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Abstract

There is increasing interest in using large language models to generate1

synthetic simulations (e.g., social simulations) to support social science2

and human subject research, such as in responses to surveys or in human3

behavior simulation. However, it is not immediately clear by what means4

practitioners can incorporate such data alongside ground-truth human data5

and yet still draw reliable insights and conclusions upon them. In this work,6

we introduce a principled framework for reliably incorporating synthetic7

simulations from text-based foundation models into downstream statis-8

tical analyses. Our estimator offers a hyperparameter-free solution with9

strong theoretical guarantees, allowing practitioners to retain key statistical10

properties—even when incorporating imperfect, biased simulated data. We11

empirically validate the finite-sample performance of our estimator, which12

improves statistical efficiency, across different regression tasks in social sci-13

ence applications. To the best of our knowledge, our framework provides14

the first theoretically-sound approach for safely incorporating synthetic15

simulations from foundation models for reliable statistical inference.16

1 Introduction17

Recently, practitioners have started to explore the possibility of leveraging large language18

models to generate synthetic simulated samples, often referred to as social simulations19

e.g., simulating human responses to surveys or human participants in early pilot studies20

(Argyle et al., 2023; Brand et al., 2023; Dominguez-Olmedo et al., 2024; Anthis et al., 2025;21

Hwang et al., 2025b). This has opened up new opportunities to understand human collective22

behavior, while overcoming the practical limitations and cost restrictions of relying solely on23

human participants (Alemayehu et al., 2018), leading to recent discourse on how foundation24

models will transform social science. While most of these studies focus on qualitative25

takeaways and early signals for future experiments, we focus on the forward-looking setting26

of making statistically valid inference given such synthetic simulations.27

In settings where synthetic simulations are combined with limited human subject data, it is28

essential that their inclusion does not compromise the validity or reliability of resulting con-29

clusions. To ensure the responsible and safe use of synthetic simulations in such pipelines,30

we would like to realize the benefits of incorporating information from these additional data31

sources, while retaining good statistical properties—consistency and proper asymptotic32

coverage— that are necessary for practitioners to report conclusions reliably. A persistent33

challenge, however, is that naively combining such imperfect surrogates with ground-truth34

human samples often introduces substantial bias, leading to significantly biased estimates35

and compromising the reliability of the conclusions drawn from them.36

Yet, existing methods have not made clear by what means we can incorporate such data,37

while producing statistically valid estimates. First of all, it is not immediately obvious how38

to even produce synthetic simulations from LLMs such that they can be used in a principled39

manner. Naively drawing samples from a generative model and treating them as additional40

samples alongside real data makes it impossible to provide statistical guarantees for the41

resulting estimate if the generative model does not perfectly match the real distribution—42

which is expected in practice.43
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Step 1: Use the LLM to predict
covariates and outcomes.

Step 2: Use the LLM to generate new
synthetic text samples conditioned on

available text and covariates.

Step 3: Use the LLM to predict
covariates and outcomes for

the new samples.

Step 4: How should we use this
new surrogate information?

Model

Labeled sample

Unlabeled sample

Model

Figure 1: An illustration of our setting. We have real text samples (folded paper icons),
some of which are labeled (i.e., have human-annotated covariates and outcomes (blue oval
and diamond)). The LLM is used (1) to predict covariates and outcomes (orange oval and
diamond), and (2) to generate new, fully synthetic simulations (wavy paper icons). In this
work, we refer to social simulations as synthetic simulated samples and synthetic samples,
interchangebly.

To address this, we propose a sampling strategy that enables practitioners to leverage44

synthetic simulations from LLMs in a reliable, principled manner. Concretely, each syn-45

thetic sample is generated conditional on an individual real text as an example (see Step 246

illustrated in Figure 1; Section 3 for details), following the common practice of in-context47

learning (Brown et al., 2020). What makes this formulation statistically powerful is that it48

introduces a correlation structure between each real text and synthetic sample. Crucially,49

this correlation structure will prove critical for principled methods for integrating synthetic50

data, as it enables us to more effectively share information across them (see Section 4.5).51

We consider the following setting. We assume the practitioner has access to a corpus of52

unlabeled text and only a small set of human annotations of covariates and outcomes.53

In this low-label regime, we examine two increasingly common ways LLMs are used to54

augment limited-data pipelines—namely, for annotation and generation. More concretely,55

the practitioner can leverage LLMs to (1) predict covariates and outcomes for the unlabeled56

text samples; and (2) generate new text samples (i.e., synthetic simulations) conditioned57

on available samples and extract covariates and outcomes from them similarly to (1) (see58

Figure 1). Throughout this work, we refer to such LLM-generated samples as synthetic59

simulations, social simulations, or synthetic data interchangeably. Under this setting, our60

goal is to study how to effectively combine these different sources of information (from61

humans and from LLMs) for downstream statistical estimation tasks.62

Our primary methodological contribution is to propose a statistically valid estimator that63

reliably incorporates synthetic simulated samples from LLMs for downstream inference64

tasks. To the best of our knowledge, this is the first estimator with formal guarantees that65

solves the problem at hand. The construction of our estimator is based on generalized66

method of moments (GMM), where we define separate parameters and moments for each67

data source. While it is not initially obvious that the incorporation of moments based68

exclusively on synthetic data should yield any benefits (or even affect) the estimation of the69

target parameter, we strikingly find that the interactions between the error residuals of the70

different sources of information greatly improves estimation (see Sections 4.5 and 5). In71

other words, our estimator enables practitioners to realize the benefits of LLM-generated72

synthetic simulated samples, while preserving key statistical properties, necessary for73

drawing reliable conclusions upon them.74

Contributions. We (1) introduce a new estimator that incorporates fully synthetic simu-75

lated samples from LLMs for downstream inference tasks; (2) provide strong theoretical76

guarantees on consistency and valid asymptotic coverage; (3) empirically validate its finite77

sample performance across different regression tasks in LLMs for social science applica-78

tions; and (4) offer a theoretical analysis to explain how our GMM-based solution obtains79

these benefits. To the best of our knowledge, our framework provides the first principled80

approach for incorporating synthetic simulations from large language models for reliable,81

downstream statistical analyses.82
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2 Related Work83

LLMs for Data Annotation and Synthetic Simulation Tasks. Our work is motivated by84

the increasingly growing use and future promise of foundation models (i.e., LLMs) for85

annotations and simulation studies, particularly as a means to reduce human labeling costs86

(Hwang et al., 2025a). Recently, LLMs have been tested in fully synthetic simulation studies87

(Dillion et al., 2023; Anthis et al., 2025), with primary applications in exploratory research88

or early pilot studies. For instance, recent work has studied simulating individuals in89

society and their interactions (Park et al., 2022; Chen et al.), analyzing whether the resulting90

LLM agents produced accurate responses on surveys and accurately predicted behavioral91

outcomes (Park et al., 2023). Other works have applied LLMs to simulate survey responses92

(Geng et al., 2024; Rothschild et al., 2024), while others have cautioned about specific flaws93

in LLM responses (Dominguez-Olmedo et al., 2024), such as not accurately reflecting the94

influence of demographic groups (Dominguez-Olmedo et al., 2024; Wang et al., 2025). In95

summary, this line of work shows the potential of synthetic experiments powered through96

strong generative models but also exhibits clear failure modes and imperfect conclusions97

from such studies. While most of these studies focus on qualitative takeaways and early98

signals for future experiments, we focus on the challenging and forward-looking setting of99

making statistically valid inference given such synthetic simulations.100

Statistical Inference and Debiasing Methods. Our work is broadly related to performing101

statistical inference with missing data, where past works have explored approaches to102

yielding valid and efficient parameter estimates (Robins et al., 1994). Other work has103

notably explored the usage of ML models to estimate nuisance parameters (Chernozhukov104

et al., 2018). The most related line of research are debiasing methods (Egami et al., 2023;105

Gligorić et al., 2024) that focus on combining ground truth data with surrogate predictions106

(often produced by a machine learning model) to perform statistical inference. These107

frameworks are often referred to as prediction-powered inference (Angelopoulos et al.,108

2023a;b) in the machine learning literature. A key difference between these works and our109

setting is that the primary focus of our work is how to incorporate fully synthetic samples,110

which remains unaddressed by previous work.111

3 Preliminaries112

Notation and Setup. We consider a parameter estimation task where the goal is to estimate113

a target parameter θ⋆ ∈ Rd. Let (T, X, Y) ∼ D denote a random triple drawn from an114

unknown data-generating distribution D over text inputs T ∈ T , covariates about the text115

(e.g., structured metadata) X ∈ X ⊆ Rd, and labels Y ∈ Y . For example, T can be texts116

from online requests, where X are linguistic markers of hedging (i.e., notions of uncertainty)117

and Y is perceived politeness. Due to labeling budget constraints, we assume we only118

observe a small fraction of human-annotated data (i.e., ground-truth covariates and labels119

about the text). Specifically, we have access to labeled dataset Dlabeled = {(Ti, Xi, Yi)}n
i=1120

that is sampled i.i.d. from D and an unlabeled corpus of text Dunlabeled = {(Tj)}n+m
j=n+1121

sampled i.i.d. fromDT (i.e., the marginal distribution over T), where m≫ n. To supplement122

this limited supervision, we leverage machine learning models (i.e., text-based foundation123

models) in the following two ways.124

Proxy Covariates and Labels. We use a machine learning model f to produce predictions125

{ fX(Tj), fY(T j)} for the available set of input texts T ∈ T . Here, fX and fY denote the126

same machine learning model, using separate prompts for the target outcome (either a127

covariate X or outcome Y) (see Appendix E for details). This yields the following Dproxy =128

{(Ti, fX(Ti), fY(Ti)}n
i=1 ∪ {(Tj, fX(Tj), fY(Tj)}n+m

j=n+1. For simplicity, we will refer to this as129

proxy samples and denote them as (T, X̂, Ŷ). We will refer to the distribution over proxy130

samples as D̂. Note that this is the setting previous works have considered (mainly restricted131

to predicted outcomes) when addressing this problem.132
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Synthetic Covariates and Labels. We propose a new data augmentation process which133

generates new samples using a text-based foundation model (employing it as a generative134

model, instead of a classifier as in previous works studying the proxy setup). Specifi-135

cally, our method conditions the generation process on each individual text Tj as an ex-136

ample and asks the model to generate a new synthetic sample given that context. For-137

mally, for each i, we sample a new text T̃i, conditioned on (Ti, Xi) if the sample is labeled138

and (Tj, X̂j) if the sample is unlabeled. For example, “Consider text taken from user139

requests on Stack Exchange, either containing a hedging device or not containing one.140

{Insert example Ti and covariate Xi}. Now, generate a new example of a request that141

matches the style of the provided example.”1 Based on the generated sample, which we142

denote as T̃i, we then extract its corresponding covariates and outcomes similarly as in143

proxy samples. More concretely,144

T̃k ∼ P(· | Ti, Xi) if labeled,

T̃k ∼ P(· | Tj, X̂j) if unlabeled

X̃k ∼ P(· | T̃k),

Ỹk ∼ P(· | T̃k)

resulting in the following Dsynthetic = {(T̃k, X̃k, Ỹk)}n+m
k=1 . We will refer to the distribution145

over synthetic samples (T̃, X̃, Ỹ) as D̃.146

This specific sampling process has two motivations. First, from a machine learning perspec-147

tive it can be seen as a form of in-context prompting, where the model is given an example148

from the dataset in order to align it more closely with the task. Iteratively prompting149

with different samples Ti is also likely to produce more diverse samples than asking for150

many samples with the same prompt. Second, from a statistical perspective, it introduces151

a correlation structure between each real text Ti and synthetic sample T̃i. This correlation152

structure will prove critical for principled methods for integrating synthetic data because it153

allows us to more effectively share information across them. Indeed, naively drawing a set154

of synthetic samples from the generative model and pooling them with the real data would155

render it impossible to provide statistical guarantees for the resulting estimate if generative156

model fails to perfectly match the real distribution.157

Finally, we introduce some notation that combines all of these data sources into draws from158

a single joint distribution. Specifically, we introduce a new random variable s ∈ {0, 1}159

which is an indicator for whether T is labeled (1) or unlabeled (0). Then, we view the160

complete generative process as draws (T, s, s · X, s · Y, X̃1, Ỹ1...X̃M, ỸM) for M different161

kinds of auxiliary data. So far, we have discussed two kinds, proxy and synthetic, that we162

employ empirically (M = 2), but our methods are fully extensible to additional kinds of163

auxiliary data. For example, we could include samples from multiple different generative164

models. The real (X, Y) are observed only for labeled points with s = 1 while the auxiliary165

data is available for all samples. The joint distribution over this full tuple is induced by the166

composition of the generative processes for the components described above.167

4 Combining Synthetic Information via Generalized Method of168

Moments169

To estimate the target parameter θ⋆, we propose an approach based on generalized method170

of moments (GMM) (Hansen, 1982) that combines information from the different types of171

data in the following manner.172

4.1 Moment Conditions173

Our framework is applicable whenever the target parameter can be identified by a set174

of moment conditions, functions whose expectation should be zero at the true value of175

the parameter. Moment-based estimation is a broad and flexible framework that includes176

almost all commonly used statistical frameworks (e.g., maximum likelihood, generalized177

linear models, instrumental variables, etc). We begin by defining the moment conditions178

1See Appendix E for further prompt details.
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that identify θ∗ under the distribution of interest (i.e., the real-data distribution D). In the179

following section, we introduce how this can be adapted to incorporate surrogate data (i.e.,180

proxy and synthetic data).181

Formally, we consider the problem of estimating a parameter θ ∈ Rd. The true value θ∗ is182

identified as the solution to a set of p ≥ d moment conditions183

E[ψ(ℓ)(θ∗)] = 0, ℓ = 1...p

where the ψ(ℓ) are continuously differentiable functions Rd → R. For example, in a184

maximum likelihood model, we would have one ψ for the derivative of the log-likelihood185

with respect to each parameter, and the moment conditions enforce that θ∗ satisfies the186

first-order conditions for maximizing the likelihood. Let ψ(θ) = [ψ(1)(θ)...ψ(p)(θ)]⊤ denote187

a column vector stacking the p moments.188

4.2 Constructing Our GMM Estimator189

To leverage the auxiliary data (i.e., proxy data and synthetic data) in making our GMM190

estimator more efficient, we can construct a set of auxiliary moments for each additional191

source of data. We estimate an additional set of auxiliary parameters η1, ..., ηM ∈ Rp, one192

parameter vector for each set of new auxiliary data. In the specific instantiation of the193

model that we use here, we always have M = 2 (proxy and synthetic data), but in principle194

our method is extensible to many sources of auxiliary data, for example synthetic samples195

generated from several different models. Roughly, each new parameter vector ηi can be196

understood as the parameter that we would estimate using each auxiliary data source, and197

our augmented model will automatically determine how to use these auxiliary estimates to198

inform the estimate of the parameter of interest θ.199

For each new parameter vector ηi, we introduce a corresponding set of new moments to200

estimate this parameter and allow its estimate to inform the estimate of θ. Specifically, we201

introduce for each ηi two new blocks of moments that are copies of the original moments202

for θ. Intuitively, one block of moments will be evaluated only on the real (labeled) data,203

while the other will be taken on the pooled set of labeled data and auxiliary dataset i. The204

pooled-data moment will allow us to improve the estimation of ηi using the larger sample.205

The version evaluated only on the real data will allow GMM to evaluate how well the206

moments for the auxiliary parameter correlate with those of the true parameter on the same207

data, and share information across them if the auxiliary moments are informative (as we208

would expect if the generated data is high quality).209

Formally, let St ∈ Rp stack p copies of the indicator variable st for whether a data point t210

is labeled. In block matrix notation, the combined model takes the form of the augmented211

moments212

gt(θ, η) =



St
St
...

St
1
...
1


⊙



ψ(θ)
ψ(η1)

...
ψ(ηM)
ψ(η1)

...
ψ(ηM)


∈ Rp+2Mp (1)

We will then jointly estimate (θ, η) as the solution to the moment condition E[gt(θ, η)] = 0.213

For clarity, we refer to our estimator that uses real and proxy data (M = 1) as GMM-214

Proxy and our estimator that uses real, proxy, and synthetic data (M = 2) as GMM-Synth215

throughout the paper. See Appendix B for further details. We remark that since the216

parameter of interest θ appears only in its original set of moments, which are evaluated217

only on the labeled data, this new moment condition still identifies the target parameter θ∗.218

However, as we discuss below, when we apply standard methods for efficiently estimating219
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the augmented GMM, the new moment conditions will be leveraged to reduce the variance220

of the estimate without compromising consistency or asymptotic normality.221

4.3 GMM Estimation222

Given our augmented moment conditions g, we estimate the parameters (θ, η) by minimiz-223

ing the GMM objective:224

θ̂T , η̂T = arg min
θ∈Θ,η∈R2Mp

Q̂T(θ, η), (2)

where225

Q̂T(θ, η) =

[
1
T

T

∑
t=1

gt(θ, η)

]⊤
ŴT

[
1
T

T

∑
t=1

gt(θ, η)

]
. (3)

Here, ŴT ∈ RM×M is a (possibly data-dependent) positive semidefinite weighting matrix226

that determines the importance of each moment condition in the estimation objective. While227

GMM estimators are consistent and normal under any choice of positive definite ŴT , the228

selection of ŴT influences their efficiency.229

Two-step GMM estimator. We adopt the two-step GMM procedure as described in Newey230

& McFadden (1994). First, we compute the one-step estimator θ̂
(os)
T , η̂

(os)
T using an identity231

weight matrix ŴT = I. Then, we estimate the optimal weight matrix as:232

Ω̂T(θ̂
(os)
T , η̂

(os)
T ) =

[
1
T

T

∑
t=1

gt(θ̂
(os)
T , η̂

(os)
T )gt(θ̂

(os)
T , η̂

(os)
T )⊤

]
, (4)

and set233

ŴT =
[
Ω̂T(θ̂

(os)
T , η̂

(os)
T )

]−1
. (5)

This optimal weighting has the interpretation as the inverse empirical covariance of the234

moment conditions on the one-step estimate. We then compute the final two-step estimator235

by minimizing Q̂T(θ) with this updated weighting matrix. This choice of ŴT yields an236

asymptotically efficient estimator under standard GMM regularity conditions.237

The adoption of two-step GMM is a critical component of our proposed estimation frame-238

work. Indeed, in the first-step estimates, the synthetic and proxy data will have no impact239

on the estimate of θ because they never appear in the moment conditions concerning θ.240

In the second stage though, the weight matrix ŴT accounts for the covariance between241

moment conditions, where off-diagonal terms in the matrix allow moments for the auxiliary242

data sources to influence the estimation of θ.243

4.4 Consistency and Asymptotic Inference244

We now present results on the consistency and asymptotic behavior of our GMM estimators.245

246

Proposition 1. Our estimate θ̂T (as defined in Equation 3) is consistent and asymptotically normal.247

It converges in distribution as248

√
T((θ̂′T , η̂′T)

′ − (θ′, η′)′)
d−→ N (0, V)

where the covariance V is given by249

V =
(

G(θ, η)TŴG(θ, η)
)−1

G(θ, η)TŴFŴG(θ, η)(
G(θ, η)TŴG(θ, η)

)−1
,

and where G(θ, η) is the Jacobian of the population moments at the ground truth parameter values250

θ, η.251
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For optimal weight matrix in Equation 5, this simplifies to V = (G(θ, η)T F−1G(θ, η))−1.252

These are standard results on GMM estimators, which follow by straightforwardly applying253

the results in Hansen (1982). We remark that these asymptotic results require a set of254

conditions on the sample moments, which are slightly nuanced in this setting with multiple255

sources of information. We discuss these conditions and prove that they are satisfied in256

Appendix A for the setting of proxy and synthetic samples. Given this asymptotic behavior,257

we can derive valid confidence intervals for our parameter estimates.258

4.5 Why does synthetic data improve performance?259

To understand where the benefits arise from incorporating the proxy and synthetic data into260

our GMM estimator, we analyze the interaction between our moment conditions. Note that261

the functions ψ are often referred to as “residuals” in the GMM literature; since ψ(θ) should262

be zero in-expectation, deviations from zero are interpretable as a kind of residual. The key263

intuition is that synthetic data will improve performance when the synthetic-data residuals264

are predictive of the real-data residuals.265

First, we note that if the synthetic data were perfectly simulated, X and Y would be perfectly266

recovered from the unlabeled text T. With ground truth X, Y, we can perfectly recover the267

residual terms. In settings where we have good but imperfect simulations, X̂,Ŷ and X̃, Ỹ268

are highly correlated with the errors in the true data, and we can approximately estimate269

the real-data residuals with the synthetic data. Within our GMM-based approach, this is270

all handled implicitly in our two-step estimation procedure. During the first estimation271

step, each set of parameters (e.g., defined on the observed, proxy, and synthetic data) is272

independently identified since the initial weighting is an identity matrix. The key insight is273

that, during the second estimation step, the weighting matrix Ŵ, which is the inverse of the274

moment covariance matrix, captures the interactions between the observed residual terms275

and the residuals from the synthetic data in our GMM objective.276

Partitioning the moments into observed data residuals mt(θ) and synthetic data residuals277

ht(η), we derive an explicit formula for the asymptotic variance of
√

T(θ̂T − θ) in Appendix278

C. We find two important conclusions. First, when these residuals are independent of279

the observed data, the formula reduces to the optimal variance based only on the fully280

observed data. That is, in the worst case where synthetic data is completely uninformative,281

including it does not hurt (at least asymptotically). Second, when the real and synthetic282

residuals are correlated (as we would hope), we derive a lower bound on the variance which283

is proportional to the residual variance in a regression of the observed data residuals on284

the span of the synthetic data residuals. This bound is minimized by choosing moments285

that span the conditional expectation of the observed data residuals given Ti, a sufficient286

condition for which is that the conditional distribution of X̂, Ŷ or X̃, Ỹ given T equals the287

conditional distribution of X, Y.288

5 Experimental Results289

We evaluate the finite-sample performance of our proposed estimators (GMM-Synth290

and GMM-Proxy) as well as the adapted debiasing-based estimators (PPI++Synth and291

PPI++Proxy) (see Appendix D) in the following setup.292

Datasets and Experimental Setup. We focus on the small-data regime, where the need293

for additional data sources is especially well-motivated. In particular, we consider settings294

where the practitioner has a corpus of unlabeled text and only a small set of human-295

annotated samples (e.g., ground-truth covariates and labels derived from the text). We296

evaluate our framework in four different computational social science tasks, each involving297

a regression coefficient as the target quantity. In the first two tasks, we use texts from online298

requests posted on Stack Exchange and Wikipedia (Danescu-Niculescu-Mizil et al., 2013)299

to estimate how certain linguistic features affect perceived politeness; specifically, the use300

of first-person plural pronouns and the presence of hedging markers (i.e., expressions of301

uncertainty). The third task examines the effect of affirming linguistic devices on media302
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Figure 2: Main Results. We observe large reductions in MSE, especially in very low-label
regimes. Each row corresponds to a task (i.e., 1pp, Hedging, Stance, Congressional Bills
(from top to bottom)); each column corresponds to a metric (i.e., MSE, coverage, confidence
interval width (from left to right)). Note that when the best performing PPI++Synth is
equivalent to PPI++Proxy, we report the second-best performing PPI++Synth method
(α = 0.8 for these tasks). Results are averaged over 200 trials.

stance toward global warming (i.e., whether the news headline supports or rejects climate303

change) using a corpus of climate-related news headlines (Hmielowski et al., 2014). Finally,304

in the fourth task, we analyze congressional bills texts (Adler & Wilkerson, 2011) to estimate305

the effect of a legislator’s DW-Nominate measure (Lewis et al., 2024) of ideology on the type306

of bill (whether the bill pertains to macroeconomy). In all the tasks, the target quantity is307

the regression coefficient corresponding to the explanatory variable of interest.308

To evaluate our framework, we use GPT-4o (Hurst et al., 2024) to generate proxy and309

synthetic data, without any task-specific fine-tuning, i.e., using the LLM out of the box.310

We report the empirical mean-squared error (MSE), coverage at level α = 0.05, confidence311

interval width, and effective sample size across all tasks. The effective sample size neffective312

denotes the number of human-labeled samples needed for the classical estimator θ̂human to313

match the MSE of the method’s estimate θ̂method. In other words, it quantifies how many314
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human annotations the method effectively saves while maintaining equivalent accuracy. We315

defer the results and discussion for effective sample size results to Appendix F (see Figure316

4).317

Key Observations. We begin by presenting our main empirical results. In Figure 2, we318

evaluate the performance of our GMM-based estimators: GMM-Proxy and GMM-Synth.319

Across all studied tasks, we observe both methods consistently outperform only leveraging320

ground-truth human-annotated samples (Human-only), yielding improvements in both321

point estimation (MSE) and inference (tighter intervals while retaining proper coverage).322

We observe that these gains are especially pronounced in low-label regimes, which precisely323

aligns with the motivating use case of our framework. On several tasks (e.g., 1pp, Hedging,324

and Congressional Bills), in low-label regimes, we observe large reductions in MSE, often325

exceeding 50% reductions compared to the human-only baseline. Furthermore, in Figure326

4 (see Appendix F), we observe that our GMM-based approaches consistently improve327

performance in terms of effective sample size across all tasks. That is, our method reduces328

the number of human annotations needed to achieve equally accurate estimates. This is329

particularly valuable in label-scarce settings, highlighting its practical value for practitioners330

in low-resource, limited-labeled regimes.331

Interestingly, these gains cannot be explained by the proxy or synthetic data alone as both332

sources produce greatly biased estimates (see Figure 5; Appendix F). This again highlights333

the detrimental risks of naively using LLM-simulated data in such pipelines. The key to334

attaining these benefits lies in the specific structure of how we combine these data sources with335

human-labeled data. The key intuition is that synthetic data will improve performance336

when the synthetic-data residuals are predictive of the real-data residuals. See Section 4.5337

for a deeper analysis of how this interaction improves performance.338

We next examine the performance of our adapted debiasing-based estimators: PPI++Proxy339

and PPI++Synth. Note that in the implementation of our debiasing-based estimators, we340

leverage PPI++ (Angelopoulos et al., 2023b), which further includes benefits of power tuning.341

Empirically, we find that PPI++Synth often underperforms, due to cross-fitting restricting342

the sample size even further (see Figure 6; Appendix G for details). In Figure 2, we observe343

that although both methods retain reasonable coverage, they systematically underperform344

the GMM-based estimators, producing larger MSE and mostly wider intervals. Most notably,345

our findings show that while debiasing-based approaches effectively incorporate proxy data,346

they struggle to leverage fully synthetic data, yielding negligible to no improvement when347

such data is incorporated. Given this limitation, our GMM-based strategy for incorporating348

synthetic data may be of broader interest as an alternative to the predominant debiasing-349

based methods used so far in the literature for incorporating biased sources of information.350

6 Discussion351

While pipelines leveraging synthetic simulations have yet to be fully realized, developing352

reliable mechanisms for integrating these data sources is indeed what will inform how such353

pipelines should be designed and implemented in practice. In this work, we introduce354

the first principled framework for reliably incorporating synthetic simulated samples into355

downstream statistical analyses. We provide practical guidance for constructing synthetic356

simulated samples from text-based foundation models in ways that support valid inference,357

and propose a new estimator based on generalized method of moments (GMM) estimation,358

where the key intuition is that synthetic data will improve performance when the synthetic-359

data residuals are predictive of the real-data residuals. Across the studied regression360

tasks, we indeed observe a large degree of improvements in estimation, especially in361

very low-label regimes. More broadly, this work takes a first step toward understanding362

how imperfect simulated data from foundation models can systematically be leveraged363

to support valid inference and to make reliable downstream conclusions. As the usage364

and future promise of foundation models continue to grow, so too will the complexity of365

pipelines that incorporate their outputs. Our framework provides a foundation for easily366

extensible estimation methods that can safely incorporate the growing variety and quality367

of synthetic data sources from such models.368
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A Conditions for Consistency and Asymptotic Normality458

We provide a discussion about the necessary conditions for a GMM estimator to be consistent459

and asymptotically normal, showing that these conditions are indeed met for our augmented460

GMM.461

As mentioned in the construction of our estimator, we define one moment condition for462

each parameter on the observed data D. We also define two moments for each parameter on463

the proxy and synthetic data. This leads to an overidentified system, with more moments464

than parameters, ensuring that the target parameter is identifiable.465

Next, we establish a few conditions for valid asymptotic properties of our GMM estimator,
specifically about the convergence and distributions of the sample moments. First, we
require that all of our moments converge to their expectation, or that

1
n

n

∑
i=1

ψ(j) → E[ψ(j)].

Next, they must also obey the central limit theorem, or that

√
n

(
1
n

n

∑
i=1

ψ(j)

)
d−→ N (0, F),

where F is some finite covariance matrix of all the moments.466

Under these standard regularity conditions on the moment functions ψ (Newey & McFad-467

den, 1994), these conditions are immediately satisfied for the moments defined on observed468

data, as each observation of the moments are independent. The same holds for the moments469

defined on proxy data, since X̂, Ŷ are functions of independent inputs T, and are therefore470

also independent across observations. The case of synthetic data is slightly more nuanced,471

but we show that the required conditions still hold, through the following lemma.472

Lemma 1. Let {ϕ}m
j=1 represent our moments defined on synthetic observations. Then, they are473

i.i.d., and consequently474

1
m

m

∑
j=1

ϕj −→ E[ϕj] and
√

m

(
1
m

m

∑
j=1

ϕj

)
d−→ N (0, σ(ϕ)),

where σ(ϕ) is the variance matrix of ϕ.475

Proof. We begin by noting that the unlabeled texts {Tj}m
j=1 are drawn i.i.d. from the marginal476

distribution DT . For each Tj, a synthetic text T̃j is generated by a generative model (i.e., an477

LLM), which uses independent randomness for each call. The model is conditioned only478

on an individual sample (Tj, Xj) if j is labeled or (Tj, X̂j) otherwise. Since the generative479

process for each Tj is independent and the mapping T̃j 7→ (X̃j, Ỹj) is applied identically to480

each sample, the resulting pairs (X̃j, Ỹj) are also i.i.d. As these pairs are drawn i.i.d., then481

these conditions are met via the central limit theorem.482

This result shows that the required conditions on the sample moments hold in our setting483

of proxy and synthetic samples; under the regularity conditions of Newey & McFadden484

(1994) Theorem 3.2, one immediately obtains Proposition 1 on the asymptotic behavior of485

our GMM estimator.486

B Moment Conditions487

We provide a concrete example of our moment construction for the case of generalized488

linear models (GLMs) in two-dimensions.489
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B.1 Example 1. Generalized Linear Models490

Recall that the standard GLM formulation optimizes the objective function,491

ℓθ(x, y) = −yxTθ + f (xTθ),

where f is a function that is convex and infinitely differentiable. We remark that this492

recovers the setting of logistic regression when f (z) = log(1+ exp(z)). Let us assume a two-493

dimensional setting for illustration. This translates to the population moment conditions494

of495

E

[
X1

(
Y− ∂ f

∂θ1
(XTθ∗)

)]
= 0, E

[
X2

(
Y− ∂ f

∂θ2
(XTθ∗)

)]
= 0

We have similar moments for proxy and synthetic data, where we use parameters η =496

(η(1), η(2)), which are also two-dimensional. Within our GMM framework, we construct the497

following set of moment conditions across the observed, proxy, and synthetic data.498

gt(θ, η) =



st

st

st

st

st

st

1

1

1

1



⊙



Xt,1(Yt − ∂ f
∂θ1

(XT
t θ))

Xt,2(Yt − ∂ f
∂θ2

(XT
t θ))

X̂t,1(Ŷt − ∂ f

∂η
(1)
1

(X̂T
t η(1)))

X̂t,2(Ŷt − ∂ f

∂η
(1)
2

(X̂T
t η(1)))

X̃t,1(Ỹt − ∂ f

∂η
(2)
1

(X̃T
t η(2)))

X̃t,2(Ỹt − ∂ f

∂η
(2)
2

(X̃T
t η(2)))

X̂t,1(Ŷt − ∂ f

∂η
(1)
1

(X̂T
t η(1)))

X̂t,2(Ŷt − ∂ f

∂η
(1)
2

(X̂T
t η(1)))

X̃t,1(Ỹt − ∂ f

∂η
(2)
1

(X̃T
t η(2)))

X̃t,2(Ỹt − ∂ f

∂η
(2)
2

(X̃T
t η(2)))


C Partitioned GMM Asymptotic Variance499

We now derive the asymptotic variance of our GMM estimator for specifically the target500

parameter θ̂T .501

Theorem 1. The asymptotic variance of
√

T(θ̂T − θ) is given by

(
dE[m(θ)]

dθ′
A

dE[m(θ)]

dθ
− dE[h(η)]

dη′
B⊤

dE[m(θ)]

dθ
(

dE[h(η)]
dη′

D
dE[h(η)]

dη
)−1 dE[m(θ)]

dθ′
B

dE[h(η)]
dη

)−1.

with A, B, D defined below.502

Proof. With the optimal choice of weight matrix for the full GMM estimation problem, the503

asymptotic variance of the vector (θ̂, η̂) converges to (GT F−1G)−1. To obtain the variance504

for θ̂ specifically, partition the moments into gt(θ, η) = (mt(θ)′, ht(η)′)′, where mt(θ) =505

St ⊙ ψ(θ), and506

ht(η) =



St
St
...

St
1
...
1


⊙



ψ(η(1))
...

ψ(η(M))
ψ(η(1))

...
ψ(η(M))


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Given this partitioning, we can express507

G(θ, η) =

[
dE[m(θ)]

dθ 0
0 dE[h(η)]

dη

]

F =

[
E[mt(θ)mt(θ)′] E[mt(θ)ht(η)′]
E[ht(η)mt(θ)′] E[ht(θ)ht(θ)′]

]
By the partitioned inverse formula, we can express F−1 as508 [

A B
B⊤ D

]
where the upper left block A is509

(E[mt(θ)mt(θ)
′]−E[mt(θ)ht(η)

′]E[ht(θ)ht(θ)
′]−1E[ht(η)mt(θ)

′])−1

This term can be interpreted as the inverse of the asymptotic residual variance of a regression510

of mt(θ) on the span of the vector ht(η).511

The lower right block D is, symmetrically, the asymptotic residual variance of a regression512

of ht(θ) on the span of the vector mt(η):513

(E[ht(θ)ht(θ)
′]−E[ht(θ)mt(η)

′]E[mt(θ)mt(θ)
′]−1E[mt(η)ht(θ)

′])−1

Finally, the off-diagonal term multiplies A by the coefficient in a regression of m on h:514

B = −AE[mt(θ)ht(η)
′]E[ht(θ)ht(θ)

′]−1

For the full variance,515

G⊤F−1G =

 dE[m(θ)]
dθ′ A dE[m(θ)]

dθ
dE[m(θ)]

dθ′ B dE[h(η)]
dη

dE[h(η)]
dη′ B⊤ dE[m(θ)]

dθ
dE[h(η)]

dη′ D dE[h(η)]
dη


Applying the partitioned inverse formula again, the upper left block of (G⊤F−1G)−1, which
gives exactly the asymptotic variance of

√
T(θ̂T − θ), is equal to

(
dE[m(θ)]

dθ′
A

dE[m(θ)]

dθ
− dE[h(η)]

dη′
B⊤

dE[m(θ)]

dθ
(

dE[h(η)]
dη′

D
dE[h(η)]

dη
)−1 dE[m(θ)]

dθ′
B

dE[h(η)]
dη

)−1

This can be interpreted similarly as the asymptotic variance of the residual prediction error516

from a regression of A−1/2 dm(θ)
dθ onto the span of a weighted linear combination of terms in517

dh(η)
dη .518

We remark that a lower bound on the total variance is given by ( dE[m(θ)]
dθ′ A dE[m(θ)]

dθ )−1, which
is minimized when A is maximized. Among choices of moment functions ht(η) that depend
solely on Tt, A is maximized in the positive semi-definite order when the span of ht(η)
contains E[m(θ)|Tt]. A sufficient but not necessary condition for this is that for some
j ∈ 1 . . . M, the conditional moments of the simulation are identical to those of the real data:

E[ψ(ηj)|Ti] = E[ψ(θ)|Ti]

This calibration condition is satisfied when the conditional distribution of the simulated519

data given T equals that of the real data, which is a natural simulation target, though not520

required for valid inference.521
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D How to Apply a Debiasing-based Approach522

In addition to introducing our GMM-based estimator, we also study how debiasing-based523

methods, commonly referred to as prediction-powered inference (PPI) (Angelopoulos et al.,524

2023a) in the machine learning literature, can be adapted to our setting. Debiasing-based525

methods, which are a family of methods used in the literature for incorporating biased526

sources of information, have been well-studied in the context of predicted outcomes and,527

more recently, predicted covariates (i.e., proxy data). However, it is not immediately clear528

how to incorporate fully synthetic data and aggregate multiple sources of information (i.e.,529

proxy data and synthetic data) in this setup. Perhaps the most general approach is given by530

RePPI (Ji et al., 2025), which predicts the optimal loss through fitting an arbitrary model that531

maps the proxy and synthetic loss to the real loss. In order to limit the number of parameters,532

we examine a natural instantiation of this, where the model is a convex combination.533

Proposition 2. The adapted, debiasing-based loss objective with multiple predicted covariates and534

outcomes is given by535

LPP(θ) :=
1
N

N

∑
i=1

[(1− α) · lθ(X̃i, Ỹi) + α · lθ(X̂i, Ŷi)] (6)

+
1
n

n

∑
i=1

(lθ(Xi, Yi)− [(1− α) · lθ(X̃i, Ỹi) (7)

+ α · lθ(X̂i, Ŷi)]). (8)

where the estimate retains asymptotic normality conditions (see Appendix G for the proof and536

algorithm details).537

Importantly, note that the addition of this hyperparameter α adds increased complexity, and538

techniques such as cross-fitting must be used to select it in a statistically valid fashion. We539

refer to the estimator with α = 1 as PPI++Proxy, as the synthetic terms vanish, yielding540

an estimator that combines real and proxy data. We refer to the estimator with tunable541

α ∈ [0, 1] as PPI++Synth, which combines real, proxy, and synthetic data. We note that542

our implementation builds on PPI++ (Angelopoulos et al., 2023b), retaining all additional543

benefits, such as power tuning, over the standard PPI estimator.544

E Additional Experimental Details545

E.1 Prompt Texts546

We present the full text prompts that were used to generate proxy covariates and labels (for547

the proxy data) and synthetic data. Note that the prompts used to extract covariates and548

labels from the synthetic text are identical to those used for the proxy data.549
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Proxy Data Generation Prompts

Politeness (First Plural Pronouns) - Covariates:
Does the following text contain first person plural pronouns (e.g., we, us, our, our-
selves)? Output either yes or no.
Text: """
{content}
"""
Answer:

Politeness (First Plural Pronouns) - Labels:
Is the following text polite? Output either A or B. Output a letter only.
A) Polite
B) Impolite
Text: """
{content}
"""
Answer:

Politeness (Hedging) - Covariates:
Does the following text contain hedging devices—expressions that indicate uncer-
tainty, caution, or a lack of full commitment to a claim (e.g., may, might, could,
would, possibly, probably, perhaps, apparently, suggest, indicate, seem, appear, it is
likely that, it seems that)? Respond with yes or no only.
Text: """
{content}
"""
Answer:

Politeness (Hedging) - Labels:
Is the following text polite? Output either A or B. Output a letter only.
A) Polite
B) Impolite
Text: """
{content}
"""
Answer:

Stance Dataset - Covariates:
Does the following text contain any affirmative device words? Output either yes or
no.
Text: """
{content}
"""
Answer:
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Proxy Data Generation Prompts (continued)

Stance Dataset - Labels:
A statement can agree, be neutral, or disagree with the statement: “Climate
change/global warming is a serious concern”. Classify the following statement
into one of the three categories. Output either A, B, or C. Output a letter only.
A) Agree
B) Neutral
C) Disagree
Statement: """
{content}
"""
Answer:

Congressional Bills Dataset - Covariates:
You are a political scientist familiar with the U.S. Congress and the DW-NOMINATE
scoring system, which places legislators and legislation on a left-right ideological
spectrum ranging approximately from -1 (most liberal) to +1 (most conservative).
Below is the text of a proposed bill. Based on the policy content, language, and
framing of the bill, estimate the DW-NOMINATE score that best represents its
ideological position. Output a single nonzero float between -1 and +1 representing
the estimated DW-NOMINATE score of the bill.
Bill: """
{content}
"""
Answer:

Congressional Bills Dataset - Labels:
Does the following text relate to the economy? Output either true or false.
Text: """
{content}
"""
Label:
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Synthetic Data Generation Prompts

Politeness (First Plural Pronouns)
Consider texts taken from user requests on Stack Exchange or Wikipedia. Each
text is labeled as either polite or impolite, and either contains or does not contain
first-person plural pronouns. Below is an example that {x}:
Example: """
{example}
"""
Now, generate a new example of a request that also {x}.

Politeness (Hedging)
Consider texts taken from user requests on Stack Exchange or Wikipedia. Each text
can be labeled as either polite or impolite, and as either containing a hedging device
or not containing one. Hedging devices are expressions that indicate uncertainty,
caution, or a lack of full commitment to a claim (e.g., may, might, could, would,
possibly, probably, perhaps, apparently, suggest, indicate, etc.). Below is an example
that {x}:
Example: """
{example}
"""
Now, generate a new example of a request that also {x}.

552

Synthetic Data Generation Prompts (continued)

Stance
Consider news headlines that take a stance — agree, disagree, or neutral — on the
statement: “Climate change/global warming is a serious concern.”
Each headline also either contains or does not contain an affirmative device.
Below is an example of a headline.
Example: """
{example}
"""
Affirmative device: {x}
Now, generate a new news headline about global warming that also {x}.

Congressional Bills Data
You are a political language model trained to generate realistic examples of U.S.
congressional bills. Each bill is labeled as either “related to the economy” or “not
related to the economy”, and is associated with a DW-NOMINATE score representing
ideological position (ranging from −1 liberal to +1 conservative).
Example:
Bill Text: """
{example}
"""
DW-NOMINATE Score: {dw nominate score}
Now, generate a new example of a bill that also has a DW-NOMINATE score of
{dw nominate score}. Output only the new bill text: """

553

F Additional Experimental Results554

We present additional experimental results consisting of: (1) grid search of debiased-based555

approaches (Figure 3); (2) effective sample size analysis (Figure 4); (3) performance of a556

naive estimator that only uses synthetic data (Figure 5); and (4) cross-fitting results for our557

adapted debiasing approach (Figure 6).558
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Figure 3: Grid search of the proposed debiasing-based approach (PPI++Synth) across
different α values (on 1PP, Hedging, and Stance estimation tasks (from left to right)). We
can observe that the optimal α value amongst the ones searched is defaulted to 1 in all cases,
which is equivalent to collapsing to fully using the proxy data. Results are averaged over
200 trials.
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Figure 4: Effective sample size. We further evaluate our approach and baselines in terms
of effective sample size, which quantifies the reduction in human annotations required to
achieve estimates of equivalent accuracy.

In Figure 3, as an upper bound, we conduct a grid search over different possible α values559

without cross-fitting. Note, this is not a valid solution (and just an oracle comparison) as it560

requires hyperparameter tuning with access to the held-out data. In Figure 3, we empirically561

find that although this oracle incorporates proxy data effectively, introducing the synthetic562

data still does not yield further performance improvement; the optimal α is 1 in all cases,563

which is equivalent to only utilizing information from the proxy data terms (i.e., ignoring564

the synthetic data terms completely).565

In Figure 4, we observe that our GMM-based approaches consistently improve performance566

in terms of effective sample size across all tasks. That is, our method reduces the number of567

human annotations needed to achieve equally accurate estimates. This is particularly valuable568

in label-scarce settings, highlighting its practical value for practitioners in low-resource,569

limited-labeled settings.570
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Figure 5: Performance of a naive estimator using synthetic data only (Politeness (Hedging),
Stance, Congressional Bills (from left to right)). We clearly observe that naively using only
synthetic data for the estimation task leads to largely biased estimates, as expected.
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(a) First Plural Pronouns (1pp)
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Figure 6: Cross-fitting results for PPI++Synth. We include α = 1 as a reference point, which
is equivalent to using only the proxy data.

G Adapted Debiasing-based Approaches: PPI++Proxy and PPI++Synth571

We now present a discussion on our adapted debiasing-based approach from Proposition 2.572

G.1 Asymptotic Normality573

First, it is relatively straightforward to show that this is an unbiased estimate of the true574

objective.575

E[LPP(θ)] = (1− α) ·E[lθ(X̃, Ỹ)] + α ·E[lθ(X̂, Ŷ)]

+ E[lθ(X, Y)]−E[(1− α) · lθ(X̃, Ỹ)]− α ·E[lθ(X̂, Ŷ)])]
= E[ℓθ(X, Y)].

Note that this holds for any choice of the hyperparameter α.576

Under the same assumptions as in the PPI++ paper (Angelopoulos et al., 2023b) (e.g., that577
n

n+m → c for some constant c and, in the case of generalized linear models, the Hessian is578
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Algorithm 1 Cross-Fitting for PPI++Synth

Require:
1: Labeled data D = {(Ti, Xi, Yi)}n

i=1,
2: Proxy data D̂ = {(Tj, X̂j, Ŷj)}n+m

j=1 ,

3: Synthetic data D̃ = {(T̃j, X̃j, Ỹj)}n+m
j=1 ,

4: K folds
Ensure: Debiased estimate θ̂CF

5: Split D into folds {I1, . . . , IK}
6:
7: for k = 1, . . . , K do
8: define train-fold Itrain =

⋃
r ̸=k Ir

9: θ̂−k
1 ← arg minθ L−k

PP (θ; 0) ▷ (1) initial fit on train-fold
10:
11: α̂−k ← arg minα∈[0,1] L−k

PP
(
θ̂−k

1 ; α
)

▷ (2) select mixture weight α on train-fold)
12:
13: θ̂k ← arg minθ Lk

PP
(
θ; α̂−k) ▷ (3) final fit on held-out fold with chosen α)

14:
15: end for

16: return θ̂CF =
1
K

K

∑
k=1

θ̂k

non-singular, we perform their same approach to power tuning), we recover the asymptotic579

normality guarantees of the parameter estimate (as in Corollary 1 from Angelopoulos et al.580

(2023b)).581

G.2 Hyperparameter Selection via Cross-fitting582

The added complexity from these modified debiasing-based approaches arises from the583

hyperparameter α. We now discuss an approach for selecting α by performing cross-fitting.584

As previously mentioned, we can treat α as a simple version of RePPI (Ji et al., 2025) where585

we fit a convex combination of proxy and synthetic losses.586

Namely, we partition our available data into two splits. We select α on one fold by minimiz-587

ing:588

arg min
α∈[0,1]

LPP(θ1),

where θ1 is defined as the solution to the naive minimzation of E[ℓθ(X, Y)] on the same split.589

This essentially captures picking the α that best combines the proxy and synthetic losses to590

best mimic the behavior of the standard loss function.591

We then take this optimal α and use it to produce a parameter estimate on the held-out fold.592

We aggregate these estimates as is standard in cross-fitting approaches. We outline this593

process in Algorithm 1.594
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