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ABSTRACT

Hyperbolic Neural Networks (HNNs), operating in hyperbolic space, have been
widely applied in recent years, motivated by the existence of an optimal embedding
in hyperbolic space that can preserve data hierarchical relationships (termed Hier-
archical Representation Capability, HRC) more accurately than Euclidean space.
However, there is no evidence to suggest that HNNs can achieve this theoretical
optimal embedding, leading to much research being built on flawed motivations. In
this paper, we propose a benchmark for evaluating HRC and conduct a comprehen-
sive analysis of why HNNs are effective through large-scale experiments. Inspired
by the analysis results, we propose several pre-training strategies to enhance HRC
and improve the performance of downstream tasks, further validating the reliability
of the analysis. Experiments show that HNNs cannot achieve the theoretical opti-
mal embedding. The HRC is significantly affected by the optimization objectives
and hierarchical structures, and enhancing HRC through pre-training strategies can
significantly improve the performance of HNNs. 1

1 INTRODUCTION
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Figure 1: In theory, there exists an optimal embed-
ding for hierarchical data in hyperbolic space, but
HNNs can be affected by various factors and may
not necessarily achieve the optimal embedding.
Therefore, the effectiveness of HNNs cannot sim-
ply be attributed to the HRC of hyperbolic spaces.

Exploiting the unique advantages of hyperbolic
space, Hyperbolic Neural Networks (HNNs)
have revolutionized the handling of massive
hierarchical data (Sala et al., 2018; Chami
et al., 2020; Cao et al., 2020; Nickel & Kiela,
2017), providing a more accurate representa-
tion (referred to as Hierarchical Representation
Capability, HRC) than traditional Euclidean-
based methods (Ganea et al., 2018).

However, existing research on hyperbolic space
performance only proves the minimum distor-
tion of embedding in hyperbolic space in theory
(Sala et al., 2018; Tabaghi & Dokmanić, 2020)
and does not prove that any method used in hy-
perbolic space has the best HRC. Suzuki et al.
(2021) theoretically demonstrated that the effec-
tiveness of hyperbolic space is only limited to
ideal noiseless settings, and less data and im-
balanced data distribution may worsen errors.
Especially for specific HNN methods, their performance will obviously be affected by optimization
objectives and data. Agibetov et al. (2019) has noticed the phenomenon that classifiers in hyperbolic
spaces are inferior to Euclidean spaces.

Referring to Figure 1, in order to elucidate the factors influencing HRC, we propose a Hierarchical
Representation Capability Benchmark (HRCB) for evaluating the HRC. HRCB designs evaluation

1The code is available at https://anonymous.4open.science/r/HRCB
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metrics based on the distance relationship between parent-child nodes and those between sibling
nodes in the tree structure, as well as between these nodes and the root node and hyperbolic space
origin, in order to quantitatively analyze the impact of HRC under different factors.

The existing methods overlook the impact of HRC on performance, whereas we aim to improve
HNNs by taking HRC as our guiding principle. Based on the conclusions obtained from using HRCB
for analysis, we propose various pre-training strategies to enhance HRC, in order to improve the
performance of HNNs and verify the correctness of the analysis.

In summary, our major contributions are:

• We propose HRCB to evaluate the HRC of HNNs. The HRCB will enable researchers to assess
the scope and applicability of HNNs and gain insights into their underlying mechanisms. Our
analysis of HNNs has uncovered specific factors contributing to their effectiveness.

• We propose various pre-training strategies to enhance HRC and analyze the relationship between
HRC and downstream task performance. Our proposed strategy further validates and leverages
the analytical results on HRCB to improve the performance of HNNs within the applicable scope.

• To ensure the reliability of our analysis and improvements, we conducted thousands of experiments
on three model structures, three manifold spaces, and eight dimensions. To analyze the extensive
experimental results, we used statistical significance tests to verify the conclusions.

2 RELATED WORK

The motivation of HNNs is derived from the study of the properties of hyperbolic space. Gromov
(1987); Linial et al. (1995) theoretically demonstrated the superiority of hyperbolic space for the tree
structure representation (Law et al., 2019). Subsequent extensive research (Bonahon, 2009; Krioukov
et al., 2010; Sarkar, 2011; Sala et al., 2018; Tabaghi & Dokmanić, 2020; Sonthalia & Gilbert, 2020)
demonstrated that embedding in hyperbolic spaces with minimal hierarchical distortion is possible
and provided embedding methods for known trees.

The study of the properties of hyperbolic space inspired the rapid development of HNNs. Ganea
et al. (2018) firstly proposed neural network operations on Poincaré ball model (an analytic model of
hyperbolic space). Nickel & Kiela (2018) proposed neural network operations on Hyperboloid model.
Since then, a large number of studies transferred neural network models to hyperbolic space, such as
graph convolutional networks (Chami et al., 2019; Yang et al., 2022a; Sun et al., 2021; Shimizu et al.,
2021), neural networks for image processing (Skopek et al., 2020; Lazcano et al., 2021; Zhang et al.,
2022; Ahmad & Lécué, 2022), neural networks for text analysis (Chen et al., 2020; Zhu et al., 2020;
Chen et al., 2021; Agarwal et al., 2022; Song et al., 2022), deep reinforcement learning (Cetin et al.,
2023), and so on. The aforementioned methods assert that the performance of HNNs originates from
HRC, however, no investigation has been conducted to explore the relationship between HRC and
performance.

Some work has discussed how to measure the HRC. Gu et al. (2019) used graph distortion and
MAP to show graph reconstruction performance, but they cannot accurately describe the hierarchical
relationships between nodes before reaching theoretical optimality. Furthermore, some visualization
methods (Nickel & Kiela, 2017; Chami et al., 2019; Mathieu et al., 2019) make it difficult to
quantitatively assess HRC.

Although a considerable amount of work has analyzed the properties and advantages of hyperbolic
space, little research has focused on the properties and advantages of HNNs, instead referring to
the analysis of hyperbolic space (Weber et al., 2020; Yang et al., 2022b). Therefore, we elucidate
why HNNs are effective through the proposed HRCB and, based on the analysis results, propose
pre-training strategies to enhance the performance of HNNs.

3 BENCHMARK DESIGN

In this section, we introduce two components of HRCB: the evaluation metrics for HRC and the
description and generation of hierarchical structures, to analyze the impact of different optimization
objectives and hierarchical structures on the HRC.
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Figure 2: Four examples to help improve the four evaluation metrics (Mr,Mo,Mp,Mb). The range
of the four evaluation metrics is between 0 and 1, the larger the better.

3.1 EVALUATION METRICS

To address the challenge that HRC is difficult to evaluate, we propose four distinct evaluation metrics.
These metrics are based on the parent and sibling nodes within the hierarchy, along with their distance
relationships to both the root node and the origin of the hyperbolic space. Inspired by the galaxy
structure (Du et al., 2018), the hierarchical tree should preserve the horizontal (with respect to sibling
nodes) and the vertical (with respect to parent-child nodes) relationships. We extend this idea to
the evaluation of hierarchical structures in hyperbolic space. Specifically, we design four evaluation
metrics:

Root Node Hierarchy Metric (Mr). A node should be further away from the root than its parent. As
shown in Figure 2(a), if node v is further away from the root node V0 than its parent node fa(v), then
this embedding of the hierarchical structure is consistent with the tendency of the volume to increase
exponentially with radius in hyperbolic space. We can use a metric Mr to show the proportion of
nodes satisfying Figure 2(a) to all nodes.

Coordinate Origin Hierarchy Metric (Mo). A node should be further away from the coordinate
origin than its parent. As shown in Figure 2(b), the node v is further away from the origin 0 than its
parent fa(v), because some operations (such as aggregation, activation functions, etc.) need to be
performed on the tangent space of the origin, and a hierarchical structure around the origin makes
more sense. We can use a metric Mo to show the proportion of nodes satisfying Figure 2(b) to all
nodes.

Parent Node Hierarchy Metric (Mp). A node should be further away from the grandfather node than
its parent. As shown in Figure 2(c), if a node v is further away from its grandfather node fa(fa(v))
than its parent node fa(v), then this embedding is consistent with the parent-child node relationship
in the hierarchical structure. We can use a metric Mp to show the proportion of nodes satisfying
Figure 2(c) to all nodes.

Sibling Node Hierarchy Metric (Mb). The distance between sibling nodes should be smaller
than the distance between non-sibling (and non-parent-child) nodes. As shown in Figure 2(d), if
dM(vli, v

l
i+1) < dM(vli, sno(v

l
i)j), then this embedding is consistent with the sibling node relation-

ship in the hierarchical structure. By hierarchical traversal, we can use a metric Mb to show the
proportion of distance relations satisfying Figure 2(d) to all distance relations.

The formal descriptions of Mr, Mo, Mp, and Mb can be found in Appendix A.1.

3.2 HIERARCHICAL STRUCTURES

Since embedding for tree (hierarchical) structures can maximize the effectiveness of hyperbolic space
(Sala et al., 2018; Chami et al., 2019), HRCB evaluates using a tree structure rather than a tree-like
hierarchical structure. Different hierarchical structures are challenging to describe and construct. The
existing works treat all hierarchical structures equally and do not have a deeper analysis. To address
the challenge of describing different hierarchical structures, we propose two metrics that focus on the
distribution characteristics of the nodes to effectively describe the hierarchical structure. Inspired
by the balanced tree, we measure the change of subtree height and degree distribution of nodes in
horizontal and vertical directions:

Horizontal Hierarchical Difference (IB). The height difference of subtrees between sibling nodes.
Some higher subtrees may affect the number of nodes to increase exponentially with the nodes
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hierarchy, so we need to analyze this type of hierarchical structure. We measure the height difference
by the average standard deviation of subtree heights (See Figure 3 (a) and (b) for what it means).

(a)   (b)   (c)   (d)  

Figure 3: Examples of horizontal hierarchical dif-
ference (IB): it is clear that Figure (a) is more
"unbalanced" than Figure (b), so the IB of Figure
(a) is larger. Examples of vertical degree distribu-
tion (ID): the closer to the root node in Figure (c),
the greater the degree, so ID > 0.5, and vice versa,
as in Figure (d), ID < 0.5.

Vertical Degree Distribution (ID). As the node
hierarchy is higher, does the degree of nodes also
increase? This change may affect the tendency
of the number of nodes to increase exponentially
with the nodes hierarchy, so we need to analyze
this type of hierarchical structure. This is sim-
ilar to the evaluation of ranking algorithms, so
we borrowed the normalized discounted cumu-
lative gain (NDCG) to measure this change (See
Figure 3 (c) and (d) for what it means).

Real-world data struggles to cover all types of
hierarchical structures, necessitating a rational
approach to generate hierarchies with diverse
characteristics. Specifically, we control the prob-
ability of generating child nodes from left to
right and the number of child nodes from top to
bottom, thus obtaining the hierarchical structure with varying IB and ID, respectively.

The formal descriptions of IB , ID, and the generation of hierarchical structures can be found in
Appendix A.3.

4 HRC ENHANCEMENT

In addition to analyzing why HNNs are effective, we also aim to further improve HRC within their
applicable scope to enhance downstream task performance and investigate whether these capabilities
impact the performance of downstream tasks. To achieve this, we propose three pre-training strategies
using optimization objectives beneficial to HRC as pre-training targets, as illustrated in Figure 4. We
first enhance the encoder’s HRC using a pre-training target, then apply the encoder to downstream
tasks. Theoretically, pre-training target can be any objective other than the downstream task targets,
which will be further discussed in the experimental section.

Dataset

Encoder

Decoder

Encoder

(Freeze Param)

DecoderPr
e-

tra
in

in
g

D
ow

ns
tre

am
 T

as
k

Pre-training
target

Downstream
task target

(1) EfD

Dataset

Encoder

Decoder

Encoder

DecoderPr
e-

tra
in

in
g

D
ow

ns
tre

am
 T

as
k

Pre-training
target

Downstream
task target

(2) ED

Pa
ra

m
 T

ra
ns

fe
r

Pa
ra

m
 T

ra
ns

fe
r

Dataset

Encoder

Decoder

Encoder

DecoderPr
e-

tra
in

in
g

D
ow

ns
tre

am
 T

as
k

Pre-training
target

Downstream
task target

(3) EfED

Pa
ra

m
 T

ra
ns

fe
r

Encoder

Figure 4: Three pre-training strategies for enhancing HRC. (1) EfD: Apply the HRC-enhanced encoder
directly to downstream tasks while freezing its parameters. (2) ED: Apply the HRC-enhanced encoder
directly to downstream tasks without freezing its parameters. (3) EfED: Place the HRC-enhanced
encoder before the downstream task’s encoder and freeze its parameters.

5 EXPERIMENTS

In this section, we show that the HRC of the HNNs is significantly lower than the upper limit of the
hyperbolic space. We also show that the optimization objective that helps distinguish the position
relationship between any two nodes and the hierarchical structure that approximates a complete
binary (or N-ary) tree can help to improve HRC. Specifically, we aim to answer the following three
key questions.

• Can HNNs’ HRC reach the upper limit of hyperbolic space? In other words, can HNNs achieve
optimal embeddings in hyperbolic space?
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• What factors influence HNNs’ HRC? Alternatively, how does HNNs’ HRC get affected by
optimization objectives and hierarchical structures?

• Does HNNs’ HRC impact the performance of downstream tasks? In other words, can improving
HRC lead to enhanced performance in downstream tasks?

These questions can help us understand why HNNs are effective, shedding light on the motivation
and applicability of HNNs.

5.1 EXPERIMENTAL SETUP

Our experiments were conducted on the TensorFlow framework, utilizing both the NVIDIA Tesla
V100 and NVIDIA RTX 3090 for training.

Datasets. In addition to datasets with all the hierarchical structures in Section 3.2, we use two public
hierarchical datasets for the analysis of optimization objectives and embedding methods (HNNs):
Disease (Chami et al., 2019) and WordNet (Miller, 1998). Since WordNet is too computationally
demanding, we use the usual Animal (Shimizu et al., 2021) subset of it. Since WordNet is not a tree,
we only kept the longest path from the node to the root node. See Appendix B.1 for more details.

Manifold Spaces.

Figure 5: Friedman test and Nemenyi post-
hoc test for eleven methods ({R,D,H} ×
{GAT,GCN,MLP}+Comb+Comb(32) with 32-bit
floating point precision). Comb has a floating point
precision of 3000 bits, while other HNN methods
have a floating point precision of 32 bits. Significance
level α is 0.05. We also performed significance tests
for all evaluation metrics (Mr,Mo,Mp,Mb) related
to the HRC, so that each method contains 192 exper-
imental results (eight dimensions ×{GD,HR,FD} ×
{Animal,Disease}×{Mr,Mo,Mp,Mb}). We removed
the LR (Logistic Regression, NC tasks) unrelated to
HRC, and the rationale behind this decision is discussed
in Section 5.2.2. Where > denotes significantly better
than, = denotes not significantly better than.

In order to comprehensively analyze the
HRC in hyperbolic space, we employ the
two most representative and commonly
used analytic models in hyperbolic space
(Peng et al., 2021): the Poincaré ball model
D and the Hyperboloid model H. Together
with Euclidean space R, they constitute the
three manifold spaces analyzed in this pa-
per. See Appendix B.2 for more details.

Hyperbolic Neural Networks. HNNs aim
to embed objects such as images (Khrulkov
et al., 2020), texts (Zhang & Gao, 2020),
and networks (Wang et al., 2021), among
which network embeddings are the most
suitable for studying HRC due to their
more intuitive hierarchical structure. We
employed the most commonly used and
well-established network embedding mod-
els in hyperbolic space, including MLP
(Ganea et al., 2018), GCN (Liu et al., 2019),
and GAT (Zhang et al., 2019). See Ap-
pendix B.3 for more details.

Optimization Objectives. Optimization
objectives play a crucial role in determin-
ing the quality and effectiveness of node
embeddings in HNNs, directly influencing
their overall performance. We introduce optimization objectives commonly used in downstream
tasks for graph representation learning. The objectives include Graph Distortion (GD), Hypernymy
Relations (HR), Fermi-Dirac with cross-entropy (FD), and Logistic Regression (LR), while the tasks
are Graph Reconstruction (GR), Link Prediction (LP), and Node Classification (NC). See Appendix
B.4 for more details.

Dataset Splitting Strategy. The train/dev/test ratio of the dataset used for the NC task (corresponding
to LR) is 3:1:6. The train/dev/test ratio of the dataset used for the other tasks is 8:1:1.

Hyperparameter. The model has no hyperparameters that need to be optimized. By convention, the
encoder is set as a two-layer neural network, the GAT uses 4-head attention, the activation function
uses ReLU, the optimizer is Riemann Adam, and the learning rate is 0.01. For the encoder output
layer dimensions, we experimented with eight dimensions (2,4,6,8,10,12,14,16) on each result.
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Stop Strategy. Our stop strategy is set to stop training when the value of the loss function in the
validation set stops decreasing within 100 epochs. In addition, we also keep the result of using the
loss function of the training set as the stop strategy for more in-depth analysis.

5.2 RESULTS AND ANALYSIS

5.2.1 CAN HNNS’ HRC REACH THE UPPER LIMIT OF HYPERBOLIC SPACE?

Figure 6: (a) and (b): Friedman test and Ne-
menyi post-hoc test for twelve methods ({R,D,H} ×
{GD,HR,FD,LR}). Significance level α is 0.05. We
also performed significance tests for all evaluation met-
rics (Mr,Mo,Mp,Mb) related to the HRC, so that each
method contains 192 experimental results (eight di-
mensions ×{MLP,GCN,GAT} × {Animal,Disease} ×
{Mr,Mo,Mp,Mb}). To analyze the impact of overfit-
ting training on the HRC, we record the results of both
stop strategies: the validation set loss function values
in Figure (a), and the training set loss function values
in Figure (b). Figure (c): Comparison of eight methods
(two stop strategies ×{GD,HR,FD,LR}), each method
contains 576 experimental results ({R,D,H}×192). In
this figure, > denotes significantly better than, = de-
notes not significantly better than.

To answer this question, we compare the
HRC for different embedding methods on
different manifold spaces and datasets. In
addition to MLP, GCN, and GAT, we also
include a method that does not require op-
timization objectives and neural networks:
Combinatorial Constructions (Comb) (Sala
et al., 2018). This method is to place the
nodes into hyperbolic space (D) with the
known hierarchical structure, which can
almost reach the upper limit of the HRC.
Our goal is to utilize the strength of Comb
to critically analyze the gap between other
methods and the optimal embedding.

To obtain more accurate conclusions, we
show the significance tests for all embed-
ding methods on different manifold spaces
in the form of Friedman test charts in Fig-
ure 5. The HRC of HNNs is significantly
lower than the upper limit of hyperbolic
space. We can see that the ranking of the
methods is Comb > Comb(32) > GAT =
GCN > MLP. All the hyperbolic neural
network methods are significantly weaker
than Comb(32). The main reason is that
these methods are only transferred to hy-
perbolic space, without improvements for
the hierarchical structure. Therefore, be-
sides transferring the methods to hyper-
bolic space, it is worth exploring how to
improve the neural network methods to suit
the hierarchical structure.

5.2.2 WHAT
FACTORS INFLUENCE HNNS’ HRC?

To address this question, we first com-
pared the HRC of four optimization objec-
tives across three manifold spaces and two
datasets. We show the significance tests
for all optimization objectives on different
manifold spaces in the form of Friedman
test charts in Figure 6. From Figure 6(a), it
can be seen that with the standard stop strat-
egy (dev-loss), the ranking of the optimiza-
tion objectives is Graph Distortion (GD)
> Hypernymy Relations (HR) > Fermi-
Dirac with cross-entropy (FD) > Logistic
Regression (LR). Different optimization objectives have significant effects on HRC, and we have the
following observations and analysis.
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(1) Optimization objectives that help to distinguish the position relation between any two nodes
also help to improve the HRC. The shortest path of GD, hypernymy relations of HR, and edge
distance of FD help the hyperbolic neural network method to distinguish this position relation. For
nodes va, vb, vc, suppose there exists a true position relation dM(va, vb) < dM(va, vc), if the loss
function is equal to zero while there exists dM(va, vb) > dM(va, vc), then this is the phenomenon
that does not help to distinguish the position relation between any two nodes. The LR used for NC
task does not need to distinguish whether the nodes of the same class belong to different hierarchical
structures, so this phenomenon exists in abundance. Therefore, only considering the hierarchical
structure is not enough, and optimization objectives or downstream tasks are also very important.

(2) For optimization objectives that help to distinguish the position relation between any two
nodes, overfitting may improve the HRC. From Figure 6(b), it can be seen that the ranking of the
optimization objectives is GD > HR > FD > LR under the stop strategy (train-loss) that allows
overfitting. From Figure 6(c), we can further see that the HRC of HR and LR improves significantly
when overfitting on the training set. This is because improving HRC through overfitting does not
necessarily translate to better performance in downstream tasks.

To further address how different hierarchical structures impact HNNs’ HRC, we show the trends of
the five evaluation metrics with IB on horizontal hierarchical difference and ID on vertical degree
distribution, as shown in Figure 7. Different hierarchical structures have significant effects on HRC.
The more the hierarchical structure approximates the complete n-ary tree, the more it helps
to improve the HRC. Most of the evaluation metrics show this trend, for example, Mr and Mo

decreases and Mdd (normalized graph distortion) increases when IB > 0, Mb and Mp decreases
when ID < 0.5, and Mb decreases when ID > 0.5. With one exception, Mp increases when
IB > 0, ID > 0.5. Because there are fewer nodes at the same level in this case, the parent nodes
between the grandfather and child nodes are not easily misaligned. In general, IB > 0 and ID 6= 0.5
will affect the exponential increase of the number of nodes with the hierarchy, so the advantage of
hyperbolic space cannot be fully exploited.

In graph structures, a node may also belong to multiple hierarchical structures. To analyze the HRC
of the HNNs in this case, we compare Mix-tree (a blend of multiple hierarchical structures) with
Sub-tree (a single hierarchical structure). Figure 8 shows the results of the significance test. If a
node belongs to multiple hierarchical structures at the same time, the HRC of HNNs decreases
significantly. It can be seen that the Sub-tree significantly outperforms the Mix-tree, except for the
unbalanced tree (T2/T6). Since a node has only one embedding, it is difficult to distinguish multiple
hierarchical structures.
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Figure 7: 36 datasets with IB , ID, and their results on five evaluation metrics (Mr,Mo,Mp,Mb,Mdd).
We obtained 36 hierarchical structures with different IB and ID using the hill-climbing algorithm.
These datasets are approximately uniformly distributed over the range of values of IB and ID, and
each dataset contains 3280 nodes. Each result for each dataset (Tree) is the average of 48 sets of
experiments ({D,H} × {GD,HR,FD}× eight dimensions×GCN). Mdd denotes normalized graph
distortion.

5.2.3 DOES HNNS’ HRC IMPACT THE PERFORMANCE OF DOWNSTREAM TASKS?

To answer this question, we compared the HRC and performance of strategies with and without HRC
enhancement across four downstream task targets. As illustrated in Figure 9’s Friedman test charts,
the four downstream task targets include Logistic Regression (LR), Fermi-Dirac with cross-entropy
(FD), Graph Distortion (GD), and Hypernymy Relations (HR). For LR, FD, and HR, the performance
metric is accuracy, while for GD, the performance metric is the negative normalized distortion degree
(−Mdd). In addition to the Normal strategy without HRC enhancement and the three HRC-enhanced
pre-training strategies (ED, EfD, EfED), we also compared an HRC enhancement strategy called

7



Under review as a conference paper at ICLR 2024

L, which trains the model by weighting and summing the pre-training and downstream task targets.
L0.5, L0.6, L0.7, L0.8, and L0.9 represent the HRC-enhanced L strategy with downstream task target
weights of 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. It is worth noting that the HRC enhancement
strategy for the NC task has three pre-training targets (FD, GD, HR) to choose from, while the HRC
enhancement strategy for other tasks only has two pre-training targets available, as the conclusion in
Section 5.2.2 has confirmed that the optimization objective (i.e., LR) for the NC task is not suitable
for enhancing HRC.

T1/T5 (Complete 3-ary tree): Sub-tree!0L[�WUHH
T2/T6��8QEDODQFHG�WUHH���Sub-tree 0L[�WUHH
T3/T7��'HJUHH�RI�OHDI�LV�JUHDWHU���Sub-tree!0L[�WUHH
T4/T8��'HJUHH�RI�URRW�LV�JUHDWHU���Sub-tree!0L[�WUHH

Figure 8: Friedman test and Nemenyi post-hoc
test for eight methods ({Mix-tree,Sub-tree} ×
{T1/T5,T2/T6,T3/T7,T4/T8}). Significance level α
is 0.05. Each method contains 384 experimental
results ({Ti,Tj}× {Mr,Mo,Mp,Mb} × {D,H} ×
{GD,HR,FD}× eight dimensions×GCN). Mix-tree de-
notes training with Tree5 (mixed by T1-T8) first, and
then evaluating T1-T8 separately. Sub-tree denotes that
T1-T8 are trained and evaluated separately. Appendix
A.3 provides further details on Tree5 and T1-T8.

Apart from the NC task (targeted at LR),
Figure 9 shows that most of the strategies
capable of enhancing HRC also outper-
form the Normal strategy in terms of per-
formance. For instance, out of the 17 strate-
gies that significantly outperform Normal
in HRC, only three (such as ED, L0.5, and
L0.9 in Figure 9(h)) do not exhibit a sig-
nificant improvement in performance. En-
hancing HRC on the LR target, however,
leads to reduced performance, as demon-
strated by the seven strategies with signif-
icantly improved HRC in Figure 9(a) hav-
ing notably lower performance in Figure
9(b) compared to the Normal strategy. This
indicates that the HRC of HNNs has a
significant impact on the performance
of downstream tasks. Within the applica-
ble scope of HNNs, performance can be
improved by enhancing HRC, while out-
side this scope, increased HRC may lead to
decreased performance. This also validates the effectiveness of the proposed pre-training strategies.

After verifying the impact of HNNs’ HRC on downstream task performance, we analyzed the
most optimal HRC enhancement strategy. As seen in Figure 9, we concluded that: (1) Without
considering the applicable scope of HNNs, ED is the best among various pre-training strategies.
ED’s performance is not significantly weaker than the Normal strategy, and in FD and GD targets, ED
outperforms the Normal strategy significantly (see Figure 9(d) and Figure 9(f)). This is attributed to
ED not fixing parameters, which offers greater flexibility in retaining or forgetting pre-training targets
and more effectively forgetting pre-training target even in unsuitable NC tasks for HNNs. (2) Within
the applicable scope of HNNs, EfD is the most optimal among various pre-training strategies.
In the three downstream task targets suitable for HNNs, EfD achieves the best HRC and performance
on two targets (see Figure 9(d) and Figure 9(h)). This is because EfD fixes the Encoder’s parameters,
maximizing the preservation of the pre-training target’s advantages. (3) GD is more suitable as a
pre-training target for pre-training strategies. Among the four downstream task targets, only GD
exhibits a phenomenon where the HRC of seven HRC-enhanced strategies does not improve (see
Figure 9(e)). This is because GD cannot use GD as a pre-training target, and other pre-training targets
are not as effective as GD in terms of HRC enhancement.

6 CONCLUSION

To understand why hyperbolic neural networks (HNNs) are effective, we propose a benchmark
(HRCB) for quantitatively analyzing the hierarchical representation capability (HRC) of HNNs. We
discover that the effectiveness of HNNs stems from two aspects: (1) HNNs’ optimization objectives
facilitate distinguishing positional relationships between any two nodes, and (2) HNNs’ training
data approximates a complete n-ary tree. This further clarifies the motivation and applicability of
HNNs, validating that effective HNNs are not solely due to the hierarchical structure of the data.
Based on HRCB’s analysis of HNNs’ motivation, we propose various pre-training strategies to further
enhance HNNs’ HRC, thereby improving their performance on downstream tasks. Experimental
results indicate that HNNs’ HRC significantly impacts downstream task performance, and enhancing
HRC through pre-training strategies can substantially boost HNNs’ performance.
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Figure 9: Friedman test and Nemenyi post-hoc test for nine strategies on four downstream task
targets. Significance level α is 0.05. We performed significance tests for all evaluation metrics
(Mr,Mo,Mp,Mb) related to the HRC. For the downstream task target LR, there are three available
pre-training targets (FD, GD, HR). Thus, the eight HRC enhancement strategies in Figure (a)
each contain 768 experimental results (three pre-training targets × eight dimensions × {D,H} ×
{GCN,GAT} × {Animal,Disease} × {Mr,Mo,Mp,Mb}), while those in Figure (b) each contain
192 experimental results (three pre-training targets × eight dimensions × {D,H} × {GCN,GAT} ×
{Animal,Disease} × {Accuracy}). For the other three downstream task targets (FD, GD, HR), there
are only two available pre-training targets. Consequently, the eight HRC enhancement strategies in
Figure (c), Figure (e), and Figure (g) each contain 512 experimental results (two pre-training targets
× eight dimensions × {D,H} × {GCN,GAT} × {Animal,Disease} × {Mr,Mo,Mp,Mb}), and
those in Figure (d), Figure (f), and Figure (h) each contain 128 experimental results (two pre-training
targets × eight dimensions × {D,H} × {GCN,GAT} × {Animal,Disease} × {Accuracy}). The
Normal strategy does not include pre-training targets, so the Normal strategy on HRC comprises
256 experimental results (eight dimensions × {D,H} × {GCN,GAT} × {Animal,Disease} ×
{Mr,Mo,Mp,Mb}), and the Normal strategy on performance contains 64 experimental results (eight
dimensions × {D,H} × {GCN,GAT} × {Animal,Disease} × {Accuracy}). The Normal strategy
results need to be duplicated two or three times to match the results of the other eight strategies,
facilitating significance testing.
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A HRCB DETAILS

In this section, we provide a formal description and an in-depth analysis of the metrics proposed in
Section 3. Table 1 lists the main notations used in this section.

Table 1: Notations.
Symbol Description

V A set of all nodes on a hierarchical structure
V0 The root node of V
v A node
0 The coordinate origin
I[·] The indicator function, 1 or 0
fs(·) Normalization function based on Sigmod
fa(v) The parent node of node v
s(v) A set of all child nodes of node v
H The hight of the entire hierarchical structure
Mr Root node hierarchy metric
Mo Coordinate origin hierarchy metric
Mp Parent node hierarchy metric
Mb Sibling node hierarchy metric
Md The graph distortion
Mdd The normalized graph distortion
IB Horizontal hierarchical difference
ID Vertical degree distribution

A.1 EVALUATION METRICS

Root Node Hierarchy Metric (Mr):

Mr =
1

|V|
∑
v∈V

Ir(v)

Ir(v) =

{
1, v = V0
I[dM(fa(v), V0) < dM(v, V0)]

(1)

where V denotes the set of all nodes on a hierarchical structure, V0 denotes the root node of V, fa(v)
denotes parent node of node v, I[·] denotes indicator function, and dM(v, V0) denotes the geodesic
distance between v and V0 on the manifold spaceM.

Coordinate Origin Hierarchy Metric (Mo):

Mo =
1

|V|
∑
v∈V

Io(v)

Io(v) =

{
1, v = V0
I[dM(fa(v),0) < dM(v,0)]

(2)

where 0 denotes the coordinate origin.

Parent Node Hierarchy Metric (Mp):

Mp =
1

|V|
∑
v∈V

Ip(v)

Ip(v) =

{
1, fa(v) = V0
I[dM(fa(v), v) < dM(fa(fa(v)), v)]

(3)
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Sibling Node Hierarchy Metric (Mb):

Mb =
1

|V|
(1 +

∑
vl−1∈V∗

drel(v
l−1)) , l > 1

drel(v
l−1) =

∑
vli∈s(vl−1)

1

|sno(vli)|
∑

v∈sno(vli)

Ib(vli, v)

sno(v
l
i) = {vkj |vkj ∈ V, vkj /∈ s(vl−1)

, k < l or (k = l, j < i)}
Ib(vli, v) = I[max({dM(vli, u)|u ∈ s(vl−1)}) < dM(vli, v)]

(4)

where V∗ ⊂ V denotes the set of non-leaf nodes, vl−1 denotes the node at level l − 1 (in the
hierarchical structure) taken from V∗ by hierarchical traversal, drel(vl−1) denotes the proportion of
distance relations satisfying Figure 2(d) that relations are between all children nodes of vl−1 and
nodes before (hierarchical traversal order) these children nodes, vli denotes the i-th node of the l-th
level (hierarchical traversal order), s(vl−1) denotes all child nodes of vl−1, and sno(vli) denotes the
set of all nodes before (hierarchical traversal order) vli.

In addition to the metrics we have proposed, we briefly introduce commonly used graph distortion
metrics here. The graph distortion Md assumes that the distance dM(vi, vj) between any two points
should be equal to the shortest path length dG(vi, vj), which leads to the fact that the overall scaling
up and down of node coordinate values have a significant impact on Md. To overcome this problem,
we divide the distance in graph distortion by the path density dm (distance per unit path length). The
graph distortion Md and normalized graph distortion Mdd are described as:

Md = fd(1), Mdd = fs(fd(dm))

fd(x) =
2

|V|(|V| − 1)

∑
16i<j6|V|

∣∣∣∣ (dM (vi, vj) /x

dG(vi, vj)

)2

− 1

∣∣∣∣
fs(x) = 2 · Sigmod(x)− 1 =

2

1 + e−x
− 1

dm =

∑
16i<j6|V| dM(vi, vj)∑
16i<j6|V| dG(vi, vj)

(5)

where fs(x) denotes normalization. By dividing by dm, we reduce the effect of too large or too small
node coordinate values. , and make Md easier to normalize. where dG(vi, vj) denotes the shortest
path length between vi and vj .

A.2 REDUNDANCY ANALYSIS OF EVALUATION METRICS.

We evaluate the hierarchical relationships from both horizontal and vertical perspectives: Mb measures
the horizontal relationship using sibling nodes, while Mp assesses the vertical relationship through
parent-child nodes. Additionally, since the vertical relationship is directional, we employ Mr to
measure the direction from the root node to the leaf nodes and Mo to gauge the direction from the
coordinate origin outward. In the following, we will discuss that the level of redundancy primarily
depends on HRC.

Firstly, the four metrics can exhibit full redundancy. For instance, a perfectly embedded hierarchical
structure would evidently achieve the highest score on all four metrics simultaneously. However,
through simple illustrations, we can prove situations where there is minimal redundancy among these
metrics:

• Comparing Mb with the other three metrics (Mr/Mo/Mp): Suppose there exists a perfectly
embedded complete binary tree (contains |V| nodes). We move the nodes on the same level to
a single position, ensuring that nodes on each level form a straight line when connected. Then,
we further distance the sibling nodes on the same level along the linear direction, such that the
distance between two sibling nodes is equal to the distance from one node to the root. At this
point, the Mr, Mo, and Mp scores remain at their maximum value of 1, while Mb drops from 1 to
1/|V|.
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• Comparing Mp with the other two metrics (Mr/Mo): Consider a perfectly embedded complete
binary tree. If we invert all the nodes except for the root, such that the leaves are closest to the root
and the child nodes of the root are furthest away, Mp remains at its maximum value of 1, while
Mr and Mo drop from 1 to 3/|V|. (only the root and its two child nodes satisfy the requirement).

• Comparing Mr and Mo: Suppose there exists a perfectly embedded hierarchy. If we invert the
entire structure so that the leaves are closest to the origin and the root is farthest away, Mr remains
at its maximum value of 1, while Mo drops from 1 to 1/|V|.

The above discussion highlights that the degree of redundancy varies significantly among the metrics.
They are not entirely interchangeable as they measure different aspects.

A.3 HIERARCHICAL STRUCTURES

Horizontal Hierarchical Difference (IB):

IB = fs(
1

|V|
∑
v∈V

√
D(v))

D(v) =

0, |s(v)| ∈ {0, 1}∑
vi∈s(v)

[h(vi)−
∑
vj∈s(v)

h(vj)

|s(v)| ]
2

|s(v)| , |s(v)| > 2

(6)

where h(vi) denotes the subtree height of node vi. IB = 0 means a balanced tree, and IB is greater
than 0 means the tree is more unbalanced. Through the normalization function fs, the range of IB is
constrained to the interval [0,1).

Vertical Degree Distribution (ID):

ID = Sigmod
(
D(dv∗)(

fDCG(dv∗)− fDCG(dov∗)

fDCG(drv∗)− fDCG(dov∗)
− 1

2
)
)

dv∗ = {
∑
v1i∈v1

∗

|s(v1i )|
|v1
∗|

, . . . ,
∑

vH−1
i ∈vH−1

∗

|s(vH−1i )|
|vH−1∗ |

}

fDCG(d) =
∑
di∈d

2di − 1

log2(i+ 1)
, i > 0

(7)

where D(dv∗) denotes the variance of all elements in dv∗ , dv∗ denotes the ordered set (div∗ 6 di+1
v∗ )

of the mean degree of all non-leaf nodes at each level, vl∗ denotes the set of all non-leaf nodes at
the l level, v1

∗ = {V0}, H denotes the hight of the entire hierarchical structure, dov∗ denotes the
ordered set of dv∗ sequentially sorted, and drv∗ denotes the ordered set of dv∗ sorted in reverse order.
dv∗ = drv∗ means the node near the root node has the maximum degree. dv∗ = dov∗ means the node
near the leaf node has the maximum degree. Therefore, ID = 0.5 means that the degree of nodes
is evenly distributed, ID < 0.5 means that the degree of nodes nearer to the leaf node is larger, and
ID > 0.5 means that the degree of nodes nearer to the root node is larger.

We can generate hierarchical structures with different IB and ID by two formulas, respectively.

Control the Change of IB Recursive formula for the probability Pr(vi) of whether a node vi has
children:

Pr(vi) =

{
Pr(v), |s(v)| = 1

[αr + (1− αr)
( |s(v)|−i
|s(v)|−1

)αt
] · Pr(v), |s(v)| > 2

Pr(V0) = 1

(8)

where vi ∈ s(v), v ∈ V, αr ∈ [0, 1], and αt > 0. A smaller parameter αr or a larger parameter αt
means that the generated hierarchical structure is more unbalanced (IB → 1).

14



Under review as a conference paper at ICLR 2024

Control the Change of ID The formula for the number Ng(v) of child nodes generated by a node v
(calculated sequentially by hierarchical traversal):

Ng(v) = min(bN (µv, σ
2
v) + 0.5c, |V| − |V′|, 1)

µv = βµs + (βµe − βµs)
( |V′| − 1

|V| − 1

)βtµ
σv = βσs + (βσe − βσs)

( |V′| − 1

|V| − 1

)βtσ (9)

where b·c denotes rounded down, N denotes the normal distribution, |V| denotes the number of
nodes that are scheduled to be generated, |V′| denotes the number of nodes that have been generated,
v ∈ V, βtσ > 0, βtµ > 0, βµs > 0, βµe > 0, βσs > 0, and βσe > 0. The parameters βµs and βσs
denote the mean and standard deviation of the number of child nodes generated by the root node,
respectively. The parameters βµe and βσe denote the mean and standard deviation of the number of
child nodes generated by the last non-leaf node in the hierarchical traversal, respectively. The more
βµs is greater than βµe , the more ID is greater than 0.5.

We also need to mix the different hierarchies to obtain a graph structure. We do this by randomly
overlapping the nodes of the different hierarchies. For all nodes Vi and Vj of both hierarchies, the
number of nodes to be overlapped is:

fo(Vi,Vj) = bN (γµ, γ
2
σ) ·min(|Vi|, |Vj|)c (10)

where the parameters γµ and γσ denote the mean and standard deviation of the proportion of
overlapping nodes.

Although the above generation methods involve a large number of parameters, we only need to focus
on the final IB and ID to analyze the different hierarchical structures. For the node classification task,
we also need to generate the classification labels of the nodes. A reasonable approach is that nodes
of the same class are on the same branch, and the number of nodes of different classes is the same.
This will build a dataset that is easy to classify and more suitable for analyzing the HRC of the node
classification task.

We show the visualization of five typical hierarchical structures in Figure 10, and their detailed
parameters are described in Table 2. Each of these five typical hierarchical structures has the
following characteristics: Tree1, complete n-ary tree (IB = 0, ID = 0.5); Tree2, unbalanced tree
(IB � 0, ID ≈ 0.5); Tree3, the degree of leaf nodes is greater (IB ≈ 0, ID � 0.5); Tree4, the
degree of root node is greater (IB ≈ 0, ID � 0.5); Tree5, mixing of multiple trees. We find the
parameters to generate these hierarchical structures by the hill-climbing method.

Table 2: Description of the five typical hierarchical structures and the parameters used to generate
them, where nc denotes the number of classes.

Tree |V| H IB ID nc αr αt βµs βµe βtµ βσs βσe βtσ Describe

Tree1 3280 8 0 0.5 6 1 1 3 3 1 0 0 1 Complete 3-ary tree
Tree2 3280 76 0.2181 0.5016 6 0.2 2 5 5 1 0 0 1 Unbalanced tree
Tree3 3280 11 0.0004 0.3271 6 1 1 2 7 1 0.4 1.5 1 Degree of leaf is greater
Tree4 3280 8 0.0083 0.7791 6 1 1 6 1 0.3 0.1 1 1 Degree of root is greater
Tree5 7565 composed of {T1,T2,T3,T4,T5,T6,T7,T8}, γµ = 0.1, γσ = 0.1 Multiple trees mixed

T1 1093 7 0 0.5 - 1 1 3 3 1 0 0 1 Complete 3-ary tree
T2 1093 30 0.1095 0.5007 - 0.2 2 5 5 1 0 0 1 Unbalanced tree
T3 1093 9 0.0010 0.3684 - 1 1 2 7 1 0.4 1.5 1 Degree of leaf is greater
T4 1093 7 0.0099 0.7714 - 1 1 6 1 0.3 0.1 1 1 Degree of root is greater
T5 1093 7 0 0.5 - 1 1 3 3 1 0 0 1 Complete 3-ary tree
T6 1093 34 0.1367 0.5036 - 0.2 2 5 5 1 0 0 1 Unbalanced tree
T7 1093 9 0.0009 0.3698 - 1 1 2 7 1 0.4 1.5 1 Degree of leaf is greater
T8 1093 7 0.0090 0.7700 - 1 1 6 1 0.3 0.1 1 1 Degree of root is greater

A.4 EVALUATION PROCESS

To analyze the effect of different optimization objectives and hierarchical structures on the HRC, we
use five steps to construct the evaluation process of the benchmark. As shown in Figure 11, the five
steps are: (1) construct the dataset based on the hierarchical structures in Section 3.2; (2) construct
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Tree1 Tree2 Tree3

Tree4 Tree5 T1 T2 T3 T4

T5 T6 T7 T8

Figure 10: Five typical hierarchical structures, where n denotes the number of nodes, c0-c5 denote the
class of nodes, cNone denotes nodes without class, T1-T8 denote the subtrees that constitute Tress5,
and TNone denotes the overlapping nodes of different subtrees. Since the coordinates of the nodes are
obtained during the visualization process, the evaluation metrics can work. Md and Mdd represent
graph distortion and normalized graph distortion, respectively.

Dataset

Embedding
methods

Optimization
objectives

Encoder Decoder

Hierarchical
structures

Evaluation
metrics

(1) (2) (3)

(4) (4) Training(4)
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Figure 11: The evaluation process of the HRCB.

the encoder based on the embedding methods in Table 5; (3) construct the decoder based on the
optimization objectives in Table 6; (4) train the encoder-decoder model; (5) evaluate the embedding
of encoder outputs based on the evaluation metrics in Section 3.1.

We use the control variables method for the first and third steps to analyze the two influencing factors.
The other hierarchical structures and optimization objectives can also be implemented by replacing
the dataset and decoder in the first and third steps. In addition, we can also change the encoder in the
second step to achieve the analysis of different embedding methods.

16



Under review as a conference paper at ICLR 2024

Disease Animal

Figure 12: Visualization and description of two public hierarchical datasets, similar to Figure 10.

B IMPLEMENTATION DETAILS

In this section, we provide a more detailed exposition of the experimental setup presented in Section
5.1.

B.1 DATASETS

We show visualization and description of two public hierarchical datasets in Figure 12. The six
classes of nodes in Animal are obtained by the method in Appendix A.3. We chose these two
public hierarchical datasets because real-world graph structures often lack a standardized hierarchical
relationship for us to measure HRC against. Table 3 summarizes the all datasets we utilized.

Table 3: Statistics of all datasets. Among them, Disease and Animal are utilized for the analysis of
optimization objectives and embedding methods (Figures 5, 6, and 9). Trees-36, Tree5, and T1-T8 are
used for the analysis related to hierarchical structures (Figures 7, 8). Trees-36 comprises 36 datasets,
each with 3280 nodes and 3279 edges, with IB and ID ranging between 0 to 1.

Name Nodes Edges IB ID Classes

Disease 1044 1043 0 0.4834 2
Animal 4017 4016 0.0291 1 6

Trees-36 3280 3279 (0,1) (0,1) -
Tree5 7565 8736 - - -

T1 1093 1092 0 0.5 -
T2 1093 1092 0.1095 0.5007 -
T3 1093 1092 0.0010 0.3684 -
T4 1093 1092 0.0099 0.7714 -
T5 1093 1092 0 0.5 -
T6 1093 1092 0.1367 0.5036 -
T7 1093 1092 0.0009 0.3698 -
T8 1093 1092 0.0090 0.7700 -

B.2 MANIFOLD SPACES

The visualization of these three manifold spaces is shown in Figure 13. As illustrated in Table 4, the
differences between various manifold spaces in HNNs mainly manifest in the arithmetic operations.
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Table 4: Main operations on different manifold spaces. Where ⊕ and ⊗ denote addition and
multiplication in manifold spaces respectively, c denotes the absolute value of Riemann curvature,
K = 1/c, 〈x,x〉L = 〈x,x〉−2x20, ||v||2 =

√
〈v,v〉L, x0 := [K, 0, ..., 0] ∈ Hd,K , 0 := [0, ..., 0] ∈

Rd, W is European matrix, and dM denotes geodesic distance. PKx→y(v) denotes the position of a
point v in the tangent space of hyperbolic point y after translating the tangent space of hyperbolic
point x to that of hyperbolic point y. expKx (v) maps a point v in the tangent space of hyperbolic
point x back to a hyperbolic point in the hyperbolic space. logKx (y) maps a hyperbolic point y to its
position in the tangent space of hyperbolic point x.

Operations Rd Dd,K Hd,K

{x := [x1, ..., xd] ∈ Rd : ||x||22 < K, x0 = 0} {x := [x0, ..., xd] ∈ Rd+1 : 〈x,x〉L = −K,x0 > 0}

x⊕c y x+ y
(1+2c〈x,y〉+c||y||22)x+(1−c||x||22)y

1+2c〈x,y〉+c2||x||22||y||
2
2

expK
x (PK

x0→x(logK
x0(y))), x 6= x0,y 6= x0

W ⊗c x Wx 1√
c

tanh( ||Wx||2
||x||2

arctanh(
√
c||x||2)) Wx

||Wx||2
, x 6= 0 expK

x0(W logK
x0(x)), x 6= x0

PK
x→y(v) v logK

y (y ⊕c expK
x (v)), v 6= 0 v − 〈

logKx y,v〉L(logKx y+logKy x)

(
√

Karcosh(−c〈x,y〉L))2
, x 6= y,v 6= 0

expK
x (v) x+ v x⊕c (tanh(

√
c

1−c||x||22
||v||2) v√

c||v||2
), v 6= 0 cosh( ||v||L√

K
)x+

√
Ksinh( ||v||L√

K
) v
||v||L

, v 6= 0

logK
x (y) y − x

1−c||x||22√
c

arctanh(
√
c|| − x⊕c y||2) −x⊕cy

||−x⊕cy||2
, x 6= y

√
Karcosh(−c 〈x,y〉L)

y+c〈x,y〉Lx
||y+c〈x,y〉Lx||L

, x 6= y

dM(x,y) ||x− y||2 (1/
√
c)arcosh(1 + 2

c||x−y||22
(1−c||x||22)(1−c||y||22)

)
√
Karcosh(−c 〈x,y〉L)

dM(X)
[
dM(x1,X), ..., dM(xn,X)

]
, dM(xi,X) := [dM(xi,x1), ..., dM(xi,xn)]

T , xi ∈ X, n = |X|
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Figure 13: The same hierarchical structure is demonstrated in Euclidean space and hyperbolic space
(Poincaré ball model and Hyperboloid model). We randomly generated a tree with 300 nodes (red
and blue) in the circular and square Euclidean space respectively, and then obtained 3,000 points
(green) by Monte Carlo sampling respectively, and finally obtained the corresponding points in the
Poincaré ball and Hyperboloid models one by one by exponential mapping.

Addition and multiplication in hyperbolic space typically necessitate the use of tangent spaces, as
performing calculations in these tangent spaces is more intuitive for understanding.
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Table 5: Embedding Methods and their associated propagation rules. The rules govern the transition
from the output Xi of the i-layer neural network to the output Xi+1 of the (i + 1)-layer neural
network. The table illustrates the use of Ã as the normalized adjacency matrix and Wi,bi as the
trainable parameters, along with the geodesic distance dM (see Table 4 for details).

Embedding Methods Propagation rule

MLP (Ganea et al., 2018) Xi+1 = σ
(

(Wi ⊗c Xi)⊕c bi
)

GCN (Liu et al., 2019) Xi+1 = σ
(
Ã⊗c (Wi ⊗c Xi)⊕c bi

)
GAT (Zhang et al., 2019) Xi+1 = σ

(
ai ⊗c (Wi ⊗c Xi)⊕c bi

)
ai = Softmax(dM(Wi ⊗c Xi)Ã)

Table 6: Optimization Objectives and their corresponding Downstream Tasks. The objectives include
Graph Distortion (GD), Hypernymy Relations (HR), Fermi-Dirac with cross-entropy (FD), and
Logistic Regression (LR), while the tasks are Graph Reconstruction (GR), Link Prediction (LP), and
Node Classification (NC). In this table, dG(u, v) represents the shortest path length between nodes u
and v, V denotes the set of all nodes, E indicates the set of all edges, and L(u) refers to the one-hot
encoding of node u.

Optimization Objectives Optimization objective function Downstream Tasks

GD (Gu et al., 2019) L1(Θ) =
∑
u,v∈V,u6=v

∣∣∣∣ (dM(u,v)
dG(u,v)

)2
− 1

∣∣∣∣ GR

HR (Nickel & Kiela, 2017) L2(Θ) = −
∑

(u,v)∈E loge
e−dM(u,v)∑

v′∈N(u) e
−dM(u,v′) GR

N (u) = {v′ | (u, v′) /∈ E} ∪ {v}, |N (u)| = 11

FD (Chami et al., 2019) L3(Θ) = −
(∑

(u,v)∈E loge P (u, v) LP

+
∑

(u′,v′)/∈E loge(1− P (u′, v′))
)

P (u, v) = (e(dM(u,v)−2) + 1)−1

LR (Chami et al., 2019) L4(Θ) = −
∑
u∈V loge 〈L(u), S(u)〉 NC

S(u) = [ eu1∑
ui∈u

eui , · · · ,
e
u|u|∑

ui∈u
eui ]

B.3 HYPERBOLIC NEURAL NETWORKS

The main differences between these network embedding models lie in their propagation rules. Table
5 summarizes the propagation rules of these three network embedding models and describes them
using the general operations of manifold spaces.

B.4 OPTIMIZATION OBJECTIVES

Table 6 displays four downstream tasks along with their corresponding optimization objectives and
specific loss functions.

C RESULT DETAILS

In Section 5.2, we conducted rigorous significance tests to analyze the relevant conclusions as to
why HNNs are effective. Although this analysis is highly reliable, it combines evaluation metrics in
HRCB, obscuring the performance of individual metrics. Recognizing that some researchers may
be interested in different aspects of HRCB evaluation, we present the main results’ performance on
various metrics. Figure 14 displays the performance of the four embedding methods from Figure 5
on five metrics respectively. Figure 16 shows the performance of the four downstream task objectives
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Figure 14: Results of four embedding methods (Comb,GAT,GCN,MLP) on three manifold spaces
(R,D,H) and two public datasets (Animal,Disease). We removed LR (NC tasks) that are not relevant
to the hierarchical representation capability, so each result is an average of 24 sets of experiments
({GD,HR,FD}×eight dimensions) to obtain more general conclusions. Comb has a floating point
precision of 3000 bits, while other hyperbolic neural network methods have a floating point precision
of 32 bits.

from Figure 6(a) on five metrics respectively. Figure 17 illustrates the performance of all hierarchical
structures from Figure 8 on five metrics respectively.

Overall, these figures are consistent with the main analysis in Section 5.2, providing additional detail
on individual metrics, which we will not reiterate here. Beyond the principal analysis, we also derived
some intriguing conclusions from the experimental details:

(1) The Comb method is impacted by the floating point precision. This method in Figure 14 uses
3000-bit floating point precision, but Mb in Figure 14(f) still does not reach 1. This is because the
vector values in hyperbolic space can be very large (H) or very close to the boundary (D, as shown in
Figure 15).

(2) From the Figure 16, we can see that Mdd cannot replace other evaluation metrics. The results do
not show the trend that the smaller the Mdd is, the larger the other evaluation metrics are, because the
graph distortion is not designed for the hierarchical structure.
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(a) Float 32 (c) Float 3000(b) Float 64

Figure 15: Visualization of Comb with different floating point precision on Animal dataset. c0-c5
denote the class of nodes, cNone denotes nodes without class. It can be seen that the Comb with
32-bit floating point precision is the worst. Since the volume of the Poincaré ball model increases
exponentially with the radius, the closer to the edge the better the representation is. However, the
closer to the edge, the higher the floating point precision is required, otherwise it is impossible to
distinguish the different nodes. In Figure (c), all the nodes except the root node are at the edge, and
the different nodes too close to the edge cannot be distinguished in the visualized image.
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Figure 16: Results of four optimization objectives (GD,HR,FD,LR) on three manifold spaces
(R,D,H) and two public datasets (Animal,Disease). Each result is an average of 24 sets of ex-
periments ({MLP,GCN,GAT}×eight dimensions) to obtain more general conclusions.
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Figure 17: Mix-tree denotes training with Tree5 (mixed by T1-T8) first, and then evaluating T1-
T8 separately. Sub-tree denotes that T1-T8 are trained and evaluated separately. Comb denotes
that T1-T8 are trained and evaluated separately using Comb method. The results of each of the
Mix-tree and Sub-tree are the average of 48 sets of experiments ({D,H} × {GD,HR,FD}×eight
dimensions×GCN).
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