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Abstract001

Object hallucination is a significant challenge002
that undermines the reliability of the Vision003
Language Model (VLM). Current methods for004
evaluating hallucination often require compu-005
tationally expensive complete sequence gener-006
ation, making rapid assessment or large-scale007
analysis difficult. We introduce HALP (HALlu-008
cination Prediction via Probing), a novel frame-009
work to efficiently estimate a VLM’s propen-010
sity to hallucinate objects without requiring full011
caption generation. HALP trains a lightweight012
probe on internal VLM representations ex-013
tracted after image processing but before au-014
toregressive decoding. HALP offers a new015
paradigm for efficient evaluation of VLM, a016
better understanding of how VLMs internally017
represent information related to grounding and018
hallucination, and the potential for real-time019
assessment of hallucination risk.020

1 Introduction021

Vision-Language Models (VLMs) (Bordes et al.,022

2024) are transforming multimodal AI, they have023

demonstrated remarkable capabilities in under-024

standing and generating language about visual025

scenes. However, their propensity to generate factu-026

ally incorrect or "hallucinated" content, especially027

describing non-existent objects, is a major impedi-028

ment to their reliability and trustworthiness in crit-029

ical applications (e.g., medical, autonomous sys-030

tems). This erodes user trust and can lead to harm-031

ful outcomes.032

Current VLM evaluation, particularly for object033

hallucination, heavily relies on post-hoc analysis034

of fully generated outputs (Li et al., 2023). Other035

approaches focus on mitigating hallucination dur-036

ing or after generation or detecting it in generated037

text (Chen et al., 2024). While important, these038

don’t address the need for efficient, pre-generative039

prediction of a model’s likelihood to hallucinate040

for a given input. This limits rapid model iteration,041

large-scale analysis of internal states, and real-time 042

risk assessment. There’s a gap in methods that can 043

forecast hallucination propensity from early sig- 044

nals within the model. The central hypothesis is 045

that these internal VLM states may harbor predic- 046

tive signals of potential object hallucinations even 047

before a full caption is decoded. 048

We propose HALP (HALlucination Prediction 049

via Probing), a framework to train lightweight 050

"probes" directly on these internal VLM states. 051

The goal is to efficiently predict whether a VLM 052

is likely to hallucinate for a given image, and to 053

what extent, without needing to generate the entire 054

output sequence. 055

In this work, we introduce HALP (HALlucina- 056

tion Prediction via Probing): 057

• State extraction: We tap hidden activations at 058

three key points in the captioning pipeline—(i) 059

the end-of-image token (post-visual encod- 060

ing), (ii) the end-of-query token (after mul- 061

timodal fusion), and (iii) intermediate layers 062

across the decoder. 063

• Probe design: We train simple linear classi- 064

fiers or small MLPs on these activations to 065

predict (a) a continuous hallucination sever- 066

ity score, (b) a binary hallucination flag, and 067

(c) the likelihood of specific common objects 068

being hallucinated. 069

Our experiments on COCO 2014 images data 070

show that nearly all hallucination-predictive infor- 071

mation is contained in the raw vision encoder out- 072

put. On LLaVA-1.5, a 3-layer MLP probe trained 073

solely on the pooled CLIP embedding achieves 074

an MSE of 0.0455 for CHAIRi regression and a 075

ROC–AUC of 0.75 for binary detection—both su- 076

perior to probes built on the model’s final mul- 077

timodal fusion or query-conditioned embeddings 078

(MSE ≥ 0.0509, AUC ≤ 0.665). We observe 079

the same pattern on PaliGemma-2 (vision-only 080
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MSE=0.0852, AUC=0.732), demonstrating that081

later decoder layers add noise rather than new sig-082

nals for hallucination forecasting. These findings083

underscore the power of early vision representa-084

tions for real-time hallucination risk assessment.085

2 Background and Related Work086

Object Hallucination in VLMs: Object hallu-087

cination occurs when a VLM describes objects088

absent from the visual input, undermining reli-089

ability in domains such as medical imaging or090

autonomous navigation. Such errors stem from091

mismatches between language priors and visual092

grounding, as well as annotation biases in train-093

ing datasets. Mitigation strategies operate dur-094

ing or after generation, including Uncertainity-095

Guided Dropout Decoding (Fang et al., 2024),096

adaptive focal-contrast decoding (HALC) (Chen097

et al., 2024), and perception-driven grounding aug-098

mentation (Ghosh et al., 2025). Post-hoc detec-099

tion methods flag hallucinated mentions in gener-100

ated captions. Evaluation predominantly uses the101

CHAIRi metric (Rohrbach et al., 2018), defined102

as the ratio of hallucinated object instances to all103

objects mentioned in a caption, and requires full104

output generation.105

Probing: Probing is a diagnostic methodology106

wherein lightweight classifiers or regressors are107

trained on fixed internal activations of a neural108

network to test whether those activations encode109

specific properties. In NLP, probes have revealed110

that pretrained language models systematically en-111

code part-of-speech tags, syntactic dependencies,112

and coreference relations at particular layers by113

training linear classifiers on token- or sentence-114

level hidden states (Hewitt and Liang, 2019; Mar-115

vin and Linzen, 2018). In computer vision, linear116

probes applied to convolutional activations reveal117

the spontaneous emergence of object detectors in118

scene-classification networks (Zhou et al., 2015),119

and have been used to systematically quantify unit120

interpretability by aligning individual hidden units121

with semantic concepts via Network Dissection122

(Bau et al., 2017). More recently, linear probing123

has been adopted to evaluate and analyze Vision124

Transformer representations, demonstrating that in-125

termediate self-attention and MLP layers encode126

rich class-specific and scene-level semantics (Chen127

et al., 2022). These works illustrate that probing128

offers a lightweight yet powerful tool for charting129

where and how task-relevant features emerge in130

Figure 1: Overview of the HALP probing pipeline. An
input image is first encoded into visual tokens by the vi-
sion encoder and projected into the language embedding
space by the multimodal connector. These embeddings,
together with a system prompt and task-specific query
tokens, are fed into the LLM decoder. Hidden states are
then extracted at three strategic positions—the end of
the visual token sequence, the end of the query sequence,
and selected intermediate decoder layers—and passed
to lightweight probes that predict object hallucination
before full caption generation.

deep architectures, motivating our use of probes to 131

detect hallucination signals early in VLM decod- 132

ing. 133

3 HALP: HALlucination Prediction via 134

Probing 135

3.1 Preliminaries: VLM Architecture 136

A vision–language model (Liu et al., 2023) con- 137

sists of three core components in sequence: first, a 138

vision encoder (Radford et al., 2021) decomposes 139

the input image into a set of continuous feature vec- 140

tors, or “visual tokens,” capturing patch-level visual 141

information; next, a multimodal connector which 142

maps those visual tokens into the same embedding 143

space as the language model, enabling joint rea- 144

soning over vision and text; finally, a Transformer- 145

based LLM decoder (Team et al., 2024) consumes 146

the fused visual embeddings—optionally alongside 147

task-specific query tokens—and autoregressively 148

generates the target text. It is precisely the hid- 149

den activations at various positions within this en- 150

coder–connector–decoder pipeline that we tap for 151

our hallucination-prediction probes. 152

3.2 Post-Generation Hallucination 153

A caption is generated by processing an image 154

along with a prompt in VLM. Once the caption 155
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ĉj is generated, the presence and degree of halluci-156

nation are assessed based on two key indicators:157

Continuous metric (aj): Defined as the propor-158

tion of objects in the generated caption that are159

considered hallucinated.160

Binary indicator (bj): A binary value indicating161

whether hallucination occurred (1) or not (0).162

3.3 Extracting Internal Representations for163

Probing164

To forecast hallucination risk before any tokens are165

generated, we extract three classes of vectors from166

a single forward pass of the VLM on image Ij :167

1. Global vision embedding evj ∈ Rd: the168

pooled output of the vision encoder, which summa-169

rizes the primary visual features of Ij .170

2. Layer-wise fusion embeddings e
(ℓ)
fj

∈ Rd:171

for each selected decoder layer ℓ ∈ L, we record172

the hidden state at the position immediately fol-173

lowing the projected visual tokens. This vector174

captures how the model’s attention mechanism has175

integrated image features with any preceding text176

(e.g., system prompts).177

3. Query-conditioned decoder states h
(ℓ)
qj ∈178

Rd: from the same layers ℓ ∈ L, we also extract179

the hidden state at the final query token—i.e. just180

before autoregressive generation begins—to cap-181

ture the fused multimodal context that guides the182

forthcoming caption.183

We then concatenate all of these—evj ,184

{e(ℓ)fj
}ℓ∈L, and {h(ℓ)

qj }ℓ∈L—into a single feature185

vector xj . Our lightweight probe is trained on186

{(xj , yj)}, where yj is the ground-truth hallucina-187

tion metric, enabling pre-generation prediction of188

hallucination propensity.189

4 Experiments and Results190

4.1 Experimental Setup191

Dataset: We employ the COCO 2014 dataset192

(Lin et al., 2015). Each image is annotated with193

up to five human-written captions and instance seg-194

mentation masks covering 80 common object cate-195

gories.196

Models: We evaluate two state-of-the-art open-197

source VLMs198

LLaVA-1.5 (Liu et al., 2024) combines a CLIP-199

based vision encoder with a Vicuna 1.5b lan-200

guage model, fused via a two-layer MLP pro-201

jection and cross-attention module.202

PaliGemma-2 (Steiner et al., 2024) integrates a 203

SigLIP vision backbone with the Gemma 2 204

LLM through a learned cross-attention con- 205

nector. 206

Post-Generation Hallucination Metrics: To 207

measure object-level hallucination, we compute: 208

CHAIRi: (Rohrbach et al., 2018) the ratio of 209

hallucinated object mentions to all mentioned 210

objects in a generated caption. 211

Binary indicator: a Boolean flag set to 1 if 212

CHAIRi > 0, indicating any hallucination. 213

Hidden-State Extraction Layers: We probe hid- 214

den states at five key decoder depths: 215

ℓ ∈ { 0, 1, ⌊N/2⌋, N − 2, N − 1}, 216

where N is the total number of Transformer blocks 217

in the LLM decoder. These layers capture early, 218

middle, and late decoding dynamics to assess when 219

hallucination signals emerge. 220

Probe Architectures We train two families of 221

probes, each a 3-hidden-layer MLP: 222

• Vision-only probe Pv: input is the pooled vi- 223

sion embedding evj . 224

• Layer-wise probes Pℓ for each ℓ ∈ L: input is 225

the concatenation of evj and all fusion/query 226

states up to decoder layer ℓ. 227

4.2 Results and Analysis 228

Vision Embedding Image Embedding (Layer N) Query Embedding (Layer N)

Regression (MSE)

LLaVA 0.0455 0.0509 0.0523
PaliGemma 0.0852 0.8570 0.0840

ROC–AUC

LLaVA 0.750 0.632 0.500
PaliGemma 0.732 0.500 0.492

Table 1: Summary of probe performance on two VLMs.
Top block: mean-squared error (MSE) for continuous
CHAIRi regression; bottom block: ROC–AUC for bi-
nary hallucination detection. Layer N defined as last
layer in the Language Model decoder.

Across both regression and classification tasks, 229

the simplest “vision-only” probe—using only the 230

pooled encoder output—consistently outperforms 231

probes built on deeper decoder representations (re- 232

fer table 2 and 3 in A.1). For the continuous hallu- 233

cination severity prediction, the vision-only probe 234

achieves a mean-squared error of 0.0455, whereas 235
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probes based on the end-of-image embeddings in-236

cur higher errors (0.0504–0.0523) and query-based237

probes perform no better (0.0523–0.0526). This238

indicates that the raw visual features alone capture239

nearly all of the information needed to estimate240

hallucination severity, and that adding successive241

layers of multimodal fusion slightly degrades re-242

gression accuracy.243

Similarly, for binary hallucination detection, the244

vision-only probe attains the highest ROC-AUC245

(0.75). Image-level probes peak modestly at de-246

coder layer 1 (AUC = 0.665) before declining to247

approximately 0.63 by layer 30, while query-based248

probes start near chance ( ≈ 0.50 at layer 0), im-249

prove to around 0.62 at the mid-layers, then drop250

again. These trends show that although early fu-251

sion layers introduce some discriminative signal,252

they never surpass the straightforward vision em-253

bedding—and later decoding stages actually dilute254

it.255

Table 1 shows that our findings generalize256

across two distinct VLM architectures. LLaVA257

achieves substantially lower regression error (MSE258

= 0.0455) and higher classification accuracy259

(ROC–AUC = 0.75) when using only the vi-260

sion encoder’s pooled embedding, compared to261

PaliGemma (MSE = 0.0852, AUC = 0.732). Probes262

built on the final decoder “image” embedding263

hurt performance for both models (LLaVA: MSE264

0.0509, AUC 0.632; PaliGemma: MSE 0.8570,265

AUC 0.500), and query-embedding probes offer266

no benefit (LLaVA AUC = 0.50; PaliGemma AUC267

= 0.492). In other words, the pure vision-based268

probe is the most reliable across architectures,269

while deeper multimodal fusion and query con-270

ditioning consistently degrade both regression and271

classification performance. This reinforces the con-272

clusion that the primary hallucination-predictive273

signal resides in the vision encoder outputs, with274

little to no incremental gain—and often added275

noise—from later decoder stages. In summary,276

almost all hallucination-predictive signal is already277

present in the vision encoder’s output. Subsequent278

multimodal fusion and decoding layers introduce279

more noise than benefit for the specific task of pre-280

generation hallucination forecasting.281

5 Conclusion282

We presented HALP, a lightweight probing frame-283

work for pre-generative prediction of object hal-284

lucination in vision–language models. By extract-285

Figure 2: ROC–AUC for binary hallucination detection
as a function of decoder layer. The green line shows the
vision-only probe (constant at 0.75), the blue line shows
probes built on the end-of-image embedding at each
layer, and the red line shows probes on the end-of-query
embedding.

ing global vision embeddings and layer-wise fu- 286

sion representations from a single forward pass, 287

and training simple MLP probes, we demonstrated 288

that most hallucination-predictive information is 289

already encoded in the vision encoder’s outputs. 290

Our experiments on LLaVA-1.5 and PaliGemma-2 291

show that a vision-only probe outperforms deeper, 292

multimodal fusion-based probes in both continu- 293

ous (MSE) and binary (ROC-AUC) hallucination 294

prediction, highlighting the limited incremental 295

value—and occasional noise—introduced by later 296

decoder layers. 297

These findings have two main implications. First, 298

they enable rapid, real-time hallucination risk as- 299

sessment without expensive autoregressive decod- 300

ing. Second, they suggest that future mitigation 301

strategies might focus on refining the vision en- 302

coder’s grounding signals rather than modifying the 303

decoder. In future work, we plan to extend HALP 304

to additional hallucination metrics (e.g. attribute or 305

relation errors), evaluate its generalization across 306

diverse VLM architectures and domains, and inte- 307

grate probe outputs into decoding-time correction 308

mechanisms for on-the-fly hallucination preven- 309

tion. 310
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Ethical Considerations311

Our work focuses on detecting and predicting312

object hallucinations in vision–language models313

(VLMs) by probing internal representations. While314

HALP itself does not generate novel content, its de-315

ployment may influence downstream applications316

that rely on VLM outputs—for example, in health-317

care, autonomous vehicles, or assistive technolo-318

gies. An overly aggressive hallucination flag could319

result in false alarms, causing unnecessary inter-320

vention or eroding user trust, whereas an under-321

sensitive probe could fail to catch critical errors.322

We therefore advocate for human-in-the-loop val-323

idation in high-stakes domains and recommend324

threshold calibration based on application require-325

ments. Additionally, our probe is trained on COCO326

data, which may contain demographic or cultural327

biases in image selection and caption annotations;328

these biases could propagate into hallucination pre-329

dictions. We encourage future practitioners to eval-330

uate HALP’s performance on diverse, represen-331

tative datasets and to apply bias-mitigation tech-332

niques when extending the framework to real-world333

systems.334

Limitations335

First, HALP’s efficacy depends on the quality and336

diversity of the training set: we use COCO 2014,337

which covers a limited set of object categories338

and visual scenarios. Our continuous CHAIRi339

proxy and binary flag capture only object-level340

hallucinations and do not account for errors in at-341

tributes, relations, or higher-order semantics. Sec-342

ond, we evaluate on two open-source VLM archi-343

tectures (LLaVA-1.5 and PaliGemma-2); results344

may not generalize to much larger or proprietary345

models with different fusion mechanisms or de-346

coding strategies. Third, our probe requires access347

to intermediate hidden states, which may not be348

exposed by closed-source APIs or edge-deployed349

models. Finally, HALP predicts hallucination risk350

but does not itself correct or mitigate errors; in-351

tegrating probe outputs into a feedback loop for352

on-the-fly correction remains future work.353
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A Appendix449

A.1 Results450

Layer Vision Embedding Fusion Embedding Query Embedding

Layer 0 0.0504 0.0524
Layer 1 0.0513 0.0523
Layer 16 0.0455 0.0523 0.0526
Layer 30 0.0523 0.0523
Layer 31 0.0509 0.0523

Table 2: Regression mean-squared error (MSE) for
probes built on vision, fusion, and query embeddings at
different decoder layers using LLaVA-v1.5-Vicuna-13b.

Layer Vision Embedding Fusion Embedding Query Embedding

Layer 0 0.639 0.503
Layer 1 0.665 0.525
Layer 16 0.750 0.644 0.621
Layer 30 0.633 0.620
Layer 31 0.632 0.500

Table 3: ROC–AUC scores for binary hallucination de-
tection probes on vision, fusion, and query embeddings
at different decoder layers using LLaVA-v1.5-Vicuna-
13b.

Layer Vision Embedding Image Embedding Query Embedding

Layer 0 0.089 0.0857
Layer 1 0.0852 0.128 0.0849
Layer 16 0.857 0.0840

Table 4: Regression mean-squared error (MSE) for
probes built on vision, fusion, and query embeddings at
different decoder layers using PaliGemma-2.

Layer Vision Embedding Image Embedding Query Embedding

Layer 0 0.508 0.500
Layer 1 0.732 0.488 0.500
Layer 16 0.500 0.492

Table 5: ROC–AUC scores for binary hallucination de-
tection probes on vision, fusion, and query embeddings
at different decoder layers using PaliGemma-2.
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