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Hyperbolic Variational Graph Auto-Encoder for Next POI
Recommendation

Anonymous Author(s)∗

Abstract
Next Point-of-Interest (POI) recommendation has become a crucial
task in Location-Based Social Networks (LBSNs), which provide
personalized recommendations by predicting the user’s next check-
in locations. Commonly used models including Recurrent Neural
Networks (RNNs) and Graph Convolutional Networks (GCNs) have
been widely explored. However, these models face significant chal-
lenges, including the difficulty of capturing the hierarchical and
tree-like structure of POIs in Euclidean space and the sparsity prob-
lem inherent in POI recommendations. To address these challenges,
we propose a Hyperbolic Variational Graph Auto-Encoder (HVGAE)
for next POI recommendation. Specifically, we utilize a Hyperbolic
Graph Convolutional Network (Hyperbolic GCN) to model hier-
archical structures and tree-like relationships by converting node
embeddings from euclidean space to hyperbolic space. Then we
use Variational Graph Auto-Encoder (VGAE) to convert node em-
beddings to probabilistic distributions, enhancing the capture of
deeper latent features and providing a more robust model struc-
ture. Furthermore, we combine the Mamba4Rec recommender and
Rotary Position Embedding (RoPE) and propose Rotary Position
Mamba (RPMamba) to effectively utilize POI embeddings rich in se-
quential information, which improves the accuracy of the next POI
recommendation. Extensive experiments on three public datasets
demonstrate the superior performance of the HVGAE model.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Point-of-interest recommendation, hyperbolic space, variational
graph auto-encoder, graph convolutional network, mamba
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1 Introduction
Next Point-of-Interest (POI) recommendation has become a pivotal
task in Location-based Social Networks (LBSNs), aiming to provide
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personalized recommendations by predicting users’ next check-
in locations. Currently, Some works have been accumulated on
next POI recommendation, with most methods using deep learning-
based techniques to mine user preferences for POIs. Some works
utilize Recurrent Neural Networks (RNNs) and their variants, such
as Long Short-Term Memory (LSTM) models and Gated Recur-
rent Unit (GRU), to capture the sequential relationships between
user check-ins. However, these methods fail to capture the high-
order connectivity between users and POIs. Some other work uti-
lizes Graph Convolutional Networks (GCNs) to address this lim-
itation by capturing the high-order connectivity between users
and POIs. However, GCN-based methods often face the issue of
over-smoothing and are susceptible to the effects of data sparsity.
To mitigate the over-smoothing problem, some works have utilized
simplified GCNs and improved versions of GCNs. Additionally,
other works have leveraged the parallel processing capabilities of
transformers to enhance recommendation efficiency.

Although the above studies have investigated POI recommenda-
tions in different aspects, the current methods face major challenges
in effectively capturing the complex relationships and hierarchical
structures inherent in user check-in behaviors. The first challenge
(c1) is that all of the above methods model user preferences in
Euclidean space, which makes it difficult to mine the hierarchi-
cal relationships and deep feature extraction among POIs. Due to
their reliance on Euclidean space, these methods are limited in
representing the hierarchical and tree-like structures of POIs. For
example, consider a user exploring different categories of POIs such
as museums, restaurants, and parks. The user might first visit a
general category such as museums and then explore subcategories
such as art museums, history museums, and science museums. This
exploration pattern forms a hierarchical structure where general
categories branch into specific subcategories. Accurately modeling
this hierarchy requires a representation that can inherently cap-
ture such tree-like relationships, which models based on Euclidean
space struggle to achieve. Another significant challenge (c2) is the
sparsity in POI recommendations, which severely impacts model
performance. Many works have considered various data augmen-
tation techniques to enhance model robustness. However, current
research on utilizing embedding transformations into probabilistic
distributions for POI recommendation remains inadequate.

To address the above challenges, we propose a model that com-
bines Hyperbolic Graph Convolutional Networks (Hyperbolic GCN)
and Variational Graph Auto-Encoders (VGAE) for next POI recom-
mendation, abbreviated as HVGAE. To address challenge (c1), we
consider that Hyperbolic GCNs are particularly suitable for ac-
curately modeling hierarchical structures and capturing tree-like
relationships, and we propose to use Hyperbolic GCN to transform
node representations from Euclidean space to Hyperbolic space to
capture the relationships among POIs. To address challenge (c2), we
utilize Variational Graph Auto-Encoders (VGAE) to transform node
embeddings into probabilistic distributions, which helps to capture
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deeper latent features and obtain a more robust model structure
through the reconfigured graph structure. VGAE can enhance em-
beddings with richer structural information, which are then trans-
formed back into embedding representations through hyperbolic
graph convolution. Moreover, an advanced mechanism to integrate
these enriched embeddings for accurate recommendation is needed
in the final recommendation phase. We integrate the Mamba4REC
recommender and introduce Rotary Position Embedding (RoPE)
to utilize POI embeddings rich in fine-grained information. This
positional encoding helps to capture the sequential information of
user check-ins, thereby improving the accuracy of the next POI
recommendation.

The main contributions of this paper are summarized below:

• We utilize Hyperbolic GCN to capture higher-order inter-
action information between users and POIs as well as the
hierarchical structure of the POIs.

• We propose to transform embeddings into latent variable
distributions to achieve deep information capture and en-
hance the interaction relationships between POIs, thus im-
proving the robustness of the model.

• We propose the RPMamba recommender that adds RoPE
to the recommender Mamba4Rec to effectively capture the
sequential information of user check-ins, and enhance the
model recommendation performance.

• Extensive experiments on three public datasets of different
scales validate the performance of our proposed HVGAE
model. Furthermore, rational ablation experiments validate
the effectiveness of each model component.

2 Related Work
2.1 Sequential Model for Next POI

Recommendation
Sequential models have been widely explored in the field of POI rec-
ommendation. Sequential models such as Markov models [8] and
RNNs [2] can effectively mine the temporal dependencies within
user check-in sequences and then make sequential POI recommen-
dations for users. Markov models are limited by the difficulty of
capturing users’ long-term preferences due to their no posteriority,
while LSTMs [11] and GRUs [16] can capture users’ long-term and
short-term preferences due to their gated structure. Nevertheless,
they are difficult to be trained in parallel, resulting in excessive
training costs, and cannot handle dependencies between different
lengths. Transformer-based [23, 27, 32] models have been widely
utilized by addressing many of the limitations inherent in LSTMs,
and their self-attention mechanism allows for parallel computation,
which greatly accelerates training and inference time. Recently, in-
spired by the success of State Space Models (SSMs), Mamba-based
methods [4, 15] have emerged to further improve model perfor-
mance while maintaining inference efficiency.

2.2 Graph Neural Networks
The interactions between users and POIs on LBSNs naturally form a
bipartite graph, and thus GNNs can effectively capture higher-order
connectivity between users and POIs. GCNs utilize the interaction
behavior tomake POI recommendations. However, GCNs encounter

limitations such as over-smoothing, where node embeddings be-
come indistinguishable after multiple layers of convolution. To
overcome these limitations, GraphSAGE [5] employs a sampling
method to aggregate features from fixed-size neighborhoods, thus
enhancing scalability. GATs [24] introduce attention mechanisms
to dynamically weigh the importance of neighboring nodes, thus
improving the model’s expressiveness. NGCF [26] generalizes GNN
into the field of collaborative filtering. There are also some simpli-
fied GCNs such as lightGCN [9] and SVD-GCN [18] which simplify
the feature transformations and nonlinear activations in the orig-
inal GCN and overcome the over-smoothing problem by various
designs. While GCNs in Euclidean space excel in many domains,
they have difficulty capturing the hierarchical and tree-like struc-
tures inherent in real-world data. This limitation arises from the
inability of Euclidean spaces to naturally model such hierarchical
structures. To overcome this, some works have explored GCNs
in hyperbolic space, such as HGCN [1], HICF [29], HIE [31] and
HRCF [30]. Hyperbolic GCNs use the unique property of hyper-
bolic space in which distances grow exponentially. This property
allows hyperbolic GCNs to efficiently embed tree structures and
capture hierarchical relationships with fewer dimensions compared
to Euclidean space.

2.3 Variational Graph Auto-Encoders
VGAEs have emerged as a powerful tool for learning latent rep-
resentations of graph-structured data, providing a probabilistic
approach to encoding graph information. VGAE [13] is proposed
to learn interpretable latent representations of undirected graphs
using latent variables. Subsequently, ARGA and ARVGA [17] are
used as variants of VGAE to obtain robust embeddings through
adversarial training. SIG-VAE [6] enhances the flexibility of model-
ing graph data through a hierarchical variational framework. To
solve the noise and sparsity problems, MVGAE [34] is used as a
multimodal graph variational auto-encoder to realize the represen-
tation of nodes, and the final high-performance recommendation
is achieved by fusing the semantic information in multimodality.

3 Methodology
3.1 Preliminaries
3.1.1 Next POI Recommendation. Denote U = {𝑢1, 𝑢2, ..., 𝑢 |U | } as
the set of users and P = {𝑝1, 𝑝2, ..., 𝑝 | P | } as the set of POIs. Denote
the number of users and POIs as |U| and |P|, respectively. We denote
the sequence of check-ins for user 𝑢 as 𝑆𝑢 = {𝑠𝑢1 , 𝑠

𝑢
2 , ..., 𝑠

𝑢
𝑡 }, 𝑠𝑢𝑡 ∈ P

is the 𝑡-th POI checked in by user 𝑢, and 𝑙𝑢 is is the length of 𝑢’s
check-in sequence 𝑆𝑢 . Given a user’s check-in sequence 𝑆𝑢 , the
target of next POI recommendation is to predict the next POI 𝑠𝑢

𝑙𝑢+1
where the user 𝑢 is most likely to check in.

To capture the higher-order connectivity between different POIs,
we utilize the check-in history of users to generate a graph G =

(P, E) to represent the transition relationships among different
POIs, where 𝑁 = |P | denotes the number of all POIs. 𝐴 = (𝑎𝑖 𝑗 ) ∈
R𝑁×𝑁 represents the adjacency matrix of G, capturing the implicit
relationships among POIs, 𝑎𝑖 𝑗 = 1 if (𝑠𝑢

𝑖
, 𝑠𝑢
𝑗
) ∈ E and 𝑎𝑖 𝑗 = 0

otherwise. 𝐷 ∈ R𝑁×𝑁 is the degree matrix of 𝐴. For the edge set
E, we process each user sequence and create an edge between each

2
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POI and its 𝑛-hop neighbors within the sequence, and construct it
by the following form:

E =

{(
𝑠𝑢𝑖 , 𝑠

𝑢
𝑗

)
: 𝑢 ∈ U, |𝑖 − 𝑗 | ≤ 𝑛, 1 ≤ 𝑖 < 𝑗 ≤ 𝑙𝑢

}
. (1)

3.1.2 Hyperboloid Manifold. Let (p0,𝐸
𝑖

)𝑖∈P of size R𝑑 denotes the
input POI features, where 0 denotes the first layer, the superscript
𝐸 denotes the node features lie in a Euclidean space and 𝐻 denotes
Hyperbolic features. Let ⟨., .⟩L : R𝑑+1 × R𝑑+1 → R denotes the
Minkowski inner product, ⟨p, x⟩L := −𝑝0𝑥0 +𝑝1𝑥1 + . . . +𝑝𝑑𝑥𝑑 . We
denote H𝑑

𝐾
as the hyperboloid manifold in 𝑑 dimensions with con-

stant negative curvature−1/𝐾 (𝐾 > 0), and TpH𝑑𝐾 as the (Euclidean)
tangent space centered at point p.

H𝑑𝐾 :=
{
p ∈ R𝑑+1 : ⟨p, p⟩L = −𝐾, 𝑝0 > 0

}
, (2)

TpH𝑑𝐾 :=
{
v ∈ R𝑑+1 : ⟨v, p⟩L = 0

}
. (3)

The metric tensor is 𝑔L = 𝑑𝑖𝑎𝑔[−1, 1, 1, ..., 1]. Since there is no
notion of vector space structure in hyperbolic spaces, it is necessary
to implement the derive transformations in hyperbolic models.
Specifically, we utilize the exp and logmaps to implement Euclidean
transformations in the target space ToH𝑑,𝐾 . For p ∈ H𝑑

𝐾
, x ∈ H𝑑

𝐾

and v ∈ TpH𝑑𝐾 such that v ≠ 0 and p ≠ x, the exp and log maps of
the hyperboloid model are given by:

exp𝐾p (v) = cosh
( ∥v∥L√

𝐾

)
p +

√
𝐾 sinh

( ∥v∥L√
𝐾

)
v

∥v∥L
, (4)

log𝐾p (x) = 𝑑𝐾L (p, x)
x + 1

𝐾
⟨p, x⟩Lpx + 1

𝐾
⟨p, x⟩Lp


L
, (5)

where ∥v∥L =
√︁
(⟨v, v⟩L) is the Lorentzian norm of v, the 𝑑𝐾L (., .)

is the distance between two points p, x ∈ H𝑑
𝐾
is then:

𝑑𝐾L (p, x) =
√
𝐾 arcosh

(
−⟨p, x⟩L/𝐾

)
. (6)

3.2 Hyperbolic Variational Graph Auto-Encoder
3.2.1 Hyperbolic Initialization Layer. We first map the embed-
ding of POIs from Euclidean space to hyperbolic space. Let o :=
{
√
𝐾, 0, ..., 0} ∈ H𝑑

𝐾
denote the north pole (origin) in H𝑑

𝐾
, which we

use as a reference point to perform tangent space operations. In
particular, an initial hyperbolic node state p0,𝐻 ∈ H𝑑 is given by

p0,𝐻 = exp𝐾o
((
p0,T

))
, (7)

where p0,T = (0, p0,𝐸 ) and p0,𝐸 ∈ R𝑑 is sampled from multivariate
Gaussian distribution, the superscript T denotes that node features
lie in a tangent space. So we can interpret (0, p0,𝐸 ) as a point in
ToH𝑑𝐾 and map it to H𝑑

𝐾
.

3.2.2 Hyperbolic Message Aggregation. Considering that feature
transformation and non-linear activation in the aggregation process
have been verified as unnecessary modules that do not contribute
beneficially to model performance [9], we have removed these two
components in the hyperbolic space as well. Next, we combine exp
and log maps in hyperbolic space to accomplish information aggre-
gation. Specifically, the hyperbolic initial state needs to be projected

to the tangent space via log map. For the Lorentz representation
this log map is defined as:

p0,T = log𝐾o
((
p0,𝐻

))
. (8)

Given the POI relationship transformation graph G, we can obtain
the neighbors N𝑖 of the POI 𝑝𝑖 .

𝑝
𝑙+1,T
𝑖

= 𝑝
𝑙,T
𝑖

+
∑︁
𝑗∈N𝑖

1
|N𝑖 |

𝑝
𝑙,T
𝑗
. (9)

We apply normalization by degree |N𝑖 | to ensure that the scale of
embeddings does not increase with the number of layers.

To prevent gradient vanishing and over-smoothing, we design
the architecture to include skip connections (i.e., skipGCN). Inspired
by residual networks [7], we add connections from each layer to
the final layer. Finally, we aggregate the information from all layers
and obtain the final representation p𝑠𝑢𝑚,T :

p𝑠𝑢𝑚,T =
∑︁
𝑙

(p1,T , p2,T , ..., p𝑙,T ). (10)

Then we map p𝑠𝑢𝑚,T back to the hyperbolic space via the expmap:

Z𝐻 = exp𝐾o
(
p𝑠𝑢𝑚,T

)
. (11)

3.2.3 VGAE-driven Graph Transformation. We convert node rep-
resentations to latent variable distributions as a way to mine deep
information. The encoder consists of two encoding heads:

𝑍 (1) = 𝑓ReLU
(
Z𝐻 , 𝐴 |𝑊 (0)

)
, (12)

𝑍
(2)
𝜇 = 𝑓Linear

(
𝑍 (1) , 𝐴 |𝑊 (1)

𝜇

)
, (13)

𝑍
(2)
𝜎 = 𝑓Linear

(
𝑍 (1) , 𝐴 |𝑊 (1)

𝜎

)
. (14)

For Inference model, we take a simple inference model param-
eterized by a two-layer GCN:

𝑞(𝑍 | Z𝐻 , 𝐴) =
𝑁∏
𝑖=1

𝑞

(
𝑧𝑖 | Z𝐻 , 𝐴

)
,

with
𝑁∏
𝑖=1

𝑞

(
𝑧𝑖 | Z𝐻 , 𝐴

)
=

𝑁∏
𝑖=1

N
(
𝑧𝑖 | 𝜇𝑧𝑖 , diag

(
𝜎2𝑧𝑖

))
,

(15)

where 𝑞(𝑍 | Z𝐻 , 𝐴) denotes joint distribution of latent variables for
all nodes, 𝑞

(
𝑧𝑖 | Z𝐻 , 𝐴

)
denotes the distribution of latent variables

for node 𝑧𝑖 , 𝜇𝑧𝑖 = 𝑍
(2)
𝜇 [𝑖, :] is the mean vector of a multivariate

Gaussian distribution associated within 𝑧𝑖 , and 𝜎2𝑧𝑖 = 𝑍
(2)
𝜎 [𝑖, :] is

the corresponding variance vector. The potential representation 𝑧𝑖
can be computed using mean and variance:

𝑧𝑖 = 𝜇𝑖 + 𝜎 ⊙ 𝜖𝑖 , (16)

where 𝜖𝑖 ∼ N(0, 1) is the noise matrix generated by the standard
normal distribution, ⊙ denotes the Hadamard product.

For Generative model, we take a generative model parameter-
ized by an inner product between latent variables 𝑧𝑖 and 𝑧 𝑗 :

𝑝 (𝐴 | 𝑍 ) =
𝑁∏
𝑖=1

𝑁∏
𝑗=1

𝑝
(
𝑎𝑖 𝑗 | 𝑧𝑖 , 𝑧 𝑗

)
,

with 𝑝
(
𝑎𝑖 𝑗 = 1 | 𝑧𝑖 , 𝑧 𝑗

)
= 𝜎

(
𝑧⊤𝑖 𝑧 𝑗

)
,

(17)

3
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Figure 1: Overall architecture of our proposed VGAE-GT. (a) Item transition graph construction. (b) Variational Graph Auto-
Encoder driven graph enhancement. (c) Mbmba4Rec as our backbone for sequence encoding in main recommendation task.

where 𝑎𝑖 𝑗 are the elements of𝐴, 𝜎 (·) is the logistic sigmoid function.
We use Kullback-Leibler Divergence (KLD) to measure the differ-

ences between distributions and make the generated distribution to
approximate the assumed standard Gaussian distribution as closely
as possible. The KLD loss is as follows:

L𝐾𝐿 = KL[𝑞(𝑍 | Z𝐻 , 𝐴)∥𝑝 (𝑍 )]

=
1
2

𝑁∑︁
𝑖=1

(
1 + log

(
𝜎2𝑖

)
− 𝜇2𝑧𝑖 − 𝜎

2
𝑧𝑖

)
.

(18)

The reconstruction loss first consists of the cross-entropy loss for
positive and negative samples, respectively:

Lreco = Lpos + Lneg

= −
∑︁

(𝑖, 𝑗 ) ∈Pos
log(𝜎 (𝑧𝑖 · 𝑧 𝑗 ))

−
∑︁

(𝑖, 𝑗 ) ∈Neg
log(1 − 𝜎 (𝑧𝑖 · 𝑧 𝑗 )) .

(19)

Finally, we formulate a variational lower bound of the input
graph log-likelihood as follows:

L̃reco = Lpos + Lneg − L𝐾𝐿

=

𝑁∑︁
𝑖, 𝑗=1

E𝑧𝑖 ,𝑧 𝑗∼𝑞 (. |Z𝐻 ,𝐴)
[
log

(
𝑝
(
𝑎𝑖 𝑗 | 𝑧𝑖 , 𝑧 𝑗

) ) ]
− 𝐾𝐿

(
𝑞

(
𝑧𝑖 | Z𝐻 , 𝐴

)
∥𝑝 (𝑧𝑖 )

)
.

(20)

3.3 RPMamba as Sequence Encoder
After obtaining the updated graph structure through VGAE, we
restore the POI representation in the hyperbolic space. We still uti-
lize the hyperbolic GCN to reconstruct the POI representations and
ignore weight transformations and nonlinear activations. The POI
embeddings (in the form of latent variable distributions) initially
obtained from VGAE are mapped back into hyperbolic space. We
generate the POI representations through the following process.

𝑒𝑙+1𝑖 = 𝑒𝑙𝑖 +
∑︁
𝑗∈N𝑖

1
|N𝑖 |

𝑒𝑙𝑗 , 𝑒𝑙 =

𝐿∑︁
𝑙=1

𝑒𝑙𝑖 . (21)

where 𝐿 is the total number of layers, and N𝑖 represents the 1-
hop neighborhood of POI 𝑝𝑖 . 𝑒𝑙𝑖 and 𝑒

𝑙+1
𝑖

are the reconstructed
embeddings of POI 𝑝𝑖 at the 𝑙-th and (𝑙 + 1)-th layers, respectively.
𝑒𝑙 is the final reconstructed representation of POI 𝑝𝑖 . Here, we set
a threshold parameter 𝑏 to determine the presence of edges in the
reconstructed graph. If the probability of an edge existing is greater
than or equal to 𝑏, a reconstructed edge is established between the
two POIs; otherwise, no edge is formed.

Next, we obtain node representations of the users based on their
check-in sequences. Simply adding positional encoding to capture
the sequence information of the user’s check-in ignores the relative
positional information in the user’s check-in. Therefore, we add
RoPE [21] to model the dependencies between check-in sequences.
We denote m𝑖 as the position encoding vector, and R(𝑖) as the
rotation matrix, which is defined as:

R(𝑖) =
[
cos(𝜃𝑖 ) − sin(𝜃𝑖 )
sin(𝜃𝑖 ) cos(𝜃𝑖 )

]
(22)

For each check-in 𝑒𝑠𝑢
𝑖
and rotation position encoding, the corre-

sponding user representation can be aggregated as:

E𝑢 =

[(
𝑒𝑠𝑢1

+ R(1)m1
)
, · · · ,

(
𝑒𝑠𝑢𝑡

+ R(𝑡)m𝑡
)]

(23)

Next, we obtain the user check-in sequence with added RoPE, which
serves as the final input containing both POI features and positional
order. This input is then fed into the Mamba block for training,
resulting in the output Ê𝑢 :

Ê𝑢 = 𝑀𝑎𝑚𝑏𝑎(E𝑢 ) . (24)

Finally, we utilize the product of the user’s representation and the
POI’s representation to compute the probability of the POI that the
user will visit next.

𝑦 = Ê𝑢,𝑡 · 𝑒𝑠𝑢
𝑡+1
. (25)

By incorporating RoPE into the user check-in sequences and uti-
lizing the RPMamba model, we effectively capture both the POI
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features and their sequential order. This approach leads to the final
recommendation results, enhancing the accuracy and relevance of
the recommendations.

3.4 Model Training
Weutilize the cross-entropy loss function as the loss function for the
main POI recommendation task. Additionally, we perform data aug-
mentation using subsequences (i.e., {(𝑠𝑢1 ), (𝑠

𝑢
1 , 𝑠

𝑢
2 ), ..., (𝑠

𝑢
1 , ..., 𝑠

𝑢
𝑡−1)})

of user check-in sequence 𝑆𝑢 during the model training process.
The loss function for the main task is defined as follows:

Lmain = −
∑︁
𝑢∈U

∑︁
1≤𝑡≤𝑙𝑢

log𝜎
(
Ê𝑢,𝑡 · 𝑒𝑠𝑢

𝑡+1

)
+log

(
1 − 𝜎

(
Ê𝑢,𝑡 · ẽ𝑝−𝑡

))
,

(26)
where Ê𝑢,𝑡 represents the embedding of the sequence (𝑠𝑢1 , ..., 𝑠

𝑢
𝑡 ),

and 𝑝−𝑡 ∉ 𝑆𝑢 is the 𝑡-th item randomly chosen from the negative
samples. To prevent model over-fitting, we also introduce a regu-
larization loss by computing the L2 norm of the model parameters:

Lreg = ∥𝜃en ∥22 + ∥𝜃de ∥22 + ∥𝜃recom∥22 , (27)

where 𝜃en , 𝜃de , and 𝜃recom are the parameters of the encoder, de-
coder, and recommender models, respectively. The total loss L is
the weighted sum of the reconstruction loss, the main loss, and the
regularization loss:

L = 𝛼L̃reco + 𝛽Lmain + 𝛾Lreg . (28)

where 𝛼 and 𝛽 are hyperparameters that control the contributions
of the reconstruction loss and the main loss, respectively, and 𝛾 is
the regularization factor.

4 Experiments
We conduct experiments to evaluate the performance of HVGAE,
focusing on the following questions:

• RQ1: How does our HVGAE perform as compared to vari-
ous state-of-the-art recommendation methods?

• RQ2: How does the hyperbolic GCN affect model perfor-
mance in next POI recommendation?

• RQ3: How does the VGAE affect model performance?
• RQ4: How to demonstrate the effectiveness of RPMamba

Recommender?
• RQ5: How do different hyperparameters affect the model

performance?

4.1 Experimental Settings
4.1.1 Datasets and Evaluation Metrics. In this work, we use three
publicly available datasets: NYC, TKY, and Yelp. NYC and TKY
are check-in datasets in New York City and Tokyo collected from
Foursquare platform, respectively. Yelp contains user check-in data
from Yelp platform. Considering the different characteristics of the
respective datasets, we delete the POIs where users check-in less
than 5 times in the NYC and TKY datasets, and delete the POIs
where users check in less than 20 times in the Yelp dataset. The
statistics of the dataset are summarized in Table 1.

We evaluate the performance of the proposed HVGAE model
using two widely adopted metrics: Hit Rate (HR) and Normalized
Discounted Cumulative Gain (NDCG). These metrics are calculated
for top-K recommendations, where K is set to 5 and 10.

Table 1: Statistics of datasets

Dataset #Users #POIs #Interactions Ave.len. Density
NYC 1,083 9,989 179,468 165.71 1.66𝑒−2
TKY 2,293 15,177 494,807 215.79 1.42𝑒−2
Yelp 36948 20950 1,299,620 35.17 1.68𝑒−3

(a) Books-HR@10 (b) Books-NDCG@10

(c) NYC-HR@10 (d) NYC-NDCG@10

Figure 2: Performance w.r.t. different embedding dimensions
and dropouts.

4.1.2 Compared Methods. We compare HVGAE with 10 competi-
tivemethods, including attention-basedmethods: SINE [22], FEARec
[3] and TiSASRec [14]; transformer-based methods: CORE [10]
and CL4SRec [28]; comparative learning for data enhancement:
DouRec [20], MCLRec [19]; diffusion modeling for data augmen-
tation: DiffRec [25]; data enhancement methods combining masks
and GNNs: MAERec [33] and AdaMCT [12].

4.1.3 Experimental Setup. Our method is implemented in PyTorch
and experiments are run on an NVIDIA 4090 GPU. The Adam opti-
mizer is utilized for parameter inference with a learning rate of 1e-2.
For the GCN component, we set the number of layers to 2. We apply
a regularization coefficient of 1e-6 to improve model generalization.
The graph is constructed using a distance parameter of 3. For the
parameters of the Mamba block, the SSM state expansion factor is
32, the kernel size for 1D convolution is 4, and the block expansion
factor for linear projections is 2.

4.2 Overall Performance (RQ1)
We compare the proposed HVGAE with current state-of-the-art
methods and summarize the experimental results in Table 2. First, it
can be concluded from the Table 2 that HVGAE consistently outper-
forms the other compared methods on the three publicly available
datasets. Specifically, we compare HVGAE with several attention-
based sequence recommendation methods, including SINE [22],
FEARec [3] and TiSASRec [14]. The performance of such methods
is lower overall than that of HVGAE because they can only obtain
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Table 2: Model performance.

Datasets NYC TKY Yelp
Metric HR@5 HR@10 ND@5 ND@10 HR@5 HR@10 ND@5 ND@10 HR@5 HR@10 ND@5 ND@10
SINE 0.6842 0.7442 0.6224 0.6416 0.7745 0.8382 0.6976 0.7184 0.5915 0.7714 0.4156 0.4739
CORE 0.7461 0.8172 0.6911 0.7142 0.8439 0.8901 0.7699 0.7850 0.6984 0.8446 0.5087 0.5563

CL4SRec 0.5891 0.6704 0.5115 0.5378 0.7418 0.8125 0.6465 0.6693 0.6531 0.8206 0.4623 0.5168
DuoRec 0.7599 0.8061 0.6990 0.7139 0.8548 0.9001 0.7849 0.7994 0.6995 0.8518 0.5089 0.5585
FEARec 0.7747 0.8135 0.7110 0.7235 0.8522 0.8945 0.7811 0.7949 0.7078 0.8512 0.5243 0.5710
MAERec 0.6851 0.7830 0.5985 0.6300 0.7366 0.8173 0.6252 0.6516 0.5864 0.7761 0.4061 0.4677
TiSASRec 0.7729 0.8236 0.7141 0.7304 0.8443 0.8892 0.7808 0.7955 0.7021 0.8510 0.5138 0.5623
AdaMCT 0.7581 0.8144 0.7017 0.7199 0.8474 0.8905 0.7797 0.7935 0.7074 0.8514 0.5210 0.5678
MCLRec 0.7802 0.8319 0.7291 0.7457 0.8447 0.8823 0.7711 0.7832 0.6087 0.7212 0.4549 0.4915
DiffRec 0.7636 0.8061 0.7060 0.7198 0.8099 0.8513 0.7276 0.7408 0.6087 0.7212 0.4549 0.4915
HVGAE 0.8033 0.8421 0.7458 0.7580 0.8683 0.9071 0.8094 0.8221 0.7342 0.8775 0.5423 0.5890
Improv. 2.96% 1.23% 2.29% 1.65% 1.58% 0.78% 3.12% 2.84% 3.73% 3.01% 3.44% 3.15%

Table 3: Ablation study with key modules.

Datasets NYC TKY Yelp
Metric HR@5 HR@10 ND@5 ND@10 HR@5 HR@10 ND@5 ND@10 HR@5 HR@10 ND@5 ND@10

HVGAE-ℎ1 0.7876 0.8236 0.7398 0.7516 0.8648 0.9062 0.8044 0.8179 0.7283 0.8768 0.5389 0.5873
HVGAE-ℎ2 0.7682 0.8190 0.7107 0.7271 0.8539 0.8927 0.7922 0.8048 0.7236 0.8741 0.5325 0.5815
HVGAE-ℎ 0.7553 0.8199 0.6994 0.7205 0.8434 0.8914 0.7728 0.7883 0.7105 0.8602 0.5201 0.5688
HVGAE-𝑣 0.7747 0.8283 0.7182 0.7357 0.8474 0.8927 0.7799 0.7945 0.7232 0.8724 0.5296 0.5782
HVGAE-𝑚 0.7839 0.8403 0.7279 0.7461 0.8565 0.9014 0.7960 0.8080 0.7201 0.8689 0.5256 0.5741
HVGAE-𝑝 0.7775 0.8218 0.7185 0.7328 0.8583 0.8949 0.7974 0.8126 0.7210 0.8691 0.5275 0.5757
HVGAE-𝑟𝑝 0.7821 0.8319 0.7320 0.7486 0.8657 0.8993 0.8085 0.8187 0.7241 0.8739 0.5323 0.5811
HVGAE 0.8033 0.8421 0.7458 0.7580 0.8683 0.9071 0.8094 0.8221 0.7342 0.8775 0.5423 0.5890

user preferences from a limited amount of sparse data. secondly, we
compare HVGAE with transformer-based models (i.e., CORE [10],
CL4SRec [28]) that are currently widely used in sequence recom-
mendation. The performance of such methods is also overall lower
than HVGAE due to the lack of data augmentation phase and the
fact that they are not as fast as mamba inference. Considering that
we perform graph-structured data augmentation using VGAE, we
also compare HVGAEwith many data-augmented recommendation
methods. For example, the recommended method MAERec [33],
which utilizes masks for data enhancement combined with GCN,
and so on. As a result of the comparison experiments, HVGAE is
also outperforms the other comparison methods due to its ability
to capture higher-order information in hyperbolic space, capture
higher-order information between POIs using latent space, and
propose the current state-of-the-art recommender RPMamba.

4.3 Ablation Study
4.3.1 Hyperbolic GCN (RQ2). To validate the effectiveness of cap-
turing hierarchical relationships among POIs in hyperbolic space,
we have conducted ablation experiments, with results summarized
in Table 3. We propose several model variants, HVGAE-ℎ denotes
the elimination of the process of capturing the user’s neighbor infor-
mation in the hyperbolic GCN, with all message passing and graph
structure reconstruction are implemented by LightGCN. HVGAE-ℎ1
removes hyperbolic GCN during the message passing phase, using

(a) NYC (b) Yelp

Figure 3: Performance w.r.t. different threshold values 𝑏.

traditional GCN for capturing user node information via the item
transition graph, while utilizing hyperbolic GCN for graph struc-
ture reconstruction. HVGAE-ℎ2 removes hyperbolic GCN during
the graph structure reconstruction phase, using hyperbolic GCN to
capture user node information in the item transition graph and us-
ing lightweight LightGCN for graph structure reconstruction. From
the experimental results, it can be concluded that there is a signifi-
cant degradation of the performance of HVGAE-h, demonstrating
the critical role of hyperbolic GCN in both message passing and
graph structure reconstruction. Hyperbolic GCNs can effectively
capture the hierarchical relationships among POIs in hyperbolic
space. The superior performance of HVGAE-ℎ1 and HVGAE-ℎ2
over HVGAE-ℎ indicates the unique contributions of hyperbolic
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(a) NYC (Top5) (b) TKY (Top5) (c) Yelp (Top5)

(d) NYC (Top10) (e) NYC (Top10) (f) Yelp (Top10)

Figure 4: Performance w.r.t. different 𝐾 values for curvature.

(a) NYC-HR@5 (b) TKY-HR@5 (c) Yelp-HR@5

(d) NYC-NDCG@5 (e) TKY-NDCG@5 (f) Yelp-NDCG@5

Figure 5: Performance w.r.t. different GCN architectures.

GCN in different stages. Additionally, the better performance of
HVGAE-ℎ1 than HVGAE-ℎ2 then suggests that hyperbolic GCNs
are slightly more influential in the graph reconstruction phase than
in the message passing phase.

As mentioned in Subsection 3.2.2, To prevent oversmoothing, we
propose skipGCN. This not only prevents over-smoothing of the
HVGAEmodel but also effectively improves the model performance.
We compare our proposed skipGCNwith graph convolution models
of some other architectures and summarize the comparison results
in Figure 5. It can be concluded that the performance of our model
outperforms other architectures (i.e., originGCN, ResGCN, and
DenseGCN) on all three publicly available datasets.

4.3.2 Variational Graph Auto-Encoder (RQ3). VGAE uses varia-
tional inference to convert node embeddings into probabilities, and
the conversion can capture deeper latent features, which helps to
improve the robustness and generalization of the model. To vali-
date the effectiveness of the VGAE module, we remove this module
and propose its corresponding variant: HVGAE-𝑣 . The results are
summarized in Table 3. The degradation of the performance of
HVGAE-𝑣 indicates that without the probability conversion and
deep feature extraction facilitated by VGAE, the complex features
between POIs are difficult to be mined, which leads to the degrada-
tion of the model’s performance.

4.3.3 RPMamba Recommender (RQ4). To validate the effectiveness
of our proposed RPMamba, we replace RPMamba with SASRec,
an excellent Transformer-based model, and then perform ablation
experiments and propose a variant HVGAE-𝑚. The results are sum-
marized in Table 3. It can be concluded that HVGAE-𝑚 performs
significantly weaker than the original HVGAE model using RP-
Mamba as the recommender. This is because RPMamba is based
on a selective state-space model, which exhibits higher efficiency
and performance when dealing with long sequences. In addition,
Mamba’s architecture removes the traditional attention mechanism
and multi-layer perceptron block, which makes it simpler than the
Transformer-based model architecture.

4.3.4 Rotary Position Embedding. To investigate the importance of
RoPE, we conduct ablation experiments. We remove the RoPE and
obtain its corresponding variant: HVGAE-𝑝 . Additionally, to verify
the unique ability of RoPE to capture relative positional relation-
ships within sequences compared to ordinary positional encoding,
we replace the RoPE with ordinary positional encoding and pro-
pose its variant: HVGAE-𝑟𝑝 . Experimental results for HVGAE-𝑝
and HVGAE-𝑟𝑝 have been summarized in Table 3. The performance
degradation of these variants demonstrates that the ability of RoPE
to capture relative positions significantly enhances the performance
of our model in sequential POI recommendations.

4.4 Hyper-parameters (RQ5)
4.4.1 Embedding Dimension. The embedding dimension affects
the performance of the model. To explore the embedding dimen-
sions most adapted to our model, we provide several dimension
candidates (i.e., 8, 16, 32, 64, 128, 256) and conduct experiments on
all datasets for comparison. Specifically, we choose HR@10 and
NDCG@10 as the measures, and the comparison results are summa-
rized in subfigures 2(a) and 2(b) of Figure 2. As can be seen from the
figures, the model’s performance reaches its optimal value when
dimension = 128, and the performance of the subsequent models
starts to decrease. Therefore, we choose to embedding dimension =
128 in all datasets used in this paper.

4.4.2 Dropout. We use dropout to prevent model overfitting. We
give the corresponding candidates (i.e., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8), choose HR@10 and NDCG@10 as the measures, and then
conduct experiments on three datasets. The comparison results are
summarized in subfigures 2(c) and 2(d) of Figure 2. By observing the
experimental results of the model on different datasets, we finally
determine dropout values of 0.3, 0.5 and 0.3 on the NYC, TKY and
Yelp datasets, respectively.

4.4.3 Threshold 𝑏. After the VGAEmodule, we need to reconstruct
the POI relationship graph, and the threshold set here will affect
the structure of the reconstructed graph and thus the performance
of the model. To explore the impact of the threshold we have con-
ducted thorough experiments and summarized the results of the
experiments on the NYC and Yelp datasets as examples in Figure
3. We use the threshold 𝑏 = 0.5 as a standard to observe the effect
of other thresholds and can conclude that the best performance is
achieved when the threshold 𝑏 = 0.6 in the NYC dataset. In the Yelp
dataset performance is best when threshold 𝑏 = 0.5. By way of a
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similar comparison, it is concluded that the best performance is
achieved in the TKY dataset when the threshold 𝑏 = 0.5.

4.4.4 𝐾 for curvature. To investigate the effect of curvature on
model performance, we conduct experiments and summarize the
results in Figure 4. By exploring the results in Figure 4, we can
conclude that the model always achieves optimal performance in
the NYC and Yelp datasets when 𝐾 = 1. The model achieves the
optimal value in the vast majority of cases in the TKY dataset and
only achieves a sub-optimal value for HR@10. However, it does
not affect the final conclusion, i.e., 𝐾 = 1 was chosen for all three
datasets.

5 Conclusion
This paper explores a graph augmentation method based on distri-
bution transformation, utilizing VGAE to enhance graph structure
information. The embedding is converted into latent variables using
VGAE, and then the hidden information is mined and then reduced
to the representation of embedding using GCN. Finally, the embed-
dings are combined with the RPMamba recommender to enhance
the sequential recommendation system. We conduct extensive ex-
periments on three real-world datasets and demonstrate that our
HVGAE outperforms state-of-the-art baselines. In future work, we
plan to design more adaptive graph structure augmentation criteria
to further improve the model’s adaptability.
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