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ABSTRACT

As AI systems are deployed in real-world environments, they inevitably make
mistakes where human interventions could provide valuable corrective feedback.
However, many of the optimality assumptions made by existing methods for learn-
ing from interventions are invalid or unrealistic when measured against how hu-
mans actually intervene in reality. We conduct a deeper analysis with intervention
data from real human users, revealing that humans often intervene sub-optimally
in both the timing and execution of interventions, often acting when they perceive
the agent’s progress to stagnate. Building on these insights, we show that the cur-
rent methods of simulating human interventions, and the corresponding methods
to learn from these interventions, do not accurately capture the behavior modes
of human users in practice. Based on these insights, we introduce an improved
approximate model of human intervention that better captures this behavior, en-
abling accurate simulation benchmarking of learning algorithms and providing
a more reliable signal to develop better algorithms in the future. As a start to
building on these insights, we propose a simple algorithm that combines imitation
learning and reinforcement learning with a regularization scheme to leverage cor-
rections for exploration rather than directly making strong optimality assumptions.
Our empirical evaluation on simulated robotic manipulation tasks demonstrates
that our method improves task success by ∼52% and achieves ∼2x reduction in
real-human effort on average as compared to baselines, marking a significant step
towards scalable, human-interactive learning for robot manipulation.

1 INTRODUCTION

Even with state-of-the-art machine learning techniques, policies for sequential decision-making of-
ten struggle to generalize beyond their training distribution (Koh et al., 2020). For instance, in
robotics, imitation learning (IL) from large datasets suffers from compounding errors due to co-
variate shift (Osa et al., 2018), while simulation-trained policies fail in the real world due to the
simulation-reality dynamics gap (Peng et al., 2017). Similarly, large language models (LLMs)
trained on web-scale text corpora frequently exhibit hallucinations on out-of-distribution (OOD)
inputs (Ji et al., 2023; Kang et al., 2024) or in different test domains (Gururangan et al., 2020).
For robust deployment of such systems, policies should adapt online from feedback (Ouyang et al.,
2022; Ross et al., 2011) rather than relying solely on fixed offline datasets.

To address these distribution shifts, we can rely on humans as powerful sources of real-world feed-
back. Reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Ouyang
et al., 2022) has proven to be a dominant tool for improving the performance of AI systems, includ-
ing LLMs, where feedback is provided as binary preferences over alternative responses. For robots,
human input on robot behavior could enable adaptation to novel settings and improved task success.
However, existing methods (Torne et al., 2024; 2023; Bıyık et al., 2022; Biyik & Sadigh, 2018)
typically rely on tele-operated demonstrations or binary feedback on states, which require expensive
task executions or provide sparse supervision.

Instead, a more natural approach is to assume that humans will give feedback through correc-
tions (Michael et al., 2019; Jiang et al., 2024; Liang et al., 2024), where humans correct the agent
only when it gets stuck or makes mistakes. This type of feedback arises organically when people in-
teract with AI systems, such as when they edit AI-generated code and images (Brooks et al., 2023),

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

or physically steering robots towards the goal (see Figure 1) (Bajcsy et al., 2018; Mandlekar et al.,
2020). Learning from such corrections involves policy adaptation based on their implicit preference
signals i.e. the human correction is preferred over the agent’s current behavior. Methods leveraging
human interventions for robot learning have used them as partial demonstrations (Liu et al., 2023;
Mandlekar et al., 2020; Michael et al., 2019; Luo et al., 2024b) to imitate preferred behavior, or as
reward shaping signals Knox & Stone (2009); Bajcsy et al. (2018); Xie et al. (2022); Luo et al.
(2024a); Korkmaz & Biyik (2025) for RL, or as constraints (Lindner et al., 2022; Spencer et al.,
2022; Ainsworth et al., 2019) over agent behavior.

Figure 1: Current intervention learning approaches use incorrect
human assumptions Korkmaz & Biyik (2025); Luo et al. (2024a)
or inefficient training schemes for policy adaptation Luo et al.
(2024b). Left: Real human intervention data and analysis, yields
a progress based non-Markovian model with better alignment to
observed behavior for realistic evaluation. Right: STEER - a hy-
brid BC+RL method that uses BC on human corrections to steer
exploration, then fades to pure RL via a decaying weight, enabling
faster learning with fewer interventions and robustness to noise.

In this work, we focus on learning
from physical human interventions
for robots. A key bottleneck is that
we need a principled understanding
of when and how humans intervene,
both to guide our algorithmic design
choices and evaluate these methods.
As real-world training and evaluation
is slow and expensive, we inevitably
need grounded simulators of human
behavior. Such models enable rig-
orous, repeatable evaluation and sys-
tematically guide algorithmic com-
ponents (e.g., how to incorporate cor-
rections, the exploration-safety trade
off, robustness to noise) prior to de-
ployment. For example, prior work
models interventions as reactions to
instantaneous action suboptimality
(value gap between the optimal and
policy action (Luo et al., 2024a)),
or as Boltzmann rational (Bradley &
Terry, 1952) functions proportional
to expert action value (Bajcsy et al.,
2018), or as probit choice model, in-
tervening when the human’s action
considerably exceeds the robot’s expected return (Korkmaz & Biyik, 2025). However, these for-
mulations are insufficiently grounded in real world behavior.

In Section 4, we present a comprehensive analysis of real human interventions in robot manipulation
and observe that rather than responding to instantaneous sub-optimality, humans intervene when the
agent’s progress over a short horizon falls below a threshold. This pattern aligns with cognitive mod-
els of caregiving, where intervention depends on the agent’s ability over time rather than isolated
states (Shachnai et al., 2025). Motivated by these findings, we propose a simple stagnation-based
intervention model that aggregates progress over a past horizon and intervenes based on progress
sub-optimality. Intuitively, a human monitors behavior over a window, and intervenes if improve-
ment is insufficient. This temporal criterion produces a more realistic simulator with higher corre-
lation to observed human behavior (Section 4.4). Critically, our analysis and model are grounded in
real data, not hypothetical feedback assumptions, providing a stronger basis for evaluation.

Additionally, we observe that interventions are inherently suboptimal (Section 4.2): they are in-
valid as ground-truth demonstrations, or perfect reward signals, contrary to prior works (Liu et al.,
2023; Mandlekar et al., 2020; Michael et al., 2019; Luo et al., 2024a;b). In Section 4.3, we show
that human behavior diverges from the learner policy as training progresses, because as humans
only partially observe the policy and task, their corrections can steer the robots towards valid yet
conflicting solutions w.r.t the current policy behavior. Our key insight is to treat interventions for ex-
ploration, rather than optimal supervision targets. Consequently, interventions only bias exploration
in training towards promising regions and RL can then recover optimal behavior from the (subopti-
mal) exploration data (Kostrikov et al., 2022; Levine et al., 2020; Chen et al., 2021). Prior works
used corrections as off-policy data, but we find that this is prohibitively slow as compared to simply
imitating these transitions with a maximum likelihood loss with a decaying weight. This proves to

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

be significantly more effective in adapting policy behavior to human feedback. Building on these ob-
servations, we introduce STEER (Supervised Takeovers for Efficient Exploration in Reinforcement
Learning) - a hybrid framework that combines RL on policy experience with weighted IL on human
interventions. Intuitively, the policy is quickly steered by recent human corrections to guide explo-
ration (down weighting stale older corrections), and as the robot makes progress towards the task, it
relies primarily on RL, making it robust to noise and human–learner divergence.

In summary (see Figure 1), this work addresses a fundamental need in sequential decision-making:
learning effectively from human feedback with reliable evaluation before deployment. To this effect,
we introduce a data-driven model of human interventions that captures how human behavior is
influenced by agent’s progress, enabling more reliable benchmarking for learning methods. Then,
we propose a simple algorithm that uses BC regularized off-policy RL, using corrections to guide
exploration rapidly rather than to prescribe the final objective. Across simulated manipulation tasks
and human experiments, this framework improves sample efficiency and reduces human effort while
remaining robust to noisy, divergent interventions.

2 RELATED WORK

Learning from Human Demonstrations Behavioral cloning on offline datasets (Argall et al.,
2009; Osa et al., 2018; Memmel et al., 2025) is widely-used to train robot policies, but it suffers
from compounding errors during deployment due to data-distribution shifts (Ross et al., 2011). Com-
plementary to this, RL enables training robust policies via task-rewards (Haarnoja et al., 2018a;b;
Schulman et al., 2017), but is inefficient and uses undirected exploration to search for successful
behavior in high dimensional spaces. Recent works (Rajeswaran et al., 2018; Nair et al., 2021;
Kostrikov et al., 2022; Yin et al., 2025; Ball et al., 2023) have leveraged offline datasets to initialize
policies, value functions and replay buffers to warm start the RL process. Particularly, Lu et al.
(2022) uses behavior cloning on offline datasets with off-policy (Haarnoja et al., 2018a) actor-critic
updates to guide RL. While these methods effectively leverage human data to improve sample ef-
ficiency, collecting task demonstrations is hard and expensive. In contrast, we leverage easy to
provide, online interventions (Michael et al., 2019) to bias the policy behavior during training.

Interactive Learning Interactive learning methods (Ross et al., 2011; Michael et al., 2019; Jiang
et al., 2024; Luo et al., 2024b; Xie et al., 2022; Ainsworth et al., 2019) address the drawbacks of
offline behavior cloning by collecting additional feedback during deployment, theoretically reducing
the compounding error problem from quadratic to linear regret with respect to the episode horizon
(Ross et al., 2011). Correcting per-step actions is hard for robots, so, a class of methods (Michael
et al., 2019; Mandlekar et al., 2020; Xie et al., 2022; Liu et al., 2023; Luo et al., 2024b; Spencer et al.,
2022) allow humans to takeover the robot control and override the policy behavior with corrective
actions. Michael et al. (2019); Mandlekar et al. (2020); Liu et al. (2023) use this correction to
directly supervise the policy via behavior cloning, while Luo et al. (2024b); Bajcsy et al. (2018);
Korkmaz & Biyik (2025) build models of this human behavior to guide RL. Lindner et al. (2022);
Spencer et al. (2022); Ainsworth et al. (2019) apply constraints over the policy and value functions
based on human corrections. Overall, these methods make strong assumptions about the optimality
of humans. Notably, Luo et al. (2024b) makes no such assumptions and adds interventions to
the replay buffer to speed-up off-policy RL, achieving impressive real-world results. This provides
further evidence that the intervention models used to guide the development of learning algorithms
have been erroneous. In this work, we directly compare to Luo et al. (2024b), and find that their
off-policy RL approach significantly slows learning from demonstrations relative to STEER .

Modeling Human Behavior Learning from human interventions requires understanding the dy-
namics of human intervention for data-driven algorithm design and evaluation. Because real-world
training is costly (Yin et al., 2025; Torne et al., 2024), prior work has relied on approximate human
models. TAMER (Knox & Stone, 2009) framed human feedback as a prediction model of scalar
rewards over transitions. Bajcsy et al. (2018); Bıyık et al. (2022); Wilson et al. (2012) formulate
interventions as Boltzmann-rational functions proportional to the value of states and actions. Ko-
rkmaz & Biyik (2025) proposes a probit model that intervenes when the human’s nominal action is
substantially better than the robot’s expected value. Similarly, RLIF (Luo et al., 2024a) models in-
terventions occur when the agent action falls below a threshold value of the optimal action. A shared
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assumption is that the model is Markovian and reactive to instantaneous sub-optimality. Our analy-
sis of real intervention data contradicts this, indicating that such models are ill-suited for evaluating
training methods. Further, cognitive theories suggest such decisions involve utility tradeoffs (Kah-
neman & Tversky, 1979), and recent caregiving models condition intervention on learner ability and
task utility over time (Shachnai et al., 2025). Consistent with these insights, our proposed model
takes into account the agent’s progress over a short horizon to choose interventions. We ground our
framework in real human intervention data, and these findings motivate our algorithmic framework.

3 PROBLEM STATEMENT

In this work, we build on the framework of interactive imitation learning (Michael et al., 2019; Luo
et al., 2024a;b; Mandlekar et al., 2020; Liu et al., 2023), focusing on learning from human inter-
ventions. We consider an interactive control setting over an MDP M = (S,A, T , γ, ρ0), where
S is the state space, A the action space, T the transition dynamics, γ the discount factor, and ρ0
the initial state distribution. The objective is to learn a policy πθ(a | s) that maximizes expected
discounted return, i.e., πθ = argmaxθ Eπθ

[∑
t≥0 γ

tr(st)
]
. During deployment, a human ob-

serves the agent and may intervene. We model the human as a decision function H = (g, πh)
with two components: a gating function g that decides when to intervene, and a human policy πh
that decides how to intervene. To allow temporal context, both may depend on a recent history
τt−L:t = (st−L, at−L, . . . , st), so, g : SL+1 × AL → [0, 1] outputs the probability of intervening
at time t, and πh : SL+1 ×AL → A returns a distribution over actions. The resulting rollout policy
is the mixture π′(a | st, τt−L:t) = g(τt−L:t)πh(a | τt−L:t) +

(
1− g(τt−L:t)

)
πθ(a | st), which

makes no optimality assumption about the human. Interventions can be variable-length (single ac-
tions or short segments). Thus, modeling human behavior requires simulating g and πh.

Prior baselines often assume access to (π∗, Q∗), and set πh ≡ π∗ (an assumption that we will
show is invalid using real data demonstrating human suboptimality and noise, see Section 4), and
define g as a Markovian function of Q and π. Concretely, Bajcsy et al. (2018) models g(st, a) ∝
exp{Q∗(st, a)} as a Boltzmann-rational function, while Korkmaz & Biyik (2025) introduces a
probit choice model based on g(st, a) = Φ

(
Q∗(st, a)−Ea′∼π(·|st)[Q∗(st, a

′)]− c
)
, and Luo et al.

(2024a) models g based on action sub-optimality i.e. g(st, at) = 1
[
Q∗(st, a

∗
t ) −Q∗(st, at) > τ

]
where τ, c are hyperparameters and Φ is the standard normal CDF. These formulations make strong
assumptions about Markovian structure and g being proportional to per-step sub-optimality, which
is not grounded in real-world data and is misaligned with observed human behavior, rendering them
suboptimal for both learning and evaluation. In the following sections, we (i) collect and analyze
real human interventions to characterize when and how people intervene, (ii) propose a temporally
grounded, progress-based model for g validated against this data, and (iii) introduce an algorithm
that addresses the key failure modes of prior approaches in learning from interventions.

4 HOW DO HUMANS INTERVENE FOR ROBOT POLICY LEARNING?

As discussed in Section 3, prior works (Knox & Stone, 2009; Luo et al., 2024a; Spencer et al., 2022;
Korkmaz & Biyik, 2025) make flawed assumptions without grounding it in real-world comparisons.
However, Luo et al. (2024b) relaxes any assumption to use correction transitions as off-policy data
for RL (Ball et al., 2023). This method is surprisingly effective, significantly outperforming past
methods. This provides further evidence that these assumptions are invalid and hence not beneficial
in practice. This raises an important question: how and when do humans actually intervene? In
order to address this, in the following sections (Section 4.1) we perform a comprehensive analysis
of real human intervention data. We observe that human behavior is sub-optimal (Section 4.2) and
non-Markovian (Section 4.4), which contradicts prior assumptions. Following this, in Section 4.4
we propose a better model for simulating human intervention that better fits offline data, enabling
more reliable simulated evaluation.

4.1 COLLECTING REAL HUMAN INTERVENTION DATA

We run human-in-the-loop robot manipulation experiments to collect intervention data, measuring
when people intervene and how they act during takeovers to evaluate and build better intervention
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models to inform our learning method. To isolate human behavior from hardware noise, we run
studies on three simulated robot tasks (see Section 6) with four human participants. Similar to
Luo et al. (2024b), we train a robot policy using off-policy RL and each user can take over from
the learning policy at anytime and control the robot end-effector with a 3D space mouse. Humans
observe and intervene until the policy converges to success. Further, we train a reference expert
policy and value function using RLPD (Ball et al., 2023) on each simulated task to get unbiased
experts (π∗, V ∗) that aid in our analysis.

4.2 HOW DO HUMANS INTERVENE?

Figure 2: Distribution of progress over real interven-
tion segments (higher is better). The median below the
optimal suggests that many interventions are not near-
optimal.

Generally, the intervention policy πh is as-
sumed to be (near-)optimal (often identified
with π∗) so that human corrections can be
treated as demonstrations. This assumption
underlies several methods discussed in Sec-
tion 2. However, before adopting this for learn-
ing or evaluation, we conduct an empirical
test on real intervention data. To assess task-
agnostic optimality, we introduce a measure of
value improvement over a trajectory segment
(st, at, st+1, . . . at+k−1, st+k). Under sparse
rewards, an optimal k-step segment from st to
s∗t+k satisfies V ∗(st) = γkV ∗(s∗t+k), whereas
any other sequence of k actions yields V ∗(st) ≥ γkV ∗(st+k). This motivates the length-normalized
progress score: Progress(st→ st+k) = 1

k logγ

(
V ∗(st)
V ∗(st+k)

)
, where larger values indicate greater

improvement (higher is better). The metric compares an observed intervention segment against the
optimal k-step baseline without assuming access to optimal actions.

We compute the progress score for human intervention on the dataset collected in Section 4.1. As
observed in Fig. 2, the distribution of progress has a low median value (∼ 0.3) and mean value
(∼ −0.0127) (as compared to the optimal target ≥ 1), indicating that many human interventions
generally fail to achieve near-optimal progress. Also, in Figure 4, we observed that the V ∗(st)
drops along human corrections indicating that humans are not always optimal. This contradicts the
common assumption πh ≡ π∗, implying that to learn from humans: methods should be robust to
non-expert, noisy corrections leading to our method in Section 5 that effectively combines BC and
RL to learn from interventions.

4.3 HUMANS AND POLICIES DIVERGE DURING TRAINING

Figure 3: Distribution of Q∗(s, aπ∗
θ
)−Q∗(s, aπh) at

intervention states during training (larger values favor
learned πθ). Most values ≥ 0 imply converged pol-
icy actions are higher valued than human corrections,
showing systematic divergence.

We further probe an additional source of mis-
alignment between the learner policy and hu-
man beyond suboptimal progress. In Figure 3,
we compare the value of actions from the con-
verged policy π∗

θ and human corrected action
under the converged critic i.e. Q∗(s, aπ∗

θ
) −

Q∗(s, aπh
) over all the states from training.

We observe that distribution is concentrated
above zero, suggesting that on convergence the
learner favors a different higher valued action
(or essentially, a different behavior mode) than
the human. Notably, we observed that the task
success during training is high (∼ 76%), imply-
ing that the difference reflects a divergence in solution paths rather than execution failures.

Our hypothesis is that sparse-reward tasks have many optimal solutions; e.g., a cup-picking task
can succeed via left- or right-side grasps. The human supervisor neither observes the full policy
nor the exact underlying reward and thus, potentially provides conflicting behavior as a correction.
Empirically, this manifests as policy actions having systematically higher value than humans under
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the converged critic. Imposing strict supervision in such settings can induce undesirable mode aver-
aging for unimodal policy classes (Osa et al., 2018). Increasing policy expressivity (Chi et al., 2024)
to capture multi-modality raises complexity.

These findings motivate a regularization on the supervision from intervention signals; specifically,
they should accelerate early exploration and recovery, but not affect convergence behavior. In Sec-
tion 5, we introduce a decay function that regularizes this supervision, shifting the bias from imita-
tion towards independent trial and error learning as training progresses, decreasing any divergence
issues caused by the human.

4.4 WHEN DO HUMANS INTERVENE?

Figure 4: Interventions follow short V ∗ plateaus or
drops, indicating non-Markovian, progress-dependent
functions, shown on trajectories from the can and
square tasks.

In Section 3, we discuss that prior work typi-
cally posits that the when-to-intervene model g
is Markovian and reacts to instantaneous sub-
optimality. This implies that timing depends
only on the current state (and possibly the cur-
rent action), not on how the agent has been per-
forming over time. Our empirical analysis con-
tradicts this view. In Figure 4, we observe that
interventions concentrate after short plateaus or
drops in V ∗(st), indicating that it is a non-
Markovian function that depends on progress
over a horizon. In addition, we observe that
humans tend to intervene when progress stag-
nates or drops, which motivates our following formulation. Also, Knox & Stone (2009) showed
that human response for corrections is delayed relative to agent behavior. Together, they motivate
the following claim: intervention timing is non-Markovian and progress-sensitive, and instanta-
neous suboptimality is insufficient.

Proposed gating model: Thus, we instantiate g as a simple stagnation-based model that depends
on the recent history τt−k:t. Let V ∗(st) − V ∗(st−k) denote progress over horizon k. We define g
as:

g(τt−k:t) = Pr(νt=1 | τt−k:t) =

{
α, if V ∗(st)− V ∗(st−k) < δ,

β, otherwise,
,

where k is the horizon and δ a progress threshold; α, β capture stochasticity in human decisions.
Intuitively, the model intervenes when the agent’s recent behavior fails to increase value (stagnation).
Also, this formulation naturally covers failures in the robot behavior as δ > 0 and failures would
imply V ∗(st)− V ∗(st−k) < 0.

Method Precision Recall

Action-Suboptimality 0.058 0.4848
Random 0.061 0.061
Ours 0.141 0.599

Table 1: Intervention prediction perfor-
mance on held-out human data. The
progress-sensitive, non-Markovian model
better matches real timing.

We evaluate this model against two baselines: Action
Suboptimality (used in (Luo et al., 2024a; Korkmaz &
Biyik, 2025)) as well as a Random model calibrated to
the empirical intervention rate. Using human data from
Section 4.1, we fit each model’s parameters and report in-
tervention prediction precision and recall via grid search
(Details in Appendix B.2.3, and report the precision and
recall across all methods.

Our progress-based when-to-intervene model is a
stronger evaluation model for simulation. In Table 1, we observe that our model (evaluated
on the held out task-data) outperforms the baselines in terms of recall and precision, indicating that
a model accounting for robot progress over a short horizon correlates better with human behavior.
Our stagnation-based model attains higher agreement with real timing, consistent with the non-
Markovian, progress-sensitive nature of human intervention. This shows that our model can be used
as an effective method to simulate human behavior and test different intervention learning methods.

Overall, our analysis informs the algorithm design to robustly use suboptimal, divergent hu-
man corrections and our better when-to-intervene model leads to stronger evaluation.
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5 HOW TO USE HUMAN INTERVENTIONS FOR ROBOT POLICY LEARNING?

Our analysis in Section 4 shows that interventions are sub-optimal and we cannot use them as
demonstrations or reward surrogates. We therefore propose a method that adapts rapidly to noisy
online interventions to guide behavior, while preserving the true unbiased objective. Following
drawbacks of prior works (Section 4), we propose a method for fast adaptation to human interven-
tions via off-policy actor critic loss on online policy experience and a weighted behavior cloning
loss on human corrections.

Practically, we learn a policy πθ and critic Qψ using an online off-policy actor–critic algo-
rithm (Haarnoja et al., 2018b;a; Ball et al., 2023). In our framework (see Algorithm 2), online roll-
outs of πθ are added to an experience bufferDπ . As a human supervisor (or simulated human model)
intervenes, providing corrective actions, we store such transitions in a separate buffer Dintervene. Op-
tionally, we can initialize Dπ and Dintervene with a small amount of offline demos, similar to Ball
et al. (2023) to warm-start the RL training. The critic Qψ is updated on Dπ by minimizing the Bell-
man regression loss ψ ← argminψ E(s,a,r,s′)∼Dπ

[ (
Qψ(s, a)−(r+γ Ea′∼πθ(·|s′)[Qψ(s

′, a′)])
)2 ]

.
For the actor, the learning objective combines (i) standard RL policy improvement over Dπ that op-
timizes for task-success (ii) a maximum-likelihood objective on Dintervene that biases exploration:

θ ← argmax
θ

E s∼Dπ, a∼πθ(·|s)
[
Qψ(s, a)

]︸ ︷︷ ︸
RL policy-improvement onDπ

+ λ(i)︸︷︷︸
time-varying weight

E (s,a)∼Dintervene

[
log πθ(a | s)

]︸ ︷︷ ︸
maximum-likelihood alignment on interventions

Intuitively, standard actor-critic uses sampling of actions from stochastic policies for exploration
(which is very inefficient in high dimensional spaces (Ladosz et al., 2022)). Our method additionally
uses the supervision signal from interventions to update the policy directly and guide its exploration.
Human interventions steer the agent towards promising regions of the environment, and help reduce
failure or accelerate task completion, so they need not be optimal. Consequently, this also avoids the
need for slow critic updates over the intervention segments to align the policy to human feedback.
Thus, our method enables fast and robust adaptation to interventions.

Importance of λ(i) STEER makes explicit that interventions directly shape the policy via a fast,
supervised update. To be effective under noisy feedback, the learning objective should preserve pol-
icy invariance to such shaping (Ng et al., 1999). We therefore regularize supervision with a weight
λ(i), so that intervention-driven updates accelerate early exploration but vanish asymptotically.

To this effect, for each intervention pair, (s, ahuman), we store supervision weight that decays geo-
metrically across actor updates, (similar to eligibility traces in tabular RL (Sutton, 1988; Sutton &
Barto, 2018)) i.e. λ(t + 1|s, ahuman) = (1 − ϵ) ∗ λ(t|s, ahuman), where ϵ is the decay parameter. As
a result, as training proceeds, λ(i)→0, so at convergence (when humans stop intervening) the actor
optimizes only the RL objective. Intuitively, as discussed in Section 4.3, human and learners can
diverge over training, so this decay scheme naturally gives higher influence to recent interventions
while diminishing stale corrections; reducing bias from noise and mode mismatch.

6 EXPERIMENTS AND RESULTS

In our experiments, we aim to answer the following questions: (1) Does STEER achieve better task
performance across both real and simulated humans? (2) Does STEER reduces human effort in
terms of intervention effort while achieving similar performance? and (3) What roles does λ(i) play
in STEER ?.

Tasks We evaluate our method across three simulated robotic manipulation tasks (with both simu-
lated and real humans), adapted from standard benchmarks (RoboMimic (Mandlekar et al., 2020)):
1) Lift: Grasp and lift a cube to a target height. 2) Can: Pick up a cylindrical can and place it into a
designated bin. 3) Square: Insert a square peg into a square hole, testing fine-grained manipulation
and alignment.

Baselines In our experiments, we compare to multiple competitive baseline methods across real
and simulated human interventions: 1) HIL (Ball et al., 2023): A hybrid method combining off-
policy RL with online human-in-the-loop data in the replay buffer. 2) HG-DAgger (Michael et al.,
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Figure 5: Left: Three robotic manipulation tasks which we use to collect intervention data and evaluate our
methods. Right: Success rate vs environment steps across multiple tasks and baselines with simulated humans.
STEER consistently outperforms all baselines.

2019): An extension of DAgger (Ross et al., 2011) where human interventions are used as additional
demonstrations for behavior cloning. 3) RLIF (Luo et al., 2024a): A method that updates the
reward function in HIL, treating human interventions as negative reward signals at takeover states.
4) STEER and STEER (w/o decay) : Our method introduced in Section 5, along with an ablation
with an unweighted supervised loss.

Training and Evaluation Details We use a jax-based implementation of HIL Luo et al. (2024b)
as our base off-policy RL algorithm. In Section 4.1 and Appendix B.2.1 we carefully outline our
details for collecting real-world data and experiments. For experiments with simulated humans,
we use our proposed intervention model from Section 4.4 and a sub-optimal RL policy to provide
corrections to the learner and evaluate our method across three seeds across the three tasks. For
real world experiments, we run all methods with two humans across two tasks. Since we want
to investigate methods that learn from real humans, where data is expensive and iteration speed is
critical, we investigate all methods under limited environment interaction budgets with 40k total
steps in simulation and 15k steps in the real world. We include all the training details (including
hyperparameters) in the Appendix B.2.

6.1 STEER ACHIEVES BETTER TASK PERFORMANCE WITH BOTH SIM AND REAL HUMANS

Figure 6: Comparing success rate vs en-
vironments with real humans intervening in
the simulated tasks.

As discussed above RLIF (Luo et al., 2024a) and HG-
DAgger (Michael et al., 2019) require near-optimal hu-
man interventions, while HIL Luo et al. (2024b) purely
uses inefficient actor-critic updates to learn from the inter-
ventions. In contrast, STEER deploys a hybrid approach
to use interventions for guiding exploration in addition to
off-policy RL. So, we see in Figure 5 that with simulated
humans, STEER consistently outperforms all the base-
lines in terms of success rate, demonstrating the effective-
ness of the intervention supervision in STEER to guide
exploration during training. Michael et al. (2019) has
non-trivial performance but falls short because it falsely
assumes optimality in corrections. Finally, HIL is very
inefficient, while RLIF has negligible performance within
the limited budget of ∼40k environment interactions.

In Section 4.2, we observe that our intervention model
for simulated experiments fits an offline dataset better.
So, next we investigate if the conclusions about the algo-
rithms derived from this setup translate to the real-world.
In Figure 6, we observe that STEER significantly outper-
forms the baselines, and particularly, in the can task (with
a longer horizon) the baselines completely fail while STEER converges to a high success rate across
both human participants. As our simulated when-to-intervene model is closely aligned to real-world
data, we also observe a strong correlation in the performance of different methods across the real
and simulated settings, further highlighting the benefits of building better evaluation models.

In the simulated setting, the human correction behavior is a noisy model to emulate real-world
humans that are noisy and irrational, and we observe that STEER is significantly robust to the sub-
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optimality in corrective actions. In comparison, the baselines that assume strong optimality in human
data, perform poorly, indicating that STEER is a better approach to handle noisy humans.

6.2 STEER SIGNIFICANTLY DECREASES HUMAN EFFORT TO ACHIEVE THE SAME
PERFORMANCE OVER OTHER METHODS.

Luo et al. (2024b) simply uses the intervention segments as off-policy data to update the replay buffer
during off-policy RL. In order to use this data, the only way is to propagate the rewards achieved in
these segments to the value function via Bellman backups (see Algorithm 1). And then the policy
extraction step aligns the robot to execute these high-value functions in the human corrections.

Figure 7: Comparing the number of inter-
ventions from real-humans across environ-
ment steps.

In Figure 7, we observe that STEER leveraging super-
vised updates outperform the pure-RL baselines signifi-
cantly in terms of human effort i.e. STEER converges
to a high success rate with ∼2x less human interven-
tions than other baselines with real humans. As STEER
uses maximum-likelihood supervision to directly align
the policy with the human corrected transitions (with a
decaying weight to avoid optimality assumptions unlike
Michael et al. (2019)), it allows the policy to learn even
faster with the online experience. For additional plots, see
Appendix A.1.

6.3 DOES λ(i)
ENABLE STEER TO BE ROBUST TO SUB-OPTIMALITY
AND DIVERGENCE IN HUMAN INTERVENTIONS?

In Section 4.3 and 4.2, we observe with real-world data
that as training progresses there is a divergence between
the learner and the user. STEER accounts for this hu-
man divergence and irrationality via the decay parame-
ter λ(i). As a result, in Figure 6, when we train robots
with real humans we observe that STEER outperforms
the ablation which does not incorporate this regulariza-
tion during training. Our hypothesis is that this decay
naturally weights the current interventions higher, while
down-weighting the past interventions. As the training
progresses, and intervention rates are lower, the policy update is completely dependent on the actor-
critic updates, removing any bias introduced by the human intervener.

7 DISCUSSION

This work performs a detailed study on the problem of learning from human interventions. We show
that many of the optimality assumptions made in prior work about the nature of human interventions
do not match data from actual human users. We conduct a detailed study of when and how human
users intervene, showing that they focus much more on a notion of progress and stagnation than
optimality. We use these findings to (1) instantiate a better correlated simulated human model for
future researchers to develop methods against, (2) instantiate a new method for learning from hu-
man interventions that guides exploration rather than assumes optimality. While these findings are
promising, many avenues for future work remain. We plan to extend this work to study humans
intervening on real robots. We also need to study the plurality of intervention types across many
different human interveners. And finally, we propose a simple naive algorithm for incorporating
interventions; a more sophisticated exploration algorithm incorporating targeted optimism would be
promising to explore in future work.

9
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will release our code (which is built on-top of public jaxRL codebase),
our dataset collected across multiple users and our intervention models to guide future algorithms.
We outline the complete training algorithm, hyperparameters, environments, reward functions and
dataset details in Sections 4.1, 6 and Appendix B.2.5, B.2.1.

9 USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs for assistance to write code required to produce some of the experiments in this
paper. Additionally, we used LLMs to format figures and language corrections in the LaTeX source.

REFERENCES

Samuel Ainsworth, Matt Barnes, and Siddhartha Srinivasa. Mo’ states mo’ problems: Emergency
stop mechanisms from observation, 2019. URL https://arxiv.org/abs/1912.01649.
2, 3

Brenna Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57(5):469 – 483, May 2009. 3

Andrea Bajcsy, Dylan P Losey, Marcia K O’Malley, and Anca D Dragan. Learning from physical
human corrections, one feature at a time. In Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction, pp. 141–149, 2018. 2, 3, 4

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023. 3, 4, 5, 7

Erdem Biyik and Dorsa Sadigh. Batch active preference-based learning of reward functions. In 2nd
Annual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October 2018,
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A APPENDIX

A.1 HOW DOES TASK PERFORMANCE CHANGE WITH MORE INTERVENTIONS ACROSS
DIFFERENT METHODS?

In Figure 8, we observe that STEER uses significantly less human interventions to converge to a
successful policy, while the RL baselines are worse (sometimes with zero performance within the
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same effort). HG-DAgger gets worse with more interventions because of noise in simulated human
actions, showing the benefit of our method in handling noise in human actions which is confirmed,
as discussed and verified in Section 4.

Figure 8: Comparing task success againsts number of real and simulated human interventions

A.2 ANALYSING INTERVENTION EFFORT ACROSS REAL AND SIMULATED HUMAN
EXPERIMENTS

In Figure 9, we visualize the intervention rate of the either the simulated or the real human super-
vising the policy across different environments and algorithms. STEER aligns rapidly with human
correction i.e. the supervised adapts bias the policy towards the behavior the human considers better
early on the training leading to a drop in the intervention rate. But, this biased exploration enables
the policy to collect useful and successful experience quickly, which is leveraged by the RL up-
date later. As a result, STEER reach high success rates much faster than baselines. Further, across
simulation and real we note qualitatively, that the intervention rate trends are correlated showing a
stronger promise towards our introduced stagnation model being a better setting for evaluation.

Figure 9: Comparing intervention rate for real and simulated human againts intervention steps

B IMPLEMENTATION DETAILS

B.1 TASK DETAILS

We evaluate our approach on three goal-conditioned robotic manipulation tasks. Each task is adapted
from the RoboMimic benchmark suite (Mandlekar et al., 2020) and is posed with sparse, success-
based rewards.

Lift. The agent must grasp a cube and elevate it to a target height above the table. The object obser-
vation is a 10-dimensional vector comprising the cube’s absolute position and orientation, together
with the cube’s position relative to the end effector. The sparse reward is defined as r = 1 if the
cube’s height exceeds the target threshold.

Can. The agent must pick up a cylindrical can and place it into a targeted bin region. The object
observation is a 14-dimensional vector comprising the can’s absolute position and orientation, as
well as the can’s position and orientation relative to the end effector. The task is successful if the
can is within the target region.

Square. The agent must insert a square nut onto a square peg, requiring precise in-hand alignment
prior to insertion. The object observation is the nut’s absolute position, orientation, with the nut’s
relative position and orientation. At the beginning of each episode, the nut pose is randomized on
the table. The objective is to align the nut with the peg within tolerance.
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These tasks jointly assess different robot skills under sparse feedback, thereby providing a strong
benchmark for intervention based learning and for measuring improvements in sample efficiency
and human effort.

B.2 TRAINING DETAILS

B.2.1 REAL-WORLD SETUP

Figure 10: Researcher using
a 3Dconnexion SpaceMouse
for interventions

For experiments with real human interventions, we recruited re-
searchers to intervene on robot policies using a 3Dconnexion
SpaceMouse for teleoperation . Prior to data collection, partic-
ipants underwent a familiarization phase that included: (1) col-
lecting demonstration trajectories to understand the task dynamics
and control interface, and (2) practice sessions intervening on pre-
trained policy checkpoints at various stages of learning to calibrate
their intervention strategy.

For the intervention model study, participants intervened on policies
trained using HIL (Luo et al., 2024b) as the base learning algorithm.
To accelerate convergence, we initialized training with 25 demon-
stration trajectories, fixed the initial positions of both the robot end-
effector and goal objects across episodes, and restricted the action
space to only end-effector position deltas and gripper commands.
Each participant then provided interventions during live policy training for approximately 30 min-
utes per task, resulting in a dataset of human intervention behaviors across different stages of policy
learning.

B.2.2 SIMULATED HUMAN INTERVENER DETAILS

We intervened with a RLPD checkpoint achieving 50-70% success on the target task, and sample
intervention lengths from the bottom 75% of intervention lengths.

B.2.3 FITTING INTERVENTION MODEL PARAMETERS

To fit our progress-based intervention model to the collected human data, we performed a grid search
over the window size k timesteps and the progress threshold δ, optimizing for the highest F1 score
on intervention prediction. We developed a unified intervention model across all tasks rather than
task-specific models, prioritizing the capture of fundamental intervention behaviors (e.g., reaction
time, progress perception) over task-specific patterns to enhance generalization.

B.2.4 REAL WORLD TRAINING

To evaluate our method with real human interventions, we conducted experiments where human
participants intervened on learning policies in real-time. We tested four algorithms: HIL (Luo et al.,
2024b), RLIF (Luo et al., 2024a), and our method STEER (with and without decay) across two
manipulation tasks (Lift and Can) with two human participants.

We fixed initial goal positions and restricted the action space to 4DOF control (3D position deltas
+ gripper) to reduce complexity and improve learning speed. Participants used a 3Dconnexion
SpaceMouse to provide interventions when they observed the robot making errors or failing to make
progress toward the task goal.

We logged all interventions, policy rollouts, and task successes to analyze both final performance
and intervention efficiency. To ensure consistency across experiments, we used the same hyper-
parameters for each algorithm as in our simulated experiments, with the only difference being the
intervention source (human vs. simulated model).

B.2.5 HYPERPARAMETERS

We outline all hyperparameters used in our experiments in Table 2.
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Table 2: Hyperparameters for STEER and baselines. We use the same parameters across all experi-
ments and report the best result on 3 seeds.

Hyperparameter Value
Core RL Parameters
Architecture MLP with Gaussian Head
Hidden layers 3 layers of width 256
Optimizer Adam
Learning rate 3e-4
Discount (γ) 0.99
Soft update (τ ) 0.005
UTD Ratio 5
Batch size 256
Replay buffer size 1e6
STEER-Specific Parameters
BC weight (initial λ0) 1.0
BC decay rate (ϵ) 5e-4 (lift), 1e-4 (can)
BC decay type Per-timestep exponential
Intervention Model Parameters
Stagnation window (k) 9
Stagnation threshold (δ) -0.158
True positive rate (α) 0.599

C ALGORITHM

Algorithm 1 Human in the Loop Learning: HIL (Luo et al., 2024b)

Require: πθ, Qψ , πhuman, Dπ

1: for trial i = 1 to N do
2: for timestep t = 1 to T do
3: if πhuman intervenes at t then
4: append (st, a

human
t , rt, st+1) to Dπ

5: else
6: append (st, at, rt, st+1) to Dπ

7: end if
8: end for
9: ψ ← argminψ E(s,a,r,s′)∼Dπ

[(
Qψ(s, a)− (r + γQψ(s

′, πθ(s
′)))

)2]
10: θ ← argmaxθ Es∼Dπ,a∼πθ

[
Qψ(s, a)

]
11: end for

Algorithm 2 STEER: Supervised Takeovers for Efficient Exploration in RL

Require: πθ, Qψ , πhuman, Dπ , Dintervene, λ(.)
1: for trial i = 1 to N do
2: for timestep t = 1 to T do
3: if πhuman intervenes at t then ◁ or a simulated (g, πh) behavior model
4: append (st, a

human
t ) to Dintervene

5: else
6: append (st, at, rt, st+1) to Dπ

7: end if
8: end for
9: ψ ← argminψ E(s,a,r,s′)∼Dπ

[(
Qψ(s, a)− (r + γQψ(s

′, πθ(s
′)))

)2]
10: θ ← argmaxθ Es∼Dπ,a∼πθ

[
Qψ(s, a)

]
− E(s,a)∼Dintervene [λ(i|st, at) ∗ log πθ(a | s)]

11: ◁ weighted BC loss on interventions
12: λ(i+ 1|st, at) = (1− ϵ) ∗ λ(i|st, at) ∀(st, at) ∈ Dintervene
13: end for
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