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Abstract
Since the introduction of Vision Transformer
(ViT), patchification has long been regarded as
a de facto image tokenization approach for plain
visual architectures. By compressing the spa-
tial size of images, this approach can effectively
shorten the token sequence and reduce the com-
putational cost of ViT-like plain architectures. In
this work, we aim to thoroughly examine the in-
formation loss caused by this patchification-based
compressive encoding paradigm and how it af-
fects visual understanding. We conduct exten-
sive patch size scaling experiments and excitedly
observe an intriguing scaling law in patchifica-
tion: the models can consistently benefit from
decreased patch sizes and attain improved predic-
tive performance, until it reaches the minimum
patch size of 1×1, i.e., pixel tokenization. This
conclusion is broadly applicable across different
vision tasks, various input scales, and diverse ar-
chitectures such as ViT and the recent Mamba
models. Moreover, as a by-product, we discover
that with smaller patches, task-specific decoder
heads become less critical for dense prediction. In
the experiments, we successfully scale up the vi-
sual sequence to an exceptional length of 50,176
tokens, achieving a competitive test accuracy of
84.6% with a base-sized model on the ImageNet-
1k benchmark. We hope this study can provide
insights and theoretical foundations for future
works of building non-compressive vision models.
Code is available at https://github.com/
wangf3014/Patch_Scaling.

1. Introduction
In the past few years, we have witnessed the great success of
Vision Transformers (ViTs) in representation learning, with
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a series of visual foundation models learned with this plain
architecture achieving highly competitive performance and
establishing effective connections to other modalities such
as natural language (Dosovitskiy et al., 2021; Caron et al.,
2021; Radford et al., 2021; Yu et al., 2022a; Rombach et al.,
2022; Kirillov et al., 2023; Liu et al., 2023). A key insight
behind the ViT-like architectures lies in a compressive en-
coding paradigm: instead of directly processing raw pixels
that introduces significant complexity, these architectures
leverage a patchification layer to compress images into spa-
tially smaller feature maps, making the representation space
of an image roughly equivalent to that of a medium-length
text consisting of a few hundred tokens.

However, we argue that this operation often incurs irre-
versible information loss to visual inputs. For example, intu-
itively, we believe the information contained in a 224×224
resolution image is generally much richer than that in a text
consisting of 196 words; however they have nearly the same
size of representation space under a ViT encoder with patch
size 16×16 (we suppose the vision and language encoders
share the same embedding dimension). The difference in
information content between visual and textual data can also
be directly reflected in their storage requirements: storing an
uncompressed 24-bit, 224×224 resolution image requires
approximately 147KB, whereas storing a 196-word text only
needs about 1.15KB. Empirically, if we manually reduce the
compression rate, for example, by changing the patch size
of DeiT-Base from 16×16 to 8×8, we can observe a signif-
icant accuracy improvement from 81.8% to 83.5% on the
ImageNet-1k classification benchmark (Deng et al., 2009).

Nonetheless, since the computation of self-attention scales
quadratically with sequence length, ViT architectures are
sensitive to the patch size. At the time when ViT was first
introduced in late 2020, it needed to ensure that its computa-
tional cost was comparable to that of the CNN counterparts;
and given the computational capacity at that time, the mod-
els had to be computationally manageable in terms of mem-
ory consumption and training time, especially when trained
with the medium-resolution, medium-scale ImageNet (Deng
et al., 2009) and beyond (Sun et al., 2017). As a result, the
architectural design of ViT had to compromise with a com-
pressive encoding paradigm achieved through patchification.
The success of this design, patchification with a typical
16×16-pixel kernel, has led to its widespread adoption as
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(a) DeiT-B, 64×64 Input, CLS
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(b) Adventurer-B, 128×128 Input, CLS

16 8 4 2 1
Patch size

0.6
37

0.6
45

0.6
62

0.6
96

0.7
65

Te
st

 lo
ss

(c) Adventurer-B, 224×224 Input, CLS
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(d) ADE20k Semantic Segmentation
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(e) COCO Object Detection
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(f) COCO Instance Segmentation
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(g) DeiT-B, 128×128 Input, CLS
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(h) Adventurer-L, 128×128, CLS
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(i) Adventurer-T, 224×224, CLS

Figure 1. Patchification Scaling Laws. We observe a smooth and consistent decrease in test loss across different vision tasks, input
resolutions, and model architectures when reducing the patch size. The performance gains remain considerably significant even when
scaling down the patch size to 1×1. In all sub-figures, both x and y axes are in log scale. CLS denotes ImageNet-1k classification.

a default component in various subsequent architectures,
even including those non-attention models such as Con-
vNeXt (Liu et al., 2022) and Vision Mamba (Zhu et al.,
2024), while the impact of information loss posed by this
compressive encoding paradigm has not been well studied.

In this work, we aim to thoroughly examine how compres-
sive encoding affects visual representations and whether
patch size can be a new scaling dimension for modern visual
architectures. While the concept of Scaling Laws (Kaplan
et al., 2020) has been broadly testified in natural language
processing, leading to a great prosperity of Large Language
Models over the past few years (Touvron et al., 2023; Team
et al., 2023; Achiam et al., 2023), the scaling-up of vision
models faces practical issues in the dimensions of both pa-
rameter size and input size (detailed in Section 4.3). Here,
we aim to revisit the scaling potential of vision models from
a new perspective of spatial compression, attempting to un-

lock the compressed information by reducing the patch size.
We highlight that through patchification, there is significant
room for scaling up the model’s computation, and a new
scaling law may emerge during this process.

Thanks to the rapid advancements in hardware, efficient
attention mechanisms (Dao et al., 2022; Kwon et al., 2023),
as well as linear-complexity structures (Katharopoulos et al.,
2020; Peng et al., 2023; Gu & Dao, 2023), we can now ex-
tensively validate the impact of patchification at a standard
input size (e.g., 224×224 for ImageNet) with manageable
computing resources. We conduct a series of straightfor-
ward scaling experiments on patchification, gradually reduc-
ing the model’s patch size from the typical 16×16 down
to 1×1 to lower the compression rate and observe how
performance changes. We employ both ViT and Adven-
turer (Wang et al., 2024c), a Mamba-based (Dao & Gu,
2024) linear-complexity architecture, to make our conclu-
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sions generalizable and experiments affordable in compu-
tation. To our surprise, this simple scaling study delivers
three intriguing discoveries:

First, as shown in Figure 1, we excitedly observe a new scal-
ing law for patchification in vision models. Similar to the
scaling laws discovered in early studies (Kaplan et al., 2020)
on language—where continuously increasing model parame-
ters reliably leads to consistent performance gains—we have
identified a new scaling dimension for vision models, which
is reflected in the observation that as the compression rate
(i.e., patch size) decreases, the model’s test loss smoothly
declines, reaching its limit at single-pixel patch sizes that es-
sentially form a non-compressive encoding paradigm. This
conclusion broadly holds true for various vision tasks, di-
verse input scales, and different visual architectures.

Second, we confirm that visual encoding can be performed
in a very long token sequence, while patchification is not
a requisite for building effective vision models, but rather
a compromise to memory and computation overhead when
resource is limited. The information lost in the compression
of the patchification layer is actually crucial for the model’s
prediction: on the standard 224×224-resolution ImageNet-
1k classification benchmark, we remove the patchification
operation and form a super-long visual sequence consist-
ing of 50,176 tokens, by which we boost the model’s test
accuracy from 82.6% to a remarkable result of 84.6%.

Finally, we observe a compelling phenomenon in semantic
segmentation: as we transit from patch-based tokenization
to pixel-level modeling, the traditional necessity for a de-
coder head—long considered a default component since the
inception of deep network architectures—can be eliminated
without compromising performance. This architectural sim-
plification is potentially profound, suggesting the possibility
of developing decoder-free dense prediction models and il-
luminating the path toward a universal, encoder-only visual
architecture capable of learning from every pixel.

2. Related Work
Generic visual backbones. The development of visual
backbones has fundamentally shaped the field of computer
vision. Initially dominated by Convolutional Neural Net-
works (CNNs), these architectures have evolved to gain
increasing capabilities for visual representation learning.
Pioneering works such as LeNet (LeCun et al., 1998) and
AlexNet (Krizhevsky et al., 2012) have proven the signif-
icant effectiveness of convolutional architectures in large-
scale image classification tasks. Following these founda-
tional models, the architecture has been refined with the
innovations in model depth (Simonyan & Zisserman, 2015),
residual connection (He et al., 2016; Huang et al., 2017),
and efficient neural architecture search (Tan & Le, 2019).

The landscape of visual backbones underwent another
round of significant transformation with the introduction
of ViTs (Dosovitskiy et al., 2021) in late 2020, where a
novel plain architecture was proposed that treats images
akin to language sequences. This model utilizes a simple
patchification layer to convert images into sequences of to-
kens, which are then processed using mechanisms adapted
from language models. This approach opened new avenues
in handling visual data without the inductive biases inher-
ent in CNNs, demonstrating competitive performance on
several benchmarks. The success of ViTs have spurred
rapid development and innovations in data-efficient training
strategies (Touvron et al., 2021a; 2022a;b), self-supervised
learning techniques (Caron et al., 2021; Chen et al., 2021b;
Bao et al., 2022; He et al., 2022; Ren et al., 2024b), vision-
language understanding (Radford et al., 2021; Jia et al.,
2021; Liu et al., 2023; Alayrac et al., 2022; Yu et al.,
2022a; Wang et al., 2024a), and hierarchical architecture
designs (Liu et al., 2021; Chen et al., 2021a; Yuan et al.,
2021; Yu et al., 2022b).

Inspired by the patchification design of transformers, there
have been many CNN-based (Liu et al., 2022) and State
Space Model (Kalman, 1960; Gu et al., 2022; 2021) based
architectures (Zhu et al., 2024; Wang et al., 2024b;c) follow-
ing the same paradigm. Notably, the Mamba (Gu & Dao,
2023; Dao & Gu, 2024) token mixer, due to its advantage
of linear complexity, has recently been widely used to ex-
plore vision tasks and has achieved competitive results (Zhu
et al., 2024; Wang et al., 2024b;c; Ren et al., 2024a; Liu
et al., 2024; Yang et al., 2024; Hatamizadeh & Kautz, 2024;
Huang et al., 2024; Li et al., 2024; Ren et al., 2024c; Lieber
et al., 2024; Wei & Chellappa, 2025). Among them, the
Adventurer (Wang et al., 2024c) architecture, which sig-
nificantly simplifies the overall model, has demonstrated
superior speed compared to the Transformer. In this paper,
we employ it as one of the primary experimental models.

Visual architecture scaling. Scaling laws was initially
studied in natural language processing (Kaplan et al., 2020).
In vision, a similar concept has guided the community to
scale up foundational models in both parameter size and
data volume. For example, in the age of CNNs, Efficient-
Nets (Tan & Le, 2019; 2021) have proposed to scale-up
the models in depth, width, and resolution. These advance-
ments were then integrated into ResNets, leading to nearly
Billion-level parameter CNNs (Xie et al., 2020; Kolesnikov
et al., 2020; Huang et al., 2019; Bello et al., 2021; Wightman
et al., 2021). Scaling the parameter count of Vision Trans-
formers has also shown a great success in modern visual
understanding benchmarks and has exhibited state-of-the-art
results (Touvron et al., 2021b; Zhou et al., 2021; Zhai et al.,
2022; Dehghani et al., 2023). More recently, Nguyen et al.
introduce Pixel Transformers, with standard patchification
grids scaled down to pixels, showcasing promising scaling
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results for low-resolution (e.g., 32×32) input images.

3. Method
3.1. Problem Formulation

This work aims to investigate the impact of spatial com-
pression on the representation capability of modern visual
architectures by scaling the downsampling rate of the patchi-
fication operation. The primary experiments are conducted
on ViT-like plain architectures, with their definition as fol-
lows: The image encoder F : R3×w×h → RL×D con-
sists of a patchification layer at the beginning, positional
embeddings, and a number of cascade token mixers and
channel mixers. The patchification layer divides the input
image x ∈ R3×w×h into non-overlapping patches of size
p×p, flattening and projects them into a 1D token sequence
x′ ∈ RL×D. The following mixer layers extract deep visual
features while keeping the sequence length L and the feature
dimensionality D unchanged—which means the patchifica-
tion layer makes the only spatial compression throughout
the whole visual encoder.

To eliminate the influence of different mixer types on the
results of patchification scaling, we conduct the main exper-
iments using two visual encoders: the standard ViT (Doso-
vitskiy et al., 2021) and Adventurer (Wang et al., 2024c).
Due to the significant memory and computation challenges
posed by the quadratic complexity of self-attention, ViT
is only used for context lengths within 4,096 in this work.
For longer sequence tasks, we employ Adventurer, a re-
cent Mamba-based (Gu & Dao, 2023; Dao & Gu, 2024)
efficient architecture that excels in modeling long range de-
pendencies with linear complexity. Adventurer shares the
same plain framework as ViT, with spatial compression only
presents in the initial patchification layer, while the key dif-
ference is that Adventurer leverages the recent Mamba (Dao
& Gu, 2024) module as its token mixer, which has a lin-
ear complexity relative to sequence length and allows us to
perform pixel tokenization for even the standard 224×224
resolution inputs within reasonable computational resources
(e.g., 256 A100 GPUs). Remarkably, in our experiments,
we form a super-long visual sequence of 50,176 tokens for
ImageNet inputs by scaling down the patch size to 1×1.

3.2. Technical Details

We conduct patchification scaling experiments on image
classification, semantic segmentation, object detection and
instance segmentation tasks. Following the standard design
of ViTs (Dosovitskiy et al., 2021) and Adventurer, we ex-
tract holistic visual features by a learnable [CLS] token for
classification. For object detection and instance segmenta-
tion, we load backbones pretrained with classification and
employ a Cascade Mask R-CNN (Cai & Vasconcelos, 2019)

as decoder head. Note that we use the same patch size
for classification pretraining and downstream finetuning to
ensure consistency in the scaling property.

For semantic segmentation, in addition to evaluating the
standard encoder-decoder structure, we also explore a
decoder-free approach to observe the emerging properties
of patchification scaling. Specifically, instead of using a
deep UperNet (Xiao et al., 2018) as the default segmenta-
tion head, we employ a simple linear layer to project the
dense features extracted by the backbone into the category
dimension for training the semantic segmentation task.

This modification is based on the following prior assump-
tion: in dense prediction tasks like semantic segmentation,
the decoder head serves two main functions. The first is
addressing the issue where the backbone’s high downsam-
pling rate results in feature granularity that is insufficient for
pixel-level predictions—typically mitigated by designs such
as atrous convolution and multi-scale feature fusion (Chen
et al., 2017; 2018). The second function is enhancing the
model’s learning capacity by introducing additional train-
able parameters. Under this assumption, we believe that if
the backbone’s compression rate is already very low, the
decoder’s benefits would be limited to the second aspect.
Therefore, task-specific decoder head designs become less
critical, and training a general high-fidelity backbone alone
would be sufficient to handle various vision tasks.

4. Experiments
4.1. Experimental Setup

The experiments are conducted on the standard ImageNet-
1k (Deng et al., 2009) classification, ADE20k (Zhou et al.,
2019) semantic segmentation, and COCO (Caesar et al.,
2018) object detection and instance segmentation bench-
marks. For ViTs, we follow the data-efficient strategy of
DeiT (Touvron et al., 2021a) to train the model for 300
epochs by an AdamW (Loshchilov & Hutter, 2019) opti-
mizer with a 1024 batch size, 0.001 learning rate and 0.05
weight decay. For Adventurer, we basically refer to their
optimized multi-stage training recipe to improve efficiency
and obtain competitive results. The details of the training
strategy can be found in Appendix. In semantic segmenta-
tion, we follow the prior practice of DeiT and Adventurer
to finetune the classification models with an AdamW opti-
mizer, 5e-5 learning rate, 0.01 weight decay, a total batch
size of 16 for 160k iterations. We train object detection
and instance segmentation with AdamW optimizer, 1e-4
learning rate and 0.05 weight decay for 12 epochs.

4.2. Main Results

As shown in Figure 1, we first evaluate the model’s patchifi-
cation scaling performance using test loss as a unified metric
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Model Input size patch tokenization pixel tokenization
p=16 p=8 p=4 p=2 p=1 seq. length

DeiT-Base (Touvron et al., 2021a) 64×64 68.2 76.9 80.1 80.8 81.3 4,096
DeiT-Base (Touvron et al., 2021a) 128×128 78.1 81.0 82.3 82.9 - -
Adventurer-Base (Wang et al., 2024c) 64×64 69.2 77.2 80.0 80.5 80.9 4,096
Adventurer-Base (Wang et al., 2024c) 128×128 79.0 81.5 81.8 82.2 82.4 16,384
Adventurer-Base (Wang et al., 2024c) 224×224 82.6 83.9 84.3 84.5 84.6 50,176

Table 1. Detailed ImageNet classification results. As patch size (denoted as p) decreases, the test accuracy (%) on ImageNet-1k (Deng
et al., 2009) consistently improves and reaches the best performance with pixel tokenization. We highlight that we successfully scale up
the visual token sequence to an unprecedented length of 50,176, with a competitive 84.6 test accuracy obtained by a base-sized model.

across different input sizes, tasks, and parameter scales. We
observe an interesting phenomenon that the model’s pre-
dictive performance consistently improves as the patch size
decreases. This observation effectively highlights the nega-
tive impact of the existing compressive encoding approach
in visual models and supports our initial hypothesis: patchi-
fication is not a necessary component for visual encoders;
its primary role is to improve computational efficiency at
the cost of partial information loss. Although this efficiency
gain is significant for Transformer models with quadratic
complexity, our findings suggest that when the comput-
ing resource allows—and indeed, computational power has
evolved rapidly over years—we should reconsider the tradi-
tional compressive encoding approach and begin embracing
the notion of “a pixel is worth a token” that stands for a
non-compressive representation learning paradigm.

We also observe that reducing the patch size not only im-
proves performance in dense prediction tasks like semantic
segmentation and instance segmentation—which naturally
favor fine feature granularities and for which smaller patch
size is a direct solution—but also benefits holistic tasks like
image classification, which inherently do not require fine-
grained representations. This result indicates that the pri-
mary benefit of reducing the patch size comes from unlock-
ing the visual information that is previously compressed by
patchification. This information, often considered insignifi-
cant low-level features in the past, is actually considerably
critical for visual understanding.

ImageNet classification results are elaborated in Table 1.
As shown, in terms of test accuracy, the models also ex-
perience a smooth and consistent performance improve-
ment with patch size decreasing. Notably, with the help of
Adventurer’s linear time complexity and efficient memory
consumption, we successfully scale up the visual token se-
quence to a length of 50,176 in the ImageNet classification
task. To our knowledge, this is the first time that modern
visual architectures have extended the input sequence to
such a length and processed it directly without partitioning.
It not only achieves a highly competitive 84.6% test accu-
racy with a base-sized model (100M parameters), but more
importantly, it demonstrates that visual understanding can

Model Decoder Params Patch size mIoU

Adventurer-T

UperNet 17M 16×16 41.3
None 12M 16×16 40.0
None 12M 8×8 41.6
None 13M 4×4 42.1
None 13M 2×2 42.5

Adventurer-B

UperNet 112M 16×16 45.7
None 99M 16×16 44.0
None 99M 8×8 45.5
None 100M 4×4 46.3
None 100M 2×2 46.8

Table 2. ADE20k semantic segmentation. We focus on decoder-
free structures and observe the mIoU score improves smoothly
when patch size shrinks. We highlight the results that reach the
limits of hardware capabilities in blue and best results bolded.

be effectively performed from very long contexts.
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Figure 2. Decoder’s impact on semantic segmentation. We train
a semantic segmentation model with the same backbone but differ-
ent decoder heads: an UperNet with 13M parameters and a simple
linear layer with 0.2M parameters. We observe that as patch size
decreases, the impact of the decoder head diminishes.

ADE20k semantic segmentation results are summarized
in Table 2. As shown, we observe the same scaling behav-
ior in this dense prediction task, with its test loss smoothly
decreasing (see Figure 1) and mIoU score consistently im-
proving as patch size shrinks. It is worth noting that even
though we eliminate the task-specific decoder head in this
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Model Patch APb APb
50 APb

75 APm APm
50 APm

75
A

dv
en
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re

r-
T 32×32 44.7 63.3 48.6 38.4 60.4 41.4

16×16 46.5 65.2 50.4 40.3 62.2 43.5
8×8 48.0 66.7 51.8 41.7 63.6 45.0
4×4 48.5 67.1 52.3 42.2 64.1 45.4
2×2 48.7 67.3 52.4 42.4 64.3 45.7

A
dv

en
tu

re
r-

B 64×64 44.1 62.8 48.0 38.3 60.1 41.8
32×32 46.4 65.0 50.3 40.6 62.5 43.1
16×16 48.4 67.2 52.4 42.0 64.8 45.0

8×8 49.5 67.9 53.3 42.9 65.5 46.1
4×4 50.3 68.5 54.0 43.4 66.0 46.6

Table 3. COCO object detection and instance segmentation.
Similar to classification and semantic segmentation results, these
two tasks exhibit consistently enhanced performance as patch size
decreases. We highlight the results that reach the limits of hardware
capabilities in blue and best results bolded.

experiment, the encoder-only models—whether the 13M-
parameter tiny-sized model or the 100M-parameter base-
sized model—can still produce competitive results when the
encoding compression rate becomes sufficiently low.

Figure 2 presents a direct comparison on the impact of de-
coders in semantic segmentation, where we load the same
pretrained backbone (Adventurer-Base) and finetune it sepa-
rately with a UperNet (Xiao et al., 2018) and a simple linear
projection layer. As shown, with a high spatial compres-
sion rate such as 16×, the model can easily benefit from a
decoder head; however, as the patch size decreases and the
encoder itself can produce sufficiently fine-grained features,
the functionality of decoders starts to be marginalized.

Interestingly, this experiment validates our hypothesis pre-
sented in Section 3.2, demonstrating that the core compo-
nent of developing dense prediction models lies in reducing
the spatial compression rate, while the help that decoder
heads can provide is very limited. This insight further sug-
gests that with non-compressive encoders, it becomes fea-
sible to build a visual foundation model that could provide
pixel-level representations and effectively supports various
downstream tasks without requiring significant efforts to
adapt to their specific objectives. In this work, we keep
focusing on the exploration of patchification scaling and
leave the development of pixel foundation models for fu-
ture research. We hope that our findings here can provide a
solid theoretical foundation for such endeavors.

COCO object detection and instance segmentation tasks
also showcase a similar effect of patchification scaling. As
summarized in Table 3, both tasks achieve their best perfor-
mance when the patch size reaches the hardware’s compu-
tational limits (2×2). Compared to the high compression
baselines, both Adventurer-Tiny and Base models demon-
strate significant precision improvements, such as 48.7% vs.
44.7% for Adventurer-Tiny and 50.3% vs. 44.1% for Base.
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(a) Scaling from Adventurer-Base/16, 224×224 input.
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(b) Scaling form ViT-Base/16, 128×128 input.

Figure 3. Patch size scaling vs. parameter scaling. Given an
Adventurer-Base with 224×224-resolution inputs, we scale up the
model along two dimensions respectively. The model struggles
to achieve further accuracy improvements beyond ∼760M param-
eters, whereas scaling down the patch size continues to show a
consistent upward trend in performance.

Notably, we have conducted patch size scaling experiments
across four tasks: object classification, semantic segmen-
tation, object detection, and instance segmentation. These
experiments span a variety of input resolutions (from 64×64
to a short side of 800), different training objectives, and dif-
ferent token mixer types (self-attention and Mamba (Gu &
Dao, 2023)). Despite these variations, a consistent and gen-
eralizable conclusion emerges: Reducing patch size reliably
guarantees performance gains.

4.3. Ablation Studies

Patchification scaling vs. parameter scaling. In Figure 3a,
we compare the impact of scaling down the patch size ver-
sus scaling up the parameter count on the performance of
Adventurer. As shown, for a fixed patch size and input
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size, increasing the parameter count within a certain range
(e.g., up to 760M parameters) yields significant performance
gains. However, further scaling beyond this point does not
necessarily lead to additional benefits. In fact, overcom-
ing the parameter scaling bottleneck in vision models is
both technically challenging and costly. It often requires
investing in higher-quality training data (Zhai et al., 2022;
Radford et al., 2021), incorporating self-supervised learning
approaches (Caron et al., 2021; He et al., 2022), and mak-
ing extensive hyperparameter tuning efforts (Touvron et al.,
2022b).

In contrast, patch size scaling not only exhibits a better
computation-accuracy tradeoff and achieves higher perfor-
mance limits than parameter scaling, but it also offers a
simpler and more straightforward learning process: when
training with different patch sizes, there is no need to modify
training strategies or datasets, and all experiments can be
done in a single run using the same set of hyperparameters.

The potential of patchification scaling is even more evident
in ViT. With the same input scale, reducing the patch size
yields greater performance improvements for ViT compared
to the linear-complexity Adventurer. Additionally, in terms
of FLOPs, ViT has more room for scaling, as its computa-
tion grows quadratically with sequence length. As shown
in Figure 3b, due to this quadratic complexity, ViT expe-
riences a larger increase in FLOPs than Adventurer when
scaling down the patch size, leading to a similar accuracy
growth over FLOPs as that of parameter scaling (e.g., ViT-
Base/8 vs. ViT-Large/16). However, when investing higher
FLOPs, parameter scaling falls significant short and may
easily collapse with higher parameter counts.

Limitations of input size scaling. Compared to scal-
ing down the patch size at a fixed input size, another
method—directly scaling up the input size—can achieve a
similar effect of reducing the compression rate and extend-
ing the token sequence. However, we contend that changing
the input size is not a flexible and applicable approach for
effective scaling, as its upper bound is easily constrained
by the original resolution of the image. For example, in
the standard ImageNet classification benchmark, images
are resized to 224×224 for both training and evaluation
stages (Touvron et al., 2021a; Liu et al., 2022; Wang et al.,
2024c). This input size has actually compressed the visual
information, as the average ImageNet image size is approxi-
mately 490×430 pixels. Within this range, scaling the input
size is generally more effective than scaling the patch size.
For example, Adventurer-B/16 with a 448×448 input out-
performs Adventurer-B/8 with a 224×224 input by 0.4%,
despite having similar parameter counts and FLOPs.

However, beyond this input size, further increasing the input
dimensions provides diminishing returns in performance
gains. If we fix the sequence length—scaling up the in-
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Figure 4. Input size scaling with fixed sequence length. We
fix the ratio of image size/patch size and scale up the input
size for ImageNet classification. As shown, when the input size
is scaled beyond its original resolutions (e.g., typically 460 for
ImageNet), further interpolating the input images does not yield
additional accuracy gains. Instead, it leads to a rapid increase
in patchification parameters, resulting in training instability that
ultimately harms performance.

put size while proportionally increasing the patch size—the
model undergoes a rapid growth in parameter count in the
patchification layer, which may easily result in reduced
model efficiency and stability during scaling. We showcase
this issue in Figure 4, where it is observed that resizing in-
puts beyond their original resolutions does not provide addi-
tional information gains. Instead, the over-parameterization
of the patchification layer leads to a considerable perfor-
mance degradation. As comparison, the direct scaling of
patch size can effectively avoid the over-parameterization
issue, making it a flexible and practical scaling dimension
for modern visual architectures.

Scaling in both dimensions. In Table 4, we provide more
ImageNet classification results with Adventurer models,
where we scale them in both model size (parameter count)
and patch size. As shown, the two scaling dimensions work
synergistically when offering performance gains, with the
highest accuracies consistently achieved by either the largest
models or the smallest patch sizes. As analyzed earlier, the
function of patch size scaling lies in reducing the spatial
compression rate and thereby enabling the extraction of
richer information from the data itself. Intuitively, this ef-
fect does not conflict with scaling up the model size, where
performance gains mainly stem from enhanced fitting capa-
bilities provided by increased parameters.

The results in this experiment suggest that, given sufficient
computing resources, we can easily transfer past advance-
ments in parameter scaling to patchification scaling. In other
words, patchification scaling can serve as a complement to
model size scaling—with the current data volume, we have
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Model size
Patch size

16×16 8×8 4×4 2×2 1×1
with 128×128 resolution inputs:

Tiny 72.6 78.5 80.4 80.6 80.7
Small 77.6 80.5 80.9 81.2 81.4
Base 79.0 81.5 81.8 82.2 82.4
Large 79.8 82.2 82.6 82.9 83.1

with 224×224 resolution input:
Tiny 78.2 80.9 81.3 81.7 81.9
Small 81.8 83.0 83.5 83.7 83.8
Base 82.6 83.9 84.3 84.5 84.6

Table 4. Scaling both patch and model sizes. The gains from
patch size scaling and model size scaling are not conflicting; com-
bining both can lead to further performance improvements. The
numbers denote ImageNet accuracy (%) with Adventurer models.
We associate the results with different shades for clear observation.

Model Length By extending By scaling

DeiT-Base, 64 78.1 78.1

128×128 input 256 78.2 (+0.1) 81.0 (+2.9)
1,024 78.2 (+0.1) 82.3 (+4.2)

196 82.6 82.6
Adventurer-Base, 784 82.7 (+0.1) 83.9 (+1.3)
224×224 input 3,136 82.8 (+0.2) 84.3 (+1.7)

12,544 82.8 (+0.2) 84.5 (+1.9)

Table 5. Ablation of sequence length. Extending the sequence
length alone does not yield significant improvements (column “by
extending”), whereas reducing patch size and lowering informa-
tion compression rate is the primary source of performance gains
(column “by scaling”). Performance is measured by ImageNet-1k
accuracy (%), with longest sequences highlighted in blue.

already observed the limitations of parameter scaling in vi-
sion models (Zhai et al., 2022; Dehghani et al., 2023), while
it is promising to see more future breakthroughs in visual
encoding with the help of this new scaling dimension.

Impact of sequence length. Intuitively, scaling down the
patch size has two direct effects. First, smaller patch sizes
allow the model to receive richer, more fine-grained input
information, which can greatly benefit its inference abilities.
Second, reducing the patch size directly extends the token
sequence, and for token mixers like self-attention or Mamba,
longer sequences inherently expand the model’s representa-
tional space, enhancing its capabilities in feature processing.
Both factors can potentially have a significant impact. We
seek to demonstrate that the performance improvement from
reducing the patch size primarily arises from the informa-
tion gain due to a lower compression rate, rather than from
the enhanced representational capacity associated with an
extended sequence length.

We conduct a direct ablation study: in contrast to our patch
size scaling approach, we set up an additional experiment

Patch Length Memory GPU hours
(per image) DeiT-Base Adv-Base

16 196 62MB 0.36 0.45
8 784 252MB 1.86 1.76
4 3,136 1,024MB 9.79 6.86
2 12,544 4,057MB 80.06 27.45
1 50,176 16,118MB 967.99 115.08

Table 6. Computational overhead for training a DeiT-Base and
Adventurer-Base at 224×224 resolution inputs and different patch
sizes. Memory usage is calculated based on the per-image con-
sumption in ViT. GPU hours (for each ImageNet epoch) are esti-
mated on a single A100 GPU. The models are trained at Float16
precision with FlashAttention (Dao et al., 2022) applied in ViT.
The detailed evaluation protocol can be found in Appendix.

that extends the input sequence interpolating on existing to-
kens. Specifically, in this comparison, we retain the original
large patch size (16×16) but perform spatial interpolation
on the tokens produced by the patch embedding, by which
we extend the input sequence without introducing any new
information. As shown in Table 5, this approach does not
bring substantial improvements to the model’s performance
(see column “By extending”). In contrast to the significant
gains achieved through patchification scaling (e.g., 4.2% ac-
curacy on ImageNet), this ablation study effectively demon-
strates that the benefits of our approach primarily stem from
unlocking the visual information compressed by large patch
sizes, enabling the model to focus on more detailed visual
features, while simply scaling the sequence length itself has
only a minimal impact on performance.

4.4. Discussions

We summarize the computational requirements involved in
the patchification scaling experiments in Table 6. As shown,
the super-long visual token sequences associated with small
patch sizes impose a significant hardware overhead on ViT
architectures. This overhead was indeed a major challenge
around five years ago, when V100 GPUs with 16/32GB
memory remained the mainstream hardware for AI training.
However, with rapid advancements in hardware develop-
ment, efficient parallel computing mechanisms, as well as
low-complexity visual architectures, the idea of “learning
from pixels” has become increasingly feasible.

In the experiments, we have demonstrated many key ben-
efits of patchification scaling, such as direct performance
improvements, reduced dependence on decoders, and the
ability to overcome many limitations of parameter scaling
and input size scaling. These emerging properties suggest
that, when computational resources allow, we should gradu-
ally reduce or even abandon the spatial compression mecha-
nisms in vision encoders, fully exploiting all the information
inherently provided by the data. We hope this paper can pro-
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vide insights and inspiration for a transition from the current
patch-based compressive encoding paradigm to pixel-based
non-compressive visual foundation models.

5. Conclusion
In this work, we conduct extensive studies in reducing the
spatial compression rate in patchification layers and discover
a new scaling dimension for visual encoding, which we term
Patchification Scaling Laws. The new scaling laws sug-
gest that, with more computational resources invested, lever-
aging smaller patch sizes consistently leads to improved
predictive performance. This conclusion is broadly applica-
ble across various vision tasks, different input resolutions,
and diverse model architectures. As a by-product, we also
identify an interesting emerging property of patchification
scaling: when the encoder patch size becomes sufficiently
small, the benefits provided by task-specific decoder heads
diminish significantly. We hope the discoveries in this paper
can provide a solid theoretical foundation for the future pixel
learning paradigm and the development of non-compressive
visual foundation models.
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Appendix
A. More Technical Details

The detailed configuration of the models used in this paper are elaborated in Table 7. For ViTs, We basically follow the
configurations in the DeiT series models (Touvron et al., 2021a; 2022b), but change the default patch size of DeiT-Huge to
16×16, the same as the other DeiT models. For Adventurer, we scale up the model to a huge size following the same rule of
DeiT; we set its embedding dimension to 1,280, keeping its original MLP ratio and employ 32 blocks in total.

Model Embedding dimension MLP dimension Blocks Parameters
DeiT-Tiny (Touvron et al., 2021a) 192 768 12 5M
DeiT-Small (Touvron et al., 2021a) 384 1,536 12 22M
DeiT-Base (Touvron et al., 2021a) 768 3,072 12 86M
DeiT-Large (Touvron et al., 2022b) 1,024 4,096 24 304M
DeiT-Huge (Touvron et al., 2022b) 1,280 5,120 32 631M
Adventurer-Tiny (Wang et al., 2024c) 256 640 12 12M
Adventurer-Small (Wang et al., 2024c) 512 1,280 12 44M
Adventurer-Base (Wang et al., 2024c) 768 1,920 12 99M
Adventurer-Large (Wang et al., 2024c) 1,024 2,560 24 346M
Adventurer-Huge (Wang et al., 2024c) 1,280 3,200 32 759M

Table 7. Model configurations. All models have a 16×16 patch size by default.

Protocols of estimating memory and GPU hours. In Table 6, we present an estimation of the GPU memory and training
hours required for DeiT and Adventurer. Here we give more details of how they are evaluated. We calculate the memory
consumption by each image. That means, the reported numbers have excluded the memory used for storing the model,
optimizer, and other hyper-parameters. The actual memory demand increases linearly with batch size. To evaluate the GPU
hours required for training, we set a total batch size of 1,024 and use the minimum number of nodes necessary for training
(depends on the total memory demand). Each node is equipped with 8 A100/80GB GPUs. The estimated training hours are
then multiplied by the total number of GPUs used to ensure that the reported numbers are normalized.

Config Tiny/Small/Base Large/Huge
optimizer AdamW
base learning rate 5e-4 2e-4
weight decay 0.05 0.3
epochs 300 200
optimizer betas 0.9, 0.999 0.9, 0.95
batch size 1024 4096
warmup epochs 5 20
stochastic depth (drop path) 0.1 0.2
layer-wise lr decay ✗

label smoothing ✗

random erasing ✗

Rand Augmentation ✗

repeated augmentation ✓

ThreeAugmentation ✓

Table 8. Recipe of the pretraining stage, for 64×64 or 128×128 pixel inputs.

Training recipes. In this work, we train DeiT-Tiny, Small, and Base with the official repository (Touvron et al., 2021a) and
recipe. For DeiT-Large and Huge, there is not training configuration in the original DeiT paper so we follow the supervised
training pipeline reported in (He et al., 2022). Note that the Pixel Transformer (Nguyen et al., 2024) which conduct pixel
tokenization experiments with low resolution images (28×28) employs the same training recipe.

For Adventurer, we mostly follow its original multi-stage strategy (Wang et al., 2024c) to train our models. Specifically, for
64×64 resolution inputs, we simply perform the pretraining stage (shown in Table 8) for 300 epochs for all model sizes. For
128×128 resolution inputs, we additionally perform a finetuning stage (shown in Table 9) for enhanced results. For the
standard 224×224 resolution inputs, we follow the practice of Mamba-Reg (Wang et al., 2024b) and Adventurer (Wang
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et al., 2024c) to load the pretrained model at 128×128, performing an intermediate training stage (shown in Table 10) for
100 epochs and then a finetuning stage for 20 epochs. We highlight that this multi-stage training strategy is highly efficient
for our experiments as we can fully exploit the models pretrained at lower resolutions. For example, we only need to train
the 224×224-input models for 120 epochs since we can load the weights pretrained at 128×128 resolution inputs.

Notably, for both DeiT and Adventurer, there is no need to adjust training recipes for different patch sizes, which we
consider to be one of the flexible and practical advantages of patchification scaling.

Config Small/Base Large
optimizer AdamW
base learning rate 1e-5 2e-5
weight decay 0.1 0.1
epochs 20 50
optimizer betas 0.9, 0.999 0.9, 0.95
batch size 512 512
warmup epochs 5 5
stochastic depth (drop path) 0.4 (S), 0.6 (B) 0.6
layer-wise lr decay ✗ 0.95
label smoothing 0.1
random erasing ✗

Rand Augmentation rand-m9-mstd0.5-inc1
repeated augmentation ✗

ThreeAugmentation ✗

Table 9. Recipe of the finetuning stage, for 128×128 or 224×224 pixel inputs.

Config Small/Base Large
optimizer AdamW
base learning rate 5e-4 8e-4
weight decay 0.05 0.3
epochs 100 50
optimizer betas 0.9, 0.999 0.9, 0.95
batch size 1024 4096
warmup epochs 5 20
stochastic depth (drop path) 0.2 (S), 0.4 (B) 0.4
layer-wise lr decay ✗ 0.9
label smoothing ✗

random erasing ✗

Rand Augmentation ✗

repeated augmentation ✓

ThreeAugmentation ✓

Table 10. Recipe of the intermediate training stage, for 224×224 pixel inputs.
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