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ABSTRACT
Due to the limited permissions for upgrading dual-side (i.e., server-
side and client-side) loss tolerance schemes from the perspective
of CDN vendors in a multi-supplier market, modern large-scale
live streaming services are still using the automatic-repeat-request
(ARQ) based paradigm for loss recovery, which only requires server-
side modifications. In this paper, we first conduct a large-scale mea-
surement study with a collection of up to 50 million live streams.
We find that loss shows dynamics and live streaming contains fre-
quent on-off mode switching in the wild. We further find that the
recovery latency, enlarged by the ubiquitous retransmission loss,
is a critical factor affecting client-side QoE (e.g., video freezing) of
live streaming. We then propose an enhanced recovery mechanism
called AutoRec, which can transform the disadvantages of on-off
mode switching into an advantage for reducing loss recovery la-
tency without any modifications on the client side. AutoRec also
adopts an online learning-based policy to fit the dynamics of loss,
balancing the tradeoff between the recovery latency and the in-
curred overhead. We implement AutoRec upon QUIC and evaluate
it via both testbed and real-world deployments of commercial ser-
vices. The experimental results demonstrate the practicability and
profitability of AutoRec, in which the 95th-percentile times and
duration of client-side video freezing can be lowered by 34.1% and
16.0%, respectively.

1 INTRODUCTION
Internet live services such as Youtube Live, TikTok Live, and Twitch
have gradually become a fundamental element for enriching daily
life and work [1, 2]. This also introduces an urgent requirement
to promote the transmission performance of live streaming. The
ubiquitous packet loss is an essential factor affecting client-side
quality-of-experience (QoE) [3, 4], which will introduce head-of-
line (HOL) blocking and even incur long-time video freezing if the
available frames in the player buffer are all consumed. Therefore,
loss tolerance control matters in live-streaming services.

The existing loss tolerance schemes mainly focus on designing
dual-side (i.e., service-side CDN and client-side application) control
policies, including Forward Error Correction (FEC) [5–7], multi-
path retransmissions [8, 9], semi-reliable transmissions [10, 11], and
application-level controls [12–14]. However, as shown in Figure 1,
live-streaming application operators (e.g., TikTok Live) usually ap-
ply the Multi-Supplier Strategy [15] in the CDN market. As a result,
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Figure 1: An example of a multi-supplier market for CDN
vendors in large-scale live streaming services.

it is the CDN vendor’s duty that optimize the transmission per-
formance (e.g., loss tolerance), according to which the application
operators will choose the better-performed CDN vendors to carry
more traffic (i.e., larger market share). In this case, only server-
side sending policies can be adjusted by the selected CDN vendors,
which lack the proper authority to synchronize client-side control
rules. Thus, the above-mentioned arts for loss tolerance control
suffer from deployment issues in the multi-supplier CDN market.

In this case, most modern CDN vendors only apply the automatic-
repeat-request (ARQ) paradigm [16] to control loss tolerance as the
commercial solution, which retransmits only one replica of the lost
packet when a loss is detected. However, we find that the legacy
ARQ-based loss recovery is far from satisfactory according to our
performed large-scale measurements. For example, the proportion
of connections with maximum retransmission times of two or more
exceeds 43%. Among them, a considerable portion of the connec-
tions has certain packets that are retransmitted even more than
10 times (§2.1). The retransmission loss enlarges the loss recov-
ery latency by 123.2ms on average and 279.3ms in the worst case.
This enlarged recovery latency further increases the probability of
empty buffer space on the client side, thereby increasing the risk
of video freezing (§2.3). Thus from a philosophical standpoint, it
is worth asking: Can we accelerate loss recovery solely through
CDN servers without modifying clients? How can it be addressed
without adding significant additional overhead?

Our key insight is that the on-off mode switching ubiquitously
occurs in current live streams (§2.2), where the bandwidth during
the "off" periods is not fully utilized. Based on our measurements,
it can be observed that each live stream spends 464 ms in off-mode
per second and enters off-mode 20 times per second on average.
It is well-studied that the on-off traffic pattern is not conducive
to transmission control [17–22]. However, we argue that it can
act as an advantage for the loss tolerance control of live stream-
ing. In this paper, we present AutoRec, an enhanced loss recovery
mechanism that can transform the disadvantages of on-off mode
into an advantage of loss tolerance controls under large-scale live
streaming.

A straightforward way of AutoRec is to directly reinject a fixed
number of replicas of loss packets once stepping into off-streaming
mode. However, this approach faces two challenges. First, the fixed
settings of redundant replicas cannot well adapt to the dynamics
of packet loss, while excessive reinjection of packets results in
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Figure 2: The maximum retransmission times in the wild.
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Figure 3: Examples of loss dynamics in the wild.

non-trivial recovery overhead. Second, according to our large-
scale measurement study, the off-mode is unevenly distributed
throughout an entire live session, the sending of replicas might be
delayed when the stream doesn’t enter off-mode in time. To tackle
these issues, we propose a two-step solution: Redundancy Adaption
and Reinjection Control.

Redundancy Adaption smartly determines how many replicas of
the lost packets should be reinjected. Specifically, it adopts an online
learning-based policy to dynamically set the number of replicas.
The goal is to send the least number of replicas that adapt to the
dynamics of packet loss. This assures a minimized redundancy
overhead while accelerating loss recovery.

Reinjection Control determines when to retransmit the replicas.
Generally, it enables the replica reinjection during the off-modes.
AutoRec further adopts the opportunistic reinjection to trigger loss
reinjection even though lacking the desired opportunity of off-mode.
This assures that each replica can be reinjected in time even under
uneven distribution of off-modes.

We implement the AutoRec prototype in the user-space QUIC
protocol and deploy it on both testbed and real-network CDN proxy
for 6 months. The experimental results demonstrate the practica-
bility and profitability of AutoRec, in which the average (95th-
percentile) times and duration of client-side video freezing can be
lowered by 11.4% and 5.2% (34.1% and 16.0%), respectively.

The rest of the paper is organized as follows: §2 motivates our
work with a large-scale measurement study. Then, the high-level
architecture and design details of AutoRec are depicted in §3 and
§4, respectively. §5 gives the experimental evaluations of AutoRec.
§6 overviews the related work and §7 concludes the paper.

2 MEASUREMENT STUDY
In this section, we conduct a large-scale measurement study to
motivate our work. We first explore the characteristics of loss (§2.1)
and the characteristics of live streaming (§2.2) in the wild. We then
analyze the performance of live streaming under the context of
packet loss, especially under retransmission loss (§2.3).

Video/Audio Encoder

Live dataLive data Live data
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t1 t3 t4t2 t5

Sending packets Sending packets

time
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Figure 4: The sketch of on-off mode in live streams.

2.1 Characteristics of Loss
We dissected the characteristics of loss using real-world logs span-
ning up to two weeks. These logs documented specific details re-
lated to packet loss, including the frequency of loss events and
the magnitude of each loss. Our measurements encompass over
200,000 connections, spanning a variety of application scenarios
and regions worldwide. The findings are as follows.

Observation #1: Retransmission loss is ubiquitous. A packet
may undergo multiple retransmissions before the receiver correctly
receives it. We can delve deeper into the number of times each
packet was retransmitted before successful reception. For any given
connection, the maximum retransmission times can be calculated as
the highest count of retransmissions across all packets within that
connection. Figure 2 illustrates the distribution of the maximum
retransmission times in the production network. We discover that
the proportion of connections with maximum retransmission times
of two or more exceeds 43%. Among them, a considerable portion
of the connections have certain packets that are retransmitted even
more than 10 times. Traditional ARQ mechanism focuses solely on
promptly retransmitting lost packets after each loss event, but it
overlooks the total number of retransmissions and the total time
required for the retransmitted data to be successfully received by
the receiver. Therefore, the traditional ARQ mechanism hardly
meets the timeliness requirements for data in certain scenarios (e.g.,
live streaming).

Observation #2: Loss shows dynamics. We then investigate the
distribution of the loss rate (every 5 minutes) for each connection
across various global regions. The results are depicted in Figure 3(a).
While some regions exhibit similar average packet loss rates, their
packet loss rate deviations differ (i.e., the violin shapes are different).
For instance, both Brazil and Japan have an average packet loss
rate of 3.78%, but Japan has the highest packet loss rate of 7.1%
while Argentina has only 5.7%. Figure 3(b) further illustrates how
the packet loss rate evolves. Specifically, the loss rate is never
static, varying between 2% and 5% over 24 hours. This confirms
that packet loss exhibits dynamic behavior in real-world scenarios.
This also reveals that an adaptive loss tolerance scheme should
adapt to differentiated conditions and the always-changed status
of networks.

2.2 Characteristics of Live Streaming
Unlike video-on-demand or file traffic, the current live streams
frequently and extensively reveal off-mode, in which a sender tem-
porarily has no data (i.e., becomes application-limited [19][23]) for
continuous transmissions after sending one or more frames. On
the one hand, the new generation rate of live data might be slower
(e.g., than the sending rate) so senders have to wait for a while until
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Table 1: Live-streaming recovery latency measurement results.

metric value loss rate SRTT(ms)
0% ∼ 3% 3% ∼ 10% 10% ∼ 30% 30% ∼ 50% 0 ∼ 50 50 ∼ 200 200 ∼ 500 500 ∼ 2000

recovery latency (ms)* 123.2 26.8 94.5 186.4 530.2 68.2 170.2 273.6 418.0
maximum recovery latency (ms) 279.3 51.8 204.9 451.3 1288.4 149.2 391.3 698.8 960.9
* The displayed recovery latency (maximum recovery latency) only records the each-stream’s average recovery latency (maximum recovery latency) of the lost data,
whose recovery requires two or more retransmissions.

their sending queues contain data again. For CDN vendors, the data
generation rate reflects the traffic transmission rate from anchors
to servers, which can be easily affected by real-time network status.
On the other hand, the live data will be encoded into video or audio
frames based on selected frame rate(s) and bitrate before its trans-
mission, which can also introduce time intervals between adjacent
frames. If one frame has been sent out while the follow-up frame
has not yet been encoded, CDN senders have to enter off-mode.

As Figure 4 shows, the data of live streaming is encoded (by
video/audio encoder) into frame i which is delivered to the sending
queue (from t0 to t1) and is sent out before t2. In this case, the
sender has to keep waiting (from t2 to t3) for frame i+1 which will
be encoded based on the follow-up live data. In this paper, the on-off
mode that appears on the sender side can be recognized with the
following conditions.

• On-mode: A mode that occurs when enough data exists in
the sending queue (i.e., t0 ∼ t2 and t3 ∼ t5 in Figure 4), which
can be sent by a sender at the subsequent time.

• Off-mode:Amode that occurs when no data can be obtained
for traffic transmissions (i.e., t2 ∼t3 in Figure 4), making
senders have to wait for the follow-up frame.

We make large-scale measurements and gain the following ob-
servations to explore the characteristics of on-off modes in live
streaming.

Observation #1: The on-off mode switching commonly exists
in live streaming. Figure 5(a) presents our measurements of the
duration each stream spends in off-mode every second, as well as
the frequency of each stream entering off-mode on a per-second
basis, where we can learn more than 95% of the live streams can be
in off-mode for 394ms per second and enter off-mode 17 times per
second. On average, each live stream spends 464ms in off-mode per
second and enters off-mode 20 times per second.

Observation #2: The off-modes are unevenly distributed through-
out the live-streaming lifetime. Figure 5(b) depicts the cumula-
tive values of both off-mode duration and detected loss amount in
our testbed experiments. We can find (i) off-mode mainly occurs
after 2s while only 2 out of 7 packets are detected lost during this
period; (ii) more (i.e., 5 out of 7) packet losses "meet" less off-mode
within the first second of this measured stream, in which, especially,
this streaming is always keeping on-mode traffic transmissionwhen
the 4-th to 6-th losses are detected.

2.3 Live Streaming Performance under Loss
Live streaming has a high requirement for data timeliness that can
affect and reflect client-side QoE, in which the traffic data that
fails to reach receivers in time will cause longer intra-stream HOL
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Figure 5: On-off mode measurements and experiments.
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Figure 6: Loss recovery between sender(S) and receiver(R).

blocking time, especially in the common designs of TCP and QUIC
protocol [24], introducing video freezes of players, e.g., Tiktok Live
and Youtube Live. Due to the characteristics of packet loss and the
limitations of traditional ARQ (§2.1), the timeliness issues caused
by packet loss in live streaming deserve attention. We introduce
recovery latency to measure the timeliness of packet loss recov-
ery and conduct large-scale measurements on live streams in real
networks.

Recovery latency is defined as the duration from when any data
is detected lost to when resending a recovery packet that will be
successfully received. Tunit is defined as the sum of the delayed time
of ACK packets, RTT, and loss detection time, representing the
time elapsed for a data packet from being sent to being retransmit-
ted. recovery latency consists of zero or more Tunit, reflecting the
additional time for loss recovery besides first Tunit. In Figure 6(a),
recovery latency is close to 0, in which both the sender-side loss
identification and retransmission all occur at t3. Figure 6(b) shows
the resent data is detected lost again and another recovery packet
(that will be successfully received at t7) is sent at t6, where recovery
latency = t6 - t3. Besides, the maximum recovery latency is em-
ployed to evaluate the largest recovery latency for loss recoveries.

We make large-scale measurements and collect the transmission
logs of 50 million live streams. We then classify the average values
of measured recovery latency andmaximum recovery latency based
on the ranges of loss rate and smooth RTT (SRTT), as Table 1 shows.

Observation #1: The current recovery latency of live stream-
ing is far from satisfactory. For the lost data that requires more
than 1-time retransmissions, traffic senders waste 123.2 ms (i.e.,
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Figure 7: The architecture of AutoRec.

recovery latency=123.2 ms), on average, before sending out the re-
covery packets that their receivers will indeed acknowledge. Worse
still, the average maximum recovery latency is up to 279.3 ms,
which can easily cause video freezing.

Observation #2: Higher loss rate and larger SRTT can eas-
ily introduce more deteriorated recovery latency. As Table 1
shows, with the increase in loss rate, the recovery latency is also
gradually increasing. This is because the recovery data can easily
suffer from another packet loss in the networks with higher loss
rate. By contrast, SRTT has serious impacts on recovery latency.
For example, maximum recovery latency will be improved to ∼1 s,
on average, under the SRTT of 500 ∼ 2000 ms, which is unbearable
for the timeliness of loss recovery.

Therefore, an enhanced recovery scheme is highly required to
further optimize the current unsatisfied recovery latency and pro-
mote the recovery timeliness of live streams.

3 THE AUTOREC OVERVIEW
In this section, we first discuss the design principles of AutoRec.
Then we give an overview of the architecture of AutoRec.

3.1 Design principles
AutoRec regards the control-unfriendly on-off mode as an essential
opportunity for enhancing the recovery latency of live streaming
and mitigating the negative effects on player freezing caused by po-
tential HOL blocking. AutoRec should follow two design principles
for optimizing the timeliness of loss recovery in live streams.

Principle #1: Maximize the utilization of specific off-mode
to enhance recovery latency. Concretely, more off-mode that is
unfriendly to transmission controls can be leveraged to reinject loss
duplicates and further lower recovery latency of live streaming.

Principle #2: Minimize the non-trivial effects on the follow-
up traffic transmissions. Concretely, the off-mode reinjection
cannot consume much more sender-side or network resources so
that the transmission efficiency will not seriously deteriorate.

3.2 The Architecture of AutoRec
AutoRec is a sender-side modification to the protocol stack whose
key modules are illustrated in Figure 7. Particularly, once a loss
is detected, AutoRec adopts redundancy adaption to compute the
number of replicas of the lost packet that should be retransmitted
next. Given the number of replicas, AutoRec then adopts reinjection
control to determine the specific order and time for sending out
each replica from the sender.

Redundancy adaptation. This module answers the question of
how many replicas should be sent to accelerate loss recovery. The
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Expected 
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Figure 8: Redundancy Adapter.

redundancy level is defined as the number of replicas that should be
resent for a specific lost packet. We define the reinjection overhead
as the total number of replicas that are sent during transmission. To
adapt to the dynamics of loss, we incorporate redundancy adapta-
tion to allow the redundancy level to vary dynamically. To achieve
this, we introduce the Redundancy Adapter, which gradually learns
the feature of loss dynamics and carefully selects the most appropri-
ate redundancy level for each retransmission round of lost packets.
This ensures that AutoRec can adapt to the dynamics of packet loss
while minimizing the redundancy cost.

Reinjection control. This module answers the question of how to
send the given number of replicas determined by the Redundancy
Adapter. For each lost packet, more than one replica might be in-
jected into the network. To avoid bandwidth contention for unlost
data transmission, we introduce the Reinjection Controller to enable
sending replicas of the lost packet if the stream is in off-mode. To
further reduce the loss recovery latency, the Reinjection Controller
also opportunistically captures the ideal chance to reinject repli-
cas even when the stream is not in the off-mode. The Reinjection
Controller can also keep the bandwidth contention for unlost data
transmission within a safe limit. This ensures that AutoRec can
adapt to the uneven distribution of off-modes.

4 DETAILED DESIGN
In this section, we give the detailed design of AutoRec for its prac-
tical deployment.

4.1 Redundancy Adapter
To better balance the tradeoff between the targeted recovery latency
and the potential reinjection overhead, we introduce the Redun-
dancy Adapter to applies an online learning-based scheme to adjust
the redundancy level (denoted by Athres) for each loss recovery
dynamically. The goal is to reinject “few but enough" replicas for
optimizing data timeliness affected by packet losses. Specifically,
as illustrated in Figure 8, for each decision interval (denoted by DI),
AutoRec performs the following three steps. Step #1: Evaluate the
utility and its change ratio. Step #2: Estimate the expected waiting
time at the receiver. Step #3: Determine the redundancy level.

Calculation of the utility. The utility function U(Athres) can be
evaluated using the incurred recovery latency and the obtained
network status, e.g., minimum RTT (minRTT) and goodput, as Eq.
1 shows. The decreased u shows receivers can take shorter time for
loss recoveries without significantly lowering goodput or incurring
cost-sensitive Athres. Then the utility can be evaluated as follows:

U(Athres) =
recovery latency · sigmoid𝛼 (Athres − 2)

minRTT · goodput (1)
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where sigmoid𝛼 (x) = 1
1 + e−𝛼 ·x . The sigmoid function reflects the

introduced traffic cost. When Athres > 2, sigmoid𝛼 (Tthres - 2) will
rapidly become larger, resulting in a worsened utility. 𝛼 is the
adjustable factor (𝛼 > 0). By default, we set 𝛼 = 0.1. 𝛼 reflects the
importance of extra traffic cost, in which 𝛼 → 0 shows recovery
latency is the prioritized optimized target while 𝛼 → +∞ indicates
the extra traffic cost should be seriously considered. Then AutoRec
computes the optimization effects RΔ by comparing ui to ui-1 as
follows:

RΔ =
ui-1 − ui
ui-1

(2)

Calculation of the expected waiting time. We use Ewaiting to
denote the expected time at the receiver to wait for the loss recovery.
Since AutoRec is a sender-side modification, we estimate Ewaiting
at the sender instead as follows:

Ewaiting = (1-r) · SRTT ·
𝑛−1∑︁
𝑘=0

(k+1) · rk (3)

where r is the actual loss rate when performing loss recoveries,
and n is the maximum retransmission times. The smaller the SRTT,
r, and n values are, the better the current network condition is,
indicating that the receiver’s expected waiting time for a single
packet loss is relatively small.

Determination of the redundancy level.We use DIi to denote
the 𝑖𝑡ℎ decision interval. The Redundancy Adapter determines the
redundancy level of DIi+1 according to the redundancy level of DIi.
Specifically, if Ewaiting less than its threshold Θthres, especially for
the live streams with lower loss rate or shorter SRTT, we will set
A 𝑖+1
thres equal to 0 (i.e., do not perform reinjection). Note that Θthres

tries to reflect the time length of player cached available data. By
setting a larger Θthres, AutoRec can achieve targeted optimizations
for those live streams that take longer to complete loss recovery.
Else, we will calculate A 𝑖+1

thres as follows:

A 𝑖+1
thres =


A 𝑖
thres − 𝜆, RΔ ∈ (−∞,−Rnor)

A 𝑖
thres, RΔ ∈ [−Rnor,Rnor]

A 𝑖
thres + 𝜆, RΔ ∈ (Rnor, +∞)

(4)

where 𝜆 records the adjustment direction from Di-1’s decision
(A 𝑖−1

thres) to Di’s decision A 𝑖
thres, where 𝜆 = 1 if A 𝑖

thres > A 𝑖−1
thres, and 𝜆

= -1, otherwise. Rnor is the normal disturbance ratio that tries to
filter the non-AutoRec impacts on optimization effects. For example,
if A 𝑖

thres keeps unchangeable (compared to its previous value), the
utility u can also become better or worse, which is caused by the
dynamic network status or congestion control.

To avoid the local optima issue incurred by this utility-powered
optimization, the Redundancy Adapter enables the decision module
to randomly choose a different redundancy level (Arandthres) from [0, 4]

Live CDN

Server Proxy

Emulator

(1) Testbed

…

Internet

Client Users

(2) Real network

Figure 10: Testbed and real-world deployments.

if the redundancy levels (Aold
thres) selected in the past several DIs

(e.g., 10) keep unchangeable. In this case, if the newly introduced
RΔ ≤ Rnor, the configured Tthres will fall back from Trandthres to Toldthres;
otherwise (i.e., RΔ > Rnor), the decision module will continue to
determine the next Athres based on Eq. 4.

4.2 Reinjection Controller
We use Dul to denote the lost data that has been resent but unac-
knowledged by its receiver. The dataDul is stored and managed in a
reinjection queue added at the sender. To decide when to retransmit
the replicas, we introduce the Reinjection Controller which enables
sending replicas of the lost packet if the stream is in off-mode. The
Reinjection Controller also adopts opportunistic reinjection to fur-
ther reduce the loss recovery latency while keeping the bandwidth
contention for unlost data transmission within a safe limit.

Queue management. In AutoRec, a reinjection queue will be
created by a traffic sender when a new connection of live streaming
is established, which will be released once this connection is closed.
AutoRec enables senders to update the reinjection queue (using
the following operations) for each live stream if any lost data has
been resent or acknowledged, as Figure 9 shows. The detected lost
data will be inserted into the end of the reinjection queue after it
has been retransmitted. The Dul will be deleted from reinjection
queue when (i) the resent Dul is acknowledged by its receiver, or
(ii) reinjection times Ai exceeds its threshold Athres. The Dul will
be moved from the head to the end of the reinjection queue if it
has been resent again, which is sorted by its last retransmission
time. Besides, the AutoRec sender enables a status table for each
reinjection queue, which records the reinjection amount (Ai) that
has been performed, timestamp (Tstmp) of Dul’s last (reinjected)
retransmission andDul identification (Data_ID)1, as Figure 9 shows.

Opportunistic reinjection.To address the issue of unevenly dis-
tributed on-off mode and conduct replica reinjection more timely,
AutoRec enables traffic senders to inject packets even during on-
mode. As illustrated in Figure 9, in the status table of the reinjection
queue, Tstmp can be leveraged to compute Dul’s “silence" duration
since its last retransmission (or reinjection). Once it exceeds the
threshold Tthres,Dul will be fetched from the head of the reinjection
queue and then resent out regardless of whether the off-mode is
entered or not. Note that for achieving well-distributed loss reinjec-
tions (the challenge in §2.2), the threshold Tthres is updated based

1In this paper, Data_ID can recognized as the packet number (pkt_num) in TCP or the
stream offset (stream_offset) in QUIC.
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Figure 11: recovery latency benefits in testbed experiments.

on the latest Athres as follows:

Tthres =
Tunit

Athres + 1
(5)

It is also worth noting that the smaller the Tthres, the larger
the reinjection overhead. The goodput might decrease due to the
bandwidth contention from the reinjected packets. However, the
Redundancy Adapter in AutoRec has already considered the impact
of reinjection on goodput (see Eq. 1), this helps AutoRec maintain
the incurred overhead within an acceptable range.

5 EXPERIMENTAL EVALUATION
We perform the experimental evaluations on our established testbed
and the real networks, respectively, whose traffic senders (deploy-
ing AutoRec) can pull and transmit the requested live streaming
from our live CDN to its client or real-network users, as Figure 10
shows. The AutoRec prototype is implemented based on QUIC pro-
tocol [23] (with LSQUIC Q043) [25] and NGINX architecture (with
nginx 1.17.3) [26], which consists of 900+ lines of code without any
client-side modification. The testbed server and client are running
on CentOS Linux release 7.9 with Intel(R) Xeon(R) CPU E5-2670
v3 @ 2.30GHz (E5-2620 v3 @ 2.40GHz), 48 (24) processors, 62GB
memory and 1000Mbps NIC. The employed network emulator is
HoloWAN ultimate 2600u which supports 0∼1000Mbps bandwidth,
0∼10s delay, 0∼100% loss rate and 0∼1000GB buffer length. In this
section, BBR (with version 1)[27] scheme is leveraged for conges-
tion controls. The baseline scheme is the typical ARQ paradigm that
will retransmit one recovery packet once a packet is detected lost.
Each-stream recovery latency in this section is displayed only for
the lost data, whose recovery requires at least two retransmissions.

To better evaluate AutoRec, we define a new metric called recov-
ery deterioration rate, which refers to the ratio between the amount
of lost data (Dk) that takes two or more Tunit (i.e., recovery latency
≥ Tunit) to be recovered, to the amount of all lost data. For example,
there are 2 packets (one is in Figure 6(a) and the other is in Figure
6(b)) detected lost, which require 1 and 2 Tunit for their successful
recoveries (at t4 and t7), respectively. Then, we can learn Dk = 1
and recovery deterioration rate = 50%.

5.1 Testbed Evaluation
The testbed experiments will be performed to demonstrate the
practicability of AutoRec. Unless otherwise declared, we use Rnor
= 3%, Athres ∈ [0, 4] and Θthres = 50ms. The basic environment is
configured as follows: ∼8Mbps bitrate of live streams, 5% loss rate,
50ms RTT, 8Mbps bandwidth (BW) and 500KB network buffer. Each
obtained metric is the average value of over 100 sets of experiments,
in which each live stream will last for 60 seconds.
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Figure 12: The performance of specially-designed functions.

Benefits under different network environments. AutoRec can
introduce consistent recovery latency enhancements under variable
network conditions as Figure 11 shows. We can learn the following
results. (i) The changes of either video bitrate or bottleneck link
buffer have fewer effects on our cared recovery latency of interest,
in which recovery deterioration rate can be optimized by 69.0%
from 4.94% (of baseline) to 1.53% (of AutoRec) and recovery latency
will be lowered by 43.0% from 76.1ms to 43.4ms, on average. (ii)
Higher loss rate can easily cause worse recovery deterioration rate
that is approximately equal to the actual loss rate, which can be
optimized to 0.8%, 1.6%, 3.5% and 5.7% under the loss rate values
of 3%, 5%, 10% and 15%, respectively. By contrast, recovery latency
reductions keep a stable range of 27ms∼32ms when loss rate≤10%.
(iii) Larger-RTT live streaming actually experiences more deteri-
orated recovery latency, which is lowered by 34.7% from 134.9ms
to 88.0ms when RTT=100ms. (iv) The bandwidth has significant
effects on recovery latency, where 4Mps configuration brings re-
covery latency=167.1ms compared to 64.3ms of 16Mbps bandwidth.

Performance of specially-designed functions. To evaluate the
specially-designed functions in §4, we develop three AutoRec vari-
ants, i.e., AutoRec (1), (2) and (3), to achieve (i) off-mode reinjection,
(ii) off-mode and opportunistic reinjection with Athres = 2 and (iii)
AutoRec that reinjection will perform even Ewaiting (§4.1) being too
small, respectively. Figure 12 shows the benefits of recovery latency
and utility as well as the recovery cost compared to the baseline.
We can learn AutoRec (2) can obtain higher recovery latency ben-
efits while incurring unacceptable overhead (e.g., 21.8% goodput
deterioration). Besides, off-mode reinjection can introduce smaller
reinjection costs but fail to achieve more significant recovery la-
tency enhancements. By contrast, AutoRec with the functions of
§4.1 can well balance the tradeoff between recovery latency and
reinjection overhead.

The sensitivity to pre-configured parameters. In AutoRec, some
essential parameters (i.e., 𝜃thres and 𝛼 in §4.1) should be firstly con-
figured to decide loss reinjection activation and evaluate last-DI’s
performance of AutoRec. To further explore AutoRec’s sensitivity
to these specific parameters, we perform sensitivity experiments on
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Figure 13: AutoRec sensitivity to the specific parameters.

our testbed, as Figure 13 shows. The smaller value of either 𝜃thres or
𝛼 can result in a more satisfied recovery latency while introducing
much more reinjection cost (e.g., intolerable extra retran_ratio and
deteriorated goodput). For example, 𝜃thres = 50ms can achieve sig-
nificant optimization for recovery latency (= 43.4ms) and recovery
deterioration rate (=1.6%), but also incurs an extra 3.9% retran_ratio
and 8.6% goodput decrease, compared to 𝜃thres = 100ms. Meanwhile,
recovery deterioration rate = 1.51% and recovery latency = 44.3ms
are actually incurred with 𝛼 = 0.01, compared to the corresponding
2.32% and 53.8ms of 𝛼 = 1, respectively. However, the configura-
tion of 𝛼 = 0.01 also introduces an extra ∼1.0% retran_ratio and
the decreased goodput by 2.5%, compared to the values of 𝛼 = 1,
respectively. For 𝛼 ∈ {0.01, 0.1, 0.5}, AutoRec keeps insensitive to
these parameters, in which the obtained recovery latency benefits
and the caused recovery cost are close to each other.

5.2 Real-Network Evaluation
To further explore AutoRec’s performance, we deploy AutoRec pro-
totype in our CDN proxy and evaluate receiver-side video freezes,
recovery latency benefits and reinjection cost.

Deployment experiences. For better deploying AutoRec in the
real networks, the following rules are obeyed, which are based on
our experiences for optimizing player video freezing. The specific
parameter 𝛼 of the AutoRec utility function is configured as 0.1.
Meanwhile, 𝜃thres should be set as the value between the 50th- and
80th-percentile SRTT. To avoid the issues caused by higher loss
rate, the deployed AutoRec is recommended to be turned off or
kept inactivated if the newly monitored loss rate > 10%.

Recovery latency benefits. AutoRec keeps continuous optimiza-
tions for recovery latency and recovery deterioration rate in the real
network, as Figure 14(a) shows. We can learn the average recovery
latency and recovery deterioration rate can be lowered by the ratio
of 24.6% and 37.1%, whose values are reduced from 123.2ms and
6.8% to 92.9ms and 4.3%, respectively. In particular, high-percentile
(i.e., 95th-) recovery latency and maximum recovery latency can
be decreased by 145ms and 384ms, which means 5% receivers take
145ms (up to 384ms) less to wait for recovering some loss if the
first-time resent data is detected lost again.
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Figure 14: AutoRec benefits in the real network.
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Figure 15: AutoRec overhead in the real network.
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Figure 16: The video freezing changes in the real network.

As Ewaiting represents the expected time for loss recovery from
the client side (§4.1), we evaluate the recovery latency benefits under
the different ranges of Ewaiting. Figure 14(b) shows the optimization
ratios of recovery deterioration rate (30% ∼ 50%) and recovery la-
tency (10%∼35%) become obvious, especially for those live streams
with larger Ewaiting values. In particular, 174.0ms (314.2ms) maxi-
mum recovery latency is lowered at the above ranges of Ewaiting.
Therefore, AutoRec can achieve targeted optimization for recovery
latency of large-Ewaiting live streams.

Utility and reinjection overhead. In the real network, the de-
ployed AutoRec enables utility optimizations without incurring
non-trivial reinjection overhead. From Figure 15(a), we can learn
the average utility can be optimized by 6.3%, in which the opti-
mization ratios of 13.4% are achieved for 80th- percentile utility
value, respectively. As for the incurred cost, Figure 15(b) shows the
utility optimization will first become more obvious (up to ∼17%)
with the increased (top 80%) Ewaiting, which also introduces the
controllable goodput deterioration of 2.5%∼5.1% and retran_ratio
of up to 3.6%. Besides, the tradeoff between recovery latency and
recovery overhead will become difficult to balance in those streams
with the last 10% Ewaiting, whose goodput is seriously affected by
reinjection.

Video freezing. The AutoRec performance can be further evalu-
ated by the observed client-side player video freezing, including
its frequency and duration. As Figure 16(a) shows, the average
freezing times (per 100s) can be optimized by 11.4% from 0.57 to
0.51, whose 90th- and 95th-percentile can be lowered by 24.4%
and 34.1%, respectively. Besides, AutoRec also optimizes freezing
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duration (per 100s) by 5.2%, in which the 95th-percentile value is
reduced by ∼80ms (with the ratio of 16.0%), as Figure 16(b) shows.
These results demonstrate AutoRec is worthwhile for optimizing
the timeliness of loss recovery and client-side video freezing.

6 RELATEDWORK

Adaption to on-off traffic pattern. To the best of our knowledge,
almost all prior works [28–36] fall into the category of adapting
congestion control to on-off traffic patterns. For example, Zhang
et al. [33] proposed a TCP variant to overcome the challenges, in
which the on-off traffic pattern disturbs the increase of the TCP
congestion window and triggers packet loss at the beginning of the
ON period. This paper does not focus on the congestion control
issues of live streaming. Instead, we take a first step toward taming
the loss tolerance control under the on-off pattern for live streaming.

Loss tolerance control for live streaming. To achieve efficient
loss recovery and optimize client-side video freezes, many studies
have been proposed to enhance the data timeliness of live stream-
ing. The key ideas of these works include injecting supplement data
(e.g., FEC [5–7] and multi-path retransmissions [8, 9]), ignoring
some non-critical losses (e.g., application-level controls [12–14]
and semi-reliable transmissions [10, 11]). However, in commercial
large-scale live-streaming product networks, the CDN vendor is
mainly responsible for optimizing the end-to-end transmission per-
formance and has control rights only on the sender side rather than
the client side. Therefore, the above arts that apply client-side modi-
fication cannot meet the requirements of real-world deployment. In
this paper, we propose a sender-side approach from the perspective
of CDN vendors.

Advancements upon ARQ.Modern CDN vendors simply apply
the ARQ for loss tolerance control in commercial live-streaming
services. However, the legacy ARQ-based loss recovery is far from
satisfactory. There also exist many studies [37–43] that improve the
performance of ARQ by introducing redundancy to loss recovery.
These works, however, suffer from obviously-deteriorated goodput
since the inserted extra packets occupy the sender-side and in-
network resources. This paper overcomes the above challenges by
taking full advantage of the off-mode of live streaming.

7 CONCLUSION
Retransmission in itself doesn’t impede slow loss recovery; rather,
it’s the loss of retransmission that presents the true challenge. This
paper proposes AutoRec to accelerate loss recovery by allowing
senders to reinject loss duplicates smartly. AutoRe’s ingenuity is
demonstrated by its transformation of weaknesses into strengths.
It employs on-off mode switching — a feature typically challenging
for transmission control — to its advantage. This approach not only
facilitates quicker recovery from packet loss but also ensures that
the existing data transmission on the connection remains unaffected.
Both testbed evaluations and real-world deployments demonstrate
the practicability and profitability of AutoRec. Currently, AutoRec
has been deployed on one of the world’s largest CDN vendors
[reference hidden anonymously], serving thousands of millions of
live-streaming users worldwide.
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