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Abstract

Increasingly high-stakes decisions are made using neural networks in order to make
predictions. Specifically, meteorologists and hedge funds apply these techniques
to time series data. When it comes to prediction, there are certain limitations for
machine learning models (such as lack of expressiveness, vulnerability of domain
shifts and overconfidence) which can be solved using uncertainty estimation. There
is a set of expectations regarding how uncertainty should “behave". For instance, a
wider prediction horizon should lead to more uncertainty or the model’s confidence
should be proportional to its accuracy. In this paper, different uncertainty estimation
methods are compared to forecast meteorological time series data and evaluate these
expectations. The results show how each uncertainty estimation method performs
on the forecasting task, which partially evaluates the robustness of predicted
uncertainty.

1 Introduction

Neural networks are often used to tackle complex tasks in fields such as robotics [15], computer vision
[16], stock market/weather prediction [14], etc. Specifically, time series data with high volatility, rely
heavily on neural networks when it comes to predicting future values. Nowadays many application
specialists use AI for different applications that need robust predictions. Time series data is very
important for some applications involving streaming or time varying data, such as sequences, weather
or environmental variable predictions, and price modeling. These applications also require uncertainty
quantification at the output for robust decision making [13].

However, there are still plenty of limitations that need to be taken into account. The most prominent
issues described by [7] are: "black boxes" which suggests the lack of expressiveness and interpretabil-
ity of the algorithm, vulnerability to domain shifts and struggle with identifying in-domain and
out-of-domain data. This means that, for example, if an image classification model is trained to
distinguish between cars and bikes, but during the testing a plane is given, the model will predict
something instead of noticing the out-of-domain data. Neural network outputs do not provide un-
certainty (how sure the given output is) and often make overconfident predictions, and are prone to
adversarial attacks, which could cause them to malfunction.

The aforementioned limitations can be improved by estimating output uncertainty [5]. Given these
estimates, a human supervisor could decide whether to use the network output (at least parts of
the results) or disregard them. In particular time series data impose additional constraints on how
predictive uncertainty can be interpreted, for example, it is expected that uncertainty increases with the
prediction horizon [10]. The far future is harder to predict than the near future. Since all uncertainty
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methods are approximations of the true posterior distribution, this behavior is not ensured. This can
be seen as a robustness concept applied to the uncertain predictions specifically for time series data.

In this paper, we make a comparison of uncertainty quantification methods for time series regression
using multiple metrics measuring different effects, across two datasets of environmental and weather
data. The contributions of this work are the comparison of uncertainty quantification methods for
time series data, including a feed forward multi-layer perceptron (MLP) and a Long-Short Term
Memory recurrent network (LSTM), a qualitative evaluation methodology that includes prediction
horizon quality, a ranking of the evaluated methods, calibration error, and mean squared error. Our
results provide insights that go beyond standard evaluation of time series methods with uncertainty.

2 Experimental Setup

Datasets. We used two weather and environmental/meteorology data sets.

PM2.5 dataset Prediction is made with regard to PM2.5 concentration. This is also called fine
particulate matter, which has a harmful effect on human health [12]. The dataset can be found at
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data. This dataset consists
of 43825 time series with 8 features measured for each time frame (year, month, day and hour). The
8 features are the following: PM2.5 concentration, Dew Point, Temperature, Pressure, Combined
wind direction, Cumulated wind speed, Cumulated hours of snow, and Cumulated hours of rain.

Air Pressure dataset This is a weather time series data that can be downloaded at https://www.
bgc-jena.mpg.de/wetter/. In this data set, 14 different features were included: Air pressure, Air
temperature, Potential temperature, Dew point temperature, Relative humidity, Saturation water vapor
pressure, Actual water vapor pressure, Water vapor pressure, Deficit specific humidity, Water vapor
concentration, Air density, Wind velocity, Maximum wind velocity and Wind direction. The data
points are measured in every 10 minutes from 2009-2016. Since prediction regarding meteorological
data is usually done by hours and the previous data set was also measured in each hour, the data set
was converted from minute representation to hour representation by taking every 6th data point only.

Both datasets have the same pre-processing, transforming to a time series with 12 past timesteps, to
predict a single future timestep. To evaluate prediction horizon, we train models with up to 12 future
timesteps, to be consistent with the number of input timesteps.

Uncertainty Quantification Methods. We compare multiple methods, namely a baseline model
with only aleatoric uncertainty using the Gaussian NLL loss (Equation 1), MC-Dropout [3], MC-
DropConnect [11], Flipout [17], Bayes by Backpropagation (BBB) [2], and Ensembles [1]. We
provide short descriptions of these methods in the appendix.

Models. We use two models. One is an MLP with two hidden Dense layers with 32 neurons using
the ReLU activation, and a single output layer with one neuron. The second model similar but
replacing all Dense layers with LSTM [6], producing a recurrent architecture. To combine models
with specific uncertainty quantification methods, all Dense layers are replaced with corresponding
uncertainty layers (Dense with DropConnectDense, or FlipoutDense, VariationalDense, etc), except
for the LSTM layers, which are standard LSTM layers since there are no variations of LSTM with
uncertainty.

Training. Loss function is the mean squared error. The Adam optimizer was used for training with
a learning rate of 0.001. The number of training epochs was set to 100. Each model is combined
with an uncertainty quantification method, which produces mean µ(x) and standard deviation σ(x)
predictions for input x. The σ(x) is the uncertainty value associated with the prediction.

Metrics. We used multiple metrics to evaluate different aspects of prediction quality. Mean absolute
percentage error (MAPE) for direct prediction error, Mean squared error (MSE) for a global error
metric, R2 score for overall prediction quality, expected calibration error (ECE) for quality of the
uncertainty output [4], and negative-log likelihood (NLL, Eq 1) for an overall combination of error
and uncertainty outputs [8]. NLL is a proper scoring rule that scores both prediction and its uncertainty
under Gaussian assumptions. We evaluate these metrics for a single output step, and for 12 output
steps.
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Models/Metrics MAPE ↓ MSE ↓ R2 ↑ Calibration error ↓ NLL ↓
MLP Baseline 51.85 0.45 0.56 0.21 5.57
MLP Ensemble 45.29 0.36 0.65 0.20 1.86
MLP Dropout 46.99 0.38 0.62 0.26 4.38
MLP Dropconnect 59.14 0.52 0.49 0.25 5.52
MLP BBB 47.00 0.37 0.64 0.37 29.71
MLP Flipout 50.14 0.43 0.57 0.35 17.84

Table 1: Metrics scores of each model (PM2.5).

Models/Metrics MAPE ↓ MSE ↓ R2 ↑ Calibration error ↓ NLL ↓
LSTM Baseline 50.16 0.46 0.55 0.28 8.04
LSTM Ensemble 43.13 0.34 0.67 0.17 1.61
LSTM Dropout 48.21 0.41 0.60 0.29 8.59
LSTM Dropconnect 44.78 0.36 0.65 0.17 4.33
LSTM BBB 92.48 1.15 -0.11 0.42 102.71
LSTM Flipout 50.14 0.41 0.59 0.34 13.85

Table 2: Metrics scores of each model with recurrent layer (PM2.5).

The Gaussian Negative Log-likelihood is used as a metric for all models, and as a loss for the baseline
model. This loss only estimates aleatoric uncertainty, and is presented in Equation 1

NLL = N−1
N∑
i=1

(
log(σ2

i ) +
(µi − yi)

2

σ2
i

)
(1)

Where N is the number of data points, µi is the predicted mean, σ2
i is the prediction variance, and yi

is the ground truth label.

Plotting metrics against the prediction horizon entails some expectations as the prediction horizon
is longer (more timesteps into the future). Mean squared error, Mean absolute percentage error
should increase with longer horizons, while the R2 score should decrease. The calibration error
should stay approximately constant, as increasing uncertainty should signal increasing error in the
predictions, and NLL should stay approximately constant as this metric also considers uncertainty in
its predictions.

3 Experimental Results

Our main numerical results are presented here. Tables 1 and 2 present results for the PM2.5 dataset,
while tables 3 and 4 correspond to the Air Pressure dataset.

For PM2.5 MLP models, ensembles performed the best according to all metrics. Flipout and Baseline
models were the worst fit for the data, but the scores were rather similar, there were no outliers.
Flipout and BBB performed worse in uncertainty related metrics (CE and NLL) compared to other
models. For the LSTM model, results are similar as the best algorithm is still the ensemble model
but DropConnect performs much better. BBB performed extremely poorly, with a negative R2 score
and an MSE larger than 1. Overall for both kinds of models, BBB predicts very poor uncertainty.
Among all the models, Ensemble performed the best, with a slight margin ahead of Dropout or
Dropconnect depending on the recurrent layers. Both the standard and recurrent versions of these
models outperformed the other estimation methods.

For Air Pressure models, the results differ considerably from the PM2.5 dataset. For the MLP, the best
model predictive model was Dropout. As before, Ensembles was the best in predicting uncertainty,
since it produced the lowest NLL score and calibration error. Interestingly, the Baseline model was
the best calibrated in a tie with Ensemble, which means that they were the least overconfident amongst
the models. Among LSTM models, the best is again Ensembles, Dropconnect performed significantly
better with LSTM. Both Flipout and BBB have really low performance both in predicting the true
mean and the standard deviation. Note that BBB had really low calibration error compared to the
previous cases.
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Models/Metrics MAPE ↓ MSE ↓ R2 ↑ Calibration error ↓ NLL ↓
MLP Baseline 57.19 0.53 0.36 0.18 2.62
MLP Ensemble 51.37 0.42 0.49 0.18 1.32
MLP Dropout 50.18 0.40 0.51 0.26 3.07
MLP Dropconnect 64.17 0.62 0.25 0.30 18.84
MLP BBB 57.56 0.65 0.21 0.38 38.70
MLP Flipout 63.25 0.69 0.17 0.40 36.16

Table 3: Metrics scores of each model (Air pressure).

Models/Metrics MAPE ↓ MSE ↓ R2 ↑ Calibration error ↓ NLL ↓
LSTM Baseline 62.31 0.62 0.25 0.29 6.70
LSTM Ensemble 53.26 0.46 0.45 0.17 1.56
LSTM Dropout 59.34 0.57 0.32 0.34 10.51
LSTM Dropconnect 54.96 0.48 0.42 0.25 4.04
LSTM BBB 101.22 2.18 -1.60 0.23 196.70
LSTM Flipout 75.99 2.54 -2.04 0.43 96.60

Table 4: Metrics scores of each model with recurrent layer (Air pressure).

In general, the models performed worse with the Air pressure than with the PM2.5 dataset. It is also
worth mentioning that the Baseline model performed relatively well in all settings, especially with
CE and NLL scores. Overall the best model for uncertainty was Ensemble however, in some cases,
Dropout or Dropconnect outperformed it. An important detail that is often overlooked, is that our
results show that a recurrent model (LSTM in this case) is not always the best model for prediction of
time series data, an MLP can outperform LSTM, we see this in MLP Dropout on the Air pressure
dataset. There are also interactions between quality of predicted uncertainty with LSTM, calibration
error or NLL can increase or decrease, there is no general pattern.

We also provide a qualitative evaluation of prediction results, presented in Tables 5 and 6. The
details of how these tables are made is provided in the appendix. These tables provide a ranking of
uncertainty quantification methods across both datasets and model variations. Overall we find that
the baseline model, ensembles, and dropout, are the best uncertainty quantification methods overall
across MLP and LSTM models.

Metrics across prediction horizon are presented in Figures 3 to 6. These results are also analyzed
in the qualitative results (Sec A). Overall the results are mixed, some model/uncertainty method
combinations do meet the expectations, such as PM2.5 MLP Dropout, and Air Pressure LSTM
Dropout. Overall our results in this category show that performing time series regression with
uncertainty is far from trivial and many assumptions usual in sequence data can be broken.

Qualitative evaluation of the prediction horizon quality and confidence vs error plots shows that the
baseline models, ensembles, and droput are the best overall, but still they do violate some assumption
in some cases, no model fills all expectations in all metrics.

4 Conclusions and Future Work

In this work we have made a comprehensive evaluation of uncertainty quantification methods for time
series data, on two regression datasets (PM2.5 and Air Pressure prediction), considering multiple
factors like prediction quality, uncertainty quality, and in particular how the prediction horizon relates
with predicted uncertainty. It was expected that uncertainty and error increase with predictions far
into the future, but overall this does not always hold. It strongly depends on the uncertainty method
and the base model (recurrent or feed forward).

The expectations of uncertainty when it comes to time series data can be partially fulfilled, but the
choice of model is crucial. Ensemble and Dropout/Dropconnect models performed the best. However,
the model selection is highly dependent on the dataset and task. The dataset and the model also
influence the need for recurrent layers. For example, they outperformed the standard models in
Confidence vs Error expectation but the horizon expectation worked better for the non-recurrent
models.
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Data PM2.5

Models/Metrics MAPE MSE R2 Calib error NLL Horizon Conf vs Error

MLP Baseline 10 9 9 4 6 Good Bad
MLP Ensemble 3 3 3 3 2 Good Moderate
MLP Dropout 4 5 5 6 4 Moderate Bad
MLP Dropconnect 11 11 11 5 5 Bad Moderate
MLP BBB 5 4 4 11 11 Moderate Bad
MLP Flipout 7 8 8 10 10 Bad Bad

LSTM Baseline 9 10 10 7 7 Bad Good
LSTM Ensemble 1 1 1 1 1 Bad Good
LSTM Dropout 6 6 6 8 8 Bad Moderate
LSTM Dropconnect 2 2 2 2 3 Bad Moderate
LSTM BBB 12 12 12 12 12 Bad Moderate
LSTM Flipout 8 7 7 9 9 Bad Moderate

Table 5: Ranking of models regarding the different metrics/tasks for the PM2.5 data. The Ensemble
models and the LSTM version of the Dropconnect model performed the best. For the horizon check,
only the Baseline model performed in the desired manner. Regarding the Confidence vs Error plots,
the LSTM Baseline and Ensemble models performed as expected.

Data Air pressure

Models/Metrics MAPE MSE R2 Calib error NLL Horizon Conf vs Error

MLP Baseline 5 5 5 3 3 Bad Moderate
MLP Ensemble 2 2 2 2 1 Moderate Bad
MLP Dropout 1 1 1 6 4 Good Moderate
MLP Dropconnect 10 8 8 8 8 Bad Bad
MLP BBB 6 9 9 10 10 Moderate Moderate
MLP Flipout 9 10 10 11 9 Moderate Bad

LSTM Baseline 8 7 7 7 6 Bad Good
LSTM Ensemble 3 3 3 1 2 Bad Good
LSTM Dropout 7 6 6 9 7 Good Good
LSTM Dropconnect 4 4 4 5 5 Bad Bad
LSTM BBB 12 11 11 4 12 Moderate Moderate
LSTM Flipout 11 12 12 12 11 Bad Moderate

Table 6: Ranking of models regarding the different metrics/tasks for the Air pressure data. The
Ensemble models and the Dropout model performed the best in general. For the uncertainty based
metrics, the Baseline model was successful as well. Regrading the horizon check, the Dropout models
significantly outperformed all the other model. Regarding the Confidence vs Error plots, the LSTM
Baseline, Ensemble and Dropout models performed as expected.

For future work, we believe that developing uncertainty quantification methods that are directly
designed for sequence and time series data is crucial. All the current methods were not directly
designed for sequence data, they can be partially adapted, but overall these methods do not have built-
in intuitions for long and short term in-sequence dependencies, which might improve performance.
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A Overall Ranking of Models

In this section we provide a qualitative evaluation of each uncertainty quantification method across
the two kinds of models (MLP and LSTM) and the two datasets. These results were presented in
Tables 5 and 6. In this section we define a set of expectations/criteria for how uncertainty should
behave when it comes to prediction for time series data:

1. A wider prediction horizon should result in higher uncertainty.
2. Larger errors (for instance, mean squared error) should yield higher uncertainty.
3. The estimation of calibration error (whether the model is over or under-confident). This

suggests that the standard deviation (in other words, the uncertainty) should be proportional
to the accuracy of the model.

Then we define two categorical parameters. The first is about the prediction horizon quality:

Bad where there were no conclusive results.
Moderate when there were at least two metrics from which satisfied the expectations.
Good if three expectations are satisfied.

And the second about Confidence vs Error plots expectation, in this case:

Bad the error does not increase with larger uncertainty.
Moderate the error increases with uncertainty but it fluctuates at higher uncertainty.
Good the error increases with uncertainty and does not oscillate.

A.1 Uncertainty Methods

This section provides a short description of the uncertainty quantification methods we evaluated,
including the hyper-parameter values we used for training.

MC-Dropout. Dropout randomly sets layer activations to zero with probability p, and it was originally
intended as a regularizer that is only applied during training. MC-Dropout [3] enables the dropping
of activations at during test/inference time, making the model stochastic. It has been shown that each
forward pass produces one sample from the corresponding Bayesian posterior distribution [3]. We
use drop probability p = 0.2.

MC-DropConnect. DropConnect is similar to Dropout, randomly dropping weights to zero with
probability p instead of activations. MC-DropConnect enables this behavior at inference time, which
also produces samples from the Bayesian posterior distribution [11]. We use a drop probability
p = 0.05, note that this is smaller than the drop probability as it is applied to weights, using a larger
probability reduces the model capacity proportionally.

Ensembles. Consist of training multiple copies of the same architecture and then combining their
predictions, which usually produces a better model. Lakshminarayanan [9] demonstrated that
ensembles also have good uncertainty quantification properties. We use an ensemble of M = 10
neural networks of same architecture.

Bayes by Backprop (BBB). This is a full Bayesian neural network, where each weight is approxi-
mated as a Gaussian distribution P(w |x) using variational inference [2]. The model is stochastic,
each forward pass produces on sample, and the predictive posterior distribution P(y |x) (Eq 2) is
approximated through Monte Carlo sampling (Eq 3) with M = 50 forward passes.

P(y |x) =
∫
w

P(y |w, x)P(w |x) dw (2)

P(y |x) ∼ M−1
M∑
i

Pi(y |w,x) (3)

Flipout. Flipout is a variation of Bayes by Backprop that is used to reduce the training process
variance, improving learning stability and performance. This is done by sampling the kernel and
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bias matrices for each sample in a batch, through some mathematical tricks, while BBB samples one
kernel and bias matrix for the whole batch, slowing down learning performance and convergence
speed. Overall Flipout performs better than BBB. We use the same M = 50 number of forward
passes as BBB and output distributions are estimated in the same way.

B Broader Impact Statement

Neural networks can have a large impact on society, specially as models are increasingly used for
real-world applications involving humans. In this paper about the combination of sequence data/time
series and uncertainty quantification, we note the following misconceptions or possibly negative
impacts:

• Uncertainty or standard deviation of model output should be used to decide if the prediction
should be trusted, if uncertainty is too high, predictions can be rejected, but this has to be
implemented in the system using the machine learning model. This is one of the major
advantages of uncertainty, but it must be used to derive highly uncertain or ambiguous
predictions to a human decision maker.

• Uncertainty values produced by machine learning models are only approximations of the
true bayesian posterior distribution, thus these standard deviation predictions should not
be blindly trusted, there are no strict guarantees that uncertainty is proportional to error, as
results in our paper also show. These values should be used with care, specially in out of
distribution settings.

• Time series data might contain structure across sequence/timesteps that is not obvious and
might inadvertently leak user information, for example, revealing behavior changes over
time, or leaking sensitive information that can be accumulated over time. Our paper does
not study how output uncertainty could contribute to this effect.

C Error vs Confidence Plots

In this section we present all reliability plots and error vs confidence plots for both datasets. The error
vs confidence plot is used to evaluate the quality of uncertainty in Section A.

To produce a error vs confidence plot, we take standard deviation values over a dataset σ, and iterate
over a discretization σt ∈ [minσ,maxσ] with a predefined number of steps S, computing the error
of predictions where σ > σt, and then plot the prediction error versus the min-max normalized value
of σt. In our plots, the mean absolute error is used to have a comparable scale with the standard
deviation output of the model.

The idea of the error vs confidence plot is to compare the prediction error as it changes with its
predicted uncertainty (standard deviation), as predictions with increasing standard deviation should
correspondingly have a larger error, while predictions with low standard deviation should also have
low error. This can be evaluated with the calibration plot, but the error vs confidence plot gives an
alternative perspective due to different grouping of predictions by uncertainty.
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Figure 1: For MLP and LSTM models, we present the calibration/reliability plots (top row) and
confidence vs error plots (bottom row) on the PM2.5 dataset.
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Figure 2: For MLP and LSTM models, we present the calibration/reliability plots (top row) and
confidence vs error plots (bottom row) on the Air pressure dataset.
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D Visualization of Wide Horizon Results

This section presents a visualization of all metrics with a variable prediction horizon, up to 12
timesteps into the future. These results are used in Section A to rank models according to quality of
their prediction horizon, according to the expectation that uncertainty (standard deviation) should
increase with longer prediction horizons (it is harder to predict the future, specially the far future),
and this should also be reflected in error and other relevant metrics.

D.1 PM2.5 Dataset
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Figure 3: Comparison of MAPE, MSE, R2, CE, and NLL with different uncertainty methods for
prediction horizon of the MLP model in the PM2.5 test set. The scores not always follow a gradual
rise (or drop in case of R2).

11



0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.46

0.47

M
SE

Baseline model LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.3350

0.3375

0.3400

M
SE

Ensemble LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.356

0.358

0.360

M
SE

Dropout LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

50.5

51.0

51.5
M

AP
E

Baseline model LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

43.5

44.0

M
AP

E

Ensemble LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

44.6

44.8

M
AP

E

Dropout LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.55

0.56

R^
2

Baseline model LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.674

0.676

0.678

R^
2

Ensemble LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.656

0.658

R^
2

Dropout LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

5

6

7

NL
L

Baseline model LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

1.5

1.6

1.7

NL
L

Ensemble LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

8.2

8.3

NL
L

Dropout LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.25

0.26

0.27

CE

Baseline model LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.195
0.200
0.205

CE
Ensemble LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.280

0.285

CE

Dropout LSTM

(a) Baseline, Ensemble, Dropout.

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.5

1.0

M
SE

Dropconnect LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

1.4

1.6

1.8

M
SE

Bayes LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0

100

200

M
SE

Flipout LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

60

80

M
AP

E

Dropconnect LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

95

100

M
AP

E

Bayes LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

60

80

M
AP

E

Flipout LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.0

0.5

R^
2

Dropconnect LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.6

0.4

0.2

R^
2

Bayes LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

200

100

0

R^
2

Flipout LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

10

20

NL
L

Dropconnect LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

100

150

NL
L

Bayes LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

3.75

4.00

4.25

NL
L

Flipout LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.2

0.4

CE

Dropconnect LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.39

0.40

0.41

CE

Bayes LSTM

0 1 2 3 4 5 6 7 8 9 10 11
Prediction

0.27

0.28

CE

Flipout LSTM

(b) DropConnect, BBB, Flipout.

Figure 4: Comparison of MAPE, MSE, R2, CE, and NLL with different uncertainty methods for
prediction horizon of the LSTM model in the PM2.5 test set. The scores not always follow a gradual
rise (or drop in case of R2).
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Figure 5: Comparison of MAPE, MSE, R2, CE, and NLL with different uncertainty methods for
prediction horizon of the MLP model in the Air test set. The scores not always follow a gradual rise
(or drop in case of R2).
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Figure 6: Comparison of MAPE, MSE, R2, CE, and NLL with different uncertainty methods for
prediction horizon of the LSTM model in the Air test set. The scores not always follow a gradual rise
(or drop in case of R2).
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