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I. INTRODUCTION

In recent years, learning-based robots have shown remark-
able capabilities in controlled research settings. Yet, they often
fail to generalize reliably in diverse, unstructured environ-
ments, undermining their real-world deployability. To address
the challenge, one line of prior work focuses on improving
robot generalization by scaling up data and policy models
[1, 2, 3, 17, 41, 49]. These methods collect large and diverse
datasets from human demonstrators [11, 20, 38] and train
advanced policy architectures [6, 30] before deploying the
robots to real-world environments. While such scaling im-
proves robot performance, these methods remain brittle when
faced with out-of-distribution inputs and unpredictable corner
cases common in the real world. When failures occur, they lack
mechanisms for detection and recovery, undermining human
trust. To ensure safe deployment, research in human-robot
teaming [37, 44] addresses reliability through shared autonomy
between robots and humans [18, 40]. This framework enables
humans to prevent or correct robot errors, ensuring safety;
however, it does not inherently improve robot performance
over time, and as a result, human operators have a high
workload from frequent interventions.

Given these limitations, my research focuses on a cen-
tral question: How can we ensure reliable deployment of
learning-based robots, while continuously improving their
performance during deployment? To address this, I propose
to build continually improving and reliable autonomy
through human-robot collaboration. In this paradigm, robots
are deployed with human teaming and learn on the job, i.e.,
learn during deployment from humans. This approach not
only ensures safe and reliable deployments via human-robot
teaming but also continuously enhances robot autonomy to
reduce human workload over time.

I identify three key challenges in realizing this paradigm:
(I) improving robot policy from human feedback constantly
from deployment; (II) enabling robots to self-monitor and
proactively detect errors, hence minimizing the need for con-
stant human oversight; and (III) developing intention-aware
robots that adapt to human actions for effective teaming. To
address these challenges, I contribute in three corresponding
areas: (i) a human-in-the-loop framework for lifelong learn-
ing from deployment [25]; (ii) an algorithm for robot self-
monitoring that detects errors during deployment [26, 27];
and (iii) an intention-aware system for human-robot teaming
that enhances collaboration by interpreting human intents [28].
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Fig. 1. Research Overview. My research improves robot autonomy
over long-term deployments through human-robot teaming. To realize this
paradigm, I have contributed in three main areas: (i) continual learning with
human feedback, (ii) robot self-monitoring, and (iii) intention-aware human-
robot teaming. In the future, I will explore data quality for robot learning at
scale and interactive learning with intuitive interfaces.

Together, they advance my research vision of reliable learning-
based robots deployable in human-centered environments.

II. PAST & CURRENT RESEARCH

A. Continual Learning from Human Feedback

My work [25] established the framework of improving robot
autonomy over long-term deployments through human-robot
teaming. This framework is characterized by a deployment-
training loop (see Fig. 1). During deployment, a human
operator can monitor and intervene in the robot’s policy
execution. The human can take over control when necessary
and handle challenging situations to ensure safe and reliable
task execution. The collected human feedback data is used
to continually improve the robot policy. As the training and
deployment loop repeats, the robot makes fewer mistakes and
becomes more autonomous. This framework can allow the
robot systems to continuously learn and improve while being
reliable.

A key learning challenge of this framework originates
from the ever-growing dataset of robot rollouts and human
interventions, which includes suboptimal robot behaviors.
Learning from such deployment data requires us to use it
for policy updates selectively. Our key insight is that we
can assess the importance of varying training data based on
human interventions for policy learning. To this end, we re-
weight training samples based on the presence and timing of



interventions: transitions preceding an intervention are labeled
as “low-quality”, as the human believes the robot is about to
fail; while human demonstrations or interventions are deemed
“high-quality” because they happen at critical states where
help is needed. We then apply weighted behavioral cloning
[22, 34, 43, 53, 57, 60] to reinforce corrective behaviors and
avoid replicating errors, which leads to consistent autonomous
policy improvement over multiple rounds of training and
deployment. As the pioneering work to establish a framework
for learning from humans during deployment, our research has
influenced subsequent works in continual policy improvement
[5, 19, 31, 48], scalable data collection [32, 51, 55, 59] and
robot foundation model training [9, 21, 49].

B. Robot Self-Monitoring

While our framework [25] ensures reliable deployment,
constant human supervision incurs human workloads. Rather
than relying on continuous human monitoring, can humans in-
tervene only when necessary? To tackle the problem, my work
[26, 27] incorporates a robot self-monitoring mechanism into
our human-in-the-loop framework in Section II-A, allowing
the robots to monitor and predict errors autonomously.

Our design follows two conceptual ideas: First, it adopts a
model-based approach, which trains a predictive model of the
environment dynamics for failure prediction. We train a visual
world model [4, 14], which simulates future policy rollouts
and predicts upcoming failures. The visual world model is
pretrained in diverse robot environments, enabling the sharing
of learned representations of downstream anomaly predictors
across various tasks. Second, it uses an intervention-informed
approach to train its error predictor using human interventions
over long-term deployments. The algorithm harnesses the
inherent structure of human interventions to continually learn
an error predictor without encountering explicit failures, thus
ensuring reliable task execution. As the robot improves its
autonomy during deployment, the human-robot interaction
evolves. Consequently, the failure labels are continuously
updated to refine the error predictor, aligning it with the
changing human risk assessments. We instantiate these ideas
in a multi-task interactive robot fleet learning setting, where a
multi-task policy is deployed across large robot fleets, and a
runtime monitoring mechanism efficiently supervises multiple
tasks. Our work contributes to scalable and reliable robot
autonomy by influencing a line of research in failure prediction
[35, 36, 58] and deployment-time refinement [8, 10, 39, 56].

C. Intention-Aware Human-Robot Teaming

In our above framework [25, 26, 27], humans mainly only
intervene upon errors. As robots become more integrated into
daily life, robots and humans will collaborate on tasks as
teammates. In these scenarios, humans must maintain a sense
of agency [7, 15, 29, 54]. Effective human-robot teaming,
therefore, requires that robots anticipate human intent to
enhance task performance and user satisfaction.

To this end, we propose [28], a human-robot teaming system
that enables robots to infer diverse human intents and collab-

orate on long-horizon, open-world tasks. First, to infer diverse
intents, it uses a visual language model (VLM) that interprets
user teleoperation signals with commonsense reasoning, using
self-consistency [52] for confidence estimation. Second, to
assist users with open-world tasks, it uses a diverse library
of parameterized skills [45] that execute diverse contact-
rich behaviors once the human’s intent is inferred. Finally,
by running human control and VLM inference in parallel,
the system minimizes delays and enhances reactivity. This
human-robot teaming paradigm complements our prior work
[25, 26, 27] in Section II-A, II-B, expanding the scope of
reliable robot deployment to human-centric environments.

III. FUTURE RESEARCH

While my previous work has established a framework for
deploying learning-enabled robots, achieving general-purpose,
reliable robotic systems in the human world requires address-
ing additional challenges. To further advance my mission, I
identify two future research directions:

A. Data Quality for Robot Learning at Scale

In the future, as robot policies continue to scale, deploying
large-scale robot foundation models will generate massive
datasets of uneven quality [16]. Automatically curating such
datasets will be crucial both for reducing the memory storage
burden and for improving the model performance and effi-
ciency of training, as has been observed by the large vision
and language model training [33, 42, 47]. Deployment datasets
demonstrate two properties: 1) they have a large amount of
redundant and repetitive data; 2) they also contain suboptimal
data that hurts learning. To address the challenges, I plan to in-
vestigate data curation for large robot foundation models with
1) deduplication [23] of redundant datasets, and 2) automatic
removal [12] of suboptimal datapoints by assessing the data
quality. With data curation, I aim to improve computational
efficiency for training and to optimize policy performance.

B. Interactive Learning with Intuitive Interfaces

In my past research, humans provide feedback by direct
intervention. As robots are being deployed into households,
the structured intervention will shift toward more intuitive
forms of interaction. End users often prefer natural feedback
modalities like language corrections or hand gestures rather
than direct control [46, 50]. Therefore, developing algorithms
to improve robot policies using these alternative inputs is
essential. As a first step, I will explore policy updates driven
by human language feedback, leveraging pretrained VLMs to
bridge the gap between language and low-level motor actions.
Furthermore, I aim to investigate learning from human hand
gesture corrections by leveraging the similar kinematic form
factor between humanoids and humans [13, 24] for better skill
transfer. My long-term direction is to build a unified visual-
language-action interface capable of integrating diverse forms
of human feedback. Robots that learn from humans intuitively
can enable collaboration that enriches and empowers human
lives, ultimately augmenting our capacities for better living.
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