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Abstract

Human pose estimation (HPE) has become essential in nu-
merous applications including healthcare, activity recogni-
tion, and human-computer interaction. However, the privacy
implications of processing sensitive visual data present sig-
nificant deployment barriers in critical domains. While tra-
ditional anonymization techniques offer limited protection
and often compromise data utility for broader motion anal-
ysis, Differential Privacy (DP) provides formal privacy guar-
antees but typically degrades model performance when ap-
plied naively. In this work, we present the first comprehen-
sive framework for differentially private 2D human pose esti-
mation (2D-HPE) by applying Differentially Private Stochas-
tic Gradient Descent (DP-SGD) to this task. To effectively
balance privacy with performance, we adopt Projected DP-
SGD (PDP-SGD), which projects the noisy gradients to a
low-dimensional subspace. Next, we incorporate Feature Dif-
ferential Privacy(FDP) to selectively privatize only sensitive
features while retaining public visual cues. Finally, we pro-
pose a hybrid feature-projective DP framework that combines
both approaches to balance privacy and accuracy for HPE.
We evaluate our approach on the MPII dataset across vary-
ing privacy budgets, training strategies, and clipping norms.
Our combined feature-projective method consistently outper-
forms vanilla DP-SGD and individual baselines, achieving up
to 82.61% mean PCKh@0.5 at ϵ = 0.8, substantially clos-
ing the gap to the non-private performance. This work lays
foundation for privacy-preserving human pose estimation in
real-world, sensitive applications.

Introduction
Human pose estimation (HPE) represents a fundamental
task that transforms raw visual content consisting of hu-
mans into structured representations of human positioning
and movements. This sophisticated conversion of visual data
into anatomically meaningful keypoint configurations en-
ables numerous high impact applications in healthcare, ac-
tivity recognition, human-computer interaction, sports anal-
ysis, and video games (Artacho and Savakis 2020; Mao et al.
2022; Wang et al. 2022b; Lu et al. 2024; Li et al. 2022).

As these human motion analysis systems are increasingly
deployed into sensitive environments such as hospitals and
homes, protecting user privacy has become a critical con-
cern (Martinez-Martin et al. 2021). HPE systems that cap-
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ture and process raw images pose significant privacy risks
in two key ways: first, the raw images themselves contain
sensitive personal information that could be exposed dur-
ing collection and processing (Zheng et al. 2023); second,
even trained models can inadvertently reveal information
about individuals in training data when subjected to sophis-
ticated privacy attacks such as model inversion or mem-
bership inference techniques (Geiping et al. 2020; Jegorova
et al. 2023; Zakariyya et al. 2025). For instance, an adversary
can exploit a model’s weights (Haim et al. 2022) or gradients
(Hatamizadeh et al. 2023) to reconstruct distinctive physical
characteristics of patients or sensitive contextual informa-
tion, such as the patient’s home environment from the private
training dataset (Jegorova et al. 2023). This reconstruction
could potentially identify individuals with specific medical
conditions and reveal that they received treatment at a par-
ticular facility during the model’s training period, thereby
compromising both medical confidentiality and location pri-
vacy.

Previous approaches to privacy preservation in HPE have
focused primarily on data anonymization techniques, such
as blurring, pixelation, and template-based shape modeling
(Ahmad, Morerio, and Del Bue 2024; Ruiz-Zafra et al. 2023;
Hesse et al. 2018). While these methods provide some level
of privacy protection, they are often task-specific and can
severely compromise the utility of the data for broader anal-
ysis. For instance, anonymization that removes facial fea-
tures might preserve basic joint position information but de-
stroy crucial clinical indicators needed for stress level as-
sessment or abnormal motion pattern detection (Barattin
et al. 2023). Furthermore, these methods typically lack the-
oretical privacy guarantees and remain vulnerable to more
sophisticated attacks, limiting their applicability in highly
sensitive contexts (Zakariyya et al. 2025). Moreover, these
approaches do not address the inherent vulnerability of neu-
ral networks to memorization attacks that can reconstruct
training data (Haim et al. 2022). This limitation significantly
limits the potential to share models trained in sensitive mul-
timedia datasets in the wider research community and clin-
ical applications. The inherent tension between improving
model utility and ensuring robust privacy preservation rep-
resents a challenging research problem (Abbasi, Mori, and
Saracino 2025; Fang et al. 2023; Zhou, Wu, and Banerjee
2021) that has not been adequately explored in the con-
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text of HPE. Differential privacy (DP) offers a promising
framework to address these concerns by providing mathe-
matical guarantees against data leakage (Hardt and Talwar
2010; Dwork 2021; Abadi et al. 2016; Dwork et al. 2006).
However, implementing DP in deep learning models, par-
ticularly through Differentially Private Stochastic Gradient
Descent (DP-SGD)(Abadi et al. 2016), typically results in
substantial performance degradation that can render models
impractical for real-world applications (Yu et al. 2019; De
et al. 2022) . This degradation is problematic in vision tasks
such as HPE, where the utility of the model relies on main-
taining fine-grained spatial precision.

In this work, we present the first comprehensive study of
differential privacy for the 2D-HPE task. We demonstrate
that directly applying DP-SGD to 2D-HPE models leads to
significant degradation in utility due to the fine-grained na-
ture of keypoint prediction. To address the privacy-utility
trade-off in 2D-HPE, we explore multiple complementary
strategies. First, we adopt a projection based DP-SGD ap-
proach that leverages the low-dimensional structure of the
gradient space. By projecting the noisy gradients onto a prin-
cipal subspace from a small public set, we mitigate privacy-
induced noise without compromising the DP guarantees.
Second, we incorporate Feature Differential Privacy (FDP),
a privacy framework that relaxes differential privacy on
public features, while rigorously protects sensitive features,
thereby reducing the amount of calibrated noise required. Fi-
nally, we propose a hybrid strategy that integrates both pro-
jection and FDP effectively, combining their strengths.

To summarise, our core contributions are as follows:
• We present the first systematic exploration of differen-

tially private learning for 2D human pose estimation, es-
tablishing baseline performance under various privacy
regimes.

• We propose a projection-based DP-SGD mechanism
adopted for pose estimation, which improves perfor-
mance by restricting gradient updates to low-dimensional
subspaces that capture the most informative directions.

• We adapt and extend the Feature Differential Privacy
(FDP) framework to the HPE domain, allowing selective
private updates only for sensitive features. This approach
automatically protects both human subjects and their sur-
rounding spatial context without requiring manual fea-
ture curation. Additionally, we integrate this with the pro-
jection method to yield a unified feature-projective DP
approach demonstrating consistent best privacy-utility
trade-off across various settings.

• We perform a thorough evaluation across multiple DP
regimes, training strategies, and gradient clipping thresh-
olds on the MPII dataset, demonstrating the effectiveness
of the proposed method in improving the privacy-utility
trade-off.

Related Work
2D Human Pose Estimation and Privacy
Markerless 2D-HPE identifies anatomical keypoints in im-
ages without physical markers, thus playing a fundamen-
tal role in human motion analysis for several applications

in healthcare and activity recognition (Deligianni, Guo,
and Yang 2019; Bondugula, Udgata, and Sivangi 2023).
Although traditional heatmap methods originally based on
CNN architectures (Artacho and Savakis 2020; Kamel et al.
2020; Wang et al. 2022a; Xiao, Wu, and Wei 2018) and
later leveraging vision-based transformers (Li et al. 2021b,c;
Xu et al. 2022) achieved state-of-the-art performance, they
suffer from quantization errors and usually result in large
cumbersome networks. Regression approaches offer faster,
end-to-end solutions but with reduced accuracy (Toshev and
Szegedy 2014; Nie et al. 2019; Li et al. 2021a). Coordi-
nate classification approach addresses these limitations by
treating pose estimation as a classification problem with dis-
cretized coordinates (Li et al. 2022). This method achieved
state-of-the-art performance while maintaining computa-
tional efficiency. Knowledge distillation techniques (Ye et al.
2023; Li et al. 2021d; Zhang et al. 2023; Bhargav Sivangi
2024) have been also applied to enhance the efficiency of
HPE with significantly less model parameters and inference
speed by transfering knowledge from large heatmap based
models to smaller architectures.

Protecting the privacy of users is of paramount impor-
tance in all real-world applications and a challenging task
for human pose estimation, which depends on high-quality
images. Recent research works(Haim et al. 2022; Zhu, Liu,
and Han 2019) have demonstrated that adversaries can suc-
cessfully reconstruct substantial portions of private train-
ing data solely by analyzing the parameters and gradients
of a trained neural network. For these reasons, in critical
applications, data sharing initiatives provide limited infor-
mation, which prevents the analysis of crucial clinical indi-
cators that require body shape or facial information to de-
tect levels of stress and identify abnormal motion patterns.
In practice, most platforms implement rudimentary privacy
protection based on face de-identification with blurring and
pixelation (Ruiz-Zafra et al. 2023). Some approaches to pro-
tecting people’s privacy have evolved from basic techniques
to more sophisticated methods, although significant chal-
lenges persist. Early work by (Hesse et al. 2018) employed
skin removal and template-based shape modeling, which
compromised clinical utility despite privacy benefits. (Hino-
josa, Niebles, and Arguello 2021) proposed an end-to-end
framework that integrates an optimized optical encoder with
a CNN decoder, incorporating a visual privacy protection
layer to degrade private attributes while preserving essen-
tial features. These methods lack theoretical privacy guaran-
tees and remain vulnerable to adversarial attacks (Zakariyya
et al. 2025). Furthermore,traditional methods like blurring
or masking significantly degrade data quality, reducing their
effectiveness in downstream tasks like instance segmenta-
tion and pose estimation. Recent image anonymization tech-
niques (Hukkelås and Lindseth 2023a; Hukkelås et al. 2023)
have been developed to address privacy concerns, employ-
ing realistic GAN-based approaches such as to generate
anonymized human figures and faces without severe visual
distortion. Although realistic anonymization improves data
utility compared to traditional obfuscation, it still introduces
artifacts or unnatural appearances due to challenges like
limited pose detection accuracy and contextual mismatches.



Consequently, even advanced realistic anonymization tech-
niques cannot yet fully replace real, non-anonymized data
for training robust computer vision models (Hukkelås and
Lindseth 2023b).

Utility vs Privacy with DP optimization
DP-SGD is one of the most common methods in devel-
oping privacy-preserved deep learning models because of
the strong privacy guarantees compared to data-independent
methods and its ability to scale to large datasets (Hardt and
Talwar 2010; Dwork 2021). In DP-SGD the process in-
volves clipping the gradients first to bound the maximum
norm of individual gradients and subsequently adding Gaus-
sian noise. Clipping the gradients ensures that the gradients’
sensitivity is bounded so that any single data point would
have very limited influence (Lebensold, Precup, and Balle
2024). In this way, DP is maintained by preventing a sin-
gle data point disproportionally influencing the deep learn-
ing model. However, there is a trade-off between privacy
and utility in DP settings that can compromise the ability
to develop privacy-preserved HPE algorithms that would be
useful in practice (Abbasi, Mori, and Saracino 2025). The
performance of DP-SGD has been shown to depend on the
smoothness of the loss function (Wang et al. 2020) and the
dimension of the gradient (Fang et al. 2023; Zhou, Wu, and
Banerjee 2021). It has also been shown that if the loss func-
tion lacks Lipschitz continuity, the performance of DP-SGD
critically depends on carefully selecting an appropriate clip-
ping threshold; otherwise, performance will not improve sig-
nificantly, regardless of the amount of training data or itera-
tions (Fang et al. 2023). Recent research has sought to im-
prove the utility-privacy trade-off by relaxing traditional dif-
ferential privacy. (Shi et al. 2021) enhanced the utility of DP
by introducing Selective Differential Privacy, which protects
only sensitive tokens within language models, while leav-
ing non-sensitive elements unperturbed. (Mahloujifar et al.
2025) proposed Feature Differential Privacy, a generalized
DP framework that explicitly categorizes features as either
protected or public, enabling targeted noise application that
enhances utility. Both methods demonstrate that targeted
protection of sensitive attributes substantially mitigates the
privacy-utility trade-off compared to classical DP.

Methodology
Preliminaries: Differentially Private Stochastic
Gradient Descent (DP-SGD)
Privacy-preserving machine learning requires a rigorous
mathematical framework to quantify privacy guarantees. DP
provides such a framework by measuring in the context of
databases how much the inclusion or exclusion of a single
data point can influence the output of a randomized algo-
rithm (Dwork 2021; Hardt and Talwar 2010). This compar-
ison allows us to bound the information leakage about any
individual data point.

Consider two neighboring datasets-identical except for a
single sample. The level of DP ensured by a randomized al-
gorithm M is provided by the following definition.

Definition 1: (ϵ, δ)-Differential Privacy A randomized algo-
rithm M with domain D and range R is said to be (ϵ, δ)-DP
if, for any subset S ⊆ R and for any neighboring datasets
d, d′ ∈ D, the following condition holds:

P[M(d) ∈ S] ≤ eϵ · P[M(d′) ∈ S] + δ (1)
In this definition, ϵ (privacy budget) controls the strength of
the privacy guarantee. Smaller values of ϵ provide stronger
privacy. The parameter δ represents the probability that the
privacy guarantee fails and is typically set to be cryptograph-
ically small.

In the context of HPE, differential privacy ensures that
the inclusion or exclusion of a single training image, which
potentially contains identifiable biometric information, does
not significantly affect the model’s learned parameters or
predictions. Therefore, DP trained models provide a for-
mal measure of privacy protection (Dwork 2021), effectively
mitigating risks from various attacks, including membership
inference(Shokri et al. 2017) or reconstruction attacks(Zhu,
Liu, and Han 2019).

DP-SGD A common approach for ensuring differential
privacy during neural network training is DP-SGD, which
enforces an (ϵ, δ)-DP guarantee on gradient updates (Abadi
et al. 2016; Dupuy et al. 2022; Boenisch et al. 2024). This
mechanism involves clipping gradients to a fixed L2-norm
threshold (C) and adding Gaussian noise calibrated based
on desired privacy budget (ϵ, δ). This process ensures that
no single training sample can disproportionately influence
the model update (Kong and Munoz Medina 2023).

Lightweight Architecture for 2D-HPE
For our 2D-HPE models, we adopt TinyViT (Wu et al. 2022)
as the backbone. It is a small sized four-stage efficient hier-
archical vision transformer which is well suited for resource-
constrained vision tasks. The model adopts a multi-stage ar-
chitecture where in the spatial resolution is progressively re-
duced and the feature representation expands. TinyViT fol-
lows a hybrid architectural design containing convolutional
layers at the initial stages followed by self-attention mecha-
nisms. Unlike standard ViT models, TinyViT employs a two-
layer convolutional embedding. In the first stage of the net-
work, it employs MBConv (Howard et al. 2019) blocks from
MobileNetV2 to efficiently learn the low-level representa-
tion. The last three stages consists of transformer blocks hi-
erarchically. Each stage consists of multi-head-self-attention
(MHSA) layers, feed forward network (FFN) and 3 x 3
depthwise convolutions between the MHSA and FFN lay-
ers.

For keypoint localization, we augment the TinyViT back-
bone model with a coordinate classification output stage (Li
et al. 2022). Given an input image I ∈ RC×H×W and a
ground truth keypoint pi = (xi, yi) for the ith joint, the
continuous coordinates are quantized into discrete bins via a
splitting factor k ≥ 1. Formally, the quantized coordinates
are computed as:

p′i = (⌊xi · k⌋ , ⌊yi · k⌋) ,
where ⌊·⌋ denotes the rounding operation. This binning re-
duces quantization error while preserving high localization
precision. The complete architecture is depicted in Figure 1.



Figure 1: Overview of our private HPE pipeline coupling a TinyViT based backbone with Coordinate Classification Keypoint
head. The Public feature batch Bpub is generated from the private batch Bpriv using ψ both of which are given as input in a
single iteration. Additionally, a public image set Bproj

pub independent of Bpriv is used to calculate public gradients for projection
at specified intervals. Red Arrow indicates the propogation of private gradients and Green Arrow indicates propagation of public
feature gradients. Blue Dotted Arrow indicates the propogation of cumulative denoised gradient from Feature Projective DP.

Within our network, the convolutional head produces a
16-channel feature map, with each channel corresponding to
a specific joint. These joint-specific features are upsampled
and flattened to form a compact representation used for clas-
sification over the discrete coordinate bins. To improve ro-
bustness, we employ Gaussian label smoothing on the clas-
sification targets. This smoothing accounts for spatial corre-
lations by assigning soft labels that reflect the relevance of
neighboring bins. Finally, the discrete classification outputs
are decoded back into continuous coordinates to yield the
final keypoint predictions.

Projection Based DP-SGD
Training dynamics in deep networks exhibit intrinsic low-
dimensional structure, where meaningful gradient updates
concentrate within a subspace significantly smaller than the
full parameter space. We leverage this by identifying and
projecting noisy gradients onto informative subspaces, filter-
ing out less relevant directions while preserving signal qual-
ity under differential privacy constraints. In this way, we pre-
serve the signal quality of gradient updates while adhering
to DP constraints (Zhou, Wu, and Banerjee 2020). To esti-
mate the intrinsic structure of the gradient space, we employ
a small auxiliary public dataset Spub, which is drawn from a
similar distribution as that of private training set. This subset
is used to estimate the principal subspace of the gradient co-
variance. Given the model parameters w ∈ Rp, the second
moment matrix of gradients over Spub is calculated as:

M(w) =
1

m

m∑
i=1

∇l(w, z̃i)∇l(w, z̃i)T (2)

where m denotes the number of public samples and z̃i rep-
resents an input sample from Spub. The eigenvectors cor-
responding to the top k eigenvalues are stacked to form

the projection matrix V̂ ∈ Rp×k which forms the the
low-dimensional approximation of the full gradient space;
this maps the p-dimensional gradients to a smaller k-
dimensional subspace. This projection matrix is updated pe-
riodically to accommodate changes in gradient distributions
over the training period.

In the DP-SGD setup, for each mini-batch sampled from
the private dataset Spriv , per-sample gradients are computed
and the sensitivity of each individual gradient is bounded by
the clipping threshold C:

g̃i = clip(∇l(w, zi), C) (3)

The clipped gradients are aggregated over the batch and
Gaussian noise is added to ensure differential privacy

g =
1

B

∑
i∈B

g̃i +N (0, σ2C2I), (4)

where B is the size of the mini-batch and σ is the standard
deviation. The full noisy gradient g is then projected on to
the estimated low-dimensional subspace as

gproj = (V̂ V̂ T )g (5)

This restricts the update direction to the subspace where
the gradients exhibit the highest variance, thereby filtering
out noise components residing in less informative directions.
The model parameters are then updated using the projected
gradient. Since the projection is applied as a post-processing
step after noise addition, the overall DP guarantee remains
intact.

Feature Projective DP-SGD for HPE
To enhance the model utility in our 2D HPE task, we ex-
tend the standard DP-SGD framework using Feature Differ-
ential Privacy (FDP). FDP exploits the transformation of the



training image into private and public variants, selectively
applying differential privacy only to sensitive features while
freely utilizing non-sensitive(public) information (Mahlou-
jifar et al. 2025). Formally, let each sample be xi ∈ Sdata(a
raw training image with keypoint labels), and let ψ : S → F
be a public feature map such that ψ(xi) is the public variant
of the raw image xi and let f : [0, 1] → [0, 1] be a trade-
off function. A randomized mechanism M satisfies f -FDP
with respect to ψ if, for any two datasets d, d′ differing in
exactly one image-label pair xi ̸= x′i but having identical
public representations (ψ(xi) = ψ(x′i)) and for all subsets
S for range of M:

P[M(d) ∈ S] ≤ 1− f(P[M(d′) ∈ S]) (6)

Then, we say the mechanism is (ϵ, δ)-DP with respect to ψ
iff it is f -FDP for f(x) = 1−δ−eϵx. Motivated by this def-
inition, the FDP-SGD method, explicitly distinguishes be-
tween public and private (raw) images to improve pose es-
timation accuracy under the same privacy budget as stan-
dard DP. Specifically, for each image-keypoint pair, we de-
fine a public loss lpub(w,ψ(x)) which captures the coarse
pose estimation based on the definition of ψ. The private loss
lpriv(w, x) captures the sensitive, fine-grained details of the
human that requires privacy protection. Then the overall loss
can be given as:

l(w, x) = lpriv(w, x) + lpub(w,ψ(x)) (7)

Training: At every iteration, FDP-SGD updates parame-
ters using two separate batches drawn independently from
Sdata. On the public batch Bpub we compute the gradient
as:

gpub =
1

|Bpub|
∑

x∈Bpub

∇lpub(w,ψ(x)) (8)

Similarly, on the private batch Bpriv , we compute and clip
the gradient of the private loss to the clipping norm C as g̃,
then aggregate and add gaussian noise:

gpriv =
1

|Bpriv|
∑

x∈Bpriv

g̃ +N (0, σ2C2I) (9)

The parameters are updated at iteration t by combining both
the public and private gradients as:

g = gpriv + gpub (10)

wt = wt−1 − ηtgt (11)

where ηt denotes the learning rate. By applying noise only
to the private gradient component, FDP-SGD significantly
improves the accuracy of human pose estimation compared
to vanilla DP-SGD under identical (ϵ, δ) privacy constraints.

To further enhance utility, we integrate FDP-SGD with
our previously described subspace projection technique, cre-
ating Feature-Projective DP. This combined approach fo-
cuses parameter updates on the most informative gradient
directions while maintaining the privacy benefits of feature
decomposition. The complete algorithmic details of this in-
tegrated approach are provided in Algorithm 1.

Algorithm 1: Feature Projective DP-SGD

Require: Full dataset Sdata = {x1, . . . , xn}, split into pub-
lic subset Spub ⊂ Sdata (size m) and private remainder
Spriv = Sdata \ Spub, public feature map ψ,
combined loss ℓ(w, z) with public and private losses
lpub, lpriv, clip norm C, noise std. σ, subspace dim k,
batch size B, iterationss T , learning rate {ηt}.

1: Initialize model parameters w0 ∈ Rp.
2: for t = 1, . . . , T do
3: (1) Subspace identification on Spub:
4: Compute

Mt =
1

m

∑
z∈Spub

∇ℓ(wt−1, z̃)∇ℓ(wt−1, z̃)
⊤.

5: Compute the top-k eigenvectors of Mt.
6: Form the subspace basis Vt ∈ Rp×k.
7: Compute the projector V̂t V̂t

⊤
∈ Rp×p.

8: (2) Compute public and private feature gradient:
9: Sample public batch Bt

pub ⊂ ψ(x) : x ∈ Spriv

10: Compute

gtpub =
1

|Bt
pub|

∑
x∈Bt

pub

∇lpub(wt−1, ψ(x))

11: Sample private batch Bt
priv ⊂ Spriv

12: Compute the clipped gradient g̃t, aggregate and add
Gaussian noise

gtpriv =
1

|Bt
priv|

∑
x∈Bt

priv

g̃t +N (0, σ2C2I)

13: Project: gtproj = (V̂t V̂t
⊤
) · gtpriv ∈ Rp.

14: Merge Public and Private projected feature gradients

gt = gtpub + gtproj

15: Update: wt = wt−1 − ηt gt.
16: end for
17: return wT .

Experiments
Dataset and Implementation Details
In our experiments, we evaluated our framework on two
widely used human pose datasets: MS COCO Keypoint
Dataset (Lin et al. 2014) and MPII dataset (Andriluka et al.
2014). Our methodology assumes that the COCO dataset
serves as a public dataset used for pre-training the network
weights, while MPII functions as a private dataset on which
we apply the differential privacy techniques. The MS COCO
Keypoint Dataset is employed for pretraining purposes.

Specifically, our models are pretrained on the COCO
train2017 set, which consists of approximately 118k images
with around 140k annotated human instances, each with 17
joint annotations. The val2017 set consisting of around 5k
images is used for validation. For evaluating the trade-off be-
tween utility and performance under various DP-SGD tech-



niques we employ the MPII Human Pose Dataset consisting
of 40k human instances, each labeled with 16 joint anno-
tations. When transferring the model from COCO to MPII,
we adjust for the keypoint discrepancy between datasets. We
employ the Percentage of Correct Keypoints normalized by
head (PCKh) (Andriluka et al. 2014) as an evaluation metric.
To further assess the generalization ability of our pose esti-
mation models under domain shift and visual diversity, we
conduct additional experiments on the Human-Art dataset
(Ju et al. 2023). Human-Art is a recently introduced, large-
scale human-centric dataset specifically designed to bridge
the gap between natural and artificial visual domains. It con-
tains 50,000 high-quality images with over 123,000 person
instances drawn from 20 diverse scenarios, covering both
natural scenes (e.g., cosplay, drama, dance) and a wide spec-
trum of artistic representations (e.g., oil paintings, sculp-
tures, digital art, watercolor, and murals).

Compared to conventional datasets like MPII or COCO,
Human-Art presents significantly greater challenges for
pose estimation. This is primarily due to the presence of
stylized or abstract depictions of human figures, exagger-
ated or distorted body proportions, occlusions, artistic tex-
tures, and unconventional pose. The results on HumanART
are presented in supplementary.

Our experimental framework explores three distinct DP
training scenarios: Fine-Tuning with frozen backbone, Full
Fine-Tuning and, Training from scratch. For the first sce-
nario, we specifically freeze the first three stages of the back-
bone and finetune the fourth stage and all instances of layer
norm(De et al. 2022). To generate the public feature map,
we employ Gaussian blur which effectively suppresses fa-
cial and body structure details. Details on datasets, training
and privacy related parameters are provided in the supple-
mentary.

Experimental Results and Analysis
For comprehensive comparison, all experimental results
across training strategies, clipping thresholds and privacy
budgets are visualized in Figure 2.

Non-Private Baseline Results: Table 1 presents baseline
pose estimation performance of our model on the MPII
dataset under three training strategies: (i) finetuning from
a COCO-pretrained model, (ii) finetuning from scratch (ini-
tialization with COCO pretrained weights and all layers are
trained), and (iii) training from scratch (random initializa-
tion). Additionally, we report results from using only pub-
lic features (blurred images) under the same strategies to
provide context for evaluating privacy-utility trade-offs. As

Table 1: MPII Results: Non-Private Baselines for our HPE
model on the MPII dataset

Training Strategy Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1

Finetuning 97.07 95.86 89.59 83.61 89.29 85.31 81.48 89.36 31.33
Finetuning from scratch 96.45 95.84 88.07 82.18 88.78 83.01 79.45 88.28 28.11
Training from scratch 93.89 89.32 75.34 65.24 80.04 66.15 60.60 76.89 17.26
Finetuning on Public features 94.30 93.95 83.21 75.19 83.53 76.86 72.76 83.61 20.81
Finetuning from scratch on Public features 88.71 84.32 69.71 54.37 70.24 61.67 55.12 70.32 11.36
Training from scratch on Public features 15.31 20.01 17.19 12.59 25.04 16.90 10.91 17.99 0.78

expected, the finetuning strategy achieves the highest mean

accuracy of 89.36% followed by finetuning from scratch
(88.28%) and training from scratch (76.89%), which is to
be expected. These non-private baselines establish upper
bound performance references for evaluating differential
privacy impact. When the model relies only on public fea-
tures(gaussian blurred images), performance reduces signif-
icantly. While finetuning on public features maintain reason-
able accuracy, the other training strategies yield substantially
compromised results, confirming that fine-grained visual de-
tails in raw images are critical for accurate pose estimation.

DP-SGD Baseline Results Figure 2 presents the
PCKh@0.5 results on MPII dataset under the aforemen-
tioned training strategies using DP-SGD. Experiments
were conducted across multiple settings with varying
privacy parameters (ϵ ∈ {0.2, 0.4, 0.6, 0.8}) and clipping
thresholds (C ∈ {0.01, 0.1, 1.0}). For standard finetuning
with DP-SGD, lower clipping thresholds consistently yield
better pose estimation results across different privacy levels.
Specifically, at C = 0.01, the model achieves substantially
higher accuracy of 63.85% mean PCKh@0.5 at the tightest
privacy loss(ϵ = 0.2) compared to C = 0.1 (28.46%) and
C = 1.0 (5.94%). This is indeed because of the fact that the
effective noise magnitude grows linearly with the C thus
our results confirm this.

Notably, finetuning the COCO-pretrained TinyViT back-
bone significantly mitigates the DP induced performance
degradation compared to training from scratch or finetun-
ing from scratch (Yu et al. 2021). This indicates that pre-
trained human pose based feature representations provide
robust feature priors that enable DP-SGD to adapt effec-
tively to private pose datasets, while maintaining resilience
to noise corruption.

Performance Analysis of Subspace Projection We
maintain identical training strategies and privacy parame-
ters to ensure direct comparison with both non-private and
DP-SGD baseline methods. Our subspace projection ap-
proach demonstrates substantial performance improvements
across multiple configurations. At the most restrictive clip-
ping threshold (C = 0.01), projection yields significant
gains from 63.85% to 78.48% at ϵ = 0.2 and from 78.17%
to 80.63% at ϵ = 0.8. This enhancement occurs because,
while Gauissian noise is injected uniformly across all gradi-
ent components, only a subset of directions carry meaning-
ful pose-relevant information. By projecting onto the learned
subspace, we effectively discard the noise in irrelevant di-
rections, thereby improving signal-to-noise ratio and pre-
serving essential pose estimation features. At C = 0.1,
the projection approach consistently outperforms baseline
DP-SGD. Finetuning increases accuracy from 73.13% to
77.41%, while training from scratch improves from 9.80%
to 13.05%. However, for the finetuning from scratch strat-
egy, the curve plateaus slightly below regular DP-SGD.
We attribute this phenomenon to the interaction between
injected gaussian noise and subspace reconstruction er-
ror(Zhou, Wu, and Banerjee 2020). At the largest clipping
threshold (C = 1.0), we observe non-monotonic patterns.
Under this condition, the raw gradients become dominated
by noise, leading to unstable parameter updates and local



Figure 2: Comparison of PCKh@0.5 across private and non-private methodologies under different training strategies with
varied privacy budget (ϵ) and clipping thresholds (C).

Figure 3: Depiction of qualitative results on DP-SGD, Projection DP-SGD and Feature Projection DP-SGD. We specifically
show results on Finetuning with C = 0.1 at various privacy budgets.

dips in accuracy.

Performance analysis of FDP and Feature-Projective DP
Feature DP consistently outperforms vanilla DP-SGD across
all experimental configurations. Under finetuning with C =
0.01, FDP achieves substantial improvements, from 63.85%
to 75.46% at ϵ = 0.2 (11.61% gain) and from 78.17% to
80.40% at ϵ = 0.8 (2.23% gain). This is consistently ob-

served across all training strategies and clipping values. In-
tegrating FDP with subspace projection results in the high-
est accuracy across all experimental settings. Even under
the most challenging conditions with stringent clipping of
C = 1.0, where standard DP-SGD achieves only 12.53%,
Feature-projective DP attains 71.66%, representing a six
fold relative gain.

The largest improvements occur when training from



scratch. With C = 0.1 and ϵ = 0.8, vanilla DP-SGD
achieves merely 6.85% accuracy, while FDP alone attains
11.22%. However, the combined Feature-Projective DP ap-
proach achieves 33.48%. This demonstrates that combining
both techniques boosts utility drastically especially in large
noise induced scenarios, where neither alone suffices to re-
cover strong pose features from corrupted gradients. Fig-
ure 4 depicts few qualitative results across different privacy
strategies along with ground truth.

For completeness, detailed per-joint performance metrics,
full qualitative results and additional experimental results
are provided in the Supplementary Material.

Conclusion
Our work presents the first differentially private (DP) ap-
proach to 2D human pose estimation (HPE), addressing crit-
ical privacy concerns while maintaining utility. Our results
clearly establish that the synergistic combination of feature-
level privacy and subspace projection dramatically enhances
utility across all settings. Importantly, our proposed Feature-
Projective DP 2D-HPE approach achieved up to 82.61%
mean PCKh@0.5 at ϵ = 0.8, significantly narrowing the gap
to non-private performance while exhibiting strong formal
privacy guarantees. A key advantage of this method is that it
requires no manual curation of private features, as we auto-
matically protect the complete raw image, ensuring privacy
preservation for both individuals and their personal spatial
environments.
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S. P.; Jiménez, J.; Benavente-Fernández, I.; Pigueiras, J.;
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Implementation Details
Our models are pretrained on the COCO train2017 set,
which consists of approximately 118k images with around
140k annotated human instances, each with 17 joint anno-
tations. The val2017 set consisting of around 5k images is
used for validation. For evaluating the trade-off between util-
ity and performance under various DP-SGD techniques we
employ the MPII Human Pose Dataset consisting of 40k
human instances, each labeled with 16 joint annotations.
When transferring the model from COCO to MPII, we adjust
for the keypoint discrepancy between datasets. We employ
the Percentage of Correct Keypoints normalized by head
(PCKh) (Andriluka et al. 2014) as an evaluation metric.

All models are trained under differential privacy con-
straints using DP-SGD with various clipping norms and pri-
vacy budgets (ϵ). Each model undergoes training for a to-
tal of 25 epochs, as we empirically observed no significant
performance improvements when extending training beyond
this duration under DP constraints. Throughout all experi-
ments, we maintain a fixed input resolution of 256 × 192
pixels to ensure consistency across experiments and enable
comparison with prior work.

For the privacy parameter settings, we use three gradient
clipping norms C = {1.0, 0.1, 0.01}, with target privacy
budgets of ϵ = {0.2, 0.4, 0.6, 0.8}. We adopt Renyi Differ-
ential Privacy (RDP) (Mironov 2017) for privacy accounting
with the privacy parameter δ = 4e− 5.

For the projection method, we randomly select 100 sam-
ples from the training dataset of MPII as Spub (ensuring no
image overlap with the private data) with the remaining data
forming the private training set Spriv . The default projection
dimension K is set to 50 for all experiments.

To generate the public feature map, we employ Gaussian
blur as ψ with a kernel size of (25, 25) and standard devia-
tion σX = 10, which effectively suppresses facial and body
structure details. We deliberately blur the entire image rather
than selectively masking human regions, as this approach
provides comprehensive privacy protection by obscuring not
only human identities but also contextual environmental de-
tails.

We chose to blur the complete image owing to the tech-
nicalities of the dataset as MPII has multiple instances of
humans from similar image.

Per Joint PCKh@0.5 on MPII and
HumanART

Tables below report per-joint PCKh@0.5 scores on MPII un-
der various DP-SGD settings. Smaller clipping norms (C)
and higher privacy budgets (ϵ) consistently improve pose
accuracy. While we provide detailed results on the MPII
dataset across various DP-SGD settings, including training
from scratch, fine-tuning, and projection-based setups un-
der different clipping norms and privacy budgets, we only
report a subset of results for the Human-Art dataset. This
is because certain settings, especially those involving large
clipping norms or training without pretraining, result in ex-
tremely low utility. In many of these cases, the models fail
to converge or produce meaningful predictions, with PCKh

scores often dropping below 5%. Since these settings do not
offer useful insights for practical analysis, we exclude them
from the main tables and focus on configurations that yield
more stable and interpretable performance

Table 2: MPII Results: DP-SGD.

Privacy Parameter(ϵ) Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1

Finetuning

C = 1.0
ϵ = 0.2 0.00 5.15 13.31 6.00 10.20 2.18 0.21 5.94 0.29
ϵ = 0.4 0.99 6.27 14.83 7.68 12.97 2.38 3.26 8.36 0.34
ϵ = 0.6 0.31 13.06 21.56 8.43 19.16 3.00 3.59 12.19 0.58
ϵ = 0.8 2.97 10.43 19.16 7.06 22.31 3.75 8.12 12.53 0.61

C = 0.1
ϵ = 0.2 30.73 35.51 31.19 13.43 37.96 12.59 13.30 28.46 1.61
ϵ = 0.4 43.01 49.92 47.98 20.20 50.67 18.22 21.56 39.78 2.43
ϵ = 0.6 53.10 59.51 52.00 24.55 58.54 22.65 22.65 45.18 2.86
ϵ = 0.8 64.56 64.44 53.09 28.29 60.05 30.29 28.74 49.93 3.42

C = 0.01
ϵ = 0.2 78.14 83.36 65.21 47.49 69.98 47.35 39.02 63.85 5.68
ϵ = 0.4 83.83 88.88 77.02 63.83 74.87 62.50 52.12 73.77 9.30
ϵ = 0.6 87.11 90.05 78.71 70.05 75.37 66.61 59.42 76.85 11.05
ϵ = 0.8 87.79 90.32 78.95 71.99 77.91 69.07 61.55 78.17 11.91

Finetuning from scratch

C = 1.0
ϵ = 0.2 4.09 2.96 0.82 1.51 0.71 0.75 0.59 1.39 0.06
ϵ = 0.4 6.51 7.51 3.44 3.67 1.66 14.04 1.06 5.95 0.22
ϵ = 0.6 16.17 11.79 7.41 3.92 9.23 9.27 1.82 8.67 0.37
ϵ = 0.8 8.94 17.05 8.40 3.79 10.04 8.38 2.95 9.34 0.39

C = 0.1
ϵ = 0.2 12.48 20.87 15.70 10.91 23.39 13.96 8.36 16.11 0.68
ϵ = 0.4 16.68 22.69 21.15 11.10 24.10 12.98 9.38 18.64 0.80
ϵ = 0.6 23.26 28.07 21.70 13.06 26.92 14.57 9.73 21.73 1.07
ϵ = 0.8 28.58 29.14 21.36 13.18 27.40 14.31 9.09 22.74 1.10

C = 0.01
ϵ = 0.2 28.89 31.52 22.43 12.11 27.37 16.72 10.39 24.05 1.16
ϵ = 0.4 49.25 43.19 26.28 15.01 33.58 18.05 15.28 30.94 1.86
ϵ = 0.6 60.20 50.68 30.99 16.99 37.84 20.15 20.34 35.77 2.25
ϵ = 0.8 62.28 54.33 36.48 21.66 43.36 22.43 21.42 39.86 2.86

Training from scratch

C = 1.0
ϵ = 0.2 0.14 0.05 0.37 0.02 0.64 0.26 0.35 0.30 0.02
ϵ = 0.4 1.71 0.07 0.07 0.15 0.28 3.28 0.02 0.68 0.03
ϵ = 0.6 0.03 4.64 0.00 1.25 0.90 3.10 0.05 1.45 0.07
ϵ = 0.8 0.31 0.00 1.76 0.26 0.00 0.00 0.90 0.44 0.02

C = 0.1
ϵ = 0.2 1.09 0.03 2.97 7.01 1.28 1.23 0.50 2.33 0.09
ϵ = 0.4 0.14 5.04 6.49 4.69 18.87 0.67 0.24 5.84 0.23
ϵ = 0.6 0.10 9.51 8.01 9.58 22.90 2.08 1.23 8.12 0.33
ϵ = 0.8 0.24 8.07 5.25 9.46 17.03 2.04 2.39 6.85 0.28

C = 0.01
ϵ = 0.2 0.31 10.31 10.07 4.90 13.33 3.41 1.77 8.17 0.36
ϵ = 0.4 1.33 15.61 9.17 8.96 19.92 3.87 1.32 10.13 0.48
ϵ = 0.6 6.79 17.24 13.50 9.60 21.53 5.74 2.13 12.68 0.56
ϵ = 0.8 13.27 16.76 13.38 9.68 19.87 5.48 2.17 12.74 0.54



Table 3: MPII Results: DP-SGD with Projection.

Privacy Parameter(ϵ) Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1

Finetuning

C = 1.0
ϵ = 0.2 3.48 14.79 6.85 8.38 17.36 8.85 8.62 10.34 0.42
ϵ = 0.4 54.67 55.45 32.54 23.70 37.23 21.44 13.30 36.99 2.33
ϵ = 0.6 55.97 49.10 31.99 28.22 39.67 24.10 14.34 37.90 2.31
ϵ = 0.8 71.18 76.19 55.51 46.60 53.97 39.13 32.97 56.26 4.19

C = 0.1
ϵ = 0.2 88.85 89.44 75.78 68.46 61.21 63.83 54.68 73.13 10.56
ϵ = 0.4 88.44 89.84 78.92 72.62 70.21 69.45 61.08 77.17 12.55
ϵ = 0.6 90.31 90.20 79.27 71.43 66.02 68.75 58.01 76.11 12.21
ϵ = 0.8 91.51 90.39 79.51 72.84 71.23 67.86 59.78 77.41 12.88

C = 0.01
ϵ = 0.2 92.02 90.78 79.10 72.47 72.72 70.74 64.29 78.48 13.67
ϵ = 0.4 91.81 90.74 79.92 72.04 75.42 71.79 65.78 79.23 13.49
ϵ = 0.6 92.29 91.78 80.48 73.75 74.16 72.29 67.88 79.89 14.28
ϵ = 0.8 92.29 91.49 80.86 74.52 75.32 73.91 69.77 80.63 14.61

Finetuning from scratch

C = 1.0
ϵ = 0.2 0.48 8.93 8.86 8.24 20.72 3.77 1.75 8.64 0.31
ϵ = 0.4 4.13 14.88 14.32 6.99 3.41 5.80 3.73 8.74 0.38
ϵ = 0.6 3.48 16.34 9.90 12.35 13.21 13.48 10.23 11.85 0.56
ϵ = 0.8 2.69 15.73 11.20 11.79 19.65 6.83 1.94 11.22 0.51

C = 0.1
ϵ = 0.2 4.40 18.99 16.99 9.42 18.07 10.70 6.78 13.58 0.63
ϵ = 0.4 12.45 15.30 17.25 10.90 21.50 9.61 7.01 14.36 0.61
ϵ = 0.6 15.59 15.64 16.70 10.50 19.49 14.19 7.98 15.43 0.66
ϵ = 0.8 13.34 23.30 15.51 10.08 20.06 8.68 9.05 15.92 0.66

C = 0.01
ϵ = 0.2 82.44 69.58 49.75 43.23 43.31 39.11 36.56 53.54 5.87
ϵ = 0.4 83.77 75.70 55.19 50.44 52.12 46.12 45.35 59.82 7.87
ϵ = 0.6 86.02 74.25 61.31 52.96 51.39 46.75 45.42 61.09 8.61
ϵ = 0.8 87.14 77.77 63.32 56.18 57.14 50.92 48.89 64.28 9.68

Training from scratch

C = 1.0
ϵ = 0.2 0.07 1.77 10.07 11.07 12.74 1.37 0.02 5.65 0.26
ϵ = 0.4 1.36 6.98 17.69 9.77 5.24 0.95 0.07 6.76 0.28
ϵ = 0.6 0.07 1.00 14.47 12.44 6.42 7.19 1.87 6.57 0.31
ϵ = 0.8 0.17 7.24 11.71 5.91 2.68 4.27 1.23 5.89 0.24

C = 0.1
ϵ = 0.2 1.19 18.05 12.78 9.53 22.66 7.64 5.95 13.05 0.56
ϵ = 0.4 0.75 13.08 6.17 5.55 21.91 3.36 5.50 9.80 0.41
ϵ = 0.6 1.98 21.28 8.16 11.05 19.70 4.11 4.72 12.24 0.56
ϵ = 0.8 1.30 13.20 4.48 8.31 22.62 6.73 4.27 10.57 0.43

C = 0.01
ϵ = 0.2 5.15 15.10 15.07 12.39 19.61 10.28 8.83 14.26 0.65
ϵ = 0.4 9.21 20.60 15.78 10.67 22.33 13.06 7.01 15.54 0.70
ϵ = 0.6 17.09 19.70 6.89 10.50 22.36 15.88 10.51 15.15 0.62
ϵ = 0.8 9.48 19.55 16.12 10.91 22.45 6.61 3.57 13.96 0.60

Table 4: MPII Results: Feature DP-SGD.

Privacy Parameter(ϵ) Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1

Finetuning

C = 0.01
ϵ = 0.2 87.04 89.28 75.78 66.54 75.89 65.04 58.48 75.47 10.64
ϵ = 0.4 90.76 91.30 78.51 69.95 78.55 68.85 63.86 78.60 12.71
ϵ = 0.6 91.47 91.95 79.63 71.99 79.87 71.00 65.45 79.90 13.62
ϵ = 0.8 92.16 92.15 79.85 72.81 80.41 71.55 66.30 80.41 14.22

C = 0.1
ϵ = 0.2 52.42 65.78 57.32 27.43 53.31 36.05 26.03 48.99 3.53
ϵ = 0.4 78.04 81.62 64.53 40.43 67.70 45.14 39.58 61.73 5.44
ϵ = 0.6 78.48 84.80 68.48 45.60 69.88 49.89 45.11 65.32 6.47
ϵ = 0.8 82.74 85.21 70.29 48.50 71.39 54.50 47.85 67.60 7.03

C = 1.0
ϵ = 0.2 1.60 9.90 7.86 11.57 14.25 3.00 7.91 9.32 0.33
ϵ = 0.4 11.49 17.05 8.30 11.08 23.89 8.20 9.57 15.01 0.59
ϵ = 0.6 14.84 25.00 12.36 13.62 27.07 10.84 11.29 18.37 0.81
ϵ = 0.8 21.69 29.28 16.16 14.56 26.55 15.66 15.45 22.05 1.01

Finetuning from scratch

C = 0.01
ϵ = 0.2 71.15 57.17 38.71 22.32 47.24 28.39 29.12 43.89 3.48
ϵ = 0.4 78.75 69.40 47.15 33.34 54.86 38.87 37.72 53.00 5.10
ϵ = 0.6 82.44 72.69 52.00 38.19 59.22 41.69 41.14 56.78 6.07
ϵ = 0.8 83.80 74.81 54.88 41.29 60.93 44.35 42.80 58.98 6.70

C = 0.1
ϵ = 0.2 33.94 30.42 19.36 12.83 27.19 15.03 10.82 23.15 1.14
ϵ = 0.4 40.86 37.75 22.57 15.08 31.71 18.09 15.94 28.46 1.53
ϵ = 0.6 47.68 43.27 25.09 16.31 35.35 19.56 17.78 31.90 1.92
ϵ = 0.8 52.25 45.31 27.27 16.57 35.90 19.28 18.47 33.27 2.21

C = 1.0
ϵ = 0.2 12.14 8.85 8.76 10.54 11.72 9.47 4.04 10.03 0.39
ϵ = 0.4 10.06 13.33 10.74 9.92 20.84 12.17 5.48 12.57 0.51
ϵ = 0.6 7.03 12.65 17.11 11.29 21.67 15.35 3.19 12.84 0.52
ϵ = 0.8 13.47 19.74 15.95 9.58 22.95 12.65 8.90 15.69 0.60

Training from scratch

C = 0.01
ϵ = 0.2 6.92 18.29 17.40 10.96 22.62 14.89 3.71 15.17 0.60
ϵ = 0.4 10.57 22.61 18.41 12.15 23.09 14.33 6.83 17.14 0.71
ϵ = 0.6 11.39 22.18 17.16 11.91 24.23 15.90 8.86 17.57 0.82
ϵ = 0.8 14.09 21.31 19.52 11.31 24.32 16.44 7.35 17.74 0.80

C = 0.1
ϵ = 0.2 4.23 0.56 7.82 8.64 19.44 1.91 1.96 7.13 0.26
ϵ = 0.4 0.48 12.62 10.69 8.12 21.15 2.36 0.33 8.87 0.37
ϵ = 0.6 0.48 15.08 10.64 9.00 19.72 4.33 1.20 9.60 0.41
ϵ = 0.8 0.61 13.09 12.94 10.74 22.73 4.94 1.37 11.22 0.48

C = 1.0
ϵ = 0.2 0.31 0.32 0.14 0.00 0.03 0.06 0.12 0.35 0.02
ϵ = 0.4 1.84 3.63 0.02 0.43 0.00 0.00 0.09 0.78 0.02
ϵ = 0.6 0.00 2.62 0.05 4.61 8.34 0.12 0.00 2.39 0.10
ϵ = 0.8 0.14 0.02 0.07 0.00 15.22 0.02 0.26 2.57 0.12



Table 5: MPII Results: Feature Projection DP-SGD.

Privacy Parameter(ϵ) Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1

Finetuning

C = 0.01
ϵ = 0.2 94.17 92.70 82.17 73.29 80.79 76.45 72.60 82.50 19.65
ϵ = 0.4 94.13 92.70 81.46 73.10 80.51 75.44 71.00 82.01 19.23
ϵ = 0.6 94.10 92.70 81.47 72.79 80.87 75.32 71.19 82.01 19.48
ϵ = 0.8 94.27 92.63 81.58 72.50 80.37 75.56 70.88 81.91 19.22

C = 0.1
ϵ = 0.2 93.79 91.85 79.07 71.56 77.43 73.32 68.92 80.24 15.20
ϵ = 0.4 94.03 92.56 80.72 73.19 79.85 74.95 69.96 81.60 17.03
ϵ = 0.6 93.86 92.82 81.17 74.70 79.78 75.68 70.78 82.09 17.74
ϵ = 0.8 94.78 93.21 82.31 74.51 80.63 76.04 71.30 82.62 18.64

C = 1.0
ϵ = 0.2 73.36 65.88 53.72 40.79 56.14 43.44 34.10 54.75 4.05
ϵ = 0.4 86.53 82.17 63.52 54.50 57.68 49.20 43.01 64.02 6.09
ϵ = 0.6 86.66 86.06 66.70 51.94 67.47 51.40 47.02 67.02 6.73
ϵ = 0.8 91.13 89.06 73.91 63.39 62.92 59.60 51.75 71.66 9.37

Finetuning from scratch

C = 0.01
ϵ = 0.2 92.91 88.94 76.55 67.33 77.81 71.11 65.99 78.11 16.82
ϵ = 0.4 92.74 88.55 75.80 65.63 77.48 70.02 65.37 77.41 16.23
ϵ = 0.6 93.21 88.62 75.61 65.15 77.79 69.33 64.52 77.23 16.37
ϵ = 0.8 92.29 87.11 74.11 63.13 76.53 67.46 62.78 75.74 15.83

C = 0.1
ϵ = 0.2 91.95 85.61 71.11 59.78 73.84 64.58 61.36 73.51 14.33
ϵ = 0.4 93.76 88.65 76.97 67.07 77.27 70.30 66.23 78.01 16.93
ϵ = 0.6 93.49 89.08 77.09 67.81 79.09 72.23 67.48 78.86 16.93
ϵ = 0.8 94.03 90.46 78.56 68.58 80.68 72.54 69.08 79.95 17.83

C = 1.0
ϵ = 0.2 4.20 8.02 13.07 9.20 22.99 7.64 7.02 10.98 0.46
ϵ = 0.4 10.54 17.53 13.19 11.50 20.60 7.41 5.12 13.49 0.53
ϵ = 0.6 15.52 20.67 14.91 12.11 21.64 14.99 8.10 16.29 0.78
ϵ = 0.8 20.36 20.92 12.63 10.95 24.98 10.07 8.46 16.29 0.73

Training from scratch

C = 0.01
ϵ = 0.2 16.75 19.53 17.62 12.41 24.84 14.35 9.99 17.34 0.71
ϵ = 0.4 62.65 52.11 34.07 19.03 41.09 27.30 23.74 38.90 3.43
ϵ = 0.6 71.66 60.36 38.86 22.51 46.65 31.51 26.26 44.28 4.39
ϵ = 0.8 67.84 58.95 38.06 21.86 44.95 31.99 27.66 43.39 4.12

C = 0.1
ϵ = 0.2 14.02 17.56 14.69 10.86 20.65 15.84 7.96 15.50 0.72
ϵ = 0.4 11.02 19.51 16.62 11.02 23.61 14.16 10.16 16.42 0.65
ϵ = 0.6 18.21 24.56 19.24 12.34 26.62 15.68 12.49 19.78 0.93
ϵ = 0.8 53.27 46.01 29.37 17.27 35.47 21.20 17.17 33.49 2.33

C = 1.0
ϵ = 0.2 1.13 14.74 9.56 8.19 22.14 14.47 3.54 12.39 0.54
ϵ = 0.4 17.77 14.81 15.85 9.46 22.16 14.83 4.06 15.23 0.70
ϵ = 0.6 18.49 21.08 15.39 11.12 22.54 5.14 5.48 14.67 0.66
ϵ = 0.8 5.83 14.96 14.88 10.66 22.21 13.04 3.83 12.97 0.55

Table 6: HumanART Results: DP-SGD.

Privacy Parameter(ϵ) Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1 inkoti

Finetuning

C = 0.01
ϵ = 0.2 29.1 67.6 20.0 14.0 30.9 34.0 71.6 28.6 22.0 35.5
ϵ = 0.4 40.7 74.7 39.3 23.8 42.7 45.8 77.1 46.7 32.9 47.9
ϵ = 0.6 37.5 74.7 33.6 20.9 39.4 42.1 77.6 41.4 29.1 43.8
ϵ = 0.8 39.0 75.9 36.0 22.2 40.9 43.5 78.3 43.6 30.1 45.3

C = 0.1
ϵ = 0.2 3.5 19.0 0.0 0.9 4.0 8.7 35.6 0.8 5.0 9.2
ϵ = 0.4 7.7 32.4 0.5 2.3 8.5 14.6 47.7 4.0 8.7 15.3
ϵ = 0.6 10.4 39.3 1.5 3.4 11.3 17.1 51.9 6.2 10.5 17.9
ϵ = 0.8 12.0 43.3 2.4 3.9 13.0 18.4 54.1 7.3 11.4 19.2

Finetuning from scratch

C = 0.01
ϵ = 0.2 0.9 5.8 0.0 0.2 1.0 3.8 19.7 0.1 2.6 3.9
ϵ = 0.4 1.3 8.0 0.0 0.4 1.4 5.0 23.7 0.3 3.5 5.2
ϵ = 0.6 1.7 10.7 0.0 0.5 1.9 6.1 27.5 0.6 4.2 6.4
ϵ = 0.8 2.1 12.9 0.0 0.8 2.3 6.8 29.6 0.7 5.1 7.0

C = 0.1
ϵ = 0.2 0.0 0.4 0.0 0.0 0.1 0.8 5.7 0.0 0.5 0.8
ϵ = 0.4 0.2 1.9 0.0 0.1 0.3 2.3 13.4 0.1 1.4 2.4
ϵ = 0.6 0.5 3.6 0.0 0.1 0.6 3.3 18.6 0.0 2.2 3.4
ϵ = 0.8 0.6 4.3 0.0 0.1 0.7 3.5 20.0 0.0 2.4 3.7

Table 7: HumanART Results: DP-SGD with projection.

Privacy Parameter(ϵ) Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1 inkoti

Finetuning

C = 0.01
ϵ = 0.2 38.3 73.9 35.6 21.7 40.4 43.6 76.9 43.6 30.8 45.8
ϵ = 0.4 34.7 73.4 29.1 18.3 36.6 39.7 76.0 37.9 26.9 41.4
ϵ = 0.6 40.3 75.8 38.4 22.5 42.6 46.1 78.5 47.0 33.1 47.8
ϵ = 0.8 38.7 74.3 36.3 21.1 40.8 44.3 77.3 44.5 32.1 45.9

C = 0.1
ϵ = 0.2 31.6 69.1 24.7 17.0 33.3 36.8 72.7 33.1 26.0 38.2
ϵ = 0.4 32.9 70.4 27.0 18.0 34.6 38.1 73.2 35.2 27.2 39.5
ϵ = 0.6 33.6 71.3 26.9 18.4 35.4 38.6 74.3 35.2 28.2 40.0
ϵ = 0.8 33.5 69.4 28.4 18.4 35.3 38.7 72.6 36.8 27.1 40.2

C = 1.0
ϵ = 0.2 1.1 6.7 0.0 0.3 1.3 4.8 21.9 0.2 3.2 5.0
ϵ = 0.4 11.7 41.7 2.0 3.8 12.8 18.1 52.4 7.8 11.1 19.0
ϵ = 0.6 10.7 39.4 1.9 2.9 11.7 17.1 51.2 6.8 9.7 18.0
ϵ = 0.8 23.5 60.4 14.2 11.1 25.2 30.2 66.2 24.2 20.2 31.5

Finetuning from scratch

C = 0.01
ϵ = 0.2 1.7 8.5 0.4 0.4 1.9 4.9 19.5 1.1 2.9 5.2
ϵ = 0.4 3.5 15.2 0.3 1.1 3.9 8.4 29.0 2.6 5.8 8.7
ϵ = 0.6 2.1 10.2 0.1 0.7 2.4 5.9 22.2 1.4 3.4 6.2
ϵ = 0.8 1.4 7.3 0.1 0.5 1.6 4.3 18.2 0.6 2.4 4.5

C = 0.1
ϵ = 0.2 0.5 2.8 0.1 0.2 0.6 2.2 10.9 0.1 1.5 2.3
ϵ = 0.4 0.6 4.0 0.0 0.3 0.7 2.5 12.9 0.1 1.7 2.6
ϵ = 0.6 1.2 5.7 0.5 0.4 1.5 3.4 15.3 0.6 1.7 3.7
ϵ = 0.8 1.1 4.2 1.0 0.3 1.2 3.1 14.0 0.5 1.8 3.2

C = 1.0
ϵ = 0.2 0.1 0.9 0.0 0.0 0.2 0.9 5.6 0.0 0.6 0.9
ϵ = 0.4 0.3 2.0 0.1 0.0 0.4 1.9 11.1 0.1 1.0 2.0
ϵ = 0.6 0.8 4.6 0.0 0.1 0.9 3.1 16.1 0.1 1.7 3.3
ϵ = 0.8 0.2 1.3 0.1 0.0 0.3 1.3 7.5 0.1 0.9 1.4

Training from scratch

C = 0.01
ϵ = 0.2 0.12 0.68 0.06 0.0 0.17 1.06 5.7 0.1 0.5 1.1
ϵ = 0.4 0.0 0.09 0.0 0.0 0.0 0.09 0.71 0.0 0.10 0.09
ϵ = 0.6 0.31 2.1 0.0 0.07 0.4 1.8 11.7 0.01 1.18 1.93
ϵ = 0.8 0.11 0.82 0.0 0.04 0.2 1.2 7.0 0.02 1.15 1.20

C = 0.1
ϵ = 0.2 0.05 0.29 0.0 0.06 0.38 2.5 0.0 0.3 0.4 1.24
ϵ = 0.4 0.12 0.91 0.0 0.05 0.16 1.35 7.58 0.04 1.3 1.37
ϵ = 0.6 0.19 1.27 0.0 0.04 0.23 1.6 9.06 0.03 1.02 1.6
ϵ = 0.8 0.02 0.11 0.0 0.0 0.03 2.09 0.0 0.25 0.32 0.31

Table 8: HumanART Results: Feature Projection DP-SGD.

Privacy Parameter(ϵ) Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1 inkoti

Finetuning

C = 0.01
ϵ = 0.2 32.6 71.8 26.4 17.1 34.6 38.1 75.2 35.1 26.6 39.6
ϵ = 0.4 37.3 74.6 34.2 20.7 39.5 42.6 77.7 42.4 30.4 44.2
ϵ = 0.6 39.3 75.9 37.6 22.2 41.7 44.5 78.8 45.4 31.4 46.2
ϵ = 0.8 40.5 76.9 39.4 23.1 42.7 45.6 79.4 47.0 32.5 47.3

C = 0.1
ϵ = 0.2 8.7 37.0 1.1 3.1 9.4 14.1 48.7 2.9 9.6 14.7
ϵ = 0.4 13.5 47.2 2.1 4.8 14.6 18.8 55.9 6.8 12.3 19.6
ϵ = 0.6 15.8 51.9 3.5 5.9 17.0 21.1 59.1 9.3 14.1 22.0
ϵ = 0.8 17.1 53.5 4.6 6.6 18.4 22.4 60.6 10.8 14.9 23.3

Finetuning from scratch

C = 0.01
ϵ = 0.2 4.8 23.0 0.2 0.9 5.5 10.4 38.4 2.4 6.3 10.9
ϵ = 0.4 7.7 30.0 1.7 1.7 8.5 13.6 43.1 5.0 8.5 14.2
ϵ = 0.6 8.8 32.8 2.3 2.0 9.7 14.8 45.2 6.3 9.3 15.4
ϵ = 0.8 9.5 34.5 2.6 2.2 10.6 15.7 46.9 7.1 10.1 16.3

C = 0.1
ϵ = 0.2 0.2 1.9 0.0 0.0 0.3 2.3 13.6 0.0 1.4 2.5
ϵ = 0.4 0.7 4.9 0.0 0.0 0.8 3.2 18.3 0.09 1.7 3.3
ϵ = 0.6 1.0 7.0 0.0 0.2 1.1 3.9 21.0 0.1 2.7 4.0
ϵ = 0.8 1.3 9.3 0.0 0.2 1.5 4.4 23.1 0.1 2.8 4.6



Table 9: HumanART Results: Feature Projection DP-SGD
plus projection.

Privacy Parameter(ϵ) Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1 inkoti

Finetuning

C = 0.01
ϵ = 0.2 50.6 80.2 53.4 31.3 52.8 55.3 82.4 59.1 41.3 57.2
ϵ = 0.4 51.6 80.4 55.0 33.5 53.8 56.2 82.7 60.3 42.2 58.1
ϵ = 0.6 50.9 80.2 53.6 32.5 53.2 55.9 82.7 59.9 42.1 57.8
ϵ = 0.8 51.6 80.2 54.7 33.6 53.7 56.2 82.5 60.2 42.3 58.1

C = 0.1
ϵ = 0.2 40.4 75.5 38.9 24.4 42.3 45.4 78.0 46.0 33.0 47.1
ϵ = 0.4 41.1 76.8 40.2 24.6 43.3 46.8 79.5 48.2 34.4 48.4
ϵ = 0.6 42.2 75.7 42.2 25.2 44.3 47.5 78.6 49.3 34.4 49.2
ϵ = 0.8 43.0 77.0 42.9 25.7 45.1 48.4 79.9 50.3 35.7 50.1

C = 1.0
ϵ = 0.2 26.8 62.1 19.0 13.5 28.4 32.9 67.0 28.6 23.2 34.2
ϵ = 0.4 32.4 70.5 25.4 19.0 34.2 39.0 74.7 36.6 29.9 40.3
ϵ = 0.6 33.9 70.6 28.7 18.3 35.8 40.1 74.4 38.5 28.8 41.6
ϵ = 0.8 35.4 72.1 30.7 20.2 37.2 40.7 75.1 38.6 29.9 42.1

Finetuning from scratch

C = 0.01
ϵ = 0.2 45.3 76.9 46.4 29.5 47.3 50.4 79.7 53.0 38.0 52.1
ϵ = 0.4 45.1 76.6 46.5 28.0 47.2 50.5 79.1 53.5 36.8 52.3
ϵ = 0.6 43.8 75.2 44.5 28.5 45.6 49.6 78.0 52.2 38.3 51.1
ϵ = 0.8 46.0 76.7 47.5 29.3 48.1 51.4 79.7 54.5 38.0 53.2

C = 0.1
ϵ = 0.2 6.8 24.4 2.3 2.8 7.4 11.6 35.9 5.2 8.8 12.0
ϵ = 0.4 22.0 53.7 14.5 12.0 23.3 27.7 60.3 22.1 20.6 28.7
ϵ = 0.6 29.1 62.4 24.0 17.7 30.8 34.9 67.8 32.0 26.2 36.1
ϵ = 0.8 33.0 68.0 27.9 21.5 34.4 38.6 72.0 36.5 30.0 39.8



Figure 4: Figures (a-e)Depiction of qualitative results on DP-SGD, Projection DP-SGD and Feature Projection DP-SGD. We
specifically show results on Finetuning with C = 0.1 at various privacy budgets. (f) Representation of Raw (Private) image
compared to public feature (gaussian blurred).


