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Abstract
Multi-view clustering has been widely explored
for its effectiveness in harmonizing heterogeneity
along with consistency in different views of data.
Despite the significant progress made by recent
works, the performance of most existing methods
is heavily reliant on strong priori information re-
garding the true number of clusters k, which is
rarely feasible in real-world scenarios. In this pa-
per, we propose a novel graph-based multi-view
clustering algorithm to infer unknown k through
a graph consistency reward mechanism. To be
specific, we evaluate the cluster indicator matrix
during each iteration with respect to diverse k. We
formulate the inference process of unknown k as
a parsimonious reinforcement learning paradigm,
where the reward is measured by inter-cluster con-
nectivity. As a result, our approach is capable
of independently producing the final clustering
result, free from the input of a predefined cluster
number. Experimental results on multiple bench-
mark datasets demonstrate the effectiveness of
our proposed approach in comparison to existing
state-of-the-art methods.

1. Introduction
In real-world settings, data are likely derived from varied
domains and represented in a multitude of forms, or views
(Bickel & Scheffer, 2004). For instance, a document may be
represented through audio, images, videos, and text them-
selves can be available in multiple languages (Wang et al.,
2015). With a predominant portion of such data being un-
labeled, the role of multi-view clustering becomes pivotal.
This approach incorporates information from various views
to effectively segregate data into separate categories (Liu
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Figure 1. The motivation for designing the reward function for
finding unknown k. It is obvious that an erroneous k (k = 3 in this
case) would dramatically increase the inter-cluster connectivity (as
shown by the red dashed line). Hence it is intuitive and reasonable
to measure the reward by minimizing the inter-cluster connectiv-
ity.

et al., 2021).

In recent years, significant advancements have been wit-
nessed in multi-view clustering algorithms, concomitant
with the burgeoning development of the machine learning
domain. Despite considerable advancements in multi-view
clustering, a majority of these methods are parametric, ne-
cessitating a predefined number of clusters as input. This
requirement often proves impractical in real-world scenarios.
A natural thought is to adopt non-parametric solutions from
single-view clustering. Early approaches primarily relied on
conducting k experiments repeatedly and empirically and
then determining optimal k by observing unsupervised crite-
ria (Kodinariya et al., 2013; Yuan & Yang, 2019). However,
employing these methods in a multi-view setting can be
time-consuming. Furthermore, they are primarily developed
for convex data. Inspired by (Liu et al., 2023), a feasible
approach is to form the decision-making problem of k as a
paradigm of reinforcement learning, which is fundamentally
a trial-and-error process. Compared to early approaches,
clustering under a reinforcement learning paradigm can infer
optimal k during the iterative process, significantly reducing
time costs. Besides, its capability to automatically infer k
provides an advantage over empirical decision, especially
in scenarios where certain criteria (i,e, ELBOW) are am-
biguous (Umargono et al., 2020; Onumanyi et al., 2022).
Nevertheless, transferring the method of (Liu et al., 2023)
to a multi-view setting also proves problematic. For one,
it demands an additional adjacency matrix as input. More-
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over, the definition of the reward Rk, as the within-cluster
square of sum (WSS) for each k, does not perform well in
numerous established multi-view clustering approaches.

To overcome these challenges, we propose a novel multi-
view clustering algorithm that utilizes a parsimonious rein-
forcement learning (RL) paradigm to infer k automatically
and execute clustering heuristically during each iteration.
Considering a supervised scenario, it would be clear whether
the clustering result under a given k is distorted with the
guidance of true labels. However, true labels are inacces-
sible in an unsupervised scenario. Hence, we propose to
define inter-cluster connectivity to substitude for the role
of labels, as shown in Fig. 1. Under the assumption that
an optimal k should maintain little inter-cluster connectiv-
ity, whereas an incorrect k would significantly increase the
inter-cluster connectivity, we can make the inference of
k by finding the minimal connectivity it presents. Fig. 2
depicts the framework of our proposed method. We first
construct graphs Gv for each view using mutual nearest
neighbors (MNN), and obtain a consensus graph G with the
most authentic information through view voting. After each
iteration, G is used to compute inter-cluster connectivity
with indicator matrix Y to get an immediate reward R with
respect to different k. In this framework, the decision mod-
ule for agnostic k and the clustering module for MVC are
separated. Hence, the reward can be integrated into any ex-
isting MVC framework and independently make decisions.
Besides, our proposed reward offers two main advantages.
First, it constitutes a non-sparse reward, meaning it does
not necessitate the use of experience replay for accelerating
convergence in slow-learning RL. Second, we observe that,
aside from initial oscillations during the first few iterations,
this reward tends to stabilize as the cluster indicator ma-
trix Y converges. Consequently, we only need to model a
parsimonious reinforcement learning paradigm, i.e., a multi-
armed bandit—to adequately address this decision-making
problem.

2. Related Work
2.1. Determining the Number of Clusters

In traditional clustering, various methods have been devel-
oped to automate the determination of the number of clus-
ters. (Kodinariya et al., 2013; Yuan & Yang, 2019) presents
a review of methods for estimating cluster numbers based
on unsupervised criteria. For example, the ELBOW calcu-
lates cluster distortion, a metric of within-cluster dispersion,
for each potential cluster number and identifies the opti-
mal number at the point of significant change in distortion.
However, this distortion curve can sometimes be ambiguous.
The jump statistic method (Tibshirani et al., 2001) mitigates
this by applying rate distortion theory. Nonetheless, these
estimation techniques can entail substantial computational

overhead as they assess the efficacy of different cluster num-
bers after the algorithm has been executed. Furthermore,
their design primarily suits k-means clustering, rendering
them less effective for identifying non-spherical clusters
(Rodriguez & Laio, 2014). To address the challenge of
clustering data with arbitrary shapes and to obviate the re-
quirement of manually predefining the number of clusters, a
number of density-based approaches have been introduced
(Rodriguez & Laio, 2014; Ester et al., 1996). These meth-
ods emphasize the utilization of data density variations to
determine cluster formations.

Recently, several non-parametric methods focused on single-
view data have emerged. For instance, (Ronen et al., 2022)
proposes a deep clustering method capable of inferring the
cluster count k during learning process. In graph clustering,
(Liu et al., 2023) utilizes Deep Q-Networks (DQN) (Silver
et al., 2017) for reasoning k, and (Zhao et al., 2024) pro-
poses to infer k in a topological-hierarchical way. Although
effective in single-view contexts, these methods fall short in
multi-view settings as they do not address the heterogene-
ity issue across different data views. In multi-view setting,
(Peng et al., 2019) proposes COMIC which constructs a
connection graph and an interpretative representation main-
taining the dimensionality of the original data space. This
connection graph is then used to guide the clustering process,
where connected samples are assigned to the same cluster.
While COMIC operates as a non-parametric method, it has
a tendency to produce components significantly larger than
the true number of categories, resulting in suboptimal clus-
tering result. Motivated by these observations, we propose a
reward-driven learning process to accurately infer the num-
ber of clusters k in multi-view setting.

2.2. Multi-view Clustering

In recent years, Multi-view Clustering (MVC) (Huang et al.,
2021; Wan et al., 2022; Huang et al., 2023; Cai et al., 2023;
Tan et al., 2023) has garnered significant attention within
the research community. The existing MVC algorithms
can be broadly classified into two groups: traditional multi-
view clustering methods and deep multi-view clustering
methods. Traditional approaches mainly encompass four
categories: Matrix factorization-based algorithms (Liu et al.,
2013; Zhao et al., 2017; Huang et al., 2020): These tech-
niques aim to uncover a shared latent factor to extract in-
formation from multi-view data using non-negative matrix
factorization. (Cai et al., 2013) introduced a shared clus-
tering indicator matrix within multi-view context. Kernel-
based MVC (Huang et al., 2019): This category employs
predefined kernels to handle diverse views, aiming to devise
a unified kernel through linear or non-linear combinations
of predefined kernels. Graph-based MVC (Li et al., 2021;
Tang et al., 2020; Tian et al., 2020): These methods uti-
lize multi-view data to construct graphs that preserve data
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Figure 2. The framework of our proposed method. The left half of the figure depicts a multi-view clustering module under the condition
of a known k. It attains an indicator matrix Y derived from executing spectral clustering across similarity graphs (Kang et al., 2020a). The
right half of the figure depicts a k inferring module during the iterative process. Specifically, for each possible value of k, we instantiate k
different replicas of the algorithm on the left side. During each time step, an epsilon-greedy strategy selects the k-th replica for the next
update. An updated Y, calculated from this replica, is then combined with the pre-constructed neighbor graph G to compute a reward.
This reward is further used to update the estimated action value for each replica. As observed, the module initially updates replicas with
incorrect k values for exploration. Over time, the optimal k = k∗ emerges gradually through reward accumulation, leading to more
frequent updates of the k∗-th replicas, as exemplified by k = ki in the figure.

structures. Subspace-based MVC: This approach focuses on
achieving consistent subspace representation learning across
multiple views. For example, (Cao et al., 2015) proposed a
diversity-induced mechanism for multi-view subspace clus-
tering. However, the efficacy of the majority of existing
methods is significantly dependent on an apriori assumption
regarding the true number of clusters, a condition that is
seldom attainable in real-world scenarios.

2.3. Bandit Problem

The bandit problem (Bergemann & Valimaki, 2006) repre-
sents a fundamental challenge within decision theory and
reinforcement learning, depicting a scenario wherein an
agent, colloquially termed a ”bandit”, is confronted with the
task of selecting from a multitude of actions or options, each
characterized by an uncertain reward or outcome. Within
this context, reward hypotheses serve as conjectures con-
cerning the potential rewards associated with each action
or option. Specifically, each action is presumed to pos-
sess an underlying real reward, which remains obscured
from the agent’s direct observation throughout the decision-
making process. The primary objective of the agent is to
optimize long-term rewards by strategically selecting ac-
tions. However, given the inherent uncertainty surrounding
the rewards, the agent is compelled to estimate the reward
values of individual actions through iterative engagement
with the environment. We posit that these k classes can be
analogized to k bandits. Our investigation reveals that the
rewards offered by each class in every iteration correspond
with the reward assumptions inherent to the bandit problem.
Consequently, leveraging this assumption, we propose a

methodology for addressing the clustering problem with an
agnostic number of classes. Notably, our approach exhibits
high interpretability and can be integrated into any MVC
algorithm, as it merely requires original data and cluster
indicator matrix to compute the reward.

3. The Proposed Method
In this section, we first outline the notations adopted in this
paper for clarity and consistency. We then proceed to detail
the formulation of our proposed method.

Notation: For a given multi-view dataset X ={
X(1), . . . ,X(v), . . . ,X(V )

}
∈Rdv×n, let X(v) denote the

original data from the v-th view, and dv, n, V is the feature
dimension of X(v), number of samples, and number of
views respectively. G =

{
G(1), . . . ,G(v), . . . ,G(V )

}
∈

Rn×n denote connection graph of each view constructed by
mutual nearest neighbors (MNN). G ∈ Rn×n is consensus
graph jointly decided by all views with m edges. Y denotes
the indicator matrix learned by the MVC algorithm, and
yi denotes i-th column of Y. k denotes number of clusters
in descriptive contexts. When referring to mathematical
expressions and formulas, we use k to represent the number
of clusters.

3.1. Inter-cluster Connectivity Reward

In this subsection, we introduce our reward setting for rein-
forcement learning. In the context of multi-view clustering
tasks, our aim is to derive a clustering indicator matrix Y.
This can be achieved through various methods, but generally
Y is calculated from the smallest k eigenvectors of a positive
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semi-definite matrix. Besides, we use X(v) to construct a
mutual neighbor graph G(v), where G(v)

ij = 1 indicates that
data point i and j is mutual neighbor, and vice versa. After
that, G(v) are used to vote for the G agreed by multiple
views. Finally, our reward is calculated by the following
equation:

R(k) = −α

n∑
ij

Gij ∩ (yi(k, iter) ̸= yj(k, iter)), (1)

where Gij ∩ (yi(k, iter) ̸= yj(k, iter)) denotes the inter-
cluster connectivity. The hyperparameter α serves to mod-
erate the unavoidable increase in inter-cluster connectivity
with the increase of k. Now, our goal is to maximize total
rewards and decide which k-th replica should be updated as
frequently as possible.

3.2. Bandit Clustering

In this subsection, we thoroughly explain how the problem
of inferring the number of clusters k can be framed as a
multi-armed bandit problem and how to address it.

The multi-armed bandit problem can be seen as a simplified
version of a reinforcement learning problem, where there
are no complex state transitions, only a single state. In
this simplified scenario, we can focus on the exploration-
exploitation trade-off without the need to consider state
transitions and long-term strategies. We will now illustrate
the simplicity and appropriateness of our RL module from
the perspectives of reward and state.

Reward: Previous methods predominantly concentrate on
extracting intrinsic information from the data distribution,
such as calculating the within-cluster sum of squares (WSS)
as a measure of distortion. To this end, (Liu et al., 2023)
proposes a reward mechanism based on the WSS calculated
in each iteration. However, the calculation of WSS relies
on learning a representation space. Otherwise, the WSS
calculated directly from Yk would not have a connection
with k∗. As discussed, Yk can be easily segmented into k
distinct, well-structured components following the applica-
tion of k-means clustering for any given k. Although Yk

exhibits a clear structure conducive to clustering, this does
not guarantee that the clustering results faithfully revert to
the structure of the original data. In fact, an incorrect k in
the learned Yk can lead to a distortion of the original data
structure, as illustrated in Fig. 1. The reward we have intro-
duced in subsection 3.1 effectively addresses this problem
and can be integrated into a simpler reinforcement learning
framework. The multi-armed bandit problem requires the
assumption of a stationary reward distribution, where the
reward distribution for each arm remains stable over time.
This stability implies that past reward data can effectively

predict future rewards. Our experiments, discussed in sub-
sequent sections, validate that our proposed reward meets
this assumption.

State: Previous methods treat all representations of each
k-th replica throughout the iterative process as states. We
believe that such a state space exhibits significant redun-
dancy because the representations encoded under the same
k should have minimal differences throughout the iterations.
Since the reward based on inter-cluster connectivity remains
stable throughout the iterations, we can treat the k replicas
as k separate states. As a result, the action value Q(st, k)
simplifies to Q(k). Q(k) and the ϵ-greedy strategy jointly
determine the state transitions. In practice, most MVC algo-
rithms requires fewer iterations to converge compared to the
RL module. A lack of exploration could lead to premature
convergence on an incorrect k-th replica, increasing the risk
that the RL module identifies k too late. Hence, besides
employing the ϵ-greedy strategy, we introduce optimistic
initial values to further promote early exploration.

3.3. Discussion

In this subsection, we discuss the detail of proposed reward
and showcase the relationship between inter-cluster connec-
tivity and k∗. In a supervised setting, we can categorize
the clustering results into True Positives (TP), False Nega-
tives (FN), False Positives (FP) and True Negatives (TN).
Let a, b, c and d denote the quantities of TP, FN, FP and
TN respectively, where a + b + c + d = n(n−1)

2 . Ideally,
when a clustering algorithm perfectly allocates n samples
into k∗ clusters, we have bk∗ = 0 and ck∗ = 0. Naturally,
the clustering results are compromised when ki ̸= k∗, lead-
ing to aki ≤ ak∗ , bki ≥ bk∗ , cki ≥ ck∗ , and dki ≤ dk∗ .
Furthermore, it can be concluded that if there is a subset
Xsub of X that contains at least one sample from each
cluster, this property will also hold for Xsub. Therefore,
for a subset Xsub containing m samples, it also holds that
asubki

≤ asubk∗ , bsubki
≥ bsubk∗ , csubki ≥ csubk∗ , and dsubki ≤ dsubk∗ ,

where asubk + bsubk + csubk + dsubk = m. Thus, we can infer
k∗ using any of the following expressions:

k∗ = argmax
k

(asubk ),

k∗ = argmin
k

(bsubk ),

k∗ = argmin
k

(csubk ),

k∗ = argmax
k

(dsubk ).

(2)

While the labels are not revealed during the clustering pro-
cess, we can estimate them using certain methods. Consider
a graph G with n samples and m edges, where connected
edges indicate that the sample pairs belong to the same class
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(though unconnected edges do not necessarily imply that
they belong to different classes). Using this graph, we can
compute âsubk , b̂subki , ĉsubki , and d̂subki that satisfy:

âsubk = asubk + csubk ,

b̂subk = bsubk + dsubk ,

ĉsubk = 0,

d̂subk = 0.

(3)

We analyze the sources of error for the estimators âsubk

and b̂subk : âsubk mistakenly identifies false positive pairs as
true positive pairs, while b̂subk mistakenly identifies true
negative pairs as false negative pairs. To accurately reflect
the label information, we need to minimize both errors, i.e.,
for a subset Xsub containing m samples, asubk ≫ csubk and
bsubk ≫ dsubk . In practice, most MVC algorithms construct
a similarity graph based on nearest neighbors, in which case
dsubk ≪ csubk . Therefore, by replacing bsubk with b̂subk , we
have:

k∗ = argmin
k

(b̂subk ). (4)

Eq. (4) is equivalent to k∗ = argmink(b
sub
k ) if and only

if ∆bsub − ∆dsub ≥ 0, where ∆bsub = bsubki − bsubk∗ and
∆dsub = dsubk∗ − dsubki for any ki ̸= k∗. Such condition can
be satisfied with suitable m.

4. Experiment
In this section, we compare our methodology with several
state-of-the-art multi-view clustering methods on bench-
mark datasets.

4.1. Experiment Setup

Four multi-view datasets are adpoted in our experiment:
MSRC-v1, Handwritten-numerals, bbc-seg14of4, and
ORL:

MSRC-v1 1 from Microsoft Research in Cambridge con-
tains 240 images and 9 object classes with coarse pixel-wise
labeled images.

Handwritten-numerals is an image dataset of handwritten
digits, which consists of 2,000 samples from 0 to 9 digit
classes. In experiments, we extract six different features to
represent each image. We denote it as HW for simplicity.

bbc-seg14of4 2 is a subset of BBC dataset, which consists
of documents from the BBC news website corresponding to

1https://www.microsoft.com/en-us/
research/project/image-understanding/

2http://mlg.ucd.ie/datasets/bbc.html

Table 1. The clustering results on MSRC-v1 dataset (%)
Method NMI Purity ARI
Co-train 58.69 ± 0.73 71.90 ± 0.67 88.12 ± 0.19
Co-reg 61.20 ± 4.23 72.38 ± 6.06 87.58 ± 2.87
MLAN 45.35 ± 0.00 52.38 ± 0.00 76.52 ± 0.00
AWP 54.88 ± 0.00 63.33 ± 0.00 83.54 ± 0.00
mPAC 63.10 ± 0.00 74.76 ± 0.00 89.46 ± 0.00
GMC 73.90 ± 0.00 79.05 ± 0.00 90.45 ± 0.00

SMVSC 70.18 ± 0.00 81.43 ± 0.00 91.22 ± 0.00
FPMVS 66.84 ± 0.00 78.57 ± 0.00 90.61 ± 0.00

COMVSC 67.01 ± 0.00 79.52 ± 0.00 90.88 ± 0.00
CSMSC 71.43 ± 0.00 80.48 ± 0.00 91.51 ± 0.00
PMSC 34.29 ± 7.18 76.81 ± 2.50 25.34 ± 6.31

CoMSC 73.90 ± 0.43 82.06 ± 0.81 91.77 ± 0.27
EOMSC 54.94 ± 0.00 67.14 ± 0.00 86.60 ± 0.00
LMVSC 65.26 ± 2.66 75.56 ± 1.62 89.85 ± 0.59

ours 79.76 ± 0.00 88.57 ± 0.00 74.51 ± 0.00

stories in five topical areas (business, entertainment, politics,
sport, tech). We denote it as BBC14 for simplicity.

ORL (The Olivetti Research Laboratory) 3 face dataset
consists of 400 face images in 40 different themes in total.
For each subject, the images are described in three features:
facial expressions, facial details, and lighting.

Fourteen competitive multi-view clustering methods are
selected for comparison:

Multi-view Spectral Clustering with Co-train strategy (Co-
train) (Kumar & Daumé, 2011), Multi-view Spectral
clustering with Co-reg strategy (Co-reg) (Kumar et al.,
2011), Multi-view clustering and Semi-supervised clas-
sification with Adaptive Neighbors (MLAN) (Nie et al.,
2017), Multi-view Clustering via Adaptively Weighted
Procrustes (AWP) (Nie et al., 2018), Multiple Partitions
Aligned Clustering (mPAC) (Kang et al., 2019), Graph-
based Multi-view Clustering(GMC) (Wang et al., 2019),
Scalable Multi-view Subspace Clustering(SMVSC) (Sun
et al., 2021), Fast Parameter-free Multi-view Subspace Clus-
tering (FPMVS) (Wang et al., 2021), Consensus One-step
Multi-view Subspace Clustering (COMVSC) (Zhang et al.,
2020), Consistent and Specific Multi-view Subspace Clus-
tering (CSMSC) (Luo et al., 2018), Consensus One-step
Multi-view Subspace Clustering (CoMSC) (Zhang et al.,
2020), Efficient One-pass Multi-view Subspace Clustering
(EOMSC) (Liu et al., 2022), and Large-scale Multi-view
Subspace Clustering (LMVSC) (Kang et al., 2020b).

3https://www.kaggle.com/datasets/tavarez/
the-orl-database-for-training-and-testing
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(a) α = 5, NMI (b) α = 5, k (c) α = 10, NMI (d) α = 5, k

Figure 3. Sensitivity analysis of hyperparameters α, β, γ.
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Figure 4. Convergence curves.

Table 2. The clustering results on HW dataset (%)
Method NMI Purity ARI
Co-train 69.72 ± 0.85 77.82 ± 0.09 93.33 ± 0.17
Co-reg 62.54 ± 1.44 68.00 ± 2.55 91.21 ± 0.44
MLAN 90.40 ± 0.00 95.60 ± 0.00 98.29 ± 0.00
AWP 73.94 ± 0.00 74.85 ± 0.00 93.74 ± 0.00
mPAC 60.30 ± 0.00 61.60 ± 0.00 90.48 ± 0.00
GMC 90.24 ± 0.00 88.60 ± 0.00 97.35 ± 0.00

SMVSC 77.80 ± 0.00 84.80 ± 0.00 94.77 ± 0.00
FPMVS 78.14 ± 0.00 82.25 ± 0.00 94.83 ± 0.00

COMVSC 84.72 ± 0.00 92.00 ± 0.00 97.01 ± 0.00
CSMSC 84.15 ± 0.00 90.95 ± 0.00 96.67 ± 0.00
PMSC 61.34 ± 3.94 86.31 ± 1.29 48.74 ± 5.43

CoMSC 85.69 ± 2.74 90.95 ± 2.41 96.78 ± 0.76
EOMSC 77.89 ± 0.00 76.20 ± 0.00 93.69 ± 0.00
LMVSC 80.51 ± 0.17 85.42 ± 0.37 95.50 ± 0.08

ours 94.38 ± 0.00 97.50 ± 0.00 94.46 ± 0.00

4.2. Results Analysis

Three criteria of clustering performance (Normalized Mu-
tual Information (NMI), Purity, and Adjusted Rand Index
(ARI)) are shown in Table 1–4. The comparison algo-
rithms were repeatedly tested 10 times using the parameter
settings recommended by corresponding papers. In most
cases, our method consistently outperforms others, offering
strong evidence of its effectiveness. In Table 3, on BBC14
dataset, our method outperforms other methods by about

Table 3. The clustering results on BBC14 dataset (%)
Method NMI Purity ARI
Co-train 66.92 ± 4.75 82.76 ± 4.88 85.38 ± 3.34
Co-reg 73.68 ± 0.00 89.66 ± 0.00 89.51 ± 0.00
MLAN 37.85 ± 2.53 62.64 ± 1.63 62.24 ± 1.92
AWP 43.13 ± 0.00 66.38 ± 0.00 69.78 ± 0.00
mPAC 56.45 ± 0.00 79.31 ± 0.00 84.00 ± 0.00
GMC 53.10 ± 0.00 68.10 ± 0.00 70.75 ± 0.00

SMVSC 14.12 ± 0.00 46.55 ± 0.00 68.13 ± 0.00
FPMVS 8.64 ± 0.00 40.52 ± 0.00 64.69 ± 0.00

COMVSC 43.90 ± 0.00 59.48 ± 0.00 71.75 ± 0.00
CSMSC 68.65 ± 0.00 76.72 ± 0.00 82.83 ± 0.00
PMSC 44.70 ± 0.00 96.55 ± 0.00 66.22 ± 0.00

CoMSC 74.08 ± 0.00 81.90 ± 0.00 89.51 ± 0.00
EOMSC 23.81 ± 0.00 53.45 ± 0.00 69.91 ± 0.00
LMVSC 32.42 ± 5.76 67.24 ± 2.11 64.28 ± 5.49

ours 87.72 ± 0.00 99.31 ± 0.00 94.11 ± 0.00

13.64%, 2.76%, 4.60% in terms of NMI, Purity, and ARI.
On other datasets, our method also achieves comparable re-
sults. It should be noted that our method is non-parametric,
capable of automatically inferring k during the algorithm’s
iterative process, in contrast to all the aforementioned ap-
proaches that require k to be input in advance. The reason
our method achieves comparable results is that it correctly
inferred k across all four datasets due to our multi-armed
bandit hypothesis and meticulously designed rewards. Ad-
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Figure 5. t-SNE visualization of known parametric MVC on HW dataset with different k.

Table 4. The clustering results on ORL dataset (%)
Method NMI Purity ARI
Co-train 79.94 ± 0.74 66.58 ± 0.59 97.69 ± 0.05
Co-reg 79.77 ± 0.17 66.50 ± 1.41 97.71 ± 0.04
MLAN 52.96 ± 0.53 40.83 ± 0.47 88.50 ± 0.37
AWP 89.45 ± 0.00 80.75 ± 0.00 98.60 ± 0.00
mPAC 83.68 ± 0.00 68.75 ± 0.00 97.94 ± 0.00
GMC 81.66 ± 0.00 72.50 ± 0.00 94.60 ± 0.00

SMVSC 76.23 ± 0.00 62.00 ± 0.00 96.94 ± 0.00
FPMVS 73.59 ± 0.00 59.00 ± 0.00 96.64 ± 0.00

COMVSC 88.34 ± 0.00 81.75 ± 0.00 98.45 ± 0.00
CSMSC 89.89 ± 0.00 81.00 ± 0.00 98.71 ± 0.00
PMSC 71.74 ± 2.28 70.60 ± 3.49 34.75 ± 3.55

CoMSC 86.06 ± 0.40 79.25 ± 0.94 98.18 ± 0.07
EOMSC 81.70 ± 0.00 92.50 ± 0.00 98.62 ± 0.00
LMVSC 78.84 ± 0.75 71.67 ± 3.60 96.84 ± 0.43

ours 90.39 ± 0.00 82.25 ± 0.00 69.18 ± 0.00

ditionally, the module we propose for inferring agnostic k
is capable of being applied in any scenario as aforemen-
tioned. We believe that integrating our proposed paradigm
with more advanced MVC algorithms could further enhance
its performance.

4.3. Sensitivity Analysis

Figs. 3(a) and 3(c) present the Normalized Mutual Informa-
tion (NMI) performance metrics of the clustering algorithm
under various parameter settings. Figs. 3(b) and 3(d) re-
port whether the algorithm identified the optimal k, with
any incorrect k values denoted as k = 0. To study the
influence of different parameter settings on the clustering
results, we vary α, β, and γ in the ranges [5, 10], [0, 16], and[
5e−7, 5e−3

]
. Noted that changes in MVC hyperparame-

ters can affect the quality of the clustering indicator matrix
Y, which is subsequently used to infer k. Nevertheless, it
can be observed that our method successfully identifies the
optimal k in 37 out of 50 parameter settings, demonstrating

the robustness of proposed RL module.

4.4. Convergence Study

We demonstrate the convergence of the RL module by show-
casing the average reward curve and the value estimation
for each k-th replica. In Figs. 4(b) and 4(d), we observe that
our reinforcement learning paradigm estimates the highest
value for the correct k. In Figs. 4(a) and 4(c), the obtained
average rewards are consistently increasing. Overall, the
RL module effectively fulfills its role in accurately infer-
ring k. Fluctuations in the learning process are caused by
two factors. First, the exploration strategy based on opti-
mistic initial values leads to frequent exploration in the early
stages, and second, the ϵ-greedy strategy ensures ongoing
exploration throughout the learning process. The former re-
sults in mysterious spikes in the early average reward curve,
while the latter causes the curve to exhibit small oscillations
continuously. In practice, most MVC algorithms requires
fewer iterations to converge compared to the RL module.
Hence, we emphasize the importance of incorporating early
exploration. Additionally, the curve lacks a stable trend in
later stages because the clustering process doesn’t wait for
the RL-learned rewards to fully converge before iteratively
updating the optimal k-th replica.

4.5. Reward Analysis

In this subsection, we remove the RL module for infer-
ring agnostic k and explicitly input varying k values on the
HW dataset to observe the clustering result and the inter-
cluster connectivity after convergence. From the t-SNE
(Van der Maaten & Hinton, 2008) visualization, as shown
in Figs. 5(a), 5(b) and 5(c), it is evident that k = 10 ex-
hibits significantly less inter-cluster connectivity compared
to the incorrect k values of k = 2 and k = 19. Both k = 2
and k = 19, served as extreme cases of an erroneous num-
ber of k, yield clear, discriminative representations, which
corroborates our hypothesis and clarifies the reason why
WSS is inappropriate for this scenario. In addition, we inde-
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pendently calculate the actual reward for each k during the
iteration process by Eq. (1) across a broader range of k val-
ues. As shown in Fig. 5(d), the designed reward is effective,
with the reward at each iteration being essentially maximal
when k∗ = 10. As mentioned above, the expected reward
remains relatively stable throughout the iteration process,
which provides theoretical assurance for simplifying this
reinforcement learning task.

5. Conclusion
In conclusion, this paper addresses the challenge of deter-
mining the optimal cluster number, k, in multi-view clus-
tering, a critical issue in real-world scenarios where prior
information about k is often unavailable. We introduce
a novel graph-based multi-view clustering algorithm that
leverages a graph consistency reward mechanism to infer
k autonomously. By evaluating the cluster indicator ma-
trix iteratively across varying k values and formulating the
inference process as a reinforcement learning paradigm,
our approach emphasizes inter-cluster connectivity as the
reward signal, thereby achieving robust clustering results
independent of predefined cluster numbers. Experimental
evaluations on diverse benchmark datasets substantiate the
superiority of our method over existing state-of-the-art ap-
proaches, underscoring its effectiveness in addressing the
inherent challenges of multi-view clustering without relying
on strong prior knowledge.
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