results of few-shot forecasting with data ratios of 5%, 15%, and 20% are shown in Tables E.4,
E.5, and E.6, respectively.

5%
iTransformer UniTS UniTS + CM

FT PT FT PT FT

Data H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2

96 0.554 0.500 0.405 0.417 0.418 0.424 0.421 0.427 0.421 0.425
192 0.440 0.438 0.400 0.406 0.377 0.397 0.386 0.402 0.370 0.389
336 0.478 0.467 0.425 0.433 0.420 0.433 0.423 0.431 0.416 0.425
720 0.483 0.480 0.446 0.457 0.439 0.452 0.424 0.444 0.428 0.443

RiverFlow 24 1.141 0.514 1.115 0.504 1.112 0.504 1.097 0.503 1.097 0.500

ETTm1

96 0.504 0.462 0.436 0.434 0.384 0.404 0.428 0.436 0.354 0.384
192 0.555 0.485 0.462 0.448 0.414 0.418 0.475 0.458 0.393 0.405
336 0.567 0.496 0.560 0.494 0.453 0.442 0.550 0.493 0.420 0.423
720 0.659 0.539 0.703 0.558 0.526 0.483 0.689 0.554 0.483 0.455

Average 0.598 0.487 0.549 0.461 0.505 0.440 0.546 0.462 0.489 0.429

Table E.4: Results of few-shot forecasting (5%).

15%
iTransformer UniTS UniTS + CM

FT PT FT PT FT

Data H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2

96 0.441 0.440 0.403 0.412 0.399 0.409 0.416 0.423 0.403 0.411
192 0.398 0.410 0.396 0.404 0.394 0.399 0.388 0.403 0.387 0.399
336 0.436 0.441 0.432 0.435 0.441 0.435 0.419 0.435 0.430 0.431
720 0.438 0.453 0.448 0.457 0.449 0.453 0.415 0.442 0.433 0.446

RiverFlow 24 1.067 0.467 1.077 0.492 1.069 0.489 1.073 0.492 1.072 0.487

ETTm1

96 0.423 0.419 0.407 0.420 0.353 0.386 0.408 0.426 0.342 0.380
192 0.464 0.439 0.434 0.432 0.384 0.400 0.449 0.447 0.377 0.399
336 0.492 0.457 0.490 0.464 0.416 0.420 0.502 0.475 0.406 0.148
720 0.558 0.493 0.641 0.537 0.480 0.455 0.621 0.530 0.470 0.451

Average 0.524 0.450 0.525 0.450 0.487 0.428 0.522 0.452 0.481 0.425

Table E.5: Results of few-shot forecasting (15%).

20%
iTransformer UniTS UniTS + CM

FT PT FT PT FT

Data H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2

96 0.418 0.426 0.411 0.414 0.391 0.405 0.411 0.422 0.395 0.409
192 0.395 0.407 0.383 0.398 0.395 0.403 0.381 0.400 0.390 0.400
336 0.431 0.438 0.419 0.431 0.430 0.430 0.423 0.430 0.438 0.433
720 0.431 0.449 0.440 0.453 0.444 0.449 0.418 0.422 0.456 0.456

RiverFlow 24 1.056 0.462 1.069 0.487 1.069 0.489 1.071 0.487 1.067 0.489

ETTm1

96 0.408 0.410 0.409 0.421 0.344 0.379 0.403 0.425 0.339 0.376
192 0.444 0.428 0.443 0.439 0.377 0.397 0.450 0.450 0.375 0.396
336 0.471 0.445 0.505 0.472 0.408 0.418 0.507 0.481 0.403 0.415
720 0.536 0.482 0.648 0.536 0.472 0.453 0.621 0.531 0.466 0.448

Average 0.510 0.438 0.525 0.450 0.486 0.425 0.521 0.453 0.482 0.425

Table E.6: Results of few-shot forecasting (20%).
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E.3.2 Few-shot Classification
The results of few-shot classification with data ratios of 5%, 15%, and 20% are shown in Tables E.7,
E.8, and E.9, respectively.

5%
iTransformer UniTS UniTS + CM

FT PT FT PT FT

ECG200 78.0 67.0 77.0 80.0 77.0
Handwriting 5.4 4.6 4.7 4.8 5.5

SelfRegulationSCP1 62.8 66.2 74.7 77.8 73.7
RacketSports 37.5 31.6 35.5 39.5 47.4

Epilepsy 39.9 44.9 47.1 44.9 57.2
StarLightCurves 85.1 82.3 83.8 86.3 85.4

Average 51.4 49.4 53.8 54.9 54.8

Table E.7: Results of few-shot classification (5%).

15%
iTransformer UniTS UniTS + CM

FT PT FT PT FT

ECG200 81.0 74.0 78.0 73.2 82.0
Handwriting 9.8 7.3 8.1 9.2 8.5

SelfRegulationSCP1 67.9 59.0 76.5 69.3 68.6
RacketSports 54.6 40.1 50.7 44.7 51.3

Epilepsy 41.3 52.9 58.0 61.6 68.1
StarLightCurves 84.2 85.8 87.1 85.9 85.5

Average 56.5 53.2 59.7 55.4 60.4

Table E.8: Results of few-shot classification (15%).

20%
iTransformer UniTS UniTS + CM

FT PT FT PT FT

ECG200 81.0 76.0 77.0 85.0 82.0
Handwriting 11.8 8.0 8.5 7.6 9.8

SelfRegulationSCP1 77.1 68.6 70.6 77.8 74.4
RacketSports 54.6 51.3 57.9 38.8 50.7

Epilepsy 62.3 81.9 72.5 84.1 61.6
StarLightCurves 84.8 87.3 86.0 90.0 87.8

Average 59.9 58.9 63.6 60.0 64.8

Table E.9: Results of few-shot classification (20%).
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E.3.3 Few-shot Imputation
The results of few-shot imputation with data ratios of 25% and 50% are shown in Table E.10

Ratio ECL ETTh1 ETTh2 ETTm1 ETTm2 Weather Avg.

25%

TimesNet
FT

0.245 0.369 0.193 0.442 0.119 0.106 0.246
PatchTST 0.195 0.315 0.147 0.309 0.092 0.089 0.191

iTransformer 0.174 0.301 0.185 0.254 0.113 0.087 0.186

UniTS PT 0.139 0.311 0.178 0.268 0.102 0.078 0.179
FT 0.160 0.284 0.150 0.241 0.090 0.077 0.167

UniTS + CM PT 0.139 0.310 0.176 0.262 0.100 0.078 0.179
FT 0.129 0.275 0.149 0.231 0.090 0.073 0.158

50%

TimesNet
FT

0.258 0.412 0.211 0.607 0.140 0.125 0.292
PatchTST 0.230 0.353 0.175 0.442 0.111 0.105 0.236

iTransformer 0.203 0.332 0.205 0.372 0.136 0.106 0.226

UniTS PT 0.172 0.352 0.251 0.380 0.134 0.103 0.232
FT 0.191 0.322 0.198 0.352 0.118 0.095 0.213

UniTS + CM PT 0.162 0.353 0.240 0.370 0.128 0.097 0.225
FT 0.151 0.307 0.197 0.345 0.116 0.093 0.201

Table E.10: Results of few-shot imputation.

E.3.4 Few-shot Anomaly Detection
The results of few-shot anomaly detection with data ratio of 5% are shown in Table E.11.

MSL PSM SMAP SMD SWAT Avg.

Anomaly Trans. - 78.0 90.2 68.3 77.8 81.5 79.2
TimesNet FT 33.9 91.0 68.5 84.0 93.4 74.2

iTransfomer FT 80.4 96.5 67.2 82.4 89.0 83.1
PatchTST FT 79.9 96.6 68.7 83.8 92.6 84.3

UniTS PT 73.2 95.5 65.9 81.2 92.9 81.7
FT 81.3 97.3 71.6 85.5 92.5 85.6

UniTS + CM PT 73.7 95.5 66.0 82.0 92.9 82.0
FT 81.3 97.3 75.9 86.2 92.6 86.6

Table E.11: Results of few-shot anomaly detection.
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E.4 Zero-shot Learning
We perform TS forecasting tasks under two types of zero-shot settings: 1) Zero-shot dataset: We
evaluate our model on an unseen dataset that was not included during training. 2) Zero-shot task:
We assess the model’s ability to predict a new forecasting horizon that was not encountered during
training, by adding the mask tokens at the end of the TS to predict the desired future time steps.
Zero-shot dataset. For the TS forecasting task on unseen datasets, we evaluate our method using
three datasets [24, 21, 11]. Table E.12a presents the results, demonstrating a performance gain when
using the CM compared to not using it.
Zero-shot horizon. For the TS forecasting task with new forecasting horizons, we predict additional
384 time steps (by adding 24 masked tokens of length 16 at the end of the TS) on top of the base
forecasting horizon of 96. Table E.12b shows the results with four different datasets [39, 33], showing
performance gain on three out of four datasets.

Dataset
UniTS + CM Impr.

MSE MAE MSE MAE MSE MAE

Solar 0.597 0.607 0.586 0.585 1.9% 3.6%
River 1.374 0.698 1.374 0.686 0.0% 1.7%

Hospital 1.067 0.797 1.020 0.777 4.4% 2.5%
Avg. 1.013 0.701 0.993 0.683 2.0% 2.6%

(a) Zero-shot dataset.

Dataset
UniTS + CM Impr.

MSE MAE MSE MAE MSE MAE

ECL 0.237 0.329 0.231 0.323 2.5% 1.8%
ETTh1 0.495 0.463 0.492 0.463 0.6% 0.0%
Traffic 0.632 0.372 0.592 0.369 6.3% 0.8%

Weather 0.335 0.336 0.335 0.336 0.0% 0.0%

(b) Zero-shot horizon.

Table E.12: Zero-shot FCST tasks.

19



F Application to TimeSiam
To demonstrate the effectiveness of our proposed model on TimeSiam [6], which uses a self-supervised
pretraining framework for TS with Siamese networks, we conduct experiments with two datasets that
vary in channel size: Exchange, with a small number of channels (8), and ECL, with a large number
of channels (321). Specifically, we apply variants of our method by using the domain parameter only
during the fine-tuning stage and during both pretraining and fine-tuning stages. The results, shown in
Table F.1, validate both components of our method, with the best performance achieved when using
domain parameters at both pretraining and fine-tuning stages.

TimeSiam + CM

Correlation matrix - ✓ ✓ ✓

Domain parameters Pretrain - - - ✓
Fine-tune - - ✓ ✓

Dataset H MSE MAE MSE MAE MSE MAE MSE MAE

Exchange
(C = 8)

96 0.092 0.215 0.089 0.207 0.088 0.207 0.088 0.209
192 0.182 0.306 0.182 0.304 0.182 0.303 0.182 0.305
336 0.341 0.426 0.336 0.422 0.332 0.417 0.329 0.417
720 0.806 0.679 0.792 0.670 0.788 0.668 0.783 0.666
Avg. 0.356 0.407 0.350 0.401 0.349 0.399 0.346 0.398

ECL
(C = 321)

96 0.147 0.239 0.140 0.236 0.140 0.236 0.141 0.237
192 0.162 0.253 0.157 0.251 0.157 0.251 0.157 0.250
336 0.175 0.269 0.173 0.268 0.173 0.268 0.172 0.267
720 0.215 0.304 0.203 0.297 0.203 0.297 0.203 0.296
Avg. 0.175 0.266 0.168 0.263 0.168 0.263 0.168 0.262

Table F.1: Results of TS forecasting with TimeSiam.
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G Further Analysis
CD ratio comparison. Table G.1 presents the CD ratios of CMs with and without2 domain parameters
(r(M) and r(|R|)), when using UniTS. The results show that while datasets with higher r(|R|)
generally have higher r(M), this relationship is not consistent; for instance, Weather [33] exhibits
lower CD despite having a stronger correlation compared to ETTh1 [39]. Figure G.1 supports these
findings by visualizing the channels of the datasets, revealing that the channels of ETTh1 tend to be
more dependent on each other than those of Weather. These results underscore the importance of
using domain parameters to adjust |R| for learning absolute dependencies specific to each dataset.
Furthermore, datasets with a larger number of channels (C) tend to have higher r(M), which aligns
with the prior work [2] emphasizing CD over CI for datasets with more channels.

Domain params. ✗ ✓

Dataset C r(|R|) r(M)

Weather 21 0.296 (2) 0.587 (1)
ILI 21 0.708 (7) 0.706 (2)

ETTh1 7 0.222 (1) 0.717 (3)
Exchange 21 0.513 (4) 0.749 (4)

ECL 321 0.489 (3) 0.800 (5)
Traffic 862 0.564 (5) 0.808 (6)
NN5 111 0.584 (6) 0.857 (7)

Table G.1: CD ratio comparison with rank.

Low 

High

Weather

ETTh1

NN5

Figure G.1: TS visualization by r(M).

Effectiveness of domain parameters. To demonstrate the importance of domain parameters in
reflecting the degree of CD, we compare the CD ratio and the performance gain achieved with the CD
framework against the CI framework with UniTS. Figure G.2 shows that the gain is highly correlated
with the CD ratio of a CM with the domain parameters (r(M)), but less so without them (r(|R|)).
Domain parameters for unseen dataset. For an unseen dataset, selecting the appropriate domain
parameters is challenging, as these parameters are not learned during training. To address this
issue, we propose three strategies: 1) averaging the parameters across all datasets, 2) averaging the
parameters from the forecasting datasets, and 3) selecting parameters from the dataset with the closest
r(R̄). Table G.2 demonstrates the robustness of these strategies, consistently outperforming UniTS.

+ Domain
Params.

Figure G.2: Performance gain by CD vs. CD ratio.

Method Dataset MSE MAE

UniTS 1.006 0.701

UniTS + CM
FCST + CLS 0.995 0.684

FCST 0.993 0.683
Closest 0.993 0.683

Table G.2: Domain params for unseen datasets.

2For a CM without domain parameters, we use the absolute correlation matrix (|R|) instead of its zero-
centered scaled version (R̄) to ensure a fair comparison with M, which is also scaled between 0 and 1.
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Visualization of CM. Figure G.3 shows the CMs of ECL [33] and ETTh1 [39], illustrating the
dependencies between the channels of each dataset. The CM of ETTh1 reveals a hidden relationship
between the first and fifth channels when using domain parameters, which is not identified by the
correlation matrix alone.

ECL ETTh1

Figure G.3: Visualization of CMs w/ and w/o domain parameters. The figure shows the correlation
matrices and the CMs of two datasets, with each color scaled from 0 (light) to 1 (dark).

Dataset w/o CM
w/ CM

Euc. Cos. DTW Corr.

ETTh1 0.457 0.445 0.446 0.444 0.444
ETTh2 0.384 0.384 0.384 0.385 0.383
ETTm1 0.408 0.402 0.403 0.401 0.398
ETTm2 0.293 0.292 0.290 0.292 0.289

PEMS03 0.142 0.146 0.134 - 0.124
PEMS04 0.121 0.111 0.105 - 0.098
PEMS07 0.102 0.092 0.087 - 0.082
PEMS08 0.254 0.163 0.179 - 0.152
Exchange 0.368 0.364 0.363 0.364 0.363
Weather 0.260 0.256 0.255 0.254 0.250

Solar 0.234 0.232 0.229 - 0.228
ECL 0.179 0.173 0.171 - 0.168

Traffic 0.428 0.432 0.443 - 0.422
Avg. 0.279 0.269 0.268 - 0.261

Table G.3: Various metrics for CMs.

Various TS metrics. To demonstrate the effectiveness
of CMs using metrics beyond correlation, we apply
CMs to iTransformer with three different metrics: 1)
Euclidean distance (Euc.), which we min-max normal-
ize to the range (0,1) and subtract from 1 to convert
it into a similarity metric; 2) cosine similarity (Cos.),
for which we take the absolute value, following the
same intuition as correlation; and 3) dynamic time
warping (DTW), where we apply the same process
as with the Euclidean distance. Table G.3 presents
the TS forecasting result in terms of average MSE for
four different horizons, indicating that CMs yield a
performance gain regardless of the metric used, with
the best performance achieved with correlation. Note
that we use DTW only for datasets with fewer than
100 channels due to its computational complexity.
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Masked channel prediction. To evaluate the model’s ability to capture CD, we introduce a novel
evaluation method, masked channel prediction, which involves predicting the future values of the
masked channel using the historical values of the unmasked channels. Specifically, we calculate the
average loss for each channel when masked once, with the loss for the c-th channel expressed as:

L(c)(y, ŷ) = MSE(y[:, c], ŷ(c)[:, c]), where ŷ(c) = f(x(c)), (G.1)

where x(c) is x with the c-th channel masked, and ŷ(c) is the predicted output using x(c) as the input.
Note that masked channel prediction is an evaluation method that does not require additional training,
and instead uses a model pretrained without any masking.
To assess the effectiveness of CMs in capturing CD, we experiment masked channel prediction with
iTransformer with and without CMs, imputing the historical values of the masked channels with there
average values, which are essentially zero with normalization.
Tables G.4 and G.5 show the results of masked channel prediction for five datasets [33, 17], indicating
significant improvement when a CM is applied to iTransformer compared to when it is not used.
Furthermore, Figure G.4 visualizes the predicted result of the first channel of PEMS08, showing that
the model with the CM predicts more accurately than without the CM.

Horizon

Exchange ECL

Avg. MSE(C1∼C8) Avg. MSE(C1∼C321)

iTrans. + CM Impr. iTrans. + CM Impr.

96 0.139 0.138 1.2% 0.846 0.526 37.8%
192 0.236 0.232 1.5% 0.849 0.563 33.7%
336 0.383 0.374 2.4% 0.861 0.594 31.0%
720 0.934 0.917 1.8% 0.891 0.741 16.8%
Avg. 0.423 0.415 1.8% 0.862 0.606 29.7%

Table G.4: Results of masked channel prediction (Exchange, ECL).

Horizon

PEMS04 PEMS07 PEMS08

Avg. MSE(C1∼C307) Avg. MSE(C1∼C883) Avg. MSE(C1∼C170)

iTrans. + CM Impr. iTrans. + CM Impr. iTrans. + CM Impr.

12 0.549 0.300 45.4% 0.835 0.343 58.9% 0.628 0.200 68.1%
24 0.718 0.351 51.1% 0.865 0.448 48.1% 0.678 0.241 64.5%
48 0.750 0.409 45.5% 1.038 0.511 50.8% 1.197 1.059 11.5%
96 0.758 0.513 32.3% 1.040 0.640 38.5% 1.375 1.217 11.5%

Avg. 0.694 0.393 43.3% 0.945 0.486 48.6% 0.970 0.679 29.9%

Table G.5: Results of masked channel prediction (PEMS datasets).

In the inference stage 
( f: pretrained model w/o masking )

Channel 1

Masked Input

Channel 2~170

Loss

f(   ,   ,..,   )= 1 2 170

Input

Figure G.4: Masked channel prediction.
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Domain parameters Channel mask (M) Asym.

Scalar α, β ∈ R1 σ
(
α · R̄+ β

)
✗

Vector E ∈ Rd Norm(EET )⊙ R̄ ✗
E1,E2 ∈ Rd Norm(E1E

T
2 )⊙ R̄ ✓

Matrix A ∈ RC×C A⊙ R̄ ✓

Table G.6: Extension of domain parameters.

Extending domain parameters. The pro-
posed domain parameters α and β are
scalars that adjust R̄ by changing its ele-
ments monotonically. For further flexibility,
we design alternative options for the parame-
ters: 1) a vector E for each channel and 2) a
matrix A for each dataset. Both options are
used to construct an adjustment matrix that
is element-wise multiplied to R̄, as shown
in Table G.6. The first option serves as identifiable vectors for each channel, with the adjust-
ment matrix constructed based on the inner product between these vectors and normalized with
Norm(·) = Softmax (ReLU (·)), while the second option acts as the adjustment matrix itself. For
the vector parameters, we also implement an asymmetric matrix version that requires two different
vectors for each channel: one for the inner vector (E1) and the other for the outer vector (E2), as
described in the previous work [34]. Table G.7 shows that using scalar parameters achieves the best
performance, demonstrating the efficiency of CMs by requiring only two additional parameters per
dataset.

Average MSE across four horizons
Avg.

ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL Traffic

α, β 0.444 0.383 0.398 0.289 0.124 0.098 0.082 0.152 0.363 0.250 0.228 0.168 0.422 0.261
E 0.452 0.391 0.402 0.291 0.150 0.106 0.096 0.202 0.364 0.255 0.234 0.177 0.416 0.272

E1,E2 0.452 0.391 0.402 0.291 0.152 0.105 0.095 0.205 0.364 0.255 0.233 0.177 0.415 0.272
A 0.454 0.391 0.402 0.291 0.138 0.099 0.102 0.182 0.364 0.259 0.226 0.177 0.418 0.269

- 0.457 0.384 0.408 0.293 0.142 0.121 0.102 0.254 0.368 0.260 0.234 0.179 0.428 0.279

Table G.7: Results of various domain parameters. Using scalar domain parameters (α, β) which
scale and shift the correlation matrix yields the best results.

L,H = 96
Weather ECL
(C = 21) (C = 321)

Channel mask ✓ ✓ ✓ ✓
Attention matrix ✓ ✓ ✓ ✓

Train (sec/epoch) 24.1 26.2 26.7 26.0 33.2 36.4
Inference (ms) 11.1 11.1 11.2 11.0 12.4 13.2

Avg. MSE 0.259 0.260 0.250 0.176 0.179 0.168

Table G.8: Efficiency analysis.

Efficiency analysis. To demonstrate the ef-
ficiency of CMs, we compare the training
and inference times of iTransformer on two
datasets [33] with varying numbers of chan-
nels, using only attention matrices, only CMs,
and both. Table G.8 indicates that incorporat-
ing CMs does not significantly impact compu-
tational time, even with datasets containing a
large number of channels, with training time
measured per epoch and inference time measured per data instance. It is important to note that
correlation matrices can be precomputed offline, making CMs practical for use.

Figure G.5: Robustness to missingness.

Robustness to missing values. To demonstrate the robust-
ness of our method to missing values, we analyze scenarios
where some TS values are randomly missing at ratios of
10%, 25%, 50%, and 75%, with the missing values linearly
interpolated using adjacent values. Figure G.5 shows the
result on ETTh2 [39] using iTransformer, indicating that
both r(|R|) and the performance remain robust despite the
missing values, making our method applicable in real-world
scenarios.
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