
Under review as submission to TMLR

In-distribution adversarial attacks on object recognition mod-

els using gradient-free search.

Anonymous authors

Paper under double-blind review

Abstract

Neural networks are susceptible to small perturbations in the form of 2D rotations and shifts,
image crops, and even changes in object colors. Past works attribute these errors to dataset
bias, claiming that models fail on these perturbed samples as they do not belong to the training
data distribution. Here, we challenge this claim and present evidence of the widespread
existence of perturbed images within the training data distribution, which networks fail to
classify. We train models on data sampled from parametric distributions, then search inside
this data distribution to find such in-distribution adversarial examples. This is done using our
gradient-free evolution strategies (ES) based approach which we call CMA-Search. Despite
training with a large-scale (≥ 0.5 million images), unbiased dataset of camera and light
variations, CMA-Search can find a failure inside the data distribution in over 71% cases by
perturbing the camera position. With lighting changes, CMA-Search finds misclassifications
in 42% cases. These findings also extend to natural images from ImageNet and Co3D
datasets. This phenomenon of in-distribution images presents a highly worrisome problem
for artificial intelligence—they bypass the need for a malicious agent to add engineered
noise to induce an adversarial attack. All code, datasets, and demos are available at https:
//github.com/in-dist-adversarials/in_distribution_adversarial_examples.

1 Introduction

Neural networks are highly susceptible to small perturbations—2D rotations and translations (1), image
crops (2; 3), and even changes in the color space (4; 5; 6). Existing works have claimed that these failures lie
out of the training data distribution, and attribute these failures to dataset bias (7; 8; 9; 10; 11). Here, we
put this hypothesis to test by training classification models on datasets with explicitly controlled train/test
distributions, and searching for adversarial examples within the training data distribution.

Our key finding is that there is a widespread presence of adversarial examples within the training distribution,
as illustrated in Fig. 1(a). Thus, networks are highly susceptible to small perturbations not just out of the
training distribution as previously known, but inside the training distribution as well. In practice, these
in-distribution adversarial examples point to a highly worrisome problem—these failures bypass the need
for a malicious agent to induce an error. These experiments are enabled by our gradient-free, evolutionary
strategies (ES) based approach for finding in-distribution adversarial examples, which we call CMA-Search.

We present results with CMA-Search across three levels of data complexity—(i) parametric data sampled
from disjoint per-category uniform distributions, (ii) parametric and controlled data of rendered images, and
(iii) natural image data from ImageNet and Co3D datasets.

Across all datasets, models are highly susceptible to in-distribution adversarial attacks. CMA-Search can
find in-distribution attacks for simplistic parametric data with a 100% attack rate—there existed a failure in
the vicinity of every single correctly classified test point. For rendered data, CMA-Search found failures in
the vicinity of 71% correctly classified images by perturbing the camera position, and for 42% images by
perturbing lighting parameters. With natural images from the Common Objects in 3D (Co3D) dataset (12),
CMA-Search found in-distribution adversarial examples for over 51% images. Finally, we also employed

1

https://github.com/in-dist-adversarials/in_distribution_adversarial_examples
https://github.com/in-dist-adversarials/in_distribution_adversarial_examples

Under review as submission to TMLR

Out-of-Distribution
failure

(color change)

In-Distribution failure
Searched within

training distribution.

Out-of-Distribution
failure

(noise in pixel space)

Training image

Correctly
classi!ed test Image

Training Data
Distribution

Training image
Correctly classi!ed test image
OOD failure
In-Distribution failure

(a)

X

Z

Y

CAMERAPOSITION(x,y,z)

UP (x’, y’, z’)

FOV (f)

Look At(x’’, y’’, z’’)

GuitarChair Bike Pistol

(b)

(c)

Figure 1: In-distribution adversarial attacks. (a) The data distribution (depicted in black) refers to the
space of all camera and light variations. Typical adversarial examples are created by adding noise to the
image, which may result in images out of the data distribution. CMA-Search finds failures inside the data
distribution. (b) 3D scene setup for our rendered images with camera parameters illustrated. (c) Example
images with camera and light variations.

CMA-Search in conjunction with a novel view synthesis pipeline (13) to find in-distribution adversarial
examples in the vicinity of ImageNet (14).

2 Related Work

In e�orts to combat susceptibility to small transformations (1), crops (2; 3), and 2D rotations and transla-
tions (15), alternative architectures have been proposed which are shift invariant. This includes anti-aliasing
networks using the seminal signal processing trick of anti-aliasing (16), and recently proposed truly shift
invariant networks which use a new sampling methodology to guarantee a 100% consistency in classification
under 2D shifts (17). Unlike our work, these works have focused only on 2D transformations.

Recent work has also sought to generate adversarial perturbations which are human interpretable i.e. semantic
adversarial examples. These works often rely on synthetic data, using di�erentiable rendering or other
optimization methods to find adversarial images by modifying scene parameters (18; 19; 20; 21; 22; 23; 24).
These include a custom di�erentiable renderer to perturb the camera, lighting, or object mesh vertices, and
using a neural renderer where light is represented by network activations.

They key di�erences between these works and ours is that our adversarial attacks are guaranteed to lie within
the training distribution. While in-distribution attacks have been shown in theoretical works and for toy
data (25; 26; 27; 28), this work provides the first evidence of such failures with real-world data to the best of
our knowledge.

2

Under review as submission to TMLR

3 Datasets with explicitly controlled data distributions

Mathematically, a sample xú is defined to be in-distribution w.r.t. a dataset X = {x1, ...xN }, if xú and all
points (x1...xN) are generated by sampling i.i.d. from the same generative distribution. Thus, as n æ Œ,
xú œ X. As an example, consider the Camera Position. Our dataset with camera and lighting variations was
constructed by sampling rendering images with camera position uniformly sampled from [0.5, 8] units. Thus,
any image of a scene with camera position within the range [0.5, 8] is in-distribution. Images with camera
position not in this range are considered out of distribution. For all datasets, we sample uniformly across the
support. This choice allows the support to uniquely characterize the data distribution.

3.1 Generating simplistic parametrically controlled data

We created a binary classification task by sampling data from two N -dimensional uniform distributions
confined to disjoint ranges (a, b) and (c, d), as described in the following:

xi ≥
;

Unif(a, b, N); yi = 0
Unif(c, d, N); yi = 1

<
. (1)

We set a = ≠10, b = 10, c = 20, d = 40 for experiments presented. However, we observed that the exact choice
of these parameters does not impact the findings. To generate an in-distribution test set, we simply sample
new data points from the training distribution. This procedure is consistent with recent theoretical work on
the adversarial attacks (25; 27).

3.2 Generating an unbiased training dataset of camera and light variations

Large-scale datasets for computer vision have mostly been created by scraping pictures from the internet (14;
29; 30; 31; 32). However, investigating in-distribution robustness requires sampling new points from regions
of interest within the data distribution, which is not possible with these datasets. To address this issue, we
use a computer graphics pipeline for generating and modifying images which ensures complete parametric
control over the data distribution. We simply sample camera and lighting parameters from a fixed, uniform
distribution, and render a subset of 3D models from ShapeNet (33) objects with the sampled camera and
lighting parameters.

All models were trained on 0.5 million rendered images across 11 categories, with 1000 images for every 3D
model. Each image was constructed by rendering a frame from the 3D scene setup illustrated in Fig. 1(b)—
one camera, one 3D model and 1-4 lights. Thus, every image is parametrized by the camera and the light
parameters. The camera parameters are 10 Dimensional, and each light is 11 dimensional. Multiple lights
ensure that scenes contain complex mixed lighting, including self-shadows. There is a one-to-one mapping
between the pixel space (rendered images) and the (11n + 10) camera and light parameters, with n = number
of lights. Sample images are shown in Fig. 1(c) and Fig. S3. All camera and light parameters were sampled
from uniform distributions with pre-specific ranges described in the supplement. For these parameters, and
additional details please refer to Sec. S1.

3.3 Natural image datasets—ImageNet and Common Objects in 3D

As a real litmus test, we also ensure that our findings hold true for natural images. We present results on two
popular natural image datasets—ImageNet (34) and the Common Objects in 3D (Co3D) (12) dataset.

Co3D: This dataset was originally created by users capturing short videos of fixed objects placed on a
surface by a user moving a mobile phone around the object with adjacent frames representing nearby 3D
views. We utilize this to test in-distribution robustness. The training dataset was constructed by sampling
uniformly across videos from 5 categories (car, chair, handbag, laptop, and teddy bear). This amounts to
187, 200 training images, or 38, 000 images per category which is 32 times the ImageNet training set on a per
category basis. An in-distribution test set of 68, 854 images was generated by sampling the remaining frames
from these categories. Thus, the test set represents interpolated viewpoints between training viewpoints.

3

Under review as submission to TMLR

Once models are trained, our approach searched within 5 adjacent frames to find an in-distribution failure.
Additional details can be found in Sec. S2.2.

ImageNet: A Novel View Synthesis (NVS) (13) model was used to generate views in the vicinity of images.
(See Sec. S2.1 for details). The NVS model takes as input an image and the (x, y, z) o�sets which describe
camera movement along the X, Y and Z axes. Unlike our renderer, it cannot introduce changes to the camera
Look At, Up Vector, Field of View or lighting changes. CMA-Search optimizes these o�set parameters of the
NVS model to find a perturbed image which is misclassified.

4 CMA-Search: Finding in-distribution failures by searching the vicinity

Algorithm 1 CMA-Search over camera parameters to find in-distribution adversarial examples.
Let x œ R10 denote the camera parameters.
Let Render and Network denote the rendering pipeline and classification network respectively.
function Fitness(x, Render, Network)

image = Render(x)
predicted_category, probability = Network(image)
return predicted_category, probability

end function

xinit: initial camera parameters, ⁄: number of o�spring per generation (set to 20), y: image category, and
RT : Range of camera parameters in training data.
procedure CMA-Search(xinit, ⁄, y, D)

initialize µ = xinit, C = I Û I denotes identity matrix.
iters = 0
while iters < 20 do

for j = 1, ..., ⁄ do

xj = sample_multivariate_normal(µ, C) Û Generate mutated o�spring
yj , pj = FITNESS(xj , Render, Network) Û Calculate fitness of o�spring
if yj ”= y then Û Classification fails for image with camera parameters xj

if xj œ RT then Û xj is in in-Distribution failure
return True

end if

end if

end for

x1...⁄ Ω xs(1)...s(⁄), with s(j) = argsort(pj) Û Pick best o�spring
µ, C Ω update_parameters(x1...⁄, µ, C)
iters = iters +1

end while

return False
end procedure

CMA-Search can be used to attack any parametric dataset. The methodology starts with the parametric
representation of a correctly classified input, and optimizes these parameters using Covariance Matrix
Adaptation-Evolution Strategy (CMA-ES) (35; 36) to find a misclassified sample in the vicinity of the start
point. Algorithm 1 provides an outline for the method which was implemented using pycma (35; 37). We
explain the methodology with an example of finding in-distribution adversarial attacks within the distribution
of camera parameters. The algorithm for searching adversarial attacks in the space of light parameters, and
for attacking all other datasets is analogous. For ease, the approach is also visualized as a flowchart in Fig. S1

Starting from the initial camera parameters of the scene, CMA-ES generates o�spring by sampling from a
multivariate normal (MVN) distribution i.e. mutating the original parameters. These o�spring are sorted
based on the fitness function (1 ≠ p, where p denotes classification probability). The best o�spring are used to
modify the mean and covariance matrix of the MVN for the next generation. The mean represents the current

4

Under review as submission to TMLR

best estimate of the solution i.e. the maximum likelihood solution, while the covariance matrix dictates the
direction in which the population should be directed in the next generation. The search is stopped either
when a misclassification occurs, or after 15 iterations. At each generation, 10 o�spring were generated. For
results presented on the simplistic parametrically controlled data, we checked for a misclassification till 1500
iterations and 20 o�spring were generated in each iteration. CMA-ES is an unconstrained optimization
procedure. Thus, we ensured that a misclassification counts as an in-distribution adversarial attack only if
it met both criteria—(1) it caused a misclassification, (2) it belongs to the training data distribution (i.e.,
inside the support of the underlying distribution).

Evaluating CMA-Search: For all models, we report the Attack Rate—the percentage of correctly classified
points for which CMA-Search successfully found a misclassification. A model with no in-distribution failures
would have an attack rate of 0, making this a natural goal for benchmarking studies using this metric.

For simplistic parametrically controlled data, the Attack Rate was measured by attacking 20, 000 correctly
classified samples. Due to our use of a physically based renderer that accurately models the physics of
light in the 3D scene, generating images in the vicinity of the correctly classified image is a computational
intensive process. For rendered data, it was measured by attacking 2, 000 correctly classified images for
every architecture. For one model (ResNet18) we also measured the Attack Rate with 20, 000 images as an
additional control. For the Co3D dataset, it was measured on 116, 850 images.

Visualizing the vicinity of an error: CMA-Search generates an in-distribution error (x̨a)starting from a
correctly classified point (x̨c). Using these two points, we defined a unit vector in the adversarial direction
and set it as one basis vector (ę1 = x̨a ≠ x̨c). For D dimensional data, we computed the remaining D ≠ 1
orthonormal bases, and randomly selected one as the orthogonal direction (ę2, such that ę2 ‹ ę1). Following
past work (38), we defined a grid of perturbations along the adversarial and the picked orthogonal direction.
The classification model was then evaluated on noisy samples constructed by adding noise on the grid formed
by these two basis vectors:

x̨i = x̨c + –ę1 + —ę2 (2)

Here, –, — œ [0, 1] with intervals of 0.01. The church-window plot shows classification on these perturbed
samples, with correct classifications shown in white, in-distribution adversarial examples in red, and out-of-
distribution samples in black.

5 Experimental Details

Below we provide the training details including model architectures, optimization strategies and other
hyper-parameters used for the binary classification models trained on simplistic parametrically controlled data,
and the object recognition models trained on our rendered images of camera and light variations. All code to
run these experiments can be found at https://github.com/in-dist-adversarials/in_distribution_
adversarial_examples.

5.1 Training details for MLPs for classifying parametrically controlled uniform data

Let D denote data dimensionality, and N denote dataset size. A 5 layer multi-layer perceptron (MLP) with
ReLU activations was used, with the output dimensionality of hidden layers set to 5D, D, D/5, D/5, and 2
respectively. However, we found that the number of MLP hidden layers and the number of neurons in these
layers had no significant impact on trends of in-distribution robustness. For experiments with N < 64, 000
all data was passed in a single batch. For experiments with more data points, each batch contained 64, 000
points. All models were trained for 100 epochs with stochastic gradient descent (SGD) with a learning rate of
0.0001. All experiments were conducted on a compute cluster consisting of 8 NVIDIA TeslaK80 GPUs, and

5

https://github.com/in-dist-adversarials/in_distribution_adversarial_examples
https://github.com/in-dist-adversarials/in_distribution_adversarial_examples

Under review as submission to TMLR

all models were trained on a single GPU at a time. Only models achieving a near perfect accuracy (> 0.99)1

on a held-out test set were attacked using CMA-Search.

5.2 Training details for Object recognition models for classifying images of real-world objects

All CNN models were trained with a batch size of 75 images, while transformers were trained with a batch
size of 25. Models were trained for 50 epochs with an Adam optimizer with a fixed learning rate of 0.0003.
Other learning rates including 0.0001, 0.001, 0.01 and 0.1 were tried but they performed either similarly well
or worse. To get good generalization to unseen 3D models and stable learning, each image was normalized
to zero mean and unit standard deviation. As before, all experiments were conducted on our cluster with
TeslaK80 GPUs, and each model was trained using a single GPU at a time.

6 Results

We report results on in-distribution adversarial attacks on classification models trained across four datasets—
(i) simplistic data sampled from disjoint per-category uniform distributions (Sec. 6.1), (ii) parametri-
cally controlled images of objects using our graphics pipeline (Sec. 6.2), (iii) Common Objects in 3D
dataset (12)(Sec. 6.3), and (iv) ImageNet (14)(Sec. 6.3) For each model, we report the attack rate—the
percentage of correctly classified points for which we successfully found an in-distribution failure using
CMA-Search. Additional details on the implementation and evaluation of CMA-Search are reported in Sec.S3.

6.1 In-distribution adversarial attacks on uniformly distributed data

Fig. 2(a) reports the attack rate for models—the percentage of correctly classified points for which we
successfully found an in-distribution failure using CMA-Search. Despite a near perfect accuracy on a held-out
test set, in-distribution adversarial examples can be identified in the vicinity of all correctly classified test
points—the attack rate is 100% for models trained with 20, 100 and 500 dimensional data. Note that this
simplistic dataset is easily separable by the simplest of models including a decision tree. However, DNNs
trained on this dataset are plagued by in-distribution failures.

Impact of dataset size: The attack rate start dips once a critical dataset size is reached (Fig. 2(a)).
However, data complexity scales poorly with number of dimensions. As dimensionality grows from 20 to
100, the number of points required for robustness scales almost 100-fold. For 500 dimensions even 10 million
training points were not su�cient. On average, only 51 iterations were needed to find a misclassification for
10 dimensional data. This dropped to 20 iterations for 100 dimensional data and 11 for 500 dimensional data.

Impact of robust training: We fine-tuned models on 20, 000 in-distribution adversarial examples found
using CMA-Search for 100 dimensional data. The attack rate stayed at 100%, with no improvement in
model robustness against CMA-Search. This is expected, as our identified adversarial examples lie within the
training distribution. Thus, robust training in this case essentially amounts to a marginal increase in the
training dataset size which is already discussed above.

Fig. 2(b) reports the average distance between the (correctly classified) start point and the closest in-
distribution adversarial example identified using CMA-Search. This distance increased with dataset size.
At critical dataset sizes, adversarial examples are far enough from starting points that they are now not
in-distribution. This results in the dip in the attack rate shown in Fig. 2(a).

Visualizing failures: Fig. 2(c) shows the learned decision boundary using church window plots (38) (see S3.3
for details). Intriguingly, there is a clean transition from correctly classified points (white) to in-distribution
adversarial examples near the decision boundary (red), beyond which points become out of the distribution
(black). Thus, in-distribution adversarial examples are isolated to a region close to the category boundary,

1Except when dataset size=1000 and dimensions=100 or 500. In these two case the training data was too small for a high
test accuracy. These cases are still included for completion.

6

Under review as submission to TMLR

In-distribution,
correctly classi!ed

In-distribution
adversarial

Out-of-distribution
sample

(c)

Figure 2: In-distribution adversarial attacks on parametric data sampled from high-dimensional, disjoint
uniform distributions. (a) Attack rate measured using CMA-Search is 100% for all models—there exists an
in-distribution failure in the vicinity of every correctly classified sample. Models become robust beyond a
critical dataset size, but the data needed scales poorly with dimensionality. (b) Average Euclidean distance
between the starting point and the identified in-distribution adversarial sample increases as dataset size
increases. (c) Church window plots depicting adversarial examples (red) located contiguously and in between
the learned and ground-truth boundaries.

and in a contiguous fashion. This finding has been theorized (26; 27; 25; 28), but to the best of our knowledge
this is the first empirical evidence for this phenomenon.

6.2 Networks struggle to generalize across camera and light variations

Here, we present the first evidence of in-distribution adversarial attacks on visual recognition models. Despite
0.5 million images for 11 categories with over 1000 images for every 3D model, CMA-Search found small
changes in 3D perspective and lighting which had a catastrophic impact on network performance, as shown
in Fig. 3(a).

7

Under review as submission to TMLR

(b)

(a)

Figure 3: In-distribution adversarial attacks in the camera parameter space. a) Sample in-distribution
adversarial examples. Percentage of change in Camera Position and Camera Look At parameters needed
to induce the misclassification are also reported. Attack rates are reported in Table 1. (b) Distribution of
camera parameters for in-distribution adversarial images. Unlike human vision, there were no clear patterns
characterizing the camera and light conditions of misclassified images.

Model Architecture

CMA Cam CMA Light

Attack

Rate (%)

Distance

(mean ± std)

Attack

Rate (%)

Distance

(mean ± std)

ResNet18 (39) 71 1.83 ± 1.33 42 6.52 ± 5.68
Anti-Aliased Networks (16) 45 2.32 ± 2.09 40 7.03 ± 5.10

Truly Shift Invariant Network (17) 53 2.22 ± 2.16 25 6.72 ± 5.41
ViT (40) 85 1.34 ± 1.16 65 4.63 ± 3.49
DeIT (41) 85 1.27 ± 0.81 51 4.54 ± 2.75

DeIT Distilled (41) 86 1.22 ± 0.87 55 4.49 ± 2.27

Table 1: Attack Rates for models attacked with CMA-Search over camera and light parameters. CMA-Search
starts with correctly classified images, and searches the space of camera and light parameters to find an
in-distribution misclassification. The attack rate reports percentage of correctly classified images for which
CMA-Search found a failure. The change in parameter space (mean distance) required to induce an error is
extremely small, highlighting the brittleness of these models.

Table 1 reports in-distribution adversarial attacks identified by CMA-Search using small changes in 3D
perspective and lighting. For 71% images correctly classified by a ResNet, there lies an in-distribution failure

8

Under review as submission to TMLR

Table 2: Results with Co3D dataset. All models su�er from high attack rates, confirming the widespread
presence of in-distribution failures for object recognition models.

ResNet
Anti-Aliased

Networks
ViT DeIT

Test Accuracy 0.92 0.94 0.82 0.85
Attack Rate 0.51 0.39 0.72 0.72

within a 1.83% change in the camera position. For transformers, the impact is far worse with an Attack
Rate of 85%. For lighting changes, CMA-Search can find a misclassification in 42% cases with just a 6.5%
change. On average, 2 iterations were needed to find an in-distribution failure with camera variations. For
light variations, 3.5 iterations were required on average.

All architectures were most sensitive to changes in the Camera Position and the Camera Look At—subtle,
in-distribution 3D perspective changes. Shift-invariant architectures designed to improve robustness to 2D
shifts performed better, they were still highly susceptible to 3D perspective changes (see Table 1).

Fig. 3(b) shows the distribution of scene parameters for misclassified images. Errors are distributed across
the space with no clear, strong patterns characterizing the camera and light conditions where networks
struggle. This is in stark contrast to human vision, which is well-documented to be significantly impacted by
changes in camera parameters in the form of canonical vs. non-canonical poses (42; 43; 44), and upside-down
orientations(45; 46; 47), among others. In the supplement we provide additional results reporting CMA-Search
over camera and light parameter space (See Sec. S4).

Combined, these results confirm that object recognition models are plagued by in-distribution adversarial
attacks.

6.3 Results on Natural Image Data

Results on Co3D: Table 2 reports the average accuracy and attack rate for models trained on Co3D.
Despite a high test accuracy of 92%, a ResNet model su�ered from an attack rate of 51%. Thus, there were
in-distribution adversarial examples within 1-5 frames of the correctly classified frame for over half the images.
Sample failures are provided in Fig. 4(a) Transformers struggled even more, with ViT and DeIT having an
attack rate near 72%. The shift invariant architecture was more robust, but attack rate was still high at 39%
(see Table 2). These trends are consistent with the results in Table 1.

Results on ImageNet: We also confirmed that these results extend to ImageNet. We present empirical
results for a ResNet18 model trained on ImageNet, and OpenAI’s transformer-based CLIP model (48) in
Fig. 4(b). Additional ImageNet failures found using CMA-Search are provided in Fig. S5. Furthermore,
Fig. S6 presents results analyzing how the noise introduced by the NVS pipeline impacts classification
performance in finer-grained detail.

Combined, these results across 4 datasets confirm that despite near-perfect test set accuracies and millions of
training examples, classification models struggle with the widespread presence of in-distribution adversarial
examples.

7 Conclusions

Susceptibilities of recognition models have often been attributed to biased training data. Here, we put this
hypothesis to test by training and testing with a large-scale, unbiased dataset and propose a new search
method for investigating the brittleness of neural networks, which we call CMA-Search. We conducted
experiments with 4 datasets ranging from simple parametric data, to a rendered dataset of camera and light
variations, and finally natural image datasets ImageNet and Co3D.

9

Under review as submission to TMLR

Macaque Baboon Ri!e Flute

Re
sN

et

Chair Car Car Chair

(a)

(b)

Chair Table Tractor Lawn Mower

Figure 4: In-distribution adversarial attacks on natural images. (a) Misclassifications in ImageNet caused by
CMA-Search + novel view synthesis. Examples are presented for a ResNet model trained on ImageNet, and
OpenAI’s CLIP model. (b) Sample errors for the Co3D dataset searched within 1 ≠ 5 frames of a correctly
classified image. Attack rates for Co3D are reported in Table 2.

10

Under review as submission to TMLR

Across all datasets our findings are consistent—while data augmentation, unbiased datasets, and specialized
shift-invariant architectures are certainly helpful in improving model robustness, the real problem runs far
deeper. Despite high test accuracies, networks are plagued by adversarial examples that lie within the training
distribution as measured by the attack rate.

8 Discussions

In practice, these in-distribution adversarial examples point to a highly worrisome problem—these failures
bypass the need for a malicious agent to induce an error. Even when the model has a near perfect test
accuracy, these examples lie hidden within the data distribution in plain sight.

This discovery of in-distribution adversarial examples presents critical security challenges distinct from
traditional adversarial attacks. While conventional attacks require engineered perturbations, these adversarial
examples exist naturally within the expected data distribution, creating two severe vulnerabilities. First,
they bypass traditional detection methods that rely on identifying out-of-distribution characteristics or
unusual perturbations (49; 8; 50; 51). Second, and more concerning, they o�er perfect plausible deniability to
malicious actors. Unlike traditional attacks that leave forensic evidence of pixel manipulation, in-distribution
adversarial examples are indistinguishable from legitimate data. Consider a self-driving car crash due to
misclassifying a natural scene—not only does it bypass security systems as a perfectly natural image, but
it also becomes impossible to determine whether this scene was deliberately chosen to cause failure or was
truly accidental. This fundamentally undermines security approaches that rely on detecting tampering or
establishing malicious intent.

With CMA-Search, we have presented a tool to help future researchers search for such failures and evaluate
such defense mechanisms. Naturally, a model with no in-distribution failures would have an attack rate of 0,
making this a natural goal for benchmarking studies using this metric. Future research could also extend this
to include distance-constrained variants, such as Attack Rate at 1% or 5%, which would measure vulnerability
within specific perturbation bounds.

Several promising mitigation strategies emerge from our analysis, which could guide future work on in-
distribution robustness. Firstly, our results in Fig. 2(c) show these errors cluster near category boundaries.
This suggests that targeted sampling strategies which densely sample training points in these regions could
improve model robustness. Secondly, we also found that model initialization has a profound impact on the
attack rate, which warrants further research into identifying better initialization strategies which can lead to
more robust models. Finally, drawing inspiration from biology, the saccadic movements of the human eye
suggest that using multiple viewpoints of the same scene during test time could reduce vulnerability.

11

Under review as submission to TMLR

References

[1] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation and a
translation su�ce: Fooling CNNs with simple transformations. https://openreview.net/forum?id=BJfvknCqFQ,
2018.

[2] Sanjana Srivastava, Guy Ben-Yosef, and Xavier Boix. Minimal images in deep neural networks: Fragile object
recognition in natural images. In Proceedings of the International Conference on Learning Representations (ICLR),
2019.

[3] Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to small image
transformations? Journal of Machine Learning Research, 20(184):1–25, 2019.

[4] Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. Towards verifying robustness of
neural networks against a family of semantic perturbations. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 244–252, 2020.

[5] Hossein Hosseini and Radha Poovendran. Semantic adversarial examples. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops, pages 1614–1619, 2018.

[6] Ali Shahin Shamsabadi, Ricardo Sanchez-Matilla, and Andrea Cavallaro. Colorfool: Semantic adversarial
colorization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1151–1160, 2020.

[7] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features. In Advances in Neural Information Processing Systems,
2019.

[8] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting out-of-distribution
samples and adversarial attacks. Advances in neural information processing systems, 31, 2018.

[9] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel. On the (statistical)
detection of adversarial examples. arXiv preprint arXiv:1702.06280, 2017.

[10] Naveen Karunanayake, Ravin Gunawardena, Suranga Seneviratne, and Sanjay Chawla. Out-of-distribution data:
An acquaintance of adversarial examples–a survey. arXiv preprint arXiv:2404.05219, 2024.

[11] David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness and generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6976–6987, 2019.

[12] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and David Novotny.
Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, pages 10901–10911, 2021.

[13] Richard Tucker and Noah Snavely. Single-view view synthesis with multiplane images. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 551–560, 2020.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 248–255, 2009.

[15] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and Anh Nguyen. Strike (with)
a pose: Neural networks are easily fooled by strange poses of familiar objects. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 4845–4854, 2019.

[16] Richard Zhang. Making convolutional networks shift-invariant again. In Proceedings of the International

Conference on Machine Learning (ICML), pages 7324–7334, 2019.

[17] Anadi Chaman and Ivan DokmaniÊ. Truly shift-invariant convolutional neural networks. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3773–3783, 2021.

[18] Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek Nowrouzezahrai, and Alec Jacobson. Beyond pixel
norm-balls: Parametric adversaries using an analytically di�erentiable renderer. In Proceedings of the International

Conference on Learning Representations (ICLR), 2019.

12

https://openreview.net/forum?id=BJfvknCqFQ

Under review as submission to TMLR

[19] Xiaohui Zeng, Chenxi Liu, Yu-Siang Wang, Weichao Qiu, Lingxi Xie, Yu-Wing Tai, Chi-Keung Tang, and Alan L
Yuille. Adversarial attacks beyond the image space. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4302–4311, 2019.

[20] Rakshith Shetty, Mario Fritz, and Bernt Schiele. Towards automated testing and robustification by semantic
adversarial data generation. In Proceedings of the European Conference on Computer Vision (ECCV), pages
489–506, 2020.

[21] Lakshya Jain, Steven Chen, Wilson Wu, Uyeong Jang, Varun Chandrasekaran, Sanjit Seshia, and Somesh Jha.
Generating semantic adversarial examples with di�erentiable rendering. https://openreview.net/forum?id=
SJlRF04YwB, 2019.

[22] Chaowei Xiao, Dawei Yang, Bo Li, Jia Deng, and Mingyan Liu. Meshadv: Adversarial meshes for visual
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 6898–6907, 2019.

[23] Ameya Joshi, Amitangshu Mukherjee, Soumik Sarkar, and Chinmay Hegde. Semantic adversarial attacks:
Parametric transformations that fool deep classifiers. In Proceedings of the IEEE/CVF International Conference

on Computer Vision (ICCV), pages 4773–4783, 2019.

[24] Philip Yao, Andrew So, Tingting Chen, and Hao Ji. On multiview robustness of 3D adversarial attacks. In
Practice and Experience in Advanced Research Computing, pages 372–378. 2020.

[25] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin Wattenberg, and Ian
Goodfellow. The relationship between high-dimensional geometry and adversarial examples. arXiv preprint,
arXiv:1801.02774, 2018.

[26] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of classifiers: from adversarial
to random noise. In Advances in Neural Information Processing Systems, volume 29, 2016.

[27] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. Adversarial vulnerability for any classifier. In Advances in

Neural Information Processing Systems, volume 31, 2018.

[28] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of classifiers’ robustness to adversarial perturbations.
Machine learning, 107(3):481–508, 2018.

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft COCO: Common objects in context. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 740–755, 2014.

[30] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[31] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization.
In 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), 2013.

[32] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million image
database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.

[33] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An information-rich 3D
model repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University — Princeton University —
Toyota Technological Institute at Chicago, 2015.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet large scale visual recognition challenge. International

Journal of Computer Vision, 115(3):211–252, 2015.

[35] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distributions in evolution
strategies: The covariance matrix adaptation. In Proceedings of IEEE International Conference on Evolutionary

Computation, pages 312–317, 1996.

[36] Nikolaus Hansen. The CMA evolution strategy: A tutorial. arXiv preprint, arXiv:1604.00772, 2016.

13

https://openreview.net/forum?id=SJlRF04YwB
https://openreview.net/forum?id=SJlRF04YwB

Under review as submission to TMLR

[37] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github. Zenodo,
DOI:10.5281/zenodo.2559634, February 2019.

[38] David Warde-Farley and Ian Goodfellow. Adversarial perturbations of deep neural networks. In Tamir Hazan,
George Papandreou, and Daniel Tarlow, editors, Perturbations, Optimization, and Statistics, pages 311–342. MIT
Press, Cambridge, MA, USA, 2016.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[40] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings of the International

Conference on Learning Representations (ICLR), 2021.

[41] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-e�cient image transformers & distillation through attention. In Proceedings of the 38th International

Conference on Machine Learning (ICML), pages 10347–10357, 2021.

[42] Pablo Gomez, Jennifer Shutter, and Je�rey N Rouder. Memory for objects in canonical and noncanonical
viewpoints. Psychonomic Bulletin & Review, 15(5):940–944, 2008.

[43] Kyla P Terhune, Grant T Liu, Edward J Modestino, Atsushi Miki, Kevin N Sheth, Chia-Shang J Liu, Gabrielle R
Bonhomme, and John C Haselgrove. Recognition of objects in non-canonical views: A functional MRI study.
Journal of Neuro-Ophthalmology, 25(4):273–279, 2005.

[44] Volker Blanz, Michael J Tarr, and Heinrich H Bültho�. What object attributes determine canonical views?
Perception, 28(5):575–599, 1999.

[45] Wolfgang Köhler. Dynamics in psychology. WW Norton & Company, 1960.

[46] Michael B Lewis. The lady’s not for turning: Rotation of the Thatcher illusion. Perception, 30(6):769–774, 2001.

[47] Peter Thompson. Margaret Thatcher: a new illusion. Perception, 1980.

[48] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Proceedings of the 38th International Conference on Machine

Learning (ICML), pages 8748–8763, 2021.

[49] Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh Jha. Robust out-of-distribution detection via
informative outlier mining. arXiv preprint arXiv:2006.15207, 1(2):7, 2020.

[50] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd: A statistical test for detecting adversarial
examples. In International Conference on Machine Learning, pages 5498–5507. PMLR, 2019.

[51] Dan Hendrycks and Kevin Gimpel. Early methods for detecting adversarial images. arXiv preprint

arXiv:1608.00530, 2016.

[52] Radoslav Harman and Vladimír Lacko. On decompositional algorithms for uniform sampling from n-spheres and
n-balls. Journal of Multivariate Analysis, 101(10):2297–2304, 2010.

[53] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and
perturbations. In Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[54] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park, and Jan Kautz. Novel view synthesis of dynamic
scenes with globally coherent depths from a monocular camera. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 5336–5345, 2020.

[55] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros. View synthesis by appearance
flow. In Proceedings of the European Conference on Computer Vision (ECCV), pages 286–301, 2016.

[56] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. Synsin: End-to-end view synthesis from a
single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7467–7477, 2020.

[57] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

14

Under review as submission to TMLR

S1 Graphics pipeline to generate dataset of camera and lighting variations

S1.1 3D Scene Setup

Each scene contains one camera, one 3D model and 1-4 lights. To ensure no spuri- ous correlations with object
texture [17], texture for all ShapeNet objects was replaced with a simple di�use material and the background
was kept constant to ensure no spurious correlations between foreground and background. Thus, every scene
is completely parametrized by the camera and the light parameters. As shown in Fig. 1, camera parameters
are 10 Dimensional: one dimension for the FOV (field of view of camera lens), and three dimensions each
for the Camera Position (coordi- nates of camera center), Look At (point on the canvas where the camera
looks), and the UP vector (rotation of camera). Analogously, lights are represented by 11 dimensions - two
dimensions for the Light Size, and three each for Light Position, light Look At and RGB color intensity.
Multiple lights ensure that scenes contain complex mixed lighting, including self-shadows. Thus, our scenes
are (11n + 10) dimensional, where n is the number of lights. There is a one-to-one mapping between the
pixel space (rendered images) and this low dimensional scene representation.

S1.2 Unbiased, uniform sampling of scene parameters

To ensure an unbiased distribution over di�erent viewpoints, locations on the frame, perspective projections
and colors, we ensured that scene parameters follow a uniform distribution. Concretely, camera and light
positions were sampled from a uniform distribution on a spherical shell with a fixed minimum and maximum
radius. The Up Vector was uniformly distributed across range of all possible camera rotations, and RGB
light intensities were uniformly distributed across all possible colors. Camera and light Look At positions
were uniformly distributed while ensuring the object stays in frame and is well-lit (frame size depends
on Camera Position and FOV). Finally, Light Size and camera FOV were uniformly sampled 2D and 1D
vectors. Hyper-parameters for rendering, along with the exact distribution for each scene parameter and the
corresponding sampling technique used to sample from these distributions are reported in the supplement.

Below we specify the hyper-parameters for rendering, along with the exact distribution for each scene
parameter and the corresponding sampling technique used to sample from these distributions.

Camera Position: For scene camera, first a random radius rc is sampled while ensuring rc ≥ Unif(0.5, 8).
Then, the camera is placed on a random point denoted (xc, yc, zc) on the spherical shell of radius rc. To
generate a random point on the sphere while ensuring an equal probability of all points, we rely on the
method which sums three randomly sampled normal distributions (52):

X, Y, Z ≥ N (0, 1), (3)
v = (X, Y, Z), (4)

(xc, yc, zc) = rc ú v

ÎvÎ . (5)

Camera Look At: To ensure the object is shown at di�erent locations within the camera frame, the camera
Look At needs to be varied. However, range of values such that the object is visible can be present across the
entire range of the frame depends on the camera position. So, we sample camera Look At as lc as follows:

lc ≥ Unif(K ú xc, K ú yc, K ú zc), where K = 0.3. (6)

The value K = 0.3 was found empirically. We found it helped ensure that objects show up across the whole
frame while still being completely visible within the frame.

Camera Up Vector: Note that the camera Up Vector is implemented as the vector joining the camera
center (0,0,0) to a specified position. We sample this position and therefore the Up Vector uc as follows:

x, y, z ≥ Unif(≠1, 1), (7)
uc = (x, y, z). (8)

15

Under review as submission to TMLR

Camera Field of View (FOV): We sample the field of view fc while ensuring:

fc ≥ Unif(K1, K2). (9)

Again, the values K1 = 35, K2 = 100 were found empirically to ensure objects are completely visible within
the frame while not being too small.

Light Position: For every scene we first sample the number of lights n between 1-4 with equal probability.
For each light i, a random radius ri is sampled ensuring ri ≥ Unif(R1, R2), then the light is placed on a
random point (xi, yi, zi) on the sphere of radius ri. R1 = 1 and R2 = 8 were found empirically to ensure that
the light is able to illuminate the 3D model appropriately.

Light Look At: To ensure that the light is visible on the canvas, light Look At is sampled as a function of
the camera position:

li ≥ Unif(K ú xc, K ú yc, K ú zc), where K = 0.3. (10)

As in the case of the Camera Look At parameter mentioned above, the value K = 0.3 was found empirically.

Light Size: Every light in our setup is implemented as an area light, and therefore requires a height and
width to specify the size. We generate the size si for light i as:

h, w ≥ Unif(L1, L2), (11)
si = (h, w). (12)

L1 = 0.1, L2 = 5 were found empirically to ensure the light illuminates the objects appropriately.

Light Intensity: This parameter specifies the RGB intensity of the light. For light i, RGB color intensity ci

was sampled as:

r, g, b ≥ Unif(0, 1), (13)
ci = (r, g, b). (14)

Object Material: To ensure no spurious correlations between object texture and category, all object textures
were set to a single di�use material. Specifically, the material is a linear blend between a Lambertian model
and a microfacet model with Phong distribution, with Schilick’s Fresnel approximation. Di�use reflectance
was set to 1.0, and the material was set to reflect on both sides.

S1.3 3D models used for generating two di�erent test sets

Our dataset contains 11 categories, with 40 3D models for every category chosen from ShapeNet (33). Neural
networks were evaluated on two test sets - one with the 3D models seen during training, and the second
with new, unseen 3D models. The first test set was generated by simply repeating the same procedure as
described above. Thus, the (Geometry ◊ Camera ◊ Lighting) joint distribution matches exactly for the
train set and this test set. The second test set was created by the exact same generation procedure, but with
10 new 3D models for every category chosen from ShapeNet. The motivation for this second test set was to
ensure our models are not over-fitting to the 3D models used for training. Thus, the (Camera ◊ Lighting)
joint distribution matches exactly for this test set and the train set, but the Geometry is di�erent in these
two sets.

S2 Generating nearby views for Natural Image Datasets

S2.1 Views in the vicinity of ImageNet images

ImageNet contains only one viewpoint per object. While several variations of ImageNet have been proposed
by adding noise in the form of corruptions and perturbations (53), these variations are designed to study

16

Under review as submission to TMLR

Table S3: Performance of object recognition models on seen and new 3D models.

Accuracy ResNet
Anti-

Aliased

Truly Shift

Invariant
ViT DeIT

DeIT

Distilled

Seen models 0.75 0.82 0.80 0.58 0.63 0.64
New models 0.70 0.74 0.72 0.59 0.64 0.65

the impact of out-of-distribution shifts on object recognition models. Like these variations, our camera
manipulations correspond to transforming input images to study its impact on object recognition models.
However, the key di�erence is that our work focuses on in-distribution adversarial examples, due to which
these datasets designed for out-of-distribution shifts cannot be repurposed for our experiments. Thus, a major
challenge in extending our results to ImageNet is generating natural images in the vicinity of a correctly
classified image by slightly modifying the camera parameters. To do so for ImageNet is equivalent to novel
view synthesis (NVS) from single images, which has been a long-standing challenging task in computer
vision. However, recent advances in NVS enable us to extend our method to natural image datasets like
ImageNet (54; 55; 56; 13).

To generate new views in the vicinity of ImageNet images, we rely on a single-view synthesis model based
on multi-plane images (MPI) (13). The MPI model takes as input an image and the (x, y, z) o�sets which
describe camera movement along the X, Y and Z axes. Note that unlike our renderer, it cannot introduce
changes to the camera Look At, Up Vector, Field of View or lighting changes. An important limitation of
this approach is that any noise added by the MPI model in image generation is a confounding variable which
we cannot account for. This further highlights the importance of our rendered and Co3D experiments as
these experiments do not su�er from such noise.

S2.2 Views in the vicinity of Co3D images

As an additional control for any potential noise introduced by the novel view synthesis pipeline in generating
nearby views for ImageNet images, we present additional results on the large-scale, multi-viewpoint Co3D (12)
dataset. Co3D was created by capturing short videos of fixed objects placed on a surface by a user moving
a mobile phone around the object. Thus, nearby frames in the video represent views in the vicinity of
an image. We utilize this to test in-distribution robustness in the vicinity of correctly classified images.
The classification dataset is created by picking 5 categories—car, chair, handbag, laptop, and teddy bear.
We created the training data by uniformly sampling frames across the whole video for all videos for these
categories amounting to 187, 200 training images. Note that this amounts to roughly 38, 000 images per
category, which is 32 times the ImageNet training set on a per category basis. An in-distribution test set of
68, 854 images is generated by sampling the remaining frames to measure overall accuracy of the trained
models. We then search for in-distribution failures in the vicinity (i.e., nearby frames) from the remaining
frames from these videos in the Co3D dataset. Thus, no novel view synthesis pipeline was used. Instead,
pre-captured frames from the videos were used to search for in-distribution adversarial examples in the
vicinity of viewpoints.

S3 Additional details on CMA-Search

Below we provide details on the implementation and evaluation of our in-distribution adversarial search
method—CMA-Search.

S3.1 Finding in-distribution adversarial examples by searching the vicinity of a correctly classified image

CMA-Search can be used to attack any parametric dataset. To find an in-distribution failure our methodology
requires a classification model, a correctly classified data point, and the parametric representation of this
data point. CMA-Search optimizes these parameters using evolutionary strategies to find a sample which is
misclassified by the model. We used a gradient-free optimization method—Covariance Matrix Adaptation-
Evolution Strategy (CMA-ES) (35; 36). CMA-ES has been found to work reliably well with non-smooth

17

Under review as submission to TMLR

Yes

No

Yes

YesNo

Yes

No

No

Start

Pick Initial

Camera Parameters,

iters = 0

iters < 20

Generate Mutated

Offspring,

offsprings += 1

Check for

Misclassification

Misclassification?

offsprings

< 20

Inside Data Distribution?

Found In-Distribution

Adversarial Attack

Pick Best Offspring,

Update CMA Parameters

iters += 1,

offsprings=0

Not Found

Figure S1: Flowchart describing CMA-Search step-by-step.

18

Under review as submission to TMLR

(a) (b) (d)(c)

(a) (b) (d)(c)

(a) (b) (d)(c)

(a) (b) (d)(c)

Category: Piano, Network: Anti-Aliased

Category: Guitar, Network: Anit-Aliased

Category: Pistol, Network: Truly Shift Invariant

Category: Airplane, Network: Truly Shift Invariant

Figure S2: Camera Parameters that lead to misclassifications for multiple categories and architectures. (a)
Camera Position, (b) Camera Look At, (c) Up Vector, (d) Histogram of Lens Field of View.

optimization problems and especially with local optimization (57), which made it a perfect fit for our search
strategy.

Starting from the initial parameters, CMA-ES generates o�spring by sampling from a multivariate normal
(MVN) distribution i.e. mutating the original parameters. These o�spring are then sorted based on the
fitness function (classification probability), and the best ones are used to modify the mean and covariance
matrix of the MVN for the next generation. The mean represents the current best estimate of the solution i.e.
the maximum likelihood solution, while the covariance matrix dictates the direction in which the population
should be directed in the next generation. The search was stopped either when a misclassification occurred,
or after 15 iterations over scene parameters. For the simplistic parametrically controlled data, we checked for
a misclassification till 1500 iterations.

19

Under review as submission to TMLR

For ease, we present the algorithm for in-distribution errors in rendered images found by optimizing camera
parameters. The methodology to attack all datasets is analogous. In this case, our method searches the
vicinity of the camera parameters of a correct classified image to find an in-distribution error. Algorithm 1
provides an outline of using CMA-Search to find in-distribution adversarial examples by searching the vicinity
of camera parameters. The algorithm for searching for adversarial examples using light parameters in
rendered data, and within parametrically controlled uniform data is analogous. Fig. 3(c) presents examples
of in-distribution adversarial examples found using CMA-Search over camera parameters. As shown, subtle
changes in 3D perspective can lead to drastic errors in classification. We also report the subtle changes in
camera position (in black) and camera Look At (in blue) between the correctly and incorrectly classified
images in Fig. 3(c).

This approach di�ers from existing work on adversarial viewpoints and lighting(18; 19; 21) in two ways. First,
unlike these works our approach finds in-distribution errors. Secondly, these methods rely on gradient descent
and thus require high dimensional representations of the scene to work well. For instance, these works often
use neural rendering where network activations act as a high dimensional representation of the scene (19; 23),
or use up-sampling of meshes to increase dimensionality (18). In contrast, our approach works well for as low
as 3 dimensions.

S3.2 Evaluating CMA-Search and in-distribution robustness using the Attack Rate

The performance of CMA-Search was quantified using a new metric—the Attack Rate, which refers to the
percentage of correctly classified points for which CMA-Search successfully found an in-distribution adversarial
example. For simplistic parametrically controlled data, the Attack Rate was measured by attacking 20, 000
correctly classified samples using CMA-Search. Due to our use of a physically based renderer that accurately
models the physics of light in the 3D scene, generating images in the vicinity of the correctly classified image
is a computational intensive process. Thus, for rendered data, the Attack Rate is measured by attacking
2, 000 correctly classified images for every architecture, and these numbers are reported in Table 1. As an
additional control, we also measured the Attack Rate for the ResNet18 architecture with 20, 000 images, and
found the rate to be unchanged. For the Co3D dataset, Attack Rate is measured on 116, 850 images. As
explained in Sec.3, we do not render or generate any new novel views for Co3D but simply search through
natural images already provided in the dataset.

S3.3 Visualizing in-distribution adversarial examples using Church-window plots

CMA-Search starts from a correctly classified point and provides an in-distribution adversarial example. We
used these two points to define a unit vector in the adversarial direction, and fixed this as one of basis vectors
for the space the data occupies. As data dimensionality was D, we calculated the remaining D≠1 orthonormal
bases. Following the same protocol as past work (38), we randomly picked one of these orthonormal vectors
as the orthogonal direction and defined a grid of perturbations with fixed increments along the adversarial
and the orthogonal directions. These perturbations were then added to the original sample and the model was
evaluated at these perturbed samples. We plotted correct classifications in white, in-distribution adversarial
examples in red, and out-of-distribution samples in black.

S3.4 Computational e�ciency of CMA-Search

CMA-Search operates iteratively, generating multiple o�springs in every iteration, and retaining the best
in every iteration to calculate parameters for the next iteration. For simplistic parametrically controlled,
CMA-Search was set to generate 20 o�springs in every iteration, and the search algorithm was set to stop
when an in-distribution adversarial example is found, or if a maximum threshold of 1500 iterations were hit.
On average, 51 iterations were needed to find an in-distribution adversarial example for 10 dimensional data.
The average number of iterations needed dropped to 20 for 100 dimensional data. Note that as dimensionality
increases, all steps become more computationally intensive, this includes training models, generating new
o�springs using CMA-Search, and model inference to test o�spring fitness. Thus, overall time required
to attack increases with dimensionality. However, computational e�ciency of CMA-Search improves with
dimensionality, as lesser iterations are needed.

20

Under review as submission to TMLR

Figure S3: Sample Images from our rendered dataset.

For rendered data, which is significantly higher dimensional, we found that CMA-Search is very e�cient
as extremely low number of iterations are needed to find an in-distribution failure. For both camera and
light variation based attacks, CMA-Search was set to generate 10 o�springs in every iteration, and maximum
iteration threshold was set to 15. On average, only 2 iterations were needed to find an in-distribution failure
with camera variations. For light variations, 3.5 iterations were required on average. This suggests that
CMA-Search is more e�cient at higher dimensions, despite working well at low dimensions.

S4 Additional Results with ImageNet

We present examples of in-distribution adversarial attacks with ImageNet in Fig. S5. Furthermore, we
conducted comprehensive analysis on how noise levels impact robustness. Specifically, we evaluated the

21

Under review as submission to TMLR

(a) (b) (d)(c)

(a) (b) (d)(c)

(a) (b) (d)(c)

(a) (b) (d)(c)

Category: Piano, Network: Anti-Aliased

Category: Guitar, Network: Anit-Aliased

Category: Pistol, Network: Truly Shift Invariant

Category: Airplane, Network: Truly Shift Invariant

Figure S4: Camera Parameters that lead to misclassifications for multiple categories and architectures. (a)
Camera Position, (b) Camera Look At, (c) Up Vector, (d) Histogram of Lens Field of View.

attack rate for ImageNet images under di�erent levels of noise introduced by NVS. A total of 27 noise levels
were tested—three levels each for the camera parameters controlling the X, Y, and Z axes (corresponding to
horizontal translation, vertical translation, and zoom). These results are presented in Fig. S6. While attack
rates increased with noise across all axes, models showed particular susceptibility to Y-axis perturbations.

22

Under review as submission to TMLR

Tank Pickup Truck Train Street Car

LizardSnake Train Pickup Truck

Bear ChimpanzeeCup Tennis Ball

Hamster Sweet Pepper Turtle Beetle

Porcupine Raccoon PorcupineFish

Figure S5: ore examples of misclassified ImageNet-like images discovered by CMA-Search combined with the
single view MPI model.

23

Under review as submission to TMLR

Figure S6: Impact of NVS induced noise on ImageNet classification.

24

	Introduction
	Related Work
	Datasets with explicitly controlled data distributions
	Generating simplistic parametrically controlled data
	Generating an unbiased training dataset of camera and light variations
	Natural image datasets—ImageNet and Common Objects in 3D

	CMA-Search: Finding in-distribution failures by searching the vicinity
	Experimental Details
	Training details for MLPs for classifying parametrically controlled uniform data
	Training details for Object recognition models for classifying images of real-world objects

	Results
	In-distribution adversarial attacks on uniformly distributed data
	Networks struggle to generalize across camera and light variations
	Results on Natural Image Data

	Conclusions
	Discussions
	Graphics pipeline to generate dataset of camera and lighting variations
	3D Scene Setup
	Unbiased, uniform sampling of scene parameters
	3D models used for generating two different test sets

	Generating nearby views for Natural Image Datasets
	Views in the vicinity of ImageNet images
	Views in the vicinity of Co3D images

	Additional details on CMA-Search
	Finding in-distribution adversarial examples by searching the vicinity of a correctly classified image
	Evaluating CMA-Search and in-distribution robustness using the Attack Rate
	Visualizing in-distribution adversarial examples using Church-window plots
	Computational efficiency of CMA-Search

	Additional Results with ImageNet

