

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS UNDERSTANDING LEARNING FROM HUMAN INTERVENTIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

As AI systems are deployed in real-world environments, they inevitably make mistakes where human interventions could provide valuable corrective feedback. However, many of the optimality assumptions made by existing methods for learning from interventions are invalid or unrealistic when measured against how humans actually intervene in reality. We conduct a deeper analysis with intervention data from real human users, revealing that humans often intervene sub-optimally in both the timing and execution of interventions, often acting when they perceive the agent’s progress to stagnate. Building on these insights, we show that the current methods of simulating human interventions, and the corresponding methods to learn from these interventions, do not accurately capture the behavior modes of human users in practice. Based on these insights, we introduce an improved approximate model of human intervention that better captures this behavior, enabling accurate simulation benchmarking of learning algorithms and providing a more reliable signal to develop better algorithms in the future. As a start to building on these insights, we propose a simple algorithm that combines imitation learning and reinforcement learning with a regularization scheme to leverage corrections for exploration rather than directly making strong optimality assumptions. Our empirical evaluation on simulated robotic manipulation tasks demonstrates that our method improves task success by $\sim 52\%$ and achieves $\sim 2x$ reduction in real-human effort on average as compared to baselines, marking a significant step towards scalable, human-interactive learning for robot manipulation.

1 INTRODUCTION

Even with state-of-the-art machine learning techniques, policies for sequential decision-making often struggle to generalize beyond their training distribution (Koh et al., 2020). For instance, in robotics, imitation learning (IL) from large datasets suffers from compounding errors due to covariate shift (Osa et al., 2018), while simulation-trained policies fail in the real world due to the simulation-reality dynamics gap (Peng et al., 2017). Similarly, large language models (LLMs) trained on web-scale text corpora frequently exhibit hallucinations on out-of-distribution (OOD) inputs (Ji et al., 2023; Kang et al., 2024) or in different test domains (Gururangan et al., 2020). For robust deployment of such systems, policies should adapt online from feedback (Ouyang et al., 2022; Ross et al., 2011) rather than relying solely on fixed offline datasets.

To address these distribution shifts, we can rely on humans as powerful sources of real-world feedback. Reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022) has proven to be a dominant tool for improving the performance of AI systems, including LLMs, where feedback is provided as binary preferences over alternative responses. For robots, human input on robot behavior could enable adaptation to novel settings and improved task success. However, existing methods (Torne et al., 2024; 2023; Biyik et al., 2022; Biyik & Sadigh, 2018) typically rely on tele-operated demonstrations or binary feedback on states, which require expensive task executions or provide sparse supervision.

Instead, a more natural approach is to assume that humans will give feedback through corrections (Michael et al., 2019; Jiang et al., 2024; Liang et al., 2024), where humans correct the agent only when it gets stuck or makes mistakes. This type of feedback arises organically when people interact with AI systems, such as when they edit AI-generated code and images (Brooks et al., 2023),

or physically steering robots towards the goal (see Figure 1) (Bajcsy et al., 2018; Mandlekar et al., 2020). Learning from such corrections involves policy adaptation based on their implicit preference signals i.e. the human correction is preferred over the agent’s current behavior. Methods leveraging human interventions for robot learning have used them as partial demonstrations (Liu et al., 2023; Mandlekar et al., 2020; Michael et al., 2019; Luo et al., 2024b) to imitate preferred behavior, or as reward shaping signals Knox & Stone (2009); Bajcsy et al. (2018); Xie et al. (2022); Luo et al. (2024a); Korkmaz & Biyik (2025) for RL, or as constraints (Lindner et al., 2022; Spencer et al., 2022; Ainsworth et al., 2019) over agent behavior.

In this work, we focus on learning from physical human interventions for robots. A key bottleneck is that we need a principled understanding of *when* and *how* humans intervene, both to guide our algorithmic design choices and evaluate these methods. As real-world training and evaluation is slow and expensive, we inevitably need grounded simulators of human behavior. Such models enable rigorous, repeatable evaluation and systematically guide algorithmic components (e.g., how to incorporate corrections, the exploration-safety trade off, robustness to noise) prior to deployment. For example, prior work models interventions as reactions to instantaneous action suboptimality (value gap between the optimal and policy action (Luo et al., 2024a)), or as Boltzmann rational (Bradley & Terry, 1952) functions proportional to expert action value (Bajcsy et al., 2018), or as probit choice model, intervening when the human’s action considerably exceeds the robot’s expected return (Korkmaz & Biyik, 2025). However, these formulations are insufficiently grounded in real world behavior.

In Section 4, we present a comprehensive analysis of real human interventions in robot manipulation and observe that rather than responding to instantaneous sub-optimality, humans intervene when the agent’s progress over a short horizon falls below a threshold. This pattern aligns with cognitive models of caregiving, where intervention depends on the agent’s ability over time rather than isolated states (Shachnai et al., 2025). Motivated by these findings, we propose a simple *stagnation-based intervention model* that aggregates progress over a past horizon and intervenes based on progress sub-optimality. Intuitively, a human monitors behavior over a window, and intervenes if improvement is insufficient. This temporal criterion produces a more realistic simulator with higher correlation to observed human behavior (Section 4.4). Critically, our analysis and model are grounded in real data, not hypothetical feedback assumptions, providing a stronger basis for evaluation.

Additionally, we observe that interventions are inherently suboptimal (Section 4.2): they are invalid as ground-truth demonstrations, or perfect reward signals, contrary to prior works (Liu et al., 2023; Mandlekar et al., 2020; Michael et al., 2019; Luo et al., 2024a;b). In Section 4.3, we show that human behavior diverges from the learner policy as training progresses, because as humans only partially observe the policy and task, their corrections can steer the robots towards valid yet conflicting solutions w.r.t the current policy behavior. Our key insight is to treat interventions for exploration, rather than optimal supervision targets. Consequently, interventions only bias exploration in training towards promising regions and RL can then recover optimal behavior from the (suboptimal) exploration data (Kostrikov et al., 2022; Levine et al., 2020; Chen et al., 2021). Prior works used corrections as off-policy data, but we find that this is prohibitively slow as compared to simply imitating these transitions with a maximum likelihood loss with a decaying weight. This proves to

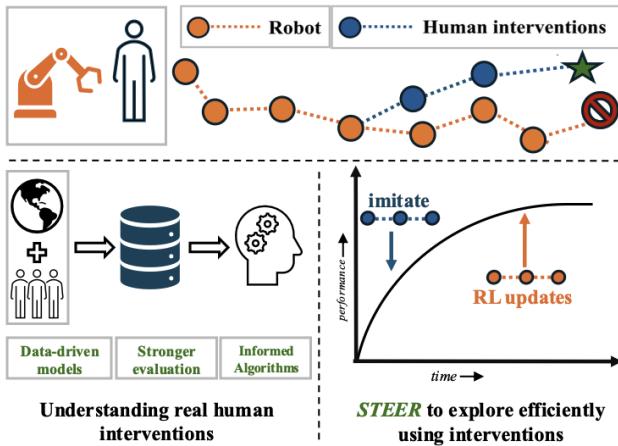


Figure 1: Current intervention learning approaches use incorrect human assumptions Korkmaz & Biyik (2025); Luo et al. (2024a) or inefficient training schemes for policy adaptation Luo et al. (2024b). Left: Real human intervention data and analysis, yields a progress based non-Markovian model with better alignment to observed behavior for realistic evaluation. Right: STEER - a hybrid BC+RL method that uses BC on human corrections to steer exploration, then fades to pure RL via a decaying weight, enabling faster learning with fewer interventions and robustness to noise.

108 be significantly more effective in adapting policy behavior to human feedback. Building on these ob-
 109 servations, we introduce **STEER** (**S**upervised **T**akeovers for **E**fficient **E**xploration in **R**einforcement
 110 **L**earning) - a hybrid framework that combines RL on policy experience with weighted IL on human
 111 interventions. Intuitively, the policy is quickly steered by recent human corrections to guide explo-
 112 ration (down weighting stale older corrections), and as the robot makes progress towards the task, it
 113 relies primarily on RL, making it robust to noise and human–learner divergence.

114 In summary (see Figure 1), this work addresses a fundamental need in sequential decision-making:
 115 learning effectively from human feedback with reliable evaluation before deployment. To this effect,
 116 we introduce a data-driven model of human interventions that captures how human behavior is
 117 influenced by agent’s progress, enabling more reliable benchmarking for learning methods. Then,
 118 we propose a simple algorithm that uses BC regularized off-policy RL, using corrections to guide
 119 exploration rapidly rather than to prescribe the final objective. Across simulated manipulation tasks
 120 and human experiments, this framework improves sample efficiency and reduces human effort while
 121 remaining robust to noisy, divergent interventions.

123 2 RELATED WORK

125 **Learning from Human Demonstrations** Behavioral cloning on offline datasets (Argall et al.,
 126 2009; Osa et al., 2018; Memmel et al., 2025) is widely-used to train robot policies, but it suffers
 127 from compounding errors during deployment due to data-distribution shifts (Ross et al., 2011). Com-
 128plementary to this, RL enables training robust policies via task-rewards (Haarnoja et al., 2018a;b;
 129 Schulman et al., 2017), but is inefficient and uses undirected exploration to search for successful
 130 behavior in high-dimensional spaces. Recent works (Rajeswaran et al., 2018; Nair et al., 2021;
 131 Kostrikov et al., 2022; Yin et al., 2025; Ball et al., 2023) have leveraged offline datasets to ini-
 132 tialize policies, value functions and replay buffers to warm start the RL process. Particularly, Lu
 133 et al. (2022) uses behavior cloning on offline datasets with off-policy (Haarnoja et al., 2018a) actor-
 134 critic updates to guide RL. While these methods effectively leverage human data to improve sample
 135 efficiency, collecting task demonstrations is hard and expensive. In contrast, we leverage easy-
 136 to-provide, online interventions (Michael et al., 2019) to bias the policy behavior during training.
 137 Finally, Fujimoto & Gu (2021) show that BC-regularized off-policy RL is a strong method, and in
 138 this paper we show the surprising effectiveness of our hybrid method with eligibility-style decay for
 139 *online interventions*, grounded in empirical human behavior.

140 **Interactive Learning** Interactive learning methods (Ross et al., 2011; Michael et al., 2019; Jiang
 141 et al., 2024; Luo et al., 2024b; Xie et al., 2022; Ainsworth et al., 2019) address the drawbacks of of-
 142 fline behavior cloning by collecting additional feedback during deployment, theoretically reducing
 143 the compounding error problem from quadratic to linear regret with respect to the episode horizon
 144 (Ross et al., 2011). Correcting per-step actions is hard for robots, so, a class of methods (Michael
 145 et al., 2019; Mandlekar et al., 2020; Xie et al., 2022; Liu et al., 2023; Luo et al., 2024b; Spencer
 146 et al., 2022) allow humans to take over the robot control and override the policy behavior with cor-
 147 rective actions. Michael et al. (2019); Mandlekar et al. (2020); Liu et al. (2023) use this correction
 148 to directly supervise the policy via behavior cloning, while Luo et al. (2024b); Bajcsy et al. (2018);
 149 Korkmaz & Biyik (2025) build models of this human behavior to guide RL. Lindner et al. (2022);
 150 Spencer et al. (2022); Ainsworth et al. (2019) apply constraints over the policy and value func-
 151 tions based on human corrections. Li et al. (2022) derive reward directly from human takeovers to
 152 drive policy improvement, but still requires slow actor-critic updates. Additionally, reward-free HIL
 153 methods Peng et al. (2023; 2025) modify the critic with proxy targets, which make policy learning
 154 potentially Bellman-inconsistent and unstable under noisy/incorrect interventions. Overall, these
 155 methods make strong assumptions about the optimality of humans. Notably, Luo et al. (2024b)
 156 makes no such assumptions and adds interventions to the replay buffer to speed-up off-policy RL,
 157 achieving impressive real-world results. This provides further evidence that the intervention models
 158 used to guide the development of learning algorithms have been erroneous. In this work, we di-
 159 rectly compare to Luo et al. (2024b), and find that their off-policy RL approach significantly slows
 160 learning from demonstrations relative to STEER .

161 **Modeling Human Behavior** Learning from human interventions requires understanding the dy-
 162 namics of human intervention for data-driven algorithm design and evaluation. Because real-world

162 training is costly (Yin et al., 2025; Torne et al., 2024), prior work has relied on approximate human
 163 models. TAMER (Knox & Stone, 2009) framed human feedback as a prediction model of scalar
 164 rewards over transitions. Bajcsy et al. (2018); Biyik et al. (2022); Wilson et al. (2012) formulate
 165 interventions as Boltzmann-rational functions proportional to the value of states and actions. Korkmaz &
 166 Biyik (2025) proposes a probit model that intervenes when the human’s nominal action is
 167 substantially better than the robot’s expected value. Similarly, RLIF (Luo et al., 2024a) models interventions
 168 occur when the agent action falls below a threshold value of the optimal action. A shared
 169 assumption is that the model is Markovian and reactive to instantaneous sub-optimality. Our analysis
 170 of real intervention data contradicts this, indicating that such models are ill-suited for evaluating
 171 training methods. Further, cognitive theories suggest such decisions involve utility tradeoffs (Kahneman &
 172 Tversky, 1979), and recent caregiving models condition intervention on learner ability and
 173 task utility over time (Shachnai et al., 2025). Consistent with these insights, our proposed model
 174 takes into account the agent’s progress over a short horizon to choose interventions. We ground our
 175 framework in real human intervention data, and these findings motivate our algorithmic framework.
 176

3 PROBLEM STATEMENT

179 In this work, we build on the framework of interactive imitation learning (Michael et al., 2019; Luo
 180 et al., 2024a;b; Mandlekar et al., 2020; Liu et al., 2023), focusing on learning from *human interventions*.
 181 We consider an interactive control setting over an MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{T}, \gamma, \rho_0)$, where
 182 \mathcal{S} is the state space, \mathcal{A} the action space, \mathcal{T} the transition dynamics, γ the discount factor, and ρ_0
 183 the initial state distribution. The objective is to learn a policy $\pi_\theta(a | s)$ that maximizes expected
 184 discounted return, i.e., $\pi_\theta = \arg \max_\theta \mathbb{E}_{\pi_\theta} [\sum_{t \geq 0} \gamma^t r(s_t)]$. During deployment, a human
 185 observes the agent and may intervene. We model the human as a decision function $\mathcal{H} = (g, \pi_h)$
 186 with two components: a *gating function* g that decides *when* to intervene, and a *human policy* π_h
 187 that decides *how* to intervene. To allow temporal context, both may depend on a recent history
 188 $\tau_{t-L:t} = (s_{t-L}, a_{t-L}, \dots, s_t)$, so, $g : \mathcal{S}^{L+1} \times \mathcal{A}^L \rightarrow [0, 1]$ outputs the probability of intervening
 189 at time t , and $\pi_h : \mathcal{S}^{L+1} \times \mathcal{A}^L \rightarrow \mathcal{A}$ returns a distribution over actions. The resulting rollout policy
 190 is the mixture $\pi'(a | s_t, \tau_{t-L:t}) = g(\tau_{t-L:t}) \pi_h(a | \tau_{t-L:t}) + (1 - g(\tau_{t-L:t})) \pi_\theta(a | s_t)$, which
 191 makes no optimality assumption about the human. Interventions can be variable-length (single ac-
 192 tions or short segments). Thus, modeling human behavior requires simulating g and π_h .

192 Prior baselines often assume access to (π^*, Q^*) , and set $\pi_h \equiv \pi^*$ (an assumption that we will
 193 show is invalid using real data demonstrating human suboptimality and noise, see Section 4), and
 194 define g as a Markovian function of Q and π . Concretely, Bajcsy et al. (2018) models $g(s_t, a) \propto$
 195 $\exp\{Q^*(s_t, a)\}$ as a Boltzmann-rational function, while Korkmaz & Biyik (2025) introduces a
 196 probit choice model based on $g(s_t, a) = \Phi(Q^*(s_t, a) - \mathbb{E}_{a' \sim \pi(\cdot | s_t)}[Q^*(s_t, a')] - c)$, and Luo et al.
 197 (2024a) models g based on action sub-optimality i.e. $g(s_t, a_t) = \mathbb{1}[Q^*(s_t, a_t^*) - Q^*(s_t, a_t) > \tau]$
 198 where τ, c are hyperparameters and Φ is the standard normal CDF. These formulations make strong
 199 assumptions about Markovian structure and g being proportional to per-step sub-optimality, which
 200 is not grounded in real-world data and is misaligned with observed human behavior, rendering them
 201 suboptimal for both learning and evaluation. In the following sections, we (i) collect and analyze
 202 real human interventions to characterize when and how people intervene, (ii) propose a temporally
 203 grounded, progress-based model for g validated against this data, and (iii) introduce an algorithm
 204 that addresses the key failure modes of prior approaches in learning from interventions.

4 HOW DO HUMANS INTERVENE FOR ROBOT POLICY LEARNING?

208 As discussed in Section 3, prior works (Knox & Stone, 2009; Luo et al., 2024a; Spencer et al., 2022;
 209 Korkmaz & Biyik, 2025) make flawed assumptions without grounding it in real-world comparisons.
 210 However, Luo et al. (2024b) relaxes any assumption to use correction transitions as off-policy data
 211 for RL (Ball et al., 2023). This method is surprisingly effective, significantly outperforming past
 212 methods. This provides further evidence that these assumptions are invalid and hence not beneficial
 213 in practice. This raises an important question: how and when do humans actually intervene? In
 214 order to address this, in the following sections (Section 4.1) we perform a comprehensive analysis
 215 of real human intervention data. We observe that human behavior is sub-optimal (Section 4.2) and
 216 non-Markovian (Section 4.4), which contradicts prior assumptions. Following this, in Section 4.4

216 we propose a better model for simulating human intervention that better fits offline data, enabling
 217 more reliable simulated evaluation.
 218

219 4.1 COLLECTING REAL HUMAN INTERVENTION DATA 220

221 We run human-in-the-loop robot manipulation experiments to collect intervention data, measuring
 222 *when* people intervene and *how* they act during takeovers to evaluate and build better intervention
 223 models to inform our learning method. To isolate human behavior from hardware noise, we run
 224 studies on three simulated robot tasks (see Section 6) with four human participants. Similar to
 225 [Luo et al. \(2024b\)](#), we train a robot policy using off-policy RL and each user can take over from
 226 the learning policy at anytime and control the robot end-effector with a 3D space mouse. Humans
 227 observe and intervene until the policy converges to success. Further, we train a reference expert
 228 policy and value function using RLPD ([Ball et al., 2023](#)) on each simulated task to get unbiased
 229 experts (π^*, V^*) that aid in our analysis.
 230

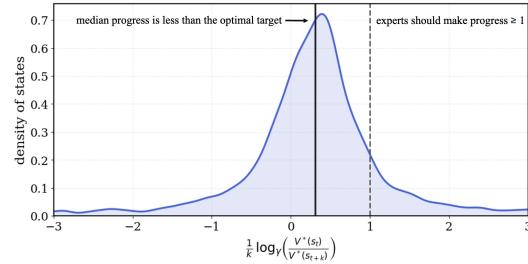
231 4.2 HOW DO HUMANS INTERVENE?

232 Generally, the intervention policy π_h is as-
 233 sumed to be (near-)optimal (often identified
 234 with π^*) so that human corrections can be
 235 treated as demonstrations. This assumption
 236 underlies several methods discussed in Sec-
 237 tion 2. However, before adopting this for learn-
 238 ing or evaluation, we conduct an empirical
 239 test on real intervention data. To assess task-
 240 agnostic optimality, we introduce a measure of
 241 value improvement over a trajectory segment
 242 $(s_t, a_t, s_{t+1}, \dots, a_{t+k-1}, s_{t+k})$. Under sparse
 243 rewards, an optimal k -step segment from s_t to
 244 s_{t+k}^* satisfies $V^*(s_t) = \gamma^k V^*(s_{t+k}^*)$, whereas
 245 any other sequence of k actions yields $V^*(s_t) \geq \gamma^k V^*(s_{t+k})$. This motivates the length-normalized
 246 progress score: $\text{Progress}(s_t \rightarrow s_{t+k}) = \frac{1}{k} \log_\gamma \left(\frac{V^*(s_t)}{V^*(s_{t+k})} \right)$, where larger values indicate greater
 247 improvement (higher is better). The metric compares an observed intervention segment against the
 248 optimal k -step baseline without assuming access to optimal actions.
 249

250 We compute the progress score for human intervention on the dataset collected in Section 4.1. As
 251 observed in Fig. 2, the distribution of progress has a low median value (~ 0.3) and mean value
 252 (~ -0.0127) (as compared to the optimal target ≥ 1), indicating that many human interventions
 253 generally fail to achieve near-optimal progress. Also, in Figure 4, we observed that the $V^*(s_t)$
 254 drops along human corrections indicating that humans are not always optimal. This contradicts the
 255 common assumption $\pi_h \equiv \pi^*$, implying that to learn from humans: methods should be robust to
 256 non-expert, noisy corrections leading to our method in Section 5 that effectively combines BC and
 257 RL to learn from interventions.
 258

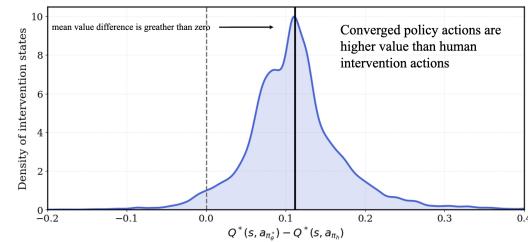
4.3 HUMANS AND POLICIES DIVERGE DURING TRAINING

259 We further probe an additional source of mis-
 260 alignment between the learner policy and hu-
 261 man beyond suboptimal progress. In Figure 3,
 262 we compare the value of actions from the
 263 converged policy π_θ^* and human corrected action
 264 under the converged critic i.e. $Q^*(s, a_{\pi_\theta^*}) -$
 265 $Q^*(s, a_{\pi_h})$ over all the states from training.
 266 We observe that distribution is concentrated
 267 above zero, suggesting that on convergence the
 268 learner favors a different higher valued action
 269 (or essentially, a different behavior mode) than
 the human. Notably, we observed that the task



259 Figure 2: Distribution of progress over real intervention
 260 segments (higher is better). The median below the
 261 optimal suggests that many interventions are not near-
 262 optimal.
 263

264 We compute the progress score for human intervention on the dataset collected in Section 4.1. As
 265 observed in Fig. 2, the distribution of progress has a low median value (~ 0.3) and mean value
 266 (~ -0.0127) (as compared to the optimal target ≥ 1), indicating that many human interventions
 267 generally fail to achieve near-optimal progress. Also, in Figure 4, we observed that the $V^*(s_t)$
 268 drops along human corrections indicating that humans are not always optimal. This contradicts the
 269 common assumption $\pi_h \equiv \pi^*$, implying that to learn from humans: methods should be robust to
 270 non-expert, noisy corrections leading to our method in Section 5 that effectively combines BC and
 271 RL to learn from interventions.
 272



273 Figure 3: Distribution of $Q^*(s, a_{\pi_\theta^*}) - Q^*(s, a_{\pi_h})$ at
 274 intervention states during training (larger values favor
 275 learned π_θ). Most values ≥ 0 imply converged pol-
 276 icy actions are higher valued than human corrections,
 277 showing systematic divergence.
 278

success during training is high ($\sim 76\%$), implying that the difference reflects a divergence in solution paths rather than execution failures.

Our hypothesis is that sparse-reward tasks have many optimal solutions; e.g., a cup-picking task can succeed via left- or right-side grasps. The human supervisor neither observes the full policy nor the exact underlying reward and thus, potentially provides conflicting behavior as a correction. Empirically, this manifests as policy actions having systematically higher value than humans under the converged critic. Imposing strict supervision in such settings can induce undesirable mode averaging for unimodal policy classes (Osa et al., 2018). Increasing policy expressivity (Chi et al., 2024) to capture multi-modality raises complexity.

These findings motivate a regularization on the supervision from intervention signals; specifically, they should accelerate early exploration and recovery, but not affect convergence behavior. In Section 5, we introduce a decay function that regularizes this supervision, shifting the bias from imitation towards independent trial and error learning as training progresses, decreasing any divergence issues caused by the human.

4.4 WHEN DO HUMANS INTERVENE?

In Section 3, we discuss that prior work typically posits that the when-to-intervene model g is Markovian and reacts to instantaneous suboptimality. This implies that timing depends only on the current state (and possibly the current action), not on how the agent has been performing over time. Our empirical analysis contradicts this view. In Figure 4, we observe that interventions concentrate after short plateaus or drops in $V^*(s_t)$, indicating that it is a non-Markovian function that depends on progress over a horizon. In addition, we observe that humans tend to intervene when progress stagnates or drops, which motivates our following formulation. Also, Knox & Stone (2009) showed that human response for corrections is delayed relative to agent behavior. Together, they motivate the following claim: **intervention timing is non-Markovian and progress-sensitive**, and instantaneous suboptimality is insufficient.

Proposed gating model: Thus, we instantiate g as a simple stagnation-based model that depends on the recent history $\tau_{t-k:t}$. Let $V^*(s_t) - V^*(s_{t-k})$ denote progress over horizon k . We define g as:

$$g(\tau_{t-k:t}) = \Pr(\nu_t=1 \mid \tau_{t-k:t}) = \begin{cases} \alpha, & \text{if } V^*(s_t) - V^*(s_{t-k}) < \delta, \\ \beta, & \text{otherwise,} \end{cases}$$

where k is the horizon and δ a progress threshold; α, β capture stochasticity in human decisions. Intuitively, the model intervenes when the agent’s recent behavior fails to increase value (stagnation). Also, this formulation naturally covers failures in the robot behavior as $\delta > 0$ and failures would imply $V^*(s_t) - V^*(s_{t-k}) < 0$.

We evaluate this model against two baselines: Action Suboptimality (used in (Luo et al., 2024a; Korkmaz & Biyik, 2025)) as well as a **Random** model calibrated to the empirical intervention rate. Using human data from Section 4.1, we fit each model’s parameters and report intervention prediction precision and recall via grid search (Details in Appendix B.2.3, and report the precision and recall across all methods.

Our progress-based when-to-intervene model is a stronger evaluation model for simulation. In Table 1, we observe that our model (evaluated on the held out task-data) outperforms the baselines in terms of recall and precision, indicating that

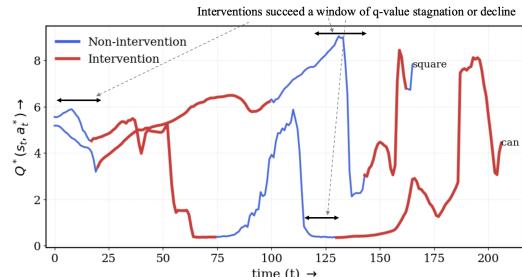


Figure 4: Interventions follow short V^* plateaus or drops, indicating non-Markovian, progress-dependent functions, shown on trajectories from the can and square tasks.

Method	Precision	Recall
Action-Suboptimality	0.058	0.4848
Random	0.061	0.061
Ours	0.141	0.599

Table 1: Intervention prediction performance on held-out human data. The progress-sensitive, non-Markovian model better matches real timing.

324 a model accounting for robot progress over a short horizon correlates better with human behavior.
 325 Our stagnation-based model attains higher agreement with real timing, consistent with the non-
 326 Markovian, progress-sensitive nature of human intervention. This shows that our model can be used
 327 as an effective method to simulate human behavior and test different intervention learning methods.
 328

329 **Overall, our analysis informs the algorithm design to robustly use suboptimal, divergent hu-
 330 man corrections and our better when-to-intervene model leads to stronger evaluation.**

332 5 HOW TO USE HUMAN INTERVENTIONS FOR ROBOT POLICY LEARNING?

334 Our analysis in Section 4 shows that interventions are sub-optimal and we cannot use them as
 335 demonstrations or reward surrogates. We therefore propose a method that adapts rapidly to noisy
 336 online interventions to guide behavior, while preserving the true unbiased objective. Following
 337 drawbacks of prior works (Section 4), we propose a method for fast adaptation to human interven-
 338 tions via off-policy actor critic loss on online policy experience and a weighted behavior cloning
 339 loss on human corrections.

340 Practically, we learn a policy π_θ and critic Q_ψ using an online off-policy actor-critic algo-
 341 rithm (Haarnoja et al., 2018b;a; Ball et al., 2023). In our framework (see Algorithm 2), online roll-
 342 outs of π_θ are added to an experience buffer D_π . As a human supervisor (or simulated human model)
 343 intervenes, providing corrective actions, we store such transitions in a separate buffer $D_{\text{intervene}}$. Op-
 344 tionally, we can initialize D_π and $D_{\text{intervene}}$ with a small amount of offline demos, similar to Ball
 345 et al. (2023) to warm-start the RL training. The critic Q_ψ is updated on D_π by minimizing the Bell-
 346 man regression loss $\psi \leftarrow \arg \min_\psi \mathbb{E}_{(s, a, r, s') \sim D_\pi} \left[(Q_\psi(s, a) - (r + \gamma \mathbb{E}_{a' \sim \pi_\theta(\cdot|s')} [Q_\psi(s', a')])^2 \right]$.
 347 For the actor, the learning objective combines (i) standard RL policy improvement over D_π that op-
 348 timizes for task-success (ii) a maximum-likelihood objective on $D_{\text{intervene}}$ that biases exploration:

$$349 \theta \leftarrow \arg \max_{\theta} \underbrace{\mathbb{E}_{s \sim D_\pi, a \sim \pi_\theta(\cdot|s)} [Q_\psi(s, a)]}_{\text{RL policy-improvement on } D_\pi} + \underbrace{\lambda(i)}_{\text{time-varying weight}} \underbrace{\mathbb{E}_{(s, a) \sim D_{\text{intervene}}} [\log \pi_\theta(a | s)]}_{\text{maximum-likelihood alignment on interventions}}$$

352 Intuitively, standard actor-critic uses sampling of actions from stochastic policies for exploration
 353 (which is very inefficient in high dimensional spaces (Ladosz et al., 2022)). Our method additionally
 354 uses the supervision signal from interventions to update the policy directly and guide its exploration.
 355 Human interventions steer the agent towards promising regions of the environment, and help reduce
 356 failure or accelerate task completion, so they need not be optimal. Consequently, this also avoids the
 357 need for slow critic updates over the intervention segments to align the policy to human feedback.
 358 Thus, our method enables fast and robust adaptation to interventions.

360 **Importance of $\lambda(i)$** STEER makes explicit that interventions directly shape the policy via a fast,
 361 supervised update. To be effective under noisy feedback, the learning objective should preserve pol-
 362 icy invariance to such shaping (Ng et al., 1999). We therefore regularize supervision with a weight
 363 $\lambda(i)$, so that intervention-driven updates accelerate early exploration but vanish asymptotically.

364 To this effect, for each intervention pair, (s, a^{human}) , we store supervision weight that decays geo-
 365 metrically across actor updates, (similar to eligibility traces in tabular RL (Sutton, 1988; Sutton &
 366 Barto, 2018)) i.e. $\lambda(t+1|s, a^{\text{human}}) = (1 - \epsilon) * \lambda(t|s, a^{\text{human}})$, where ϵ is the decay parameter. As
 367 a result, as training proceeds, $\lambda(i) \rightarrow 0$, so at convergence (when humans stop intervening) the actor
 368 optimizes only the RL objective. Intuitively, as discussed in Section 4.3, human and learners can
 369 diverge over training, so this decay scheme naturally gives higher influence to recent interventions
 370 while diminishing stale corrections; reducing bias from noise and mode mismatch.

372 6 EXPERIMENTS AND RESULTS

375 In our experiments, we aim to answer the following questions: (1) Does STEER achieve better task
 376 performance across both real and simulated humans? (2) Does STEER reduces human effort in
 377 terms of intervention effort while achieving similar performance? and (3) What roles does $\lambda(i)$ play
 in STEER ?

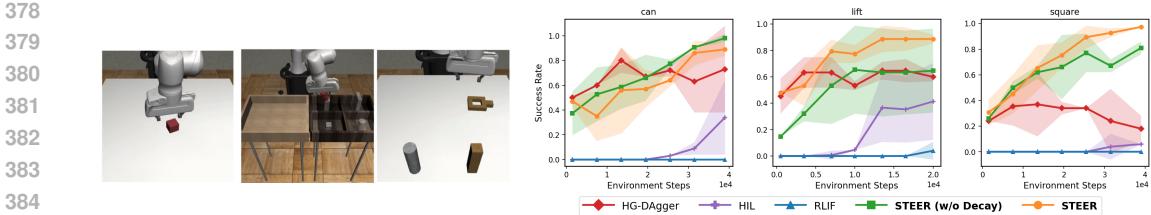


Figure 5: Left: Three robotic manipulation tasks which we use to collect intervention data and evaluate our methods. Right: Success rate vs environment steps across multiple tasks and baselines with simulated humans. STEER consistently outperforms all baselines.

Tasks We evaluate our method across three simulated robotic manipulation tasks (**with both simulated and real humans**), adapted from standard benchmarks (RoboMimic (Mandlekar et al., 2020)): 1) **Lift**: Grasp and lift a cube to a target height. 2) **Can**: Pick up a cylindrical can and place it into a designated bin. 3) **Square**: Insert a square peg into a square hole, testing fine-grained manipulation and alignment.

Baselines In our experiments, we compare to multiple competitive baseline methods across real and simulated human interventions: 1) **HIL** (Ball et al., 2023): A hybrid method combining off-policy RL with online human-in-the-loop data in the replay buffer. 2) **HG-Dagger** (Michael et al., 2019): An extension of DAgger (Ross et al., 2011) where human interventions are used as additional demonstrations for behavior cloning. 3) **RLIF** (Luo et al., 2024a): A method that updates the reward function in HIL, treating human interventions as negative reward signals at takeover states. 4) **STEER** and **STEER (w/o decay)** : Our method introduced in Section 5, along with an ablation with an unweighted supervised loss.

Training and Evaluation Details We use a jax-based implementation of HIL Luo et al. (2024b) as our base off-policy RL algorithm. In Section 4.1 and Appendix B.2.1 we carefully outline our details for collecting real-world data and experiments. For experiments with simulated humans, we use our proposed intervention model from Section 4.4 and a sub-optimal RL policy to provide corrections to the learner and evaluate our method across three seeds across the three tasks. For real world experiments, we run all methods with two humans across two tasks. Since we want to investigate methods that learn from real humans, where data is expensive and iteration speed is critical, we investigate all methods under limited environment interaction budgets with 40k total steps in simulation and 15k steps in the real world. We include all the training details (including hyperparameters) in the Appendix B.2.

6.1 STEER ACHIEVES BETTER TASK PERFORMANCE WITH BOTH SIM AND REAL HUMANS

As discussed above RLIF (Luo et al., 2024a) and HG-Dagger (Michael et al., 2019) require near-optimal human interventions, while HIL Luo et al. (2024b) purely uses inefficient actor-critic updates to learn from the interventions. In contrast, STEER deploys a hybrid approach to use interventions for guiding exploration in addition to off-policy RL. So, we see in Figure 5 that with simulated humans, STEER consistently outperforms all the baselines in terms of success rate, demonstrating the effectiveness of the intervention supervision in STEER to guide exploration during training. Michael et al. (2019) has non-trivial performance but falls short because it falsely assumes optimality in corrections. Finally, HIL is very inefficient, while RLIF has negligible performance within the limited budget of $\sim 40k$ environment interactions.

In Section 4.2, we observe that our intervention model for simulated experiments fits an offline dataset better. So, next we investigate if the conclusions about the algorithms derived from this setup translate to the real-world. In Figure 6, we observe that STEER significantly outperforms the baselines, and partic-

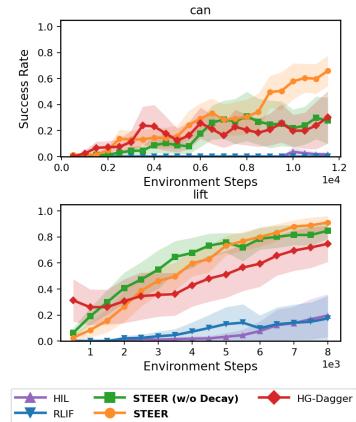


Figure 6: Comparing success rate vs environments with real humans intervening in the simulated tasks.

432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485

ularly, in the can task (with a longer horizon) the baselines completely fail while STEER converges to a high success rate across both human participants. As our simulated when-to-intervene model is closely aligned to real-world data, we also observe a strong correlation in the performance of different methods across the real and simulated settings, further highlighting the benefits of building better evaluation models.

In the simulated setting, the human correction behavior is a noisy model to emulate real-world humans that are noisy and irrational, and we observe that STEER is significantly robust to the sub-optimality in corrective actions. In comparison, the baselines that assume strong optimality in human data, perform poorly, indicating that STEER is a better approach to handle noisy humans.

6.2 STEER SIGNIFICANTLY DECREASES HUMAN EFFORT TO ACHIEVE THE SAME PERFORMANCE OVER OTHER METHODS.

Luo et al. (2024b) simply uses the intervention segments as off-policy data to update the replay buffer during off-policy RL. In order to use this data, the only way is to propagate the rewards achieved in these segments to the value function via Bellman backups (see Algorithm 1). And then the policy extraction step aligns the robot to execute these high-value functions in the human corrections.

In Figure 7, we observe that STEER leveraging supervised updates outperforms the RL baselines significantly in terms of human effort i.e. converges to a high success rate with $\sim 2x$ less human interventions. As STEER uses maximum-likelihood supervision to directly align the policy with the human corrected transitions (with a decaying weight to avoid optimality assumptions, unlike Michael et al. (2019)), it allows the policy to learn even faster with the online experience. For additional plots, see Appendix A.5.

6.3 DOES $\lambda(i)$

ENABLE STEER TO BE ROBUST TO SUB-OPTIMALITY AND DIVERGENCE IN HUMAN INTERVENTIONS?

In Section 4.3 and 4.2, we observe with real-world data that as training progresses there is a divergence between the learner and the user. STEER accounts for this human divergence and irrationality via the decay parameter $\lambda(i)$. As a result, in Figure 6, when we train robots with real humans we observe that STEER outperforms the ablation which does not incorporate this regularization during training. Our hypothesis is that this decay naturally weights the current interventions higher, while down-weighting the past interventions. As the training progresses, and intervention rates are lower, the policy update is completely dependent on the actor-critic updates, removing any bias introduced by the human intervener.

7 REAL-ROBOT EXPERIMENTS

We validate STEER on a real Franka Emika Panda (see Figure 8) performing a *pen-in-bowl* manipulation task, following the general protocol of Luo et al. (2024b). We use a wrist camera and a third camera for observations, and end-effector action space for controlling the robot. At the beginning of each episode, the pen’s pose is randomized within a bounded workspace region while the bowl remains fixed. All methods are warm-started with 20 human demonstrations. During online learning, a supervisor provides takeovers via a 3D SpaceMouse. Each method interacts with the environment for 10,000 steps with a synchronized update-to-data ratio of 10. For evaluation, we execute 20 episodes at 5k and 10k environment steps and report success rates, as well as the number of human intervention steps.

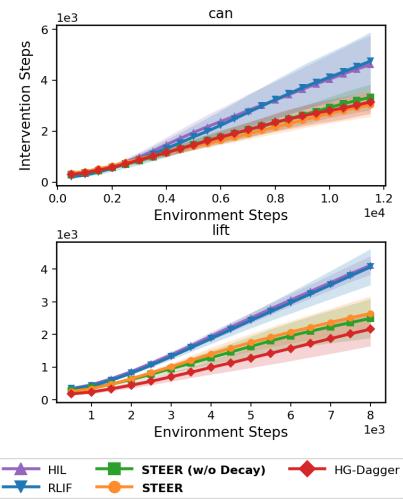


Figure 7: Comparing the number of interventions from real-humans across environment steps.

Figure 8: Real-robot experiment (pen-in-bowl) task, based on Luo et al. (2024b).

486
487
488
489 Table 2: Success rates on pen-in-bowl after 5k and 10k environment interaction steps (20 evaluation
490 episodes per setting).

Method	Success rate at 5k env steps	Success rate at 10k env steps
HIL	0.15 (3 / 20)	0.55 (11 / 20)
HG-Dagger	0.25 (5 / 20)	0.65 (13 / 20)
STEER (w/o decay)	0.35 (7 / 20)	0.90(18/20)
STEER	0.70(14/20)	0.85 (17 / 20)

495
496 In Table 2, we observe that STEER achieves almost
497 50% higher success rate than HG-Dagger [Michael et al.](#)
498 (2019). Figure 7 reports intervention steps over the
499 environment interactions. STEER achieves high success
500 with fewer intervention steps than all baselines, converging
501 with roughly 2× less human effort. This efficiency
502 stems from the hybrid update: the fast-supervised
503 update enables rapid adaptation to human corrections, while
504 the RL update allows the policy to leverage suboptimal
505 demonstrations. Consistent with our analysis on simu-
506 lated and human-in-the-loop settings, STEER remains ro-
507 bust to suboptimal and noisy corrections. These observa-
508 tions show that STEER is an effective and practical algo-
509 rithm for online robot learning from corrections.

510 8 DISCUSSION

511
512 This work performs a detailed study on the problem of learning from human interventions. We show
513 that many of the optimality assumptions made in prior work about the nature of human interventions
514 do not match data from actual human users. We conduct a detailed analysis of when and how human
515 users intervene, showing that they focus much more on a notion of progress and stagnation than optimality.
516 We use these findings to (1) instantiate a better correlated simulated human model for future
517 researchers to develop methods against, (2) instantiate a new method for learning from human inter-
518 ventions that guides exploration rather than assumes optimality. While these findings are promising,
519 many avenues for future work remain. We plan to extend this work to study humans intervening
520 on real robots at scale. We also need to understand the plurality of intervention types across many
521 different human interveners. And finally, we propose a simple naive algorithm for incorporating
522 interventions; a more sophisticated exploration algorithm incorporating targeted optimism would be
523 promising to explore in future work.

524 9 REPRODUCIBILITY STATEMENT

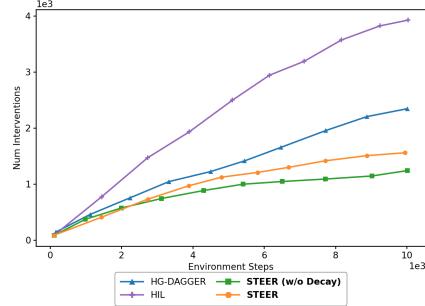
525
526 To ensure reproducibility, we will release our code (which is built on-top of public jaxRL codebase),
527 our dataset collected across multiple users and our intervention models to guide future algorithms.
528 We outline the complete training algorithm, hyperparameters, environments, reward functions and
529 dataset details in Sections 4.1, 6 and Appendix B.2.5, B.2.1.

530 10 USE OF LARGE LANGUAGE MODELS (LLMs)

531
532 We used LLMs for assistance to write code required to produce some of the experiments in this
533 paper. Additionally, we used LLMs to format figures and language corrections in the LaTeX source.

534 REFERENCES

535
536 Samuel Ainsworth, Matt Barnes, and Siddhartha Srinivasa. Mo’ states mo’ problems: Emergency
537 stop mechanisms from observation, 2019. URL <https://arxiv.org/abs/1912.01649>.



538 Figure 9: Real-robot experiment (pen-in-
539 bowl): intervention steps vs. environment
540 steps. STEER attains high success with
541 significantly less human interventions than
542 baselines.

540 2, 3
 541

542 Brenna Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
 543 from demonstration. *Robotics and Autonomous Systems*, 57(5):469 – 483, May 2009. 3

544 Andrea Bajcsy, Dylan P Losey, Marcia K O’Malley, and Anca D Dragan. Learning from physical
 545 human corrections, one feature at a time. In *Proceedings of the 2018 ACM/IEEE International
 546 Conference on Human-Robot Interaction*, pp. 141–149, 2018. 2, 3, 4

547 Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
 548 with offline data. In *Proceedings of the 40th International Conference on Machine Learning*,
 549 ICML’23. JMLR.org, 2023. 3, 4, 5, 7, 8

550

551 Erdem Biyik and Dorsa Sadigh. Batch active preference-based learning of reward functions. In *2nd
 552 Annual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October 2018,
 553 Proceedings*, volume 87 of *Proceedings of Machine Learning Research*, pp. 519–528. PMLR,
 554 2018. 1

555

556 Erdem Biyik, Dylan P Losey, Malayandi Palan, Nicholas C Landolfi, Gleb Shevchuk, and Dorsa
 557 Sadigh. Learning reward functions from diverse sources of human feedback: Optimally inte-
 558 grating demonstrations and preferences. *The International Journal of Robotics Research*, 41(1):
 559 45–67, 2022. 1, 4

560

561 Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
 562 of paired comparisons. *Biometrika*, 39(3/4):324, 1952. doi: 10.2307/2334029. 2

563

564 Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
 565 editing instructions. In *CVPR*, 2023. 1

566

567 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
 568 Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
 569 via sequence modeling. *arXiv preprint arXiv:2106.01345*, 2021. 2

570

571 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
 572 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion, 2024. URL
 573 <https://arxiv.org/abs/2303.04137>. 6

574

575 Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 576 reinforcement learning from human preferences. In *Neural Information Processing Systems
 577 (NeurIPS)*, 2017. 1

578

579 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
 580 *arXiv preprint arXiv:2106.06860*, 2021. URL <https://arxiv.org/abs/2106.06860>. 3

581

582 Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
 583 and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
 584 Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th
 585 Annual Meeting of the Association for Computational Linguistics*, pp. 8342–8360, Online, July
 586 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.740. URL
 587 <https://aclanthology.org/2020.acl-main.740/>. 1

588

589 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 590 maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and
 591 Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning,
 592 ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings
 593 of Machine Learning Research*, pp. 1856–1865. PMLR, 2018a. URL <http://proceedings.mlr.press/v80/haarnoja18b.html>. 3, 7

594

595 Tuomas Haarnoja, Aurick Zhou, Kalle Hartikainen, Pieter Abbeel, and Emanuel Todorov. Soft
 596 actor-critic: Off-policy maximum entropy deep reinforcement learning for continuous control. In
 597 *Proceedings of the 35th International Conference on Machine Learning*, pp. 1861–1871. PMLR,
 598 2018b. URL <http://proceedings.mlr.press/v80/haarnoja18b.html>. 3, 7

594 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
 595 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM
 596 Comput. Surv.*, 55(12), March 2023. ISSN 0360-0300. doi: 10.1145/3571730. URL <https://doi.org/10.1145/3571730>. 1

598 Yunfan Jiang, Chen Wang, Ruohan Zhang, Jiajun Wu, and Li Fei-Fei. Transic: Sim-to-real policy
 599 transfer by learning from online correction. In *Conference on Robot Learning*, 2024. 1, 3

601 Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk. *Econo-
 602 metrica*, 47(2):263–291, 1979. ISSN 00129682, 14680262. URL <http://www.jstor.org/stable/1914185>. 4

604 Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar, and Sergey Levine. Unfamiliar finetuning
 605 examples control how language models hallucinate. *arXiv preprint arXiv:2403.05612*, 2024. 1

607 W. Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: the
 608 tamer framework. In *Proceedings of the Fifth International Conference on Knowledge Cap-
 609 ture*, K-CAP '09, pp. 9–16, New York, NY, USA, 2009. Association for Computing Machin-
 610 ery. ISBN 9781605586588. doi: 10.1145/1597735.1597738. URL <https://doi.org/10.1145/1597735.1597738>. 2, 4, 6

612 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
 613 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etiene
 614 David, Ian Stavness, Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara Meghan Beery,
 615 Jure Leskovec, Anshul B Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy
 616 Liang. Wilds: A benchmark of in-the-wild distribution shifts. In *International Conference
 617 on Machine Learning*, 2020. URL <https://api.semanticscholar.org/CorpusID:229156320>. 1

619 Yigit Korkmaz and Erdem Biyik. Mile: Model-based intervention learning. 2025 *IEEE International
 620 Conference on Robotics and Automation (ICRA)*, pp. 15673–15679, 2025. URL <https://api.semanticscholar.org/CorpusID:276444697>. 2, 3, 4, 6

623 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 624 learning. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=68n2s9ZJWF8>. 2, 3

626 Paweł Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
 627 learning: A survey. *Information Fusion*, 85:1–22, 2022. ISSN 1566-2535. doi: <https://doi.org/10.1016/j.inffus.2022.03.003>. URL <https://www.sciencedirect.com/science/article/pii/S1566253522000288>. 7

631 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tu-
 632 torial, review, and perspectives on open problems, 2020. URL <https://arxiv.org/abs/2005.01643>. 2

634 Quanyi Li, Zhenghao Peng, and Bolei Zhou. Efficient learning of safe driving policy via human-ai
 635 copilot optimization. *arXiv preprint arXiv:2202.10341*, 2022. URL <https://arxiv.org/abs/2202.10341>. 3

637 Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
 638 Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su,
 639 Quan Vuong, and Ted Xiao. Evaluating real-world robot manipulation policies in simulation.
 640 *arXiv preprint arXiv:2405.05941*, 2024. 16

642 Jacky Liang, Fei Xia, Wenhao Yu, Andy Zeng, Montse Gonzalez Arenas, Maria Attarian, Maria
 643 Bauzá, Matthew Bennice, Alex Bewley, Adil Dostmohamed, Chuyuan Fu, Nimrod Gileadi,
 644 Marissa Giustina, Keerthana Gopalakrishnan, Leonard Hasenclever, Jan Humplík, Jasmine Hsu,
 645 Nikhil J. Joshi, Ben Jyenis, Chase Kew, Sean Kirmani, Tsang-Wei Edward Lee, Kuang-Huei
 646 Lee, Assaf Hurwitz Michaely, Joss Moore, Kenneth Oslund, Dushyant Rao, Allen Ren, Baruch
 647 Tabanpour, Quan Ho Vuong, Ayzaan Wahid, Ted Xiao, Ying Xu, Vincent Zhuang, Peng Xu,
 Erik Frey, Ken Caluwaerts, Ting-Yu Zhang, Brian Ichter, Jonathan Tompson, Leila Takayama,

648 Vincent Vanhoucke, Izhak Shafran, Maja Mataric, Dorsa Sadigh, Nicolas Manfred Otto Heess,
 649 Kanishka Rao, Nik Stewart, Jie Tan, and Carolina Parada. Learning to learn faster from hu-
 650 man feedback with language model predictive control. *ArXiv*, abs/2402.11450, 2024. URL
 651 <https://api.semanticscholar.org/CorpusID:267751232>. 1

652 David Lindner, Sebastian Tschiatschek, Katja Hofmann, and Andreas Krause. Interactively learning
 653 preference constraints in linear bandits. *ArXiv*, abs/2206.05255, 2022. URL <https://api.semanticscholar.org/CorpusID:249605747>. 2, 3

654 Huihan Liu, Soroush Nasiriany, Lance Zhang, Zhiyao Bao, and Yuke Zhu. Robot learning on the
 655 job: Human-in-the-loop autonomy and learning during deployment. In *Robotics: Science and
 656 Systems (RSS)*, 2023. 2, 3, 4, 15

657 Yiren Lu, Justin Fu, G. Tucker, Xinlei Pan, Eli Bronstein, Becca Roelofs, Benjamin Sapp, Bran-
 658 dyn Allen White, Aleksandra Faust, Shimon Whiteson, Drago Anguelov, and Sergey Levine.
 659 Imitation is not enough: Robustifying imitation with reinforcement learning for challeng-
 660 ing driving scenarios. *2023 IEEE/RSJ International Conference on Intelligent Robots and
 661 Systems (IROS)*, pp. 7553–7560, 2022. URL <https://api.semanticscholar.org/CorpusID:254974278>. 3

662 Jianlan Luo, Perry Dong, Yuexiang Zhai, Yi Ma, and Sergey Levine. Rlif: Interactive imitation
 663 learning as reinforcement learning, 2024a. URL <https://arxiv.org/abs/2311.12996>.
 664 2, 4, 6, 8, 15, 21

665 Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine. Precise and dexterous robotic manipulation
 666 via human-in-the-loop reinforcement learning, 2024b. 2, 3, 4, 5, 8, 9, 15, 19, 20, 21, 22

667 Ajay Mandlekar, Danfei Xu, Roberto Mart'in-Mart'in, Yuke Zhu, Li Fei-Fei, and Silvio Savarese.
 668 Human-in-the-loop imitation learning using remote teleoperation. *ArXiv*, abs/2012.06733, 2020.
 669 URL <https://api.semanticscholar.org/CorpusID:229158088>. 2, 3, 4, 8, 15,
 670 19

671 Marius Memmel, Jacob Berg, Bingqing Chen, Abhishek Gupta, and Jonathan Francis. Strap: Robot
 672 sub-trajectory retrieval for augmented policy learning. In *The Thirteenth International Conference
 673 on Learning Representations*, 2025. 3

674 Kelly Michael, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J. Kochenderfer. Hg-
 675 dagger: Interactive imitation learning with human experts. In *2019 International Conference on
 676 Robotics and Automation (ICRA)*, pp. 5053–5059. IEEE, 2019. URL <https://arxiv.org/abs/1810.02890>. 1, 2, 3, 4, 8, 9, 10, 15, 19

677 Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. {AWAC}: Accelerating on-
 678 line reinforcement learning with offline datasets, 2021. URL <https://openreview.net/forum?id=OJiM1R3jAtZ>. 3

679 Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
 680 Theory and application to reward shaping. In *Proceedings of the Sixteenth International Confer-
 681 ence on Machine Learning*, ICML '99, pp. 278–287, San Francisco, CA, USA, 1999. Morgan
 682 Kaufmann Publishers Inc. ISBN 1558606122. 7

683 Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan Peters.
 684 An algorithmic perspective on imitation learning. *Found. Trends Robotics*, 7(1-2):1–179, 2018.
 685 doi: 10.1561/2300000053. URL <https://doi.org/10.1561/2300000053>. 1, 3, 6

686 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 687 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 688 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 689 and Ryan Lowe. Training language models to follow instructions with human feedback, 2022. 1

690 Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and P. Abbeel. Sim-to-real transfer of
 691 robotic control with dynamics randomization. *2018 IEEE International Conference on Robotics
 692 and Automation (ICRA)*, pp. 1–8, 2017. URL <https://api.semanticscholar.org/CorpusID:3707478>. 1

702 Zhenghao Peng, Wenjie Mo, Chenda Duan, Quanyi Li, and Bolei Zhou. Learning from active human
 703 involvement through proxy value propagation. In *Advances in Neural Information Processing*
 704 *Systems (NeurIPS)*, 2023. URL https://papers.nips.cc/paper_files/paper/2023/file/f57ffe47d0b528fbb97901d16bd4eba2-Paper-Conference.pdf.
 705 3

706

707 Zhenghao Peng, Zhizheng Liu, and Bolei Zhou. Data-efficient learning from human interventions
 708 for mobile robots. *arXiv preprint arXiv:2503.04969*, 2025. URL <https://arxiv.org/abs/2503.04969>. 3, 15

709

710

711 Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
 712 Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforce-
 713 ment Learning and Demonstrations. In *Proceedings of Robotics: Science and Systems (RSS)*,
 714 2018. 3

715

716 Stiennon Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. Reduction of imitation learning and
 717 structured prediction to no-regret online learning. In *AISTATS*, pp. 627–635, 2011. URL <http://www.aaai.org/ocs/index.php/AISTATS/AISTATS11/paper/view/2156>. 1,
 718 3, 8, 15

719

720 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 721 optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL <http://arxiv.org/abs/1707.06347>. 3

722

723 R. Shachnai, M. Kleiman-Weiner, M. Berke, and J. A. Leonard. When bayesians take over: A
 724 computational model of parental intervention. In *Proceedings of the Annual Meeting of the Cog-
 725 nitive Science Society*, volume 47, 2025. URL <https://escholarship.org/uc/item/1q346255>. 2, 4

726

727 Jonathan Spencer, Sanjiban Choudhury, Matthew Barnes, Matthew Schmittle, Mung Chiang, Pe-
 728 ter Ramadge, and Sidd Srinivasa. Expert intervention learning. *Autonomous Robots*, 46(1):
 729 99–113, 2022. doi: 10.1007/s10514-021-10006-9. URL <https://doi.org/10.1007/s10514-021-10006-9>. 2, 3, 4

730

731 Richard S. Sutton. Learning to predict by the methods of temporal differences. *Machine Learning*,
 732 3(1):9–44, 1988. 7

733

734 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. MIT Press, 2nd
 735 edition, 2018. <http://incompleteideas.net/book/the-book-2nd.html>. 7

736

737 Marcel Torne, Max Balsells, Zihan Wang, Samedh Desai, Tao Chen, Pulkit Agrawal, and Abhishek
 738 Gupta. Breadcrumbs to the goal: Goal-conditioned exploration from human-in-the-loop feedback,
 739 2023. 1

740

741 Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, and Pulkit
 742 Agrawal. Reconciling reality through simulation: A real-to-sim-to-real approach for robust ma-
 743 nipulation, 2024. URL <https://arxiv.org/abs/2403.03949>. 1, 4

744

745 Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from
 746 trajectory preference queries. *Advances in neural information processing systems*, 25, 2012. 4

747

748 Annie Xie, Fahim Tajwar, Archit Sharma, and Chelsea Finn. When to ask for help: Proactive inter-
 749 ventions in autonomous reinforcement learning. In *Advances in Neural Information Processing
 750 Systems*, volume 35, 2022. 2, 3

751

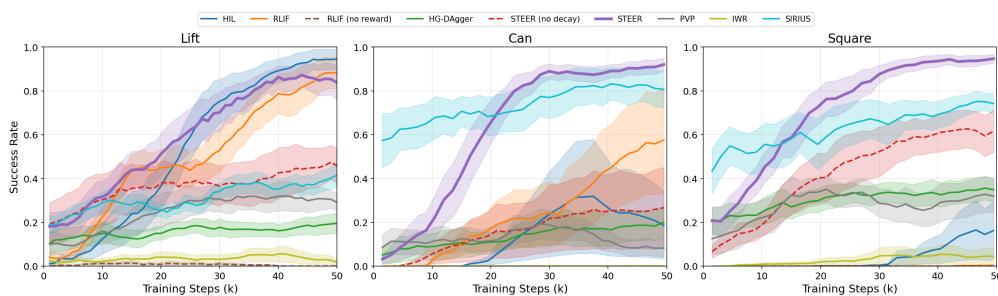
752 Patrick Yin, Tyler Westenbroek, Simran Bagaria, Kevin Huang, Ching-An Cheng, Andrey Kolobov,
 753 and Abhishek Gupta. Rapidly adapting policies to the real-world via simulation-guided fine-
 754 tuning. In *International Conference on Learning Representations (ICLR)*, 2025. 3, 4

755

756 **A APPENDIX**
757758 **A.1 ADDITIONAL BASELINES**
759760 We include a comparison of STEER to additional baselines:
761

- 762 1. HIL [Luo et al. \(2024b\)](#): A hybrid method combining off- policy RL with online human-in-
763 the-loop data in the replay buffer
- 764 2. RLIF [Luo et al. \(2024a\)](#): A method that updates the reward function in HIL, treating human
765 interventions as negative reward signals at takeover states.
- 766 3. HG-Dagger [Michael et al., 2019](#): An extension of DAgger ([Ross et al., 2011](#)) where
767 human interventions are used as additional demonstrations for behavior cloning.
- 768 4. PVP [Peng et al. \(2025\)](#): An off-policy HIL method that augments Bellman error, with
769 additional binary supervision targets.
- 770 5. SIRIUS and IWR [Liu et al. \(2023\)](#); [Mandlekar et al. \(2020\)](#): These are HIL-methods that
771 do only maximum likelihood supervision updates to the policy.

774 In Figure 10, we observe that STEER is the best-performing policy. A major benefit of STEER
775 over other baselines is that it makes minimal assumptions about the quality and pattern of human
776 interventions and, as a result, can leverage a wide range of interventions with different levels of op-
777 timality. [Peng et al. \(2025\)](#); [Liu et al. \(2023\)](#); [Mandlekar et al. \(2020\)](#) assume that humans intervene
778 optimally, as a result, underperform when the corrections are noisy. Meanwhile, STEER is robust
779 to the suboptimal corrections and converges to a higher success rate much more sample efficiently
780 (both environment steps and human intervention effort) than the baselines.

792 Figure 10: Additional baselines across three robomimic tasks in simulation. STEER consistently outperforms
793 all baselines.794
795 **A.2 HUMAN INTERVENTION MODELS**
796797 We run all the intervention learning algorithms across multiple human intervention models.
798

- 800 1. Random Intervention: a random model calibrated to the empirical intervention rate from
801 the data in Section 4.
- 802 2. Action-Suboptimality based on Q-value: model based on [Luo et al. \(2024a\)](#).
- 803 3. Action-Difference: a model where the human intervention is simulated proportionally to
804 $\|a^\pi - a^*\|_2$.
- 805 4. Our introduced gating model from Section 4.4

806 In Figure 11, we observe that variants of STEER robustly have a high success rate, effi-
807 ciently across different intervention styles. This further demonstrates that STEER makes
808 no assumption about the corrective segments, and is a scalable and practical choice.

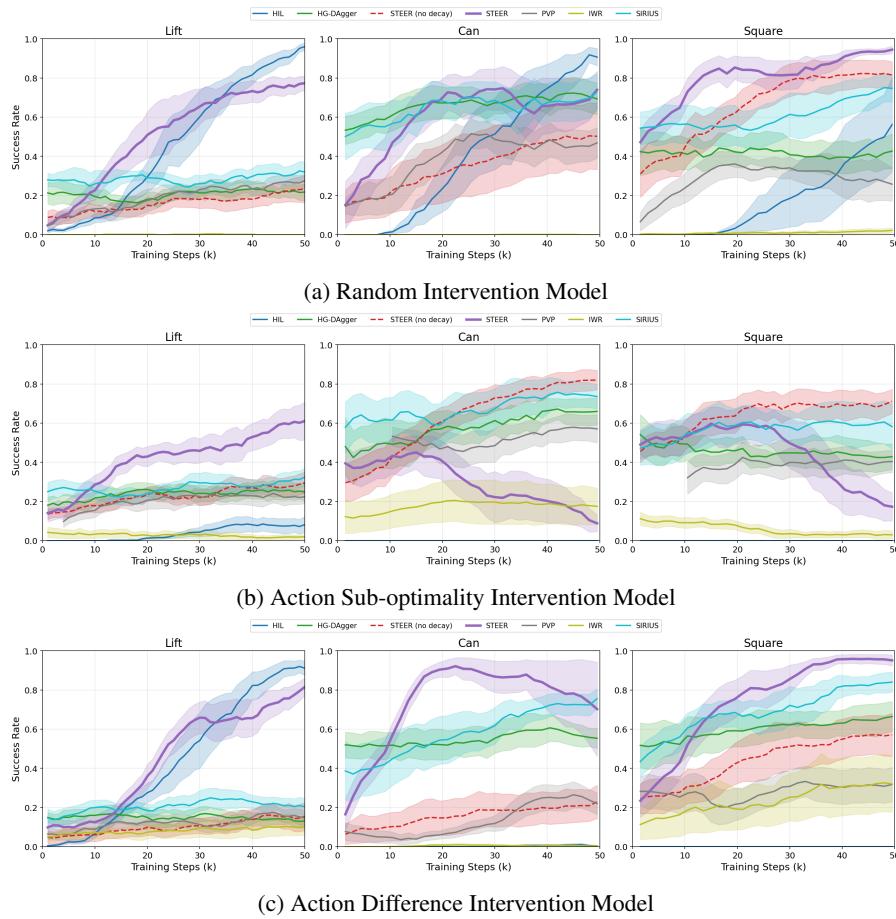


Figure 11: Right: Success rate vs environment steps across multiple tasks and baselines with simulated humans via different models. STEER consistently outperforms all baselines.

A.3 CORRELATION BETWEEN SIMULATED HUMAN MODEL AND REAL HUMAN INTERVENTIONS

In Table 1, we compare the precision and recall of different human models. The main objective for building better human intervention models is: more reliable benchmarking of intervention learning algorithms. Following Li et al. (2024) that generates realistic simulators for evaluating real-world robot policies with higher success correlations between simulation and real-world evaluation, i.e., policies tested in simulation and real rank similarly – we perform a similar analysis across the rankings of the models across simulated human interventions and real human interventions across the two robomimic tasks.

Method	Real Human Interventions	Stagnation	Q-Value	Action-Diff	Random
STEER	1	1	3	1	1
STEER (no decay)	2	2	1	3	3
HG-DAGGER	3	3	2	2	4
HIL	4	4	4	4	2

Table 3: Rankings of the four algorithms under human evaluation and four simulated modalities.

To quantify how well each simulation signal predicts real-robot performance, we compute the Spearman rank correlation between the real-robot ranking and the ranking induced by each intervention model (see Table 3). In Figure 12, the stagnation-based gating model achieves the highest cor-

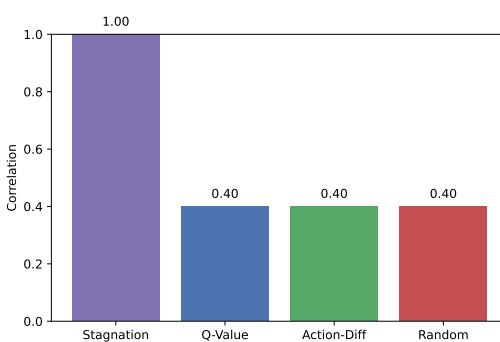


Figure 12: Correlation of ranking different algorithms across simulation and real interventions for different models of simulating human interventions.

relation with the real-robot ordering, indicating that it is the most reliable proxy for real-world performance, while Q-value, action-difference, and random rankings correlate substantially less.

A.4 TRAINING WITH PERFECT EXPERTS IN SIMULATION

To evaluate the benefits of STEER with sub-optimal interventions, we run an ablation of using perfect experts in simulation. In our experiments, human sub-optimality is mirrored via sub-optimal RL checkpoints. In Figure 13, we compare the performance of all methods with perfect experts (RL-trained experts that are easy to imitate) and observe that most baselines achieve significant improvements in performance with close to optimal interventions, further emphasizing that STEER does not need the interventions to be optimal and outperforms the baselines under practical, noisy conditions.

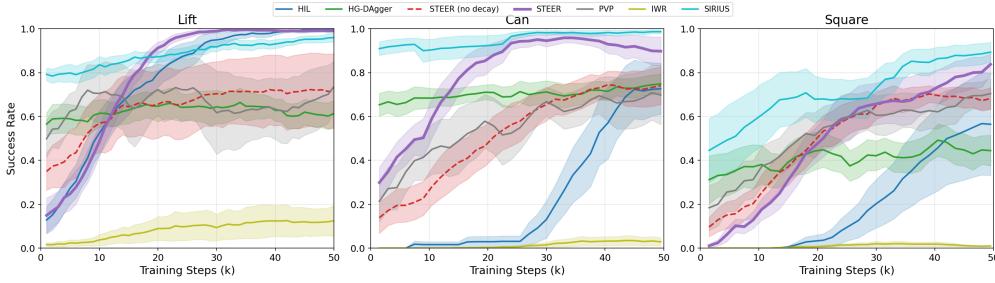


Figure 13: Comparing all algorithms with a perfect expert policy acting as the intervention policy in simulation.

A.5 HOW DOES TASK PERFORMANCE CHANGE WITH MORE INTERVENTIONS ACROSS DIFFERENT METHODS?

In Figure 14, we observe that STEER uses significantly less human interventions to converge to a successful policy, while the RL baselines are worse (sometimes with zero performance within the same effort). HG-Dagger gets worse with more interventions because of noise in simulated human actions, showing the benefit of our method in handling noise in human actions which is confirmed, as discussed and verified in Section 4.

In Figure 15, we also plot the ratio between the expert q-value and the intervention action value as training progresses. We observe that human actions are sub-optimal i.e. have lower value compared to the optimal action at a fixed rate over the entire training run, and are not affected by time.

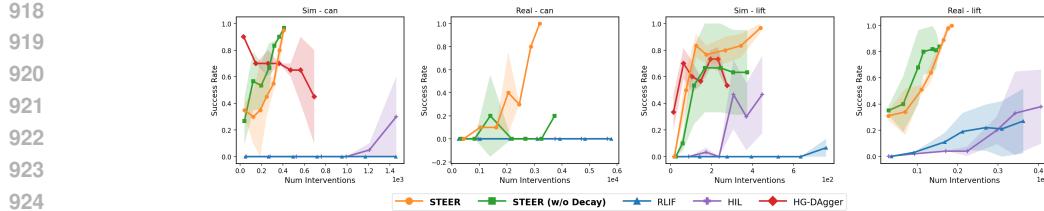
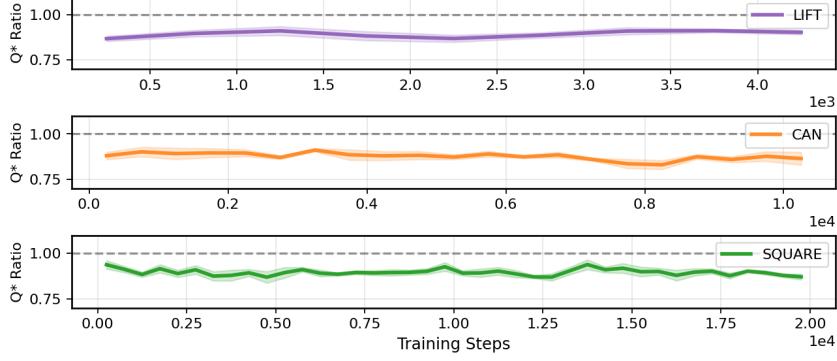


Figure 14: Comparing task success againsts number of real and simulated human interventions

Figure 15: $\frac{Q^*(s, a_{\text{human}})}{Q^*(s, a^*)}$ as training progresses across the three tasks. Human sub-optimality is roughly similar across all training runs.

A.6 ANALYSING INTERVENTION EFFORT ACROSS REAL AND SIMULATED HUMAN EXPERIMENTS

In Figure 16, we visualize the intervention rate of the either the simulated or the real human supervising the policy across different environments and algorithms. STEER aligns rapidly with human correction i.e. the supervised adapts bias the policy towards the behavior the human considers better early on the training leading to a drop in the intervention rate. But, this biased exploration enables the policy to collect useful and successful experience quickly, which is leveraged by the RL update later. As a result, STEER reach high success rates much faster than baselines. Further, across simulation and real we note qualitatively, that the intervention rate trends are correlated showing a stronger promise towards our introduced stagnation model being a better setting for evaluation.

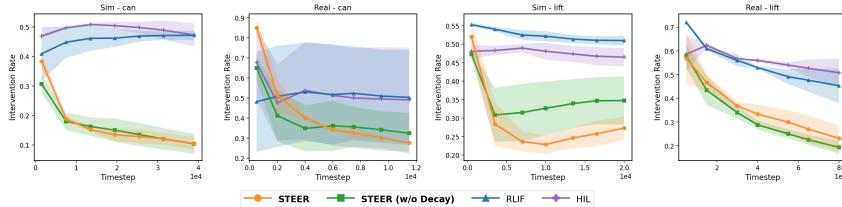


Figure 16: Comparing intervention rate for real and simulated human againts intervention steps

A.7 INTERVENTIONS USING VR CONTROLLER

To evaluate the effect of different intervention interfaces, we also incorporate a virtual-reality-based teleoperation controller (Oculus). The human supervisor uses the controller’s trigger to override the robot policy and provide corrective actions. As shown in Figure 17, the performance trends of STEER are similar across the two intervention devices, indicating that our insights and approach generalize across intervention devices and control modalities.

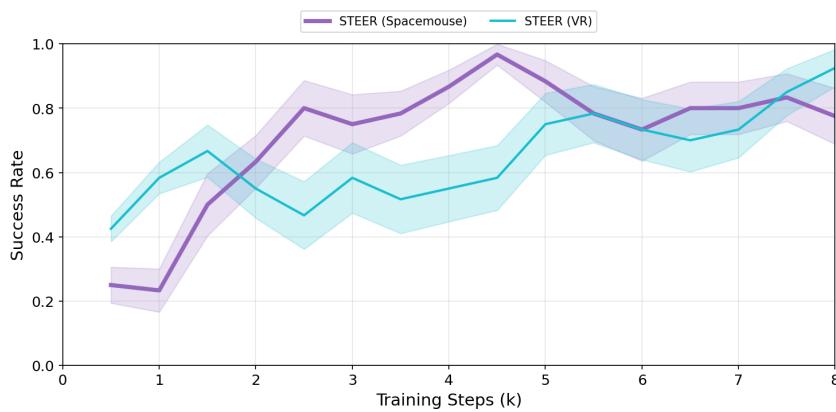


Figure 17: Comparing STEER with VR interventions and SpaceMouse on the Lift task. STEER achieves similar success rates with similar intervention effort.

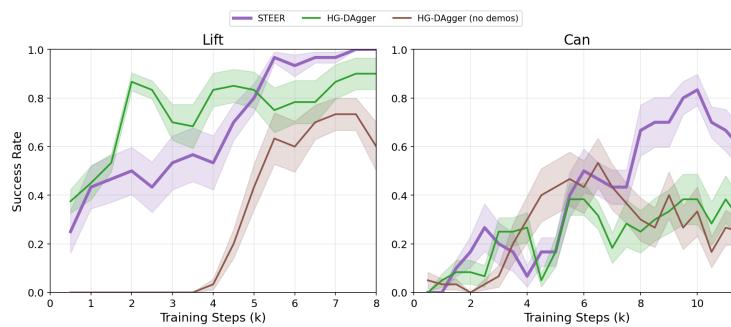


Figure 18: Comparing HG-Dagger, HG-Dagger (no offline data) to STEER for real human intervention on sim tasks

A.8 ABLATION AGAINST TASK REWARD AND HUMAN SUPERVISION

We include experiments across the simulated can and lift tasks, with real human interventions on one additional baseline: HG-Dagger (no offline data): a variant of Michael et al. (2019), where we do not include the initial offline demos during training. In Figure 18, we observe that our method outperforms the baselines, while HG-Dagger with demos also outperforms the baselines, showing the benefit of effectively leveraging human interventions as well as offline demonstrations, during online training to accelerate policy convergence.

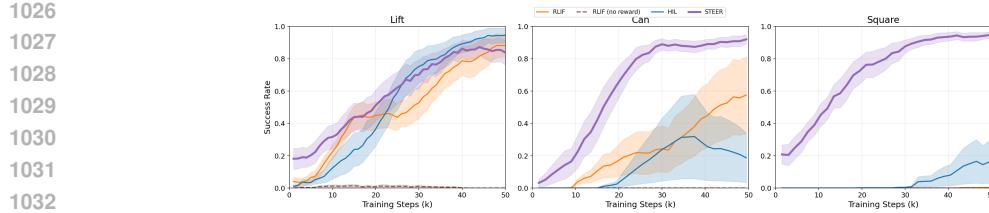
In Figure 19, we observe that even with sub-optimal interventions, a task-specific sparse reward enables RLIF Luo et al. (2024b) to perform better while the no-reward variant achieves negligible performance; however, it still makes unrealistic assumptions about the corrections, and STEER outperforms it across the two settings.

B IMPLEMENTATION DETAILS

B.1 TASK DETAILS

We evaluate our approach on three goal-conditioned robotic manipulation tasks. Each task is adapted from the RoboMimic benchmark suite (Mandlekar et al., 2020) and is posed with sparse, success-based rewards.

Lift. The agent must grasp a cube and elevate it to a target height above the table. The object observation is a 10-dimensional vector comprising the cube’s absolute position and orientation, together with the cube’s position relative to the end effector. The sparse reward is defined as $r = 1$ if the cube’s height exceeds the target threshold.



1035 Figure 19: Comparison of RLIF with no task reward and with task reward against STEER under optimal
1036 interventions.

1037
1038
1039 **Can.** The agent must pick up a cylindrical can and place it into a targeted bin region. The object
1040 observation is a 14-dimensional vector comprising the can’s absolute position and orientation, as
1041 well as the can’s position and orientation relative to the end effector. The task is successful if the
1042 can is within the target region.

1043
1044 **Square.** The agent must insert a square nut onto a square peg, requiring precise in-hand alignment
1045 prior to insertion. The object observation is the nut’s absolute position, orientation, with the nut’s
1046 relative position and orientation. At the beginning of each episode, the nut pose is randomized on
1047 the table. The objective is to align the nut with the peg within tolerance.

1048 These tasks jointly assess different robot skills under sparse feedback, thereby providing a strong
1049 benchmark for intervention-based learning and for measuring improvements in sample efficiency
1050 and human effort.

1051 B.2 TRAINING DETAILS

1052 B.2.1 REAL-WORLD SETUP

1053 For experiments with real human interventions, we recruited re-
1054 searchers to intervene on robot policies using a 3Dconnexion
1055 SpaceMouse for teleoperation. Prior to data collection, partic-
1056 ipants underwent a familiarization phase that included: (1) col-
1057 lecting demonstration trajectories to understand the task dynamics
1058 and control interface, and (2) practice sessions intervening on pre-
1059 trained policy checkpoints at various stages of learning to calibrate
1060 their intervention strategy.

1061 Our setup with real human interventions has two parts: data collection for intervention analysis and
1062 algorithm comparison.

1063 First, we have participants intervene on policies trained using HIL (Luo et al., 2024b) as the base
1064 learning algorithm. To accelerate convergence, we initialized training with 25 demonstration trajec-
1065 tories, fixed the initial positions of both the robot end-effector and goal objects across episodes, and
1066 restricted the action space to only end-effector position deltas and gripper commands. This results
1067 in a dataset of human intervention behaviors across different stages of policy learning. We then
1068 analyze this data to create more accurate simulated interventions.

1069 Figure 20: Researcher using
1070 a 3Dconnexion SpaceMouse
1071 for interventions

Figure 21: Human observations for intervening on a simulated robot task

1080 Our second stage, algorithm comparison, has participants compare different learning algorithms
 1081 on the lift/can task. For this stage, we randomize the initial position of the robot, and have the
 1082 participant intervene for 8,000 steps for lift and 12,000 steps for can.
 1083

1084 B.2.2 SIMULATED HUMAN INTERVENER DETAILS

1085 We intervened with a RLPD checkpoint achieving 50-70% success on the target task, and sample
 1086 intervention lengths from the bottom 75% of intervention lengths.
 1087

1088 B.2.3 FITTING INTERVENTION MODEL PARAMETERS

1089 To fit our progress-based intervention model to the collected human data, we performed a grid search
 1090 over the window size k timesteps and the progress threshold δ , optimizing for the highest F1 score
 1091 on intervention prediction. We developed a unified intervention model across all tasks rather than
 1092 task-specific models, prioritizing the capture of fundamental intervention behaviors (e.g., reaction
 1093 time, progress perception) over task-specific patterns to enhance generalization.
 1094

1095 B.2.4 REAL WORLD TRAINING

1096 To evaluate our method with real human interventions, we conducted experiments where human
 1097 participants intervened on learning policies in real-time. We tested four algorithms: HIL (Luo et al.,
 1098 2024b), RLIF (Luo et al., 2024a), and our method STEER (with and without decay) across two
 1099 manipulation tasks (Lift and Can) with two human participants.
 1100

1101 We fixed initial goal positions and restricted the action space to 4DOF control (3D position deltas
 1102 + gripper) to reduce complexity and improve learning speed. Participants used a 3Dconnexion
 1103 SpaceMouse to provide interventions when they observed the robot making errors or failing to make
 1104 progress toward the task goal.
 1105

1106 We logged all interventions, policy rollouts, and task successes to analyze both final performance
 1107 and intervention efficiency. To ensure consistency across experiments, we used the same hyper-
 1108 parameters for each algorithm as in our simulated experiments, with the only difference being the
 1109 intervention source (human vs. simulated model).
 1110

1111 B.2.5 HYPERPARAMETERS

1112 We outline all hyperparameters used in our experiments in Table 4.

1113 Table 4: Hyperparameters for STEER and baselines. We use the same parameters across all experi-
 1114 ments and report the best result on 3 seeds.
 1115

Hyperparameter	Value
<i>Core RL Parameters</i>	
Architecture	MLP with Gaussian Head
Hidden layers	3 layers of width 256
Optimizer	Adam
Learning rate	3e-4
Discount (γ)	0.99
Soft update (τ)	0.005
UTD Ratio	5
Batch size	256
Replay buffer size	1e6
<i>STEER-Specific Parameters</i>	
BC weight (initial λ_0)	1.0
BC decay rate (ϵ)	5e-4 (lift), 1e-4 (can)
BC decay type	Per-timestep exponential
<i>Intervention Model Parameters</i>	
Stagnation window (k)	9
Stagnation threshold (δ)	-0.158
True positive rate (α)	0.599

1134 C ALGORITHM

Algorithm 1 Human in the Loop Learning: HIL (Luo et al., 2024b)

```

1138 Require:  $\pi_\theta, Q_\psi, \pi^{\text{human}}, D_\pi$ 
1139 1: for trial  $i = 1$  to  $N$  do
1140 2:   for timestep  $t = 1$  to  $T$  do
1141 3:     if  $\pi^{\text{human}}$  intervenes at  $t$  then
1142 4:       append  $(s_t, a_t^{\text{human}}, r_t, s_{t+1})$  to  $D_\pi$ 
1143 5:     else
1144 6:       append  $(s_t, a_t, r_t, s_{t+1})$  to  $D_\pi$ 
1145 7:     end if
1146 8:   end for
1147 9:    $\psi \leftarrow \arg \min_\psi \mathbb{E}_{(s, a, r, s') \sim D_\pi} \left[ (Q_\psi(s, a) - (r + \gamma Q_\psi(s', \pi_\theta(s'))))^2 \right]$ 
1148 10:   $\theta \leftarrow \arg \max_\theta \mathbb{E}_{s \sim D_\pi, a \sim \pi_\theta} [Q_\psi(s, a)]$ 
1149 11: end for

```

Algorithm 2 STEER: Supervised Takeovers for Efficient Exploration in RL

```

1153 Require:  $\pi_\theta, Q_\psi, \pi^{\text{human}}, D_\pi, D_{\text{intervene}}, \lambda(\cdot)$ 
1154 1: for trial  $i = 1$  to  $N$  do
1155 2:   for timestep  $t = 1$  to  $T$  do
1156 3:     if  $\pi^{\text{human}}$  intervenes at  $t$  then  $\triangleleft$  or a simulated  $(g, \pi_h)$  behavior model
1157 4:       append  $(s_t, a_t^{\text{human}})$  to  $D_{\text{intervene}}$ 
1158 5:     else
1159 6:       append  $(s_t, a_t, r_t, s_{t+1})$  to  $D_\pi$ 
1160 7:     end if
1161 8:   end for
1162 9:    $\psi \leftarrow \arg \min_\psi \mathbb{E}_{(s, a, r, s') \sim D_\pi} \left[ (Q_\psi(s, a) - (r + \gamma Q_\psi(s', \pi_\theta(s'))))^2 \right]$ 
1163 10:   $\theta \leftarrow \arg \max_\theta \mathbb{E}_{s \sim D_\pi, a \sim \pi_\theta} [Q_\psi(s, a)] - \mathbb{E}_{(s, a) \sim D_{\text{intervene}}} [\lambda(i|s_t, a_t) * \log \pi_\theta(a | s)]$ 
1164 11:     $\triangleleft$  weighted BC loss on interventions
1165 12:   $\lambda(i+1|s_t, a_t) = (1 - \epsilon) * \lambda(i|s_t, a_t) \ \forall (s_t, a_t) \in D_{\text{intervene}}$ 
1166 13: end for

```