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Abstract

While Large Language Models (LLMs) adapt001
well to downstream tasks after fine-tuning, this002
adaptability often compromises prompt robust-003
ness, as even minor prompt variations can sig-004
nificantly degrade performance. To address005
this, we propose prompt-agnostic fine-tuning006
(PAFT), a simple yet effective approach that dy-007
namically adjusts prompts during fine-tuning.008
This encourages the model to learn underlying009
task principles rather than overfitting to specific010
prompt formulations. PAFT operates in two011
stages: First, a diverse set of meaningful, syn-012
thetic candidate prompts is constructed. Sec-013
ond, during fine-tuning, prompts are randomly014
sampled from this set to create dynamic train-015
ing inputs. Extensive experiments across di-016
verse datasets and LLMs demonstrate that mod-017
els trained with PAFT exhibit strong robust-018
ness and generalization across a wide range of019
prompts, including unseen ones. This enhanced020
robustness improves both model performance021
and inference speed while maintaining training022
efficiency. Ablation studies further confirm the023
effectiveness of PAFT.024

1 Introduction025

Large language models (LLMs) have demonstrated026

remarkable success across a diverse range of nat-027

ural language processing (NLP) tasks (Zhao et al.,028

2024; Xu et al., 2023). To further enhance the per-029

formance of LLMs on specific downstream tasks,030

supervised fine-tuning (SFT) has emerged as a031

widely adopted strategy (Ouyang et al., 2022; De-032

vlin et al., 2019). This approach typically involves033

augmenting input data with task-specific instruc-034

tions and constructing dialogue datasets with ex-035

pected outputs, enabling the model to effectively036

learn task-specific patterns during fine-tuning. Em-037

pirical studies have shown that SFT can substan-038

tially improve model performance on downstream039

tasks (Raffel et al., 2023; Hu et al., 2023b; Wei040

Figure 1: This figure shows how small changes in
prompts can drastically affect the accuracy of a model.
Two examples show the same user question, but the
prompts differ by only one word, resulting in different
answers. The first prompt achieves 86.27% accuracy
across the entire dataset, while the second prompt drops
significantly to 66.93%. This highlights how even small
modifications can lead to large swings in performance
if a model lacks prompt robustness.

et al., 2022). However, a critical limitation of this 041

paradigm is its reliance on fixed instruction tem- 042

plates (Mishra et al., 2022; Chung et al., 2022) for 043

each downstream task. This rigidity often leads to 044

overfitting, whereby models become excessively 045

dependent on specific instruction patterns (Zhang 046

et al., 2024; Kung and Peng, 2023). Consequently, 047

during inference on downstream tasks, even mi- 048

nor deviations between user-provided instructions 049

and the training instructions can result in signifi- 050

cant performance degradation (Mialon et al., 2023; 051

Raman et al., 2023). This issue is particularly pro- 052

nounced when LLM practitioners, who may lack 053

domain expertise, provide prompts that deviate 054

substantially from those used during SFT. In such 055

scenarios, carefully fine-tuned models may expe- 056

rience drastic performance drops, occasionally ap- 057

proaching random guessing levels (Voronov et al., 058

2024). Previous research has primarily focused on 059

prompt tuning—introducing trainable vectors (soft 060

prompts) to optimize performance (Liu et al., 2022; 061

Li and Liang, 2021; Lester et al., 2021)—however, 062

1



Figure 2: An overview of PAFT: This figure compares Traditional Supervised Fine-tuning (SFT) and Prompt-
Agnostic Fine-Tuning (PAFT), highlighting their main differences. SFT relies on a fixed dataset and predefined
prompts, which limits its robustness and generalization to different prompts. In contrast, PAFT dynamically selects
prompts during training, which improves robustness and generalization to a wide range of prompts. By leveraging a
commercial LLM to generate candidate prompts, PAFT provides a more general and scalable solution.

these methods inadvertently increase sensitivity to063

prompt variations (Wen et al., 2023; Qin and Eisner,064

2021), resulting in significant performance fluctu-065

ations and increased costs associated with prompt066

engineering (Han et al., 2024; Longpre et al., 2023).067

Prompt robustness in SFT has received limited at-068

tention, with most existing work focusing on in-069

context learning (Zhu et al., 2024; Shi et al., 2024;070

Ishibashi et al., 2023).071

To address this critical gap, we present PAFT,072

an innovative fine-tuning framework designed to073

dynamically adapt to diverse prompts during train-074

ing. To our knowledge, this is the first systematic075

approach to enhancing prompt robustness in SFT,076

a vital yet under-explored area. Unlike traditional077

methods, which often overfit to specific prompt078

patterns, PAFT enables models to grasp underly-079

ing task semantics, ensuring robust performance080

across various human-written prompts.As shown081

in Figure 2, PAFT operates in two phases: (1) Can-082

didate Prompt Construction (Section 4.1) and (2)083

Dynamic Fine-Tuning (Section 4.2). Initially, a di-084

verse set of high-quality synthetic prompts is gener-085

ated, capturing essential task semantics while main-086

taining linguistic variability. During fine-tuning, a087

dynamic prompt sampling strategy is employed,088

randomly selecting prompts from our curated set to089

expose the model to a wide range of formulations.090

Extensive evaluations reveal that PAFT achieves091

three primary objectives: (1) significantly boosting 092

model robustness and generalization across diverse 093

prompts; (2) maintaining state-of-the-art perfor- 094

mance on downstream tasks; and (3) potentially en- 095

hancing inference speed while preserving training 096

efficiency. These findings indicate that PAFT rep- 097

resents a promising direction for developing more 098

robust and user-friendly language models. Our key 099

contributions are: (a) Through comprehensive ex- 100

periments, we demonstrate that fine-tuning with 101

fixed prompts significantly undermines the model’s 102

robustness to prompt variations, leading to poor 103

generalization on unseen prompts and severe per- 104

formance degradation; and (b) We propose PAFT, 105

comprising candidate prompt construction and dy- 106

namic fine-tuning, a novel approach to enhance the 107

prompt robustness of fine-tuned models. This ap- 108

proach ensures consistent and robust performance 109

across a variety of test prompts, including those not 110

encountered during training. 111

2 Related Work 112

Prompt Optimization Effective prompt engi- 113

neering is crucial for maximizing LLM perfor- 114

mance, motivating various optimization techniques 115

(Chang et al., 2024; Li, 2023; Diao et al., 2023; Sun 116

et al., 2022). Methods like INSTINCT (Lin et al., 117

2024) utilize neural bandits and LLM embeddings 118

for efficient prompt search, while ZOPO (Hu et al., 119
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Figure 3: This figure presents the results of preliminary experiments conducted on four datasets to evaluate the
accuracy of the base model and the SFT model across over 450 diverse prompts. The probability distribution
plots illustrate the distribution of accuracy for models. The results show that while the SFT model has an overall
improvement in accuracy compared to the base model, the accuracy of some prompts is still relatively low, and the
standard deviation of the SFT model is high, indicating that the accuracy varies greatly between different prompts,
which highlights the impact of prompt design and the need for further optimization through model fine-tuning.

2024) improves efficiency through localized search.120

BATprompt (Shi et al., 2024) incorporates robust-121

ness considerations in in-context learning by lever-122

aging natural language perturbations. However,123

these methods often suffer from prompt fragility,124

exhibiting high sensitivity to even minor prompt al-125

terations, particularly after fine-tuning. This limits126

LLM generalization in real-world applications. Our127

work addresses this limitation by prioritizing ro-128

bustness across diverse prompt formulations, rather129

than optimizing for a single prompt.130

Supervised Fine-Tuning (SFT) SFT is a dom-131

inant paradigm for adapting LLMs, valued for132

its efficiency. Two main SFT approaches exist:133

soft prompt tuning (optimizing continuous vectors134

prepended to the input while freezing base model135

parameters) (Li and Liang, 2021; Liu et al., 2022),136

and full/parameter-efficient fine-tuning (PEFT)137

(Shu et al., 2024; Ouyang et al., 2022; Liu et al.,138

2021; Lester et al., 2021). Among PEFT tech-139

niques, Low-Rank Adaptation (LoRA) (Hu et al.,140

2022) is widely used, freezing pre-trained param-141

eters and introducing low-rank trainable matrices.142

Advanced LoRA variants further aim to mitigate143

overfitting and enhance generalization (Chen et al.,144

2023; Si et al., 2024; Wei et al., 2024). However,145

these methods, while mitigating parameter-level146

overfitting, typically rely on fixed training prompts,147

thus neglecting prompt robustness. This is partic-148

ularly problematic for soft prompt tuning, where149

models exhibit high sensitivity to prompt varia-150

tions. Consequently, minor deviations from train-151

ing prompts can drastically degrade performance.152

To address this, we propose PAFT, a novel frame-153

work that prioritizes prompt robustness while pre-154

serving computational advantages. By decoupling155

model performance from specific prompt formula-156

tions, PAFT significantly enhances the adaptability 157

and reliability of fine-tuned models. 158

3 Preliminaries 159

To systematically study the impact of prompt varia- 160

tions on fine-tuned models, we use LoRA (Hu et al., 161

2022) as an illustrative example and conduct com- 162

prehensive preliminary experiments on multiple 163

downstream tasks to assess prompt sensitivity and 164

robustness. These tasks include natural language 165

inference, question answering, and reading com- 166

prehension, using the LLaMA3-8B (Meta, 2024) 167

model. We constructed a comprehensive set of over 168

450 prompts, covering a wide range of language 169

styles, task-specific instructions, and formatting 170

variations. Figure 3 presents a statistical analy- 171

sis of the accuracy distribution for both the base 172

model and SFT model across these prompts, reveal- 173

ing a key finding: prompt selection significantly 174

influences model performance, with considerable 175

accuracy variation observed across prompts, irre- 176

spective of the downstream task. Only a small 177

fraction (typically less than 10%) of prompts yields 178

near-optimal performance; some even degrade ac- 179

curacy to near-random levels. Minor prompt mod- 180

ifications (e.g., rephrasing, punctuation, reorder- 181

ing) induce substantial fluctuations. For example, 182

the addition of "Question" improves accuracy by 183

20% (Figure 1). This sensitivity highlights the 184

fragility of current fine-tuning methods and their 185

strong dependence on specific prompt formulations. 186

These findings align with prior work (He et al., 187

2024; Voronov et al., 2024; Salinas and Morstatter, 188

2024; Min et al., 2022; Gao et al., 2021); however, 189

we demonstrate that this sensitivity persists across 190

tasks, suggesting a fundamental limitation of cur- 191

rent PEFT paradigms. Motivated by these findings, 192
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Figure 4: The performance of the base model, the SFT model, and the PAFT model is compared on multiple
reasoning and reading comprehension tasks. This is a visual comparison to Figure 3 to illustrate the effectiveness
of PAFT, where the probability distribution plots show the distribution of accuracy of different models on the test
prompts that were not used during PAFT training. The PAFT model shows superior performance compared to the
base model and the SFT model, achieving higher accuracy and lower variance in all tasks.

we propose PAFT, addressing prompt robustness193

by decoupling performance from specific formu-194

lations, ensuring consistent results across diverse195

prompts, and significantly enhancing the practical196

applicability of fine-tuned models in real-world197

scenarios where prompt variations are inevitable.198

4 The PAFT Framework199

To improve the prompt robustness of LLMs, we200

propose the PAFT framework in Figure 2. As201

shown in Figure 2, the PAFT framework consists of202

two key stages: candidate prompt construction (see203

Section 4.1 for details) and dynamic fine-tuning204

(see Section 4.2 for details).205

4.1 Candidate Prompt Construction206

To ensure the robustness and effectiveness of PAFT207

across diverse prompts, we design a comprehen-208

sive prompt construction framework that aims to209

generate diverse and meaningful candidate prompts210

efficiently, enabling the model to generalize across211

different prompt formats. Our approach leverages212

the powerful generative capabilities of LLMs (Kohl213

et al., 2024) and comprises three key phases: First,214

recognizing the inherent variability in how differ-215

ent LLMs interpret downstream tasks due to vari-216

ations in pre-training data, model architectures,217

and optimization objectives (Minaee et al., 2024;218

Zhao et al., 2024), we employ a multi-model ap-219

proach, selecting 10 mainstream LLMs accord-220

ing to their generation capabilities, including mod-221

els from OpenAI et al. (2024); Bai et al. (2023);222

Ouyang et al. (2022), and other widely used com-223

mercial LLMs, for prompt generation. This di-224

verse selection ensures broad coverage of potential225

prompt formulations, capturing variations in lin-226

guistic style, task interpretation, and instructional227

clarity, thereby mitigating biases towards any sin-228

gle model’s prompt generation tendencies. Sec- 229

ond, we employ a dual-strategy approach, combin- 230

ing few-shot and zero-shot techniques to balance 231

prompt quality and diversity. For few-shot prompt- 232

ing, we leverage principles from in-context learn- 233

ing, providing each LLM with carefully curated, 234

human-crafted examples to guide the generation of 235

semantically coherent and task-relevant prompts, 236

ensuring meaningfulness and alignment with the 237

intended task. For zero-shot prompting, we pri- 238

oritize diversity by allowing LLMs to generate 239

prompts without explicit examples, thus encour- 240

aging a wider range of linguistic styles, structural 241

variations, and task formulations. Specifically, we 242

generate 20 prompts using each strategy, resulting 243

in a comprehensive set encompassing both high- 244

quality prompts (derived from few-shot prompting) 245

and diverse, potentially less optimal prompts (de- 246

rived from zero-shot prompting). This balanced ap- 247

proach exposes the model to a realistic distribution 248

of prompt quality during training, thereby enhanc- 249

ing its robustness to real-world scenarios where 250

prompt quality may vary significantly. Finally, to 251

rigorously evaluate the robustness of PAFT, we ran- 252

domly partition the generated prompts into training 253

and test sets using an 8:1 ratio. Crucially, the train- 254

ing and test sets contain entirely distinct prompts, 255

ensuring evaluation on completely unseen formu- 256

lations. This partitioning strategy enables the con- 257

struction of training data that exposes the model 258

to a wide range of prompt styles while provid- 259

ing a robust testbed for assessing generalization 260

to novel prompts. By decoupling training and test 261

prompts, we confirm that performance improve- 262

ments reflect a genuine ability to handle diverse 263

and unseen prompt formulations, rather than over- 264

fitting to specific prompt patterns. This compre- 265

hensive framework ensures that PAFT learns task 266
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semantics independently of specific prompt pat-267

terns, enabling effective generalization across a268

wide range of real-world scenarios, and provides a269

scalable and cost-effective solution for improving270

prompt robustness in LLMs.271

4.2 Dynamic Fine-Tuning272

The dynamic fine-tuning process in our PAFT273

framework is designed to enhance the robustness274

of LLMs to diverse prompt formulations while pre-275

serving high performance on downstream tasks.276

As illustrated in Algorithm 1, during each train-277

ing epoch t, a prompt p is randomly sampled from278

a diverse set of synthetically generated candidate279

prompts P (line 4 in Algorithm 1), ensuring expo-280

sure to a wide range of linguistic styles and task281

formulations. For each data point (x, y) ∈ D (line282

6 in Algorithm 1), the selected prompt p is reused283

for K consecutive training steps (lines 7-9 in Algo-284

rithm 1), and the input I = InputConstruction(x, p)285

is constructed by combining the prompt p with286

the data point x (line 7 in Algorithm 1). The287

model parameters θ are then updated using stochas-288

tic gradient-based optimization methods, such as289

SGD (Sra et al., 2011) or AdamW (Loshchilov and290

Hutter, 2019) (line 8 in Algorithm 1), enabling the291

model to learn task-specific semantics while adapt-292

ing to the formulation of prompt. After every K293

steps, a new prompt is sampled from P to replace294

the current one (lines 10-11 in Algorithm 1), ensur-295

ing that the model is exposed to multiple prompts296

within a single epoch. At the end of each epoch, the297

model parameters θ0t+1 are initialized with the final298

parameters from the previous epoch, θKt (line 12 in299

Algorithm 1), ensuring continuity in the learning300

process. After T epochs, the fine-tuned model pa-301

rameters θ∗ = θT achieve consistent performance302

across a wide range of prompts (line 16 in Algo-303

rithm 1), including those not encountered during304

training. This makes PAFT particularly suitable for305

real-world applications where prompt quality and306

style may vary significantly, such as when users307

lack domain expertise or when prompts are gen-308

erated automatically. By decoupling model per-309

formance from fixed prompt formulations, PAFT310

addresses a key limitation of traditional fine-tuning311

methods, ensuring robust performance without re-312

quiring extensive prompt engineering. The dy-313

namic fine-tuning strategy enhances both the ro-314

bustness and generalization of fine-tuned models315

while maintaining computational efficiency, mak-316

Algorithm 1 The PAFT Framework
1: Input: Generate a good candidate prompt training set P;

A task-specific dataset D; The number of training epochs
T ; The number of same prompt training K; Initialized
trainable parameters θ00 ; Learning rate ηθ

2: Output: Fine-tuned model parameters θ∗.
3: for each epoch t = 0 to T − 1 do
4: p ← RandomlySample(P) {Randomly select a

prompt from the candidate set}
5: k ← 0 {Initialize the step counter}
6: for each data point (x, y) ∈ D do
7: I ← InputConstruction(x, p) {Construct input us-

ing prompt p and data x}
8: θk+1

t ← θkt − ηθ∇θℓ(θ, I)|θ=θkt
{Update model

parameters}
9: k ← k + 1 {Increment the step counter}

10: if k mod K == 0 then
11: p← RandomlySample(P) {Update prompt ev-

ery K steps}
12: end if
13: end for
14: θ0t+1 ← θkt {Carry over parameters to the next epoch}
15: end for
16: return θ∗ = θT {Return the final fine-tuned parameters}

ing it a practical solution for improving the adapt- 317

ability of LLMs in diverse settings. 318

5 Empirical Results 319

In this section, we conduct extensive experiments 320

to evaluate the effectiveness and efficiency of our 321

proposed PAFT framework. We begin by detailing 322

the datasets and experimental setup in Section 5.1, 323

followed by a comprehensive analysis of the main 324

results in Section 5.2. Additionally, we perform 325

ablation studies to investigate the impact of key 326

components of our framework, as discussed in Sec- 327

tion 5.3. 328

5.1 Datasets and Setup 329

To evaluate the performance of our proposed PAFT 330

method, we focus on reasoning and reading com- 331

prehension tasks, as these domains are particularly 332

susceptible to prompt variations. As PAFT is the 333

first work to address the prompt robustness problem 334

in large language models (LLMs) through training, 335

we generate task-specific candidate prompts for 336

each downstream task. Following the dataset selec- 337

tion process of Hu et al. (2023a); Wei et al. (2024), 338

we select the Winogrande (Sakaguchi et al., 2019), 339

PIQA (Bisk et al., 2019), and Hellaswag (Zellers 340

et al., 2019) reasoning benchmarks and additionally 341

include the RACE (Lai et al., 2017) reading com- 342

prehension benchmark. These datasets are widely 343

recognized for their ability to assess reasoning and 344

comprehension, provide independent training, val- 345
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Table 1: Performance comparison of different fine-tuning methods on the test prompt sets across various reasoning
and reading comprehension tasks using the LLaMA3-8B (Meta, 2024) with LoRA rank 8. Results are reported as
average accuracy, standard deviation, and percentage of test prompts exceeding a specific score threshold (90% for
Hellaswag, 80% for Winogrande, and 85% for other datasets). The Base Model represents the pre-trained model
without fine-tuning, user-specified prompt (Wei et al., 2024) refers to fine-tuning with LoRA using human-designed
prompts, TopAccuracy prompt refers to fine-tuning with LoRA using the prompt exhibiting the highest accuracy on
the training set, BATprompt refers to fine-tuning with LoRA using the most robust prompt generated by BATprompt
(Shi et al., 2024), and ZOPO prompt refers to fine-tuning with LoRA using the optimal prompt selected by ZOPO
(Hu et al., 2024) from the training prompt set. PAFT (our proposed method) demonstrates superior performance,
achieving the highest accuracy and lowest variance across all tasks. The last rows show the comparison of PAFT
with the second-best performing method (underlined). The Top column indicates the percentage of test prompts
with a correct rate of 90% for Hellaswag, 80% for Winogrande, and 85% for other datasets.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Metric Mean Std Top Mean Std Top Mean Std Top Mean Std Top Mean Std Top Mean Std Top

Base Model 47.36 ±9.78 0% 74.68 ±6.24 0% 45.15 ±11.78 0% 71.39 ±7.33 0% 67.62 ±6.78 0% 61.24 ±8.38 0%
user-specified prompt 92.35 ±2.78 0% 77.87 ±2.36 0% 78.16 ±7.97 0% 79.88 ±6.32 22% 81.05 ±4.45 4% 81.86 ±4.78 5%
TopAccuracy prompt 91.27 ±2.79 86% 75.96 ±3.89 0% 66.77 ±3.94 0% 84.81 ±4.06 59% 82.45 ±3.26 14% 80.25 ±3.63 32%
BATprompt 90.30 ±1.79 78% 83.41 ±1.74 16% 69.01 ±4.45 0% 83.92 ±5.38 65% 81.33 ±4.21 12% 81.56 ±3.51 34%
ZOPO prompt 92.46 ±2.43 86% 83.52 ±2.23 27% 74.75 ±3.81 0% 83.50 ±5.05 51% 82.36 ±4.53 35% 83.32 ±3.61 40%

PAFT 93.83 ±0.70 100% 89.33 ±0.63 100% 82.09 ±0.81 100% 87.26 ±2.23 94% 85.17 ±1.71 73% 87.57 ±1.57 94%
PAFT Improvement +1.37 -1.09 14% +5.81 -1.11 73% +3.93 -3.00 100% +2.45 -1.83 29% +2.72 -1.55 38% +4.25 -1.94 54%

Table 2: Comparison of inference time (in hours) for
different fine-tuning methods. The base model repre-
sents the pre-trained model without fine-tuning, while
the other rows show the inference time of models fine-
tuned with LoRA using different prompts. PAFT shows
better inference efficiency than other methods. The last
line shows the multiple of PAFT improvement.

Inference time/h Hellaswag PIQA Winogrande RACE Average

Base Model 3.97 1.35 1.72 6.24 3.32
user-specified prompt 6.52 0.98 3.27 8.23 4.75
TopAccuracy prompt 5.75 1.13 2.76 7.56 4.30
BATprompt 4.57 1.57 3.14 7.98 4.32
ZOPO prompt 5.12 0.87 3.23 8.28 4.38

PAFT 1.19 0.39 0.45 2.08 1.02
PAFT Improvement ×3.3 ×2.23 ×3.82 ×3.00 ×3.25

idation, and test sets, and employ accuracy as the346

performance metric. As described in Section 4.1,347

we generate a diverse set of 400 training prompts348

and 50 test prompts, ensuring that the test prompts349

are distinct from the training prompts, see the Ap-350

pendix C for details. This separation rigorously351

evaluates the ability of model to generalize to un-352

seen prompt formulations. We establish five base-353

lines for comparison to isolate the impact of prompt354

engineering on fine-tuning: the pre-trained model355

without fine-tuning (Base Model); fine-tuning with356

human-designed prompts (User-Specified Prompt)357

as in Wei et al. (2024); fine-tuning with the prompt358

exhibiting the highest accuracy on the training set359

(Top-Accuracy Prompt); fine-tuning with the most360

robust prompt generated by BATprompt (Shi et al.,361

2024) (BATprompt); and fine-tuning with the op-362

timal prompt selected by ZOPO (Hu et al., 2024)363

from the training prompt set (ZOPO Prompt). The364

key distinction between these methods lies in the365

prompt selection for fine-tuning. Critically, all 366

models, including the baselines, are evaluated us- 367

ing the same set of 50 test prompts. This consis- 368

tent evaluation protocol allows us to directly com- 369

pare performance consistency and variation across 370

methods. Our implementation leverages the Llama- 371

factory framework (Zheng et al., 2024) and is eval- 372

uated using the Opencompass framework (Contrib- 373

utors, 2023). Detailed experimental configurations 374

are provided in Appendix A. All experiments are 375

conducted on NVIDIA A100, V100, 4090, and L40 376

GPUs to ensure efficient and scalable evaluation. 377

5.2 Main Results 378

PAFT demonstrates strong prompt robustness 379

As shown in Table 1, Figure 4, and Figure 6, PAFT 380

exhibits remarkably low variance across all evalua- 381

tion tasks, indicating excellent prompt robustness. 382

Compared to other methods, PAFT achieves sig- 383

nificantly lower variance, attributable to its unique 384

dynamic prompt selection strategy. This strategy 385

continuously adjusts the prompt during training, 386

compelling the model to learn essential task fea- 387

tures rather than overfitting to a specific prompt for- 388

mat. This contrasts sharply with the other baseline 389

models. User-specified prompts rely on manually 390

designed prompts, making it challenging to ensure 391

both quality and diversity, especially without do- 392

main expertise. While TopAccuracy and ZOPO 393

select the prompt exhibiting the highest accuracy 394

on the training set, they are prone to overfitting 395

to specific prompts and exhibit poor generaliza- 396

tion. Although BATprompt also considers prompt 397
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Figure 5: The performance of TopAccuracy, User-specified, BATprompt, ZOPO, and PAFT models is compared on
multiple reasoning and reading comprehension tasks. Results are reported in terms of their correct distribution. The
tests are conducted on a test set of 50 unseen prompts, different from the ones used in training. The PAFT model
shows superior performance compared to other baselines, achieving higher accuracy and lower variance in all tasks.

robustness, its generated robust prompts are less398

effective than PAFT. In summary, the low vari-399

ance of PAFT implies more stable performance400

and stronger generalization across diverse prompts,401

leading to higher reliability in practical applica-402

tions. Specifically, models trained with PAFT can403

be used to develop more user-friendly question-404

answering systems, agent systems independent of405

input-output formats, and even to better decouple406

LLM capabilities from prompts, enabling more407

accurate LLM evaluation. PAFT achieves top per-408

formance on the majority of prompts, significantly409

outperforming all baselines (Table 1, Top column).410

Furthermore, PAFT maintains high training effi-411

ciency, A detailed discussion of training efficiency412

is provided in Appendix B.413

PAFT achieves state-of-the-art performance414

As shown in Table 1, Figure 4, and Figure 6, PAFT415

achieves the highest average accuracy across all416

evaluated reasoning and reading comprehension417

tasks, significantly outperforming other baseline418

models. Specifically, PAFT surpasses other meth-419

ods on tasks such as HellaSwag, PIQA, Wino-420

grande, RACE, demonstrating its excellent per-421

formance across diverse natural language process-422

ing tasks. This superior performance stems from423

PAFT’s prompt robustness, enabling the model to424

better grasp the core essence of each task and main-425

tain high performance across diverse prompt formu-426

lations. For instance, strong performance of PAFT427

on the open text generation task (HellaSwag) can be428

attributed to its dynamic prompt selection strategy,429

facilitating improved capture of contextual infor-430

mation. Its success on the physical common sense431

reasoning task (PIQA) can be attributed to its en-432

hanced ability to utilize common sense knowledge.433

Similarly, its performance on the reference reso-434

lution task (Winogrande) can be attributed to its435

improved understanding of sentence structure and 436

semantic relations, while its success on the read- 437

ing comprehension task (RACE) can be attributed 438

to its improved capture of topic and key informa- 439

tion. In essence, this performance gain arises from 440

PAFT’s decoupling of the prompt from the task 441

itself, allowing the model to focus on learning the 442

fundamental aspects of the downstream tasks. 443

PAFT enhances inference efficiency In addition 444

to robustness and performance, PAFT also signif- 445

icantly enhances inference efficiency. By funda- 446

mentally enhancing the ability of model to under- 447

stand the core semantics of tasks, PAFT enables 448

the model to solve problems more effectively, gen- 449

erating fewer tokens. This capability directly trans- 450

lates to faster inference speeds, as the model avoids 451

redundant or unnecessary outputs and focuses on 452

concise, accurate responses. To quantify this im- 453

provement, we measured the average end-to-end 454

inference time across all test prompts and datasets, 455

from the input prompt to the final output. As shown 456

in Table 2, models trained with PAFT consistently 457

achieve the fastest inference speeds compared to 458

the baseline methods. This improvement is a di- 459

rect result of PAFT’s inherent prompt robustness. 460

By decoupling model performance from the spe- 461

cific prompt wording, PAFT operates consistently 462

and efficiently regardless of the input prompt. In 463

essence, PAFT promotes more effective general- 464

ization and eliminates the need for prompt-specific 465

adaptation during inference. Additionally, our train- 466

ing regime covers a wide range of prompt wordings, 467

avoiding the potential performance degradation or 468

increased computation typically required to handle 469

unexpected or unevenly distributed prompts dur- 470

ing inference. This consistency and efficiency is 471

especially valuable in real-world applications that 472

require fast response times, such as dialogue sys- 473
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Table 3: Performance comparison of PAFT with varying hyperparameters K (number of iterations per prompt) and
T (number of epochs) across multiple reasoning and reading comprehension tasks. Results are reported as mean
accuracy (± standard deviation) on the Hellaswag, PIQA, Winogrande, RACE-mid, and RACE-high datasets. The
best results for each metric are highlighted in bold.

# K and T Hellaswag PIQA Winogrande RACE-mid RACE-high Average

K = 1, T = 3 93.58 (± 1.47) 89.33(± 0.63) 81.78 (± 1.11) 86.30 (± 2.73) 84.35 (± 2.24) 87.07 (± 1.64)
K = 2, T = 3 93.59 (± 1.24) 88.37 (± 0.49) 82.09 (± 0.81) 86.30 (± 2.64) 84.02 (± 2.24) 86.87 (± 1.48)
K = 4, T = 3 93.83(± 1.10) 89.07 (± 0.53) 81.96 (± 1.15) 87.26 (± 2.23) 85.17 (± 1.71) 87.46 (± 1.34)
K = 8, T = 3 93.83 (± 0.70) 88.99 (± 0.59) 82.69 (± 0.97) 86.25 (± 2.75) 84.36 (± 2.06) 87.22 (± 1.41)
K = 1, T = 6 93.37 (± 1.47) 88.32 (± 0.68) 81.05(± 3.44) 84.40 (± 2.30) 83.34(± 1.66) 86.10 (± 1.91)
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Figure 6: Scaling Law of Training Prompt Numbers: Mean and Standard Deviation of Accuracy Across Different
Datasets. The x-axis represents the number of prompts on a logarithmic scale, while the y-axis shows the mean
accuracy (left) and standard deviation of accuracy (right) for each dataset.

tems or time-sensitive information retrieval. Our474

enhanced inference efficiency translates to a bet-475

ter user experience and reduced computational re-476

sources required for deployment, making it a more477

practical and scalable solution.478

5.3 Ablation Studies479

Hyperparameter robustness This ablation480

study demonstrates the robustness of PAFT to the481

hyperparameters K (iterations per prompt) and T482

(epochs). As shown in Table 3, PAFT achieves483

stable performance across a broad range of K (1 to484

8) and T (3 to 6) values, with minimal fluctuations485

in accuracy and variance. Notably, PAFT achieves486

near-optimal performance with default settings487

(K = 4, T = 3), attaining an average accuracy of488

87.46%(±1.34) across all tasks. This robustness489

reduces the need for extensive hyperparameter490

tuning, making PAFT a practical and efficient491

solution for real-world applications.492

PAFT achieves strong performance with lim-493

ited training prompts We conduct an ablation494

study to investigate the impact of varying numbers495

of training prompts on model performance, thus496

validating the effectiveness of PAFT. The exper-497

imental results, shown in Figure 5, demonstrate498

that as the number of prompts increases, the aver-499

age accuracy of the model significantly improves,500

while the standard deviation decreases, indicating501

more stable and reliable performance. However, 502

the performance gains diminish as the number of 503

prompts increases, with only marginal improve- 504

ments observed beyond a certain threshold. This 505

suggests that while adding prompts can enhance 506

performance, PAFT achieves competitive results 507

with a minimal number of prompts, rendering ex- 508

cessive prompts unnecessary. In most cases, PAFT 509

achieves strong performance with as few as 10 510

high-quality prompts, and further increases yield 511

only marginal gains. The efficiency of PAFT is 512

particularly notable, as it delivers excellent perfor- 513

mance with a minimal number of prompts, making 514

it highly suitable for resource-constrained scenarios 515

where computational efficiency is critical. These 516

findings underscore the practicality and efficiency 517

of PAFT, offering a robust and efficient solution 518

for real-world applications. 519

6 Conclusion 520

PAFT offers a compelling solution for enhancing 521

the prompt robustness of LLMs. By dynamically 522

adjusting prompts during fine-tuning, PAFT signif- 523

icantly improves model generalization and perfor- 524

mance across diverse prompt formulations. No- 525

tably, PAFT boosts inference speed with main- 526

tained training cost. This approach paves the way 527

for more reliable and efficient LLM deployment in 528

real-world applications. 529
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Limitations530

In this section, we discuss potential limitations of531

PAFT and outline promising directions for future532

research. While PAFT demonstrates significant533

progress in enhancing the prompt robustness of534

Large Language Models (LLMs), certain aspects535

warrant further investigation. A key area for im-536

provement lies in the dynamic prompt selection537

strategy employed during fine-tuning. Currently,538

PAFT utilizes a random sampling approach, which,539

while exposing the model to a diverse range of540

prompts, may not be the most efficient or effec-541

tive method. Exploring more sophisticated sam-542

pling techniques, such as curriculum learning or543

importance sampling, could potentially optimize544

the training process and further enhance robust-545

ness. For instance, prioritizing prompts that induce546

higher loss or those that are more representative of547

the overall prompt distribution could lead to faster548

convergence and improved generalization. Fur-549

thermore, integrating adversarial learning into the550

dynamic fine-tuning phase presents a compelling551

avenue for future work. Generating adversarial552

prompts on-the-fly, perhaps through gradient-based553

updates, could further challenge the model and en-554

courage it to learn more robust task representations.555

This approach could be particularly beneficial in556

mitigating the impact of maliciously crafted or un-557

expected prompts. However, the well-known insta-558

bility of adversarial training remains a significant559

hurdle. Stabilizing the training process, perhaps560

through techniques like robust optimization or reg-561

ularization, is crucial for realizing the full potential562

of this approach. Investigating different adversarial563

prompt generation strategies and their impact on564

model robustness would be a valuable contribution.565

Ethics Statement566

We have manually reevaluated the dataset we cre-567

ated to ensure it is free of any potential for discrim-568

ination, human rights violations, bias, exploitation,569

and any other ethical concerns.570
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A Experimental setting 947

In the main experiment, we compared PAFT with the baseline. The datasets and experimental parameters 948

are as follows: 949

A.1 Dataset 950

In this section, we introduce the statistics of the dataset. The statistics of the dataset are shown in Table 4. 951

Table 4: Number of samples in the train, validation, and test datasets for various dateset.

Number of samples train dataset validation dataset test dataset

Hellaswag 39900 10000 10000
PIQA 16000 2000 3000
Winogrande 40398 1267 1767
RACE 87866 4887 4934

A.2 Specific experimental parameters 952

Based on the LLaMA3-8B model configuration, several adjustments were made to optimize model 953

performance. In the baseline model experiment, generation parameters were adjusted to ensure the 954

correct output. In the LoRA experiment, adjustments to the generation parameters were retained, and 955

LoRA-related parameters were adjusted. In the PAFT experiment, the size of the validation set was 956

adjusted to control the time required to search for the optimal layer. For specific experimental parameters, 957

see the table 5. 958

Table 5: Detailed experimental parameters. This table lists the specific parameters we used in the experiments for
various methods. These parameters include the target module of LoRA (Lora Target), the maximum sequence length
(Max Length), the number of samples for supervised fine-tuning (SFT Samples), the learning rate (LR), the number
of training prompts (Training Prompts). Epoch(Epoch) represents the epoch of training. All other parameters not
listed here remain consistent across all experiments.

Methods LoRA Target Max Length SFT Samples LR Training Prompts Epoch

LoRA q & v Proj 1024 20000 0.0001 1 3

PAFT q & v Proj 1024 20000 0.0001 400 3

B Training cost and inference time 959

PAFT Maintains Training Efficiency We now turn our attention to the training efficiency of PAFT. A 960

critical consideration for any practical fine-tuning approach is its impact on training time. Introducing 961

complex mechanisms or additional computational overhead can significantly hinder the training process, 962

especially when dealing with large language models and extensive datasets. Therefore, it is essential to 963

demonstrate that PAFT does not introduce such burdens. 964

To rigorously evaluate the training time implications of PAFT, we conducted a series of experiments, 965

using Low-Rank Adaptation (LoRA) (Hu et al., 2022) as a representative example of a parameter-efficient 966

fine-tuning method. LoRA has gained popularity due to its ability to adapt pre-trained models with 967

minimal computational cost, making it a suitable baseline for our analysis. Our experiments, the results 968

of which are presented in Table 3, directly compare the training time required for traditional LoRA 969

fine-tuning with the training time required for PAFT integrated with LoRA. 970

The key finding from our analysis is that PAFT does not introduce any noticeable increase in training 971

time. The data in Table 6 clearly demonstrates that the training duration remains virtually identical 972

whether we employ standard LoRA or incorporate PAFT’s dynamic prompt selection mechanism. This 973
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Table 6: Training Time Comparison of Different Fine-tuning Methods on the Test Prompt Sets Across Various
Reasoning and Reading Comprehension Tasks Using the LLaMA3-8B(Meta, 2024) Model with LoRA Rank 8.
Experiments were conducted on an NVIDIA RTX 4090 GPU. Results are reported as training time in hours.
LoRA + TopAccuracy prompt prompt refers to the prompt with the highest accuracy in the training set, LoRA +
user-specified prompt (Wei et al., 2024) refers to fine-tuning with human-designed prompts, LoRA + BATprompt
(Shi et al., 2024) uses the most robust prompt generated by BATprompt, and LoRA + ZOPO prompt (Hu et al.,
2024) employs the optimal prompt selected by ZOPO from the training prompt set.

Training time/h Hellaswag PIQA Winogrande RACE Average

LoRA + user-specified prompt 3.01 2.35 3.27 3.95 3.15
LoRA + TopAccuracy prompt 3.00 2.29 2.98 3.93 3.05
LoRA + BATprompt 3.02 2.23 3 3.93 3.05
LoRA + ZOPO prompt 2.97 2.3 2.97 3.83 3.02

PAFT 2.98 2.32 3.38 3.81 3.12

crucial observation underscores the efficiency of PAFT. The dynamic prompt selection process, which974

is central to PAFT’s ability to enhance prompt robustness, is implemented in a way that does not add975

significant computational overhead. This is because the selection process is lightweight and seamlessly976

integrated into the existing training loop. Rather than requiring complex computations or extensive977

data manipulations, PAFT efficiently chooses from a diverse set of prompts, allowing the model to978

experience a wider range of input formulations without incurring a substantial time penalty. This efficient979

dynamic prompt selection is critical for the practical applicability of PAFT, ensuring that it can be readily980

deployed without compromising training efficiency. Furthermore, this efficiency allows for more extensive981

experimentation and exploration of different prompt variations, ultimately leading to more robust and982

generalizable models.983

Efficient Candidate Prompt Generation A key aspect of PAFT’s effectiveness lies in its ability to984

generate a diverse and high-quality set of candidate prompts efficiently. The process of constructing985

these candidate prompts involves leveraging the capabilities of external large language models (LLMs),986

which naturally raises the question of associated costs. Specifically, we sought to quantify the token987

usage required for candidate prompt generation, as this directly translates to the expense incurred when988

interacting with commercial LLM APIs.989

To address this, we conducted a detailed analysis of the token consumption during the candidate prompt990

generation phase of PAFT. Our investigation, the results of which are summarized in Table 1, focuses on991

the number of tokens required to produce a sufficient variety of prompts suitable for subsequent selection992

and fine-tuning. We meticulously tracked the token usage across various prompts generated for different993

tasks, considering factors such as prompt length, complexity, and diversity.994

The findings presented in Table 7 demonstrate that PAFT requires remarkably few tokens to generate995

a substantial pool of candidate prompts. This efficiency stems from PAFT’s strategic approach to996

prompt engineering. Rather than relying on brute-force generation or computationally intensive search997

methods, PAFT employs a carefully designed prompting strategy that encourages the external LLMs to998

produce a wide range of prompt formulations with minimal token consumption. This is achieved through999

techniques such as few-shot prompting with carefully chosen examples, targeted instructions that guide1000

the LLM towards desired prompt characteristics, and potentially iterative refinement of prompts based1001

on preliminary evaluation. The low token count is crucial for practical applications, as it minimizes the1002

cost associated with using commercial LLM APIs. Moreover, this efficiency enables the exploration1003

of a broader range of potential prompts within a fixed budget, increasing the likelihood of discovering1004

highly effective prompts that contribute to improved model robustness. This efficient prompt generation1005

process is a significant advantage of PAFT, enabling it to achieve superior performance without incurring1006

prohibitive costs.1007
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Table 7: Token Usage for Candidate Prompt Generation. This table shows the number of tokens used to generate
approximately 400 candidate prompts for each task. The average token usage is 11.75k. The number of generated
prompts can be adjusted based on the scaling law observed in Figure 5 to control costs.

Tokens Hellaswag PIQA Winogrande RACE Average

Total Tokens 11.7k 12.1k 10.9k 12.3k 11.75k

C Prompt 1008

In this section, we present a selection of training and test prompts to illustrate the efficacy of our prompt 1009

construction algorithm and to provide a clearer understanding of operational process of PAFT. Due to 1010

space constraints, we only list 10 prompts as examples. Section C.1 showcases examples of training 1011

prompts, Section C.2 highlights test prompts, and Section C.3 outlines the prompts utilized by the baseline 1012

method. 1013

C.1 Train prompt 1014

In this section, we present the prompts generated using the method outlined in Section 4.1 across various 1015

datasets. All prompts listed here are utilized for training purposes. 1016

Train Prompt of Hellaswag

1. Based on the given context {ctx}, which of the following options correctly predicts the outcome?
Choose the correct letter option.\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
2. Considering the scenario described in {ctx}, identify the most accurate prediction of the
final result:Select the correct letter.\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
3. Given the information in {ctx}, which option best forecasts the correct ending?Provide the
correct letter choice.\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
4. From the context {ctx}, which of the following options accurately predicts the conclusion?Write
down the correct letter.\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
5. Using the details provided in {ctx}, select the option that correctly predicts the final outcome:
Enter the correct letter.\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
6. Based on the context {ctx}, which option is the most accurate prediction of the ending?Choose the
correct letter option.\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
7. Given the scenario in {ctx}, identify the option that correctly forecasts the outcome:Select the
correct letter.\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
8. Considering the details in {ctx}, which option best predicts the correct conclusion?Provide the
correct letter choice.\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
9.Analyze the context {ctx} and determine the correct prediction of the outcome:Indicate the
correct letter.\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
10. Analyze the given context {ctx} and determine the most accurate prediction of the final result:
Indicate the correct letter.\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:

1017

Train Prompt of PIQA

1.In order to {goal}, which of the following options is the most logical choice based on common
knowledge?\nA. {sol1}\nB. {sol2}\nAnswer:
2.Consider the scenario where you need to {goal}. Which option would be the most appropriate
according to general understanding?\nA. {sol1}\nB. {sol2}\nAnswer:
3.When trying to {goal}, which of the following would be the best course of action based on everyday
reasoning?\nA. {sol1}\nB. {sol2}\nAnswer:
4.To achieve {goal}, which option aligns best with common sense?\nA. {sol1}\nB. {sol2}\nAnswer:
5.Based on typical knowledge, which of the following is the correct choice to {goal}?
\nA. {sol1}\nB. {sol2}\nAnswer:
6.If you want to {goal}, which of these options would be the most sensible according to common
reasoning?\nA. {sol1}\nB. {sol2}\nAnswer:
7.Using general knowledge, determine the best option to {goal}.\nA. {sol1}\nB. {sol2}\nAnswer:
8.To {goal}, which of the following choices is the most reasonable based on common sense?
\nA. {sol1}\nB. {sol2}\nAnswer:
9.When considering how to {goal}, which option would be the most logical based on everyday knowledge?
\nA. {sol1}\nB. {sol2}\nAnswer:
10.According to common reasoning, which of the following is the best way to {goal}?
\nA. {sol1}\nB. {sol2}\nAnswer:

1018
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Train Prompt of Winogrande

1.Choose the correct answer to complete the sentence.{ctx}
\nA. {only_option1}\nB. {only_option2}\nAnswer:
2.elect the appropriate option to fill in the blank.{ctx}
\nA. {only_option1}\nB. {only_option2}\nAnswer:
3.Fill in the blank with the correct answer.{ctx}
\nA. {only_option1}\nB. {only_option2}\nAnswer:
4.Identify the correct choice to complete the statement.{ctx}
\nA. {only_option1}\nB. {only_option2}\nAnswer:
5.Choose the right answer to fill in the gap .{ctx}
\nA. {only_option1}\nB. {only_option2}\nAnswer:
6.Select the correct option to complete the sentence.{ctx}
\nA. {only_option1}\nB. {only_option2}\nAnswer:
7.Fill in the blank with the correct answer.{ctx}
\nA. {only_option1}\nB. {only_option2}\nAnswer:
8.Identify the correct choice to complete the sentence.{ctx}
\nA. {only_option1}\nB. {only_option2}\nAnswer:
9.Choose the right answer to fill in the blank. {ctx}
\nA. {only_option1}\nB. {only_option2}\nAnswer:
10.Select the appropriate option to complete the statement.{ctx}
\nA. {only_option1}\nB. {only_option2}\nAnswer:

1019

Train Prompt of RACE

1.Carefully read the following article and answer the question by selecting the correct option.
Respond with A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
2.Read the passage below and choose the best answer to the question.
Reply with the letter A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
3.After reading the article, answer the following question by selecting the correct option.
Please respond with A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
4.Examine the article provided and answer the question by choosing the most appropriate option.
Reply with A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
5.Read the following text and answer the question by selecting the correct letter.
Respond with A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
6.Carefully read the article and choose the best answer to the question.
Reply with A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
7.Read the passage and answer the question by selecting the correct option.
Respond with A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
8.After reading the article, choose the correct answer to the question.
Reply with A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
9.Read the provided text and answer the question by selecting the best option.
Respond with A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
10.Examine the article and answer the question by choosing the correct letter.
zReply with A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:

1020

C.2 Test prompt1021

In this section, we present the prompts generated using the method outlined in Section 4.1 across various1022

datasets. All prompts listed here are utilized for testing purposes, and they are not visible during training.1023
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Test Prompt of Hellaswag

1.Based on the information provided, please select the most probable conclusion: {ctx}
\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n
Remember to consider the implications of each option. Answer:
2.In the scenario described by {ctx}, there is only one correct way the story or situation could end.
When predicting the right ending, consider the cause-and-effect relationships established within
the context.An option that logically follows from the preceding events is likely the correct one.
\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:
3.Based on the given context {ctx}, which of the following options correctly predicts the outcome?
Choose the correct letter option.
\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
4.To solve this problem based on {ctx}, weigh the significance of each potential ending:
A. {A}\nB. {B}\nC. {C}\nD. {D}\n You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:
5.Analyzing the context of {ctx}, think about the relationships and conflicts presented.
Which option is most likely to resolve these issues and lead to a satisfying ending?
\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
6.{ctx}\nQuestion: Taking into account the context, which outcome is the most expected?
\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
7.From the detailed description provided, choose the option that best completes the scenario:{ctx}\
n A. {A}\nB. {B}\nC. {C}\nD. {D}\n
Consider all aspects of the scenario to make an informed decision on the correct ending.\n Answer:
8.Given the scenario described in {ctx}, which of the following conclusions seems most plausible?
Consider all the details and clues provided to make an informed guess.
\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:
9.To unlock the hidden treasure in {ctx}, you need to choose the correct key.
Which option will open the treasure chest?
A. {A} B. {B} C. {C} D. {D}\n You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:
10.{ctx}\nQuestion: Reflecting on the emotional stakes and the structure of the narrative,
which conclusion feels the most genuine?
\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n Answer:

1024

Test Prompt of PIQA

1.Solve the following single-choice question by using your common sense reasoning skills.
Choose the correct option and reply with the corresponding letter.
\nQuestion: {goal}\nA. {sol1}\nB. {sol2}\nAnswer:
2.For the situation described by {goal}, consider which solution aligns more closely with how things
usually work in real life: A. {sol1}\nB. {sol2}. Use logical reasoning to guide your choice. Answer:
3.Given the context of the question, choose the answer that demonstrates the best common
sense reasoning: {goal}\nA. {sol1}\nB. {sol2}\n Answer format: A/B \nAnswer:
4.In considering the aim set forth in {goal}, visualize the potential consequences of each action
as if you were directly involved. This visualization can help you identify the better choice:\n
Question: {goal}\nA. {sol1}\nB. {sol2}\nAnswer:
5.Which solution fits the goal based on common sense?
{goal}\n A. {sol1}\nB. {sol2}\n Answer format: A/B \nAnswer:
6.Analyze the following scenario and select the answer that reflects logical reasoning: {goal}
\nA. {sol1}\nB. {sol2}\n Answer format: A/B \nAnswer:
7.Identify the most logical outcome for the situation described: {goal} A. {sol1} B. {sol2}
Answer format: A/B Remember, the trick is to apply your general knowledge to the scenario. Answer:
8.According to common reasoning, which of the following is the best way to {goal}?
\nA. {sol1}\nB. {sol2}\nAnswer:
9.Which solution best fits the goal based on your general knowledge? {goal}
\n A. {sol1}\nB. {sol2}\n Answer format: A/B \nAnswer:
10.You are about to answer a question that relies on your understanding of basic logic.
Please respond with A or B to indicate your choice.
\nQuestion: {goal}\nA. {sol1}\nB. {sol2}\nAnswer:

1025
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Test Prompt of Winogrande

1.In the context of {prompt}, which word best completes the sentence?
Choose: A. {only_option1}. B. {only_option2}.\nAnswer:.
2.When analyzing {prompt}, think about the overall theme. What fits best?
A. {only_option1}. B. {only_option2}.\nAnswer:.
3.For {prompt}, consider the emotional tone. Which option resonates more?
A. {only_option1}. B. {only_option2}.\nAnswer:.
4.Reflect on {prompt}. Which word logically fills the gap?
A. {only_option1}. B. {only_option2}.\nAnswer:.
5.In {prompt}, which choice aligns with the preceding ideas?
A. {only_option1}. B. {only_option2}.\nAnswer:.
6.When faced with {prompt}, think about the context. What completes it best?
A. {only_option1}. B. {only_option2}.\nAnswer:.
7.For {prompt}, identify the word that maintains the flow of the sentence.
Choose: A. {only_option1}. B. {only_option2}.\nAnswer:.
8.In the case of {prompt}, which option best conveys the intended meaning?
A. {only_option1}. B. {only_option2}.\nAnswer:.
9.Analyze {prompt} for clues. Which word fits the context?
A. {only_option1}. B. {only_option2}.\nAnswer:.
10.When considering {prompt}, which option enhances the clarity of the statement?
A. {only_option1}. B. {only_option2}.\nAnswer:.

1026

Test Prompt of RACE

1.After reading the article, analyze the question and choose the best answer
based on the details and themes discussed. Look for clues within the text that
align with one of the options.\nArticle:\n{article}\n\nQuestion:
{question}\nOptions: \nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
2.Article:\n{article}\nAfter reading the passage, please answer the following question:
\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D} \nAnswer:
3.Carefully read the following article and answer the question by selecting the correct option.
Respond with A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
4.Read the text carefully and answer the question by choosing the most appropriate option.
Evaluate the relevance of each choice to the main points discussed.
\nArticle:\n{article}\n\nQuestion: {question}\nOptions: \nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:
5.Describe the setting of the article.
{question}\n{article}\nA. {A}\nB. {B}\nC. {C}\nD. {D} \nAnswer:
6.While reading the {article}, highlight or make mental notes of significant details.
The {question} is asking [describe the specific query].
Now evaluate the options:\nA. {A}\nB. {B}\nC. {C}\nD. {D} \nAnswer:
7.After carefully analyzing {article}, determine which of the following options best
answers the question:
{question}. A. {A}\nB. {B}\nC. {C}\nD. {D} \nAnswer:
8.Read {article} with a focus on answering {question}. Choose the most suitable option.
Article: {article} Question:{question} Options: A. {A} B. {B} C. {C} D. {D}
Trick: Be cautious of answer choices that seem too extreme. Your answer is just one letter. Answer:
9.Article:\n{article}\nFrom the information in the article, identify the correct
answer to the following question: \n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D} \nAnswer:
10.When {article} mentions {question}, which option best describes the author’s attitude?
\nA. {A}\nB. {B}\nC. {C}\nD. {D} \n// Pay attention to the tone of the author.
Look for words that convey emotions or opinion to determine the attitude.Answer:

1027

C.3 Baseline prompt1028

In this section, we present the best prompts generated or filtered using the baseline for training.1029
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Test Prompt of Hellaswag

TopAccuracy prompt:
Given the context {ctx}, predict the correct ending by choosing the most logical option.
\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:

User-specified prompt:
{ctx}\n Question: {Question}\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:

BATprompt :
Given the context below, predict the most logical ending by choosing the correct option
from the provided choices. Ensure your choice aligns with the context and is the most coherent
conclusion. \n Context: {ctx}\n
Question: Which ending makes the most sense?\n A. {A}\nB. {B}\nC. {C}\nD. {D}\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:

ZOPO prompt:
Based on {ctx}, which option is the most likely correct ending?
Consider the overall context, character motivations, and any foreshadowing.
Trick: Analyze the consistency of each option with the established details.
A. {A}\nB. {B}\nC. {C}\nD. {D}\n You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:

1030

Test Prompt of PIQA

TopAccuracy prompt:
Use both common sense and logical reasoning to determine the correct solution for the goal:
{goal}\n A. {sol1}\nB. {sol2}\n Answer format: A/B \nAnswer:

User-specified prompt:
There is a single choice question. Answer the question by replying A or B.’\n
Question: {goal}\nA. {sol1}\nB. {sol2}\nAnswer:

BATprompt :
You should use both common sense and logical reasoning to determine the most appropriate
solution for the following goal. Carefully evaluate the provided options and choose the
one that best aligns with the goal. Goal: {goal}\nA. {sol1}\nB. {sol2}\nAnswer:

ZOPO prompt:
To solve this common sense reasoning question, consider which of the two options seems
more plausible based on everyday knowledge and logic.
\nQuestion: {goal}\nA. {sol1}\nB. {sol2}\n
Think about the practical implications of each choice to determine the correct answer.\nAnswer:

1031

Test Prompt of Winogrande

TopAccuracy prompt:
Question: {prompt}\nA. {only_option1}\nB. {only_option2}\nAnswer:

User-specified prompt:
There is a single choice question, you need to choose the correct option to fill in the blank.
Answer the question by replying A or B.\n
Question:{prompt}\nA. {only_option1}\nB. {only_option2}\nAnswer:

BATprompt :
Complete the following sentence by selecting the most contextually appropriate option.
Carefully consider the meaning and context of the sentence to make your choice.
Question: {prompt}\nA. {only_option1}\nB. {only_option2}\nAnswer:

ZOPO prompt:
Question: Choose the correct modal verb: {prompt}\nA. {only_option1}\nB. {only_option2}\nAnswer:.

1032
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Test Prompt of RACE

TopAccuracy prompt:
Read the following article carefully: {article}. After reading, answer the question: {question}.
Choose the correct option from the choices provided:
\nA. {A}\nB. {B}\nC. {C}\nD. {D} \n
Trick: Focus on the main idea and supporting details in the article.
Output: Only the letter of the correct answer.\nAnswer:

User-specified prompt:
Article:\n{article}\nQuestion:\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D} \nAnswer:

BATprompt :
Please read the passage carefully, focusing on the main ideas and supporting details.
Answer the question that follows by choosing the best option from the choices provided.
Ensure your response is based solely on the information in the passage. Output only the
letter of the correct answer. Article:\n{article}
\nQuestion:\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D} \nAnswer:

ZOPO prompt:
A reading comprehension question is before you. Read the article and answer the question
by selecting A, B, C, or D.\n\nArticle:\n{article}\n\n
Q: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:

1033
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