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ABSTRACT

Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art
model for graph-based learning tasks. However, it is still challenging to train
GCNs at scale, limiting their applications to real-world large graphs and hinder-
ing the exploration of deeper and more sophisticated GCN architectures. While it
can be natural to leverage graph partition and distributed training for tackling this
challenge, this direction has only been slightly touched on previously due to the
unique challenge posed by the GCN structures, especially the excessive amount
of boundary nodes in each partitioned subgraph, which can easily explode the re-
quired memory and communications for distributed training of GCNs. To this end,
we propose BDS-GCN, a method that adopts unbiased boundary sampling strat-
egy to enable efficient and scalable distributed GCN training while maintaining the
full-graph accuracy. Empirical evaluations and ablation studies validate the effec-
tiveness of the proposed BDS-GCN, e.g., boosting the throughput by up-to 500%
and reducing the memory usage by up-to 58% for distributed GCN training, while
achieving the same accuracy, as compared with the state-of-the-art methods. We
believe our BDS-GCN would open up a new paradigm for enabling GCN training
at scale. All code will be released publicly upon acceptance.

1 INTRODUCTION

Graph convolutional networks (GCNs) (Kipf & Welling, 2016) have gained increasing attention as
they recently demonstrated the state-of-the-art performance in a number of graph-based learning
tasks, including node classification (Kipf & Welling, 2016), link prediction (Zhang & Chen, 2018),
graph classification (Xu et al., 2018), and recommendation systems (Ying et al., 2018). The excellent
performance of GCNs is attributed to their unrestricted and irregular neighborhood connectivity
which provides them greater applicability to graph-based data than convolutional neural networks
(CNNs) that adopt a fixed regular neighborhood structure. Specifically, given a node in a graph, a
GCN first aggregates the features of its neighbor nodes, and then transforms the aggregated feature
through (hierarchical) feed-forward propagation to update the given node feature. The two major
operations, i.e., neighbor aggregate and update of node features, enables GCNs to take advantage
of the graph structure and outperform their structure-unaware alternatives.

Despite their promising performance, training GCNs has been very challenging, limiting their ap-
plication to large real-world graphs and hindering the exploration of deeper and more sophisticated
GCN architectures. This is because as the graph size grows, the sheer number of node features and
the large adjacency matrix can easily explode the required memory and communications. To tackle
this challenge, several sampling-based methods have been developed for reducing the memory re-
quirement at a cost of approximation errors. For example, GraphSAGE (Hamilton et al., 2017) and
others (Chen et al., 2017; Huang et al., 2018) reduce the full-batch of a large graph into a mini-batch
via neighbor sampling; alternative methods (Chiang et al., 2019; Zeng et al., 2019) use sub-graph
sampling to extract induced sub-graphs as training samples.

In parallel with sampling-based methods, a recently emerged and promising direction for handling
large graph training is the distributed training of GCNs, which aims to train large full-graphs over
multiple GPUs without degrading the accuracy. The key idea is to partition a giant graph into small
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subgraphs such that each could be fit into a GPU, and train them in parallel with necessary commu-
nication. Following this paradigm, pioneering efforts, including NeuGraph (Ma et al., 2019), ROC
(Jia et al., 2020), and CAGNET (Tripathy et al., 2020), demonstrate the great potential of distributed
GCN training, but with different trade-offs. NeuGraph and ROC store entire (sub)graphs in CPU for
overcoming the hurdle of still severe requirement of GPU memory, which yet relies on heavy GPU-
CPU communications. CAGNET splits the feature vector of nodes into small sub-vectors to reduce
the granularity of computation for potential memory saving, which however requires repeated and
redundant broadcast of all node features across all subgraphs. As a result, these methods not only
require either extra CPU resources or communication traffic, but also hurt training performance.

To enable efficient full-graph training of GCNs without these aforementioned issues, this work sets
out to understand the underlying cause of the memory and communication explosion in distributed
GCNs training by carefully analyzing the training paradigm – partition parallelism. We find that
even with partition parallelism GCN training can still be ineffective if not designed properly, which
motivates us to make the following contributions:

• We identify and formalize two main challenges in partition parallel training of GCNs: prohibitive
memory requirement and communication volume. We further identify the cause of these chal-
lenges to be excessive number of boundary nodes within each partitioned graph and such cause
is unique in GCNs architecture due to neighbor aggregation. These findings provide researchers
better understanding in distributed GCN trainings and potentially inspires further ideas in this
direction.

• We propose BDS-GCN, a simple yet effective boundary sampling method for overcoming both
challenges above, which enables more scalable and performant large-graph training of GCNs
while maintaining a full-graph accuracy. BDS-GCN randomly samples features of boundary
nodes during each training epoch, aggressively shrinking the required memory and communica-
tion volume without compromising the accuracy.

• Experiments and ablation studies consistently validate the effectiveness of the proposed BDS-
GCN in terms of training performance and achieved accuracy, e.g.,boosting the throughput by
up-to 500% and reducing the memory usage by up-to 58% while achieving the same or even
better accuracy, as compared with the state-of-the-art methods when being applied to Reddit and
ogbn-products datasets.

2 BACKGROUND AND RELATED WORKS

Graph Convolutional Networks. A GCN takes graph-structured data as input and learn a feature
(embedding) vector representing each node in the graph. To learn the feature vector, GCN performs
two major steps in each layer, i.e., neighbor aggregate and update, which can be represented as:

a(l)v =ζ(l)
(
h(l−1)u | u ∈ N (v)

)
(1)

h(l)v =φ(l)
(
a(l)v , h(l−1)v

)
(2)

where N (v) denotes the neighbor set of node v in the graph and h(l)u denotes the learned feature
vector of node u at the l-th layer. ζ(l) is aggregation function that takes neighbor features to generate
aggregation result a(l)v for node v. Then φ(l) gets the feature of node v updated. A famous instance
of GCN is GraphSAGE with mean aggregator (Hamilton et al., 2017), in which ζ(l) is mean function
and φ(l) is σ

(
W · CONCAT

(
a
(l)
v , h

(l−1)
v

))
, where W is the weight matrix and σ is a non-linear

activation. This instance is the focus of our work, but our approach can also be extended easily to
other popular aggregators and update functions.

Large Graph Training. Real-world graphs consist of millions of nodes and billions of edges (Hu
et al., 2020), which are beyond the capability of vanilla GCNs (Hamilton et al., 2017; Jia et al., 2020),
especially due to the constraint of GPU memory capacity. To tackle this issue, several sampling-
based methods were proposed, such as neighbor sampling (Hamilton et al., 2017; Chen et al., 2017),
layer sampling (Chen et al., 2018; Huang et al., 2018; Zou et al., 2019), and subgraph sampling
(Chiang et al., 2019; Zeng et al., 2019; Wang et al., 2019). However, these methods suffer three
major drawbacks:
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(a) Vanilla Partition Parallelism (b) ROC (c) CAGNET (d) BDS-GCN
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Figure 1: Comparison among different approaches of distributed GCN training for large graphs.

• Inaccurate feature estimation: although most sampling methods provide unbiased estimation of
node features, the variance of these estimation hurts the model accuracy. As Chen et al. (2017)
shows, sampling-based methods with a smaller variance is beneficial to improving the accuracy.

• Neighbor explosion: Hamilton et al. (2017) first uses node sampling that randomly selects sev-
eral neighbors in the previous layer, but as the model getting deeper the size of selected nodes
exponentially increases. Chen et al. (2017) and Huang et al. (2018) further propose samplers for
restricting the size of neighbor expansion, which yet suffers from heavy memory requirements.

• Extra time cost for sampling batches: All sampling based methods require to take some extra time
for generating mini-batches, which hurts the efficiency of model training.

Distributed Training for GCNs. To train GCNs for large graphs without limitations, distributed
training rises as a promising solution – leveraging a cluster of GPUs to enable full-graph training.
It is tempting to directly take classical distributed training approaches (such as data and model
parallelism) for GCNs. Unfortunately, GCNs training is diverged from the setting of those classical
approaches where data samples are small yet the model is large (e.g, model parallelism) and data
samples do not have dependency (e.g., data parallelism), both of which violate the nature of GCN
training. A GCN-oriented method should be: partition the full (giant) graph into small sub-graphs
such that each could be fit into one GPU memory, and train them in parallel, where communication
across sub-graphs (GPUs) is necessary to exchange boundary node features to perform neighbor
aggregation of GCNs, which is called vanilla partition parallelism as shown in Fig. 1 (a).

Following this paradigm, several works were proposed recently. ROC (Jia et al., 2020) partitions
large graphs but stores all partitions in CPU and swaps a fraction of each partition to compute on
GPU (see Fig. 1 (b)). It relies on swaps to overfit the GPU memory for large graphs, thus inevitably
demanding heavy swap communications, which not only require extra CPU resources and traffic
but also hurt the performance. Similar swap-based works are NeuGraph (Ma et al., 2019) and
AliGraph (Zhu et al., 2019). CAGNET (Tripathy et al., 2020) also partitions graphs but further splits
node feature vectors into small sub-vectors such that communication and compute are reduced to a
smaller granularity for memory savings (see Fig. 1 (c)). However, this strategy requires broadcast
of each sub-vector for every node in a fully sequential manner, which could incur both redundant
communications and an excessive synchronization overhead.

Distributed Graph Systems. Distributed graph systems were proposed for analyzing large graphs
to solve general graph problems (Shun & Blelloch, 2013; Nguyen et al., 2013; Gonzalez et al., 2012;
Zhu et al., 2016; Chen et al., 2019). Lerer et al. (2019) also proposes a distributed learning system for
graph embedding. However, none considers node features and cannot be used to for GCN training.

3 PARTITION-PARALLEL GCN TRAINING WITH BOUNDARY SAMPLING

Overview. To address the aforementioned challenges (i.e., (1) accuracy loss incurred by existing
sampling-based methods and (2) heavy swaps and redundant communications imposed by existing
distributed training methods), we propose a partition-parallel training of GCNs with a simple yet
effective boundary sampling, dubbed BDS-GCN, as shown in Fig. 1 (d). Specifically, BDS-GCN
partitions a given full-graph with minimized boundary node set and further samples them to shrink
both the required memory storage and communication costs in each partition/subgraph, enabling
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Figure 2: Illustrating vanilla partition parallel GCN training, where large graphs are partitioned
into smaller sub-graphs (see inner nodes) with each can be fit into one GPU memory. But exces-
sive boundary nodes (in orange) are introduced in each sub-graph by GCNs’ neighbor aggregation,
which not only drastically increases memory cost of each subgraph but also incurs heavy commu-
nication overhead between subgraphs, rendering such partition parallelism ineffective.

efficient and scalable large-graph training of GCNs on memory-constrained accelerators without
necessitating neither extra host resources nor communication traffics. Notably, BDS-GCN’s advan-
tage in substantially reducing hardware costs for training large graphs does not compromise the
accuracy, i.e., BDS-GCN maintains the full-graph accuracy.

We develop BDS-GCN by first analyzing and identifying the two major challenges (i.e., large mem-
ory and communication requirements; see Fig. 2) in existing partition-parallel training of GCNs,
and then pinpoint the underlying cause to be the excessive number of boundary nodes inherited
from GCNs’ unique neighbor aggregate operator. To tackle this cause directly, we design an unbi-
ased random sampling method that solves both above challenges.

3.1 CHALLENGES IN VANILLA PARTITION-PARALLEL TRAINING

To enable full-graph training, the original large graph can be partitioned into smaller subgraphs such
that each subgraph can potentially be fit into one GPU memory, and then all subgraphs are trained
in parallel, i.e., performing GCN compute locally on each subgraph while also communicating
dependent node features across subgraphs, which we call partition parallelism.

As illustrating in Fig. 2, each subgraph in partition parallelism contains a subset of nodes in the
original graph, which can be called inner node set (shown in the dash block) and is unique for each
subgraph. In addition, each subgraph is also required to hold a boundary node set (shown in orange)
which contains dependent nodes from other subgraphs. Such a boundary node set is dictated by
the nature of GCNs – neighbor aggregate of node features that can span multiple neighbor sub-
graphs. For instance, the node-5 requires the features of nodes-[3,4,6] residing on other subgraphs
to perform Equ. 1, thus creating the boundary nodes associated to the subgraph hosting node-5. To
compute each GCN layer, features of boundary nodes are communicated, i.e., exchanged, across
subgraphs (shown in red) before the features of inner nodes get updated (e.g., nodes-[2,5] shown in
blue). These updated features are again exchanged across subgraphs to compute the next GCN layer,
so on and so forth, until the final layer. The backward pass processes inversely as the forward pass,
except that it communicates the gradients of boundary nodes instead of their features. Then GCN
model get updated by aggregating weight gradients (e.g, via allreduce) among all partitions. Note
that common GCN models are relatively small compared to the features in subgraphs, rendering
their hardware cost negligible (Jia et al., 2020).

Although it seems such a vanilla partition parallelism can be used to handle large graph training of
GCNs, we find that it neither ineffective nor scalable due to the following challenges:

• Challenge 1: Even with partition, each subgraph can still require prohibitive memory budget to
hold both the inner and boundary sets, which can easily overflow GPU memory capacity.

• Challenge 2: The partition parallelism can suffer from severe communication overhead, slowing
down the training and limiting its scalability for adopting more partitions/GPUs.

We further identify that both the above challenges share the same underlying cause – the overhead
of extra boundary node within each partition, as elaborated below:
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Table 1: Comparison between number of boundary and inner nodes in partitioned Reddit graph with METIS.

Partition Index 1 2 3 4 5 6 7 8 9 10

# Inner Nodes 14k 15k 15k 15k 15k 15k 14k 15k 14k 15k
# Boundary Nodes 39k 15k 86k 78k 86k 62k 6k 46k 71k 23k

Ratio of # Boundary to # Inner 2.64 1.00 5.45 4.95 5.49 4.11 0.42 3.04 4.81 1.52

• Each boundary node requires both storage and communication for calculating every layer of
GCNs and for both forward and backward pass (as illustrated in Fig. 2).

• The boundary nodes can have duplication across subgraph.

• The boundary node set can be much larger than the inner node set in each subgraph.

As shown in Tab. 1, the number of boundary nodes in each subgraph can be 5.5× of the number
of inner nodes for the real-world Reddit (Hamilton et al., 2017) graph partitioned using the METIS
algorithm (Karypis & Kumar, 1998), leading to both memory and communication overhead. Ana-
lytically, we formalize both cost caused by boundary nodes in partition parallelism as below:

Analysis of Memory Cost. For the l-th layer, suppose the input feature is of dimension e(l), and the
numbers of inner nodes and boundary nodes in partition/subgraph Pi are n(i)in and n(i)bd , respectively.
Considering general cases where we save all node features and inner nodes’ aggregated features for
supporting the back propagation of both Equ. 1 and Equ. 2. When using a GraphSAGE layer with
mean aggregator, the memory cost is as follows:

Mem(l)(Pi) = (3n
(i)
in + n

(i)
bd )e

(l) (3)

As a result, the number of boundary nodes increases the memory requirement linearly.

Analysis of Communication Cost. For the partition Pi, the communication volume can be defined
as Vol(Pi) =

∑
v∈Pi

D(v) where D(v) denotes the number of different partitions in which v has a
neighbor node, excluding Pi (Buluç et al., 2016). This value quantifies the total amount of features
Pi needs to send during each propagation. As the total number of received messages equals to the
total number of sent messages, the total communication volume equals to the total boundary nodes:∑

i

Vol(Pi) =
∑
i

n
(i)
bd (4)

3.2 THE PROPOSED BDS-GCN TECHNIQUE

3.2.1 BDS-GCN: GRAPH PARTITION

As boundary nodes are the cause for ineffective partition parallelism, the graph partition has to
minimize all boundary node sets to prevent subsequent memory and communication overheads,
dubbed Goal-1. Furthermore, the graph partition must also achieve balanced computation time
across all partitions, dubbed Goal-2, since the partition parallelism is a synchronous paradigm that
requires frequent synchronization at layer granularity (again due to neighbor aggregate nature of
GCN), where unbalanced partition can result in stragglers blocking other partitions to train.

Many existing graph partition methods aim to achieve the aforementioned Goal-2 yet ignoring Goal-
1. In this work, we adopt METIS (Karypis & Kumar, 1998) to implement BDS-GCN. Considering
both Goal-1 and Goal-2, we first approximate the compute complexity to determine the size of parti-
tions (e.g., when Equ. 2 is dominated by matrix multiplication, the complexity is proportional to the
number of nodes, so we set partitions with equal size in this case), aiming to balance computations
across all partitions. After that, we set the objective of METIS to minimize the total communication
volumes, which is to minimize the size of boundary node sets, according to Equ 4.

3.2.2 BDS-GCN: BOUNDARY SAMPLING

Even with optimal graph partition, the boundary node issue still remains (see Tab. 1), calling for
innovative methods to trim down the boundary nodes for enabling efficient and scalable partition
parallelism. Ideally, such method should achieve all following goals: 1) substantially shrinking
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Algorithm 1: Boundary sampling for partition-parallel training (per-partition view)
Input: graph partition G, boundary node set N , node features X , labels Y , sampling rate p,

initial model w[0], learning rate γ, number of partitions m
Output: trained model w[T ]

1 V ← {node v ∈ G : v /∈ N}; // create inner node set

2 H(0) ← X; // initialize input features
3 for t← 1 : T do
4 Ns ← randomly select elements in N with probability p;
5 Broadcast Ns and Receive [U1, · · · ,Um]; // notify selection to all
6 [V1, · · · ,Vm]← [U1 ∩ V, · · · ,Um ∩ V]; // record selection of others
7 Gs ← node induced subgraph of G from V ∪ Ns;
8 for l← 1 : L do
9 Send [H

(l−1)
V1 , · · · , H(l−1)

Vm ] to partition [1, · · · ,m] and Receive H(l−1)
Ns

;

10 H(l) ← GCN (l)(Gs, concat(H(l−1), H
(l−1)
Ns

));
11 end
12 fG ←

∑
v∈V `(h

(L)
v , yv); // calculate loss

13 glocal[t]← ∂fG
∂w[t] ; // backward pass

14 g[t]← AllReduce(glocal[t]);
15 w[t]← w[t− 1]− γ · g[t];
16 end
17 return w[T ]

boundary set, 2) incurring only minimal overhead, and 3) maintaining full-graph accuracy of GCNs.
As such, we propose an unbiased random sampling method called boundary sampling. (The phrase
’unbiased’ refers to the mean aggregator and ignores activations, as in Chen et al. (2017) and Zeng
et al. (2019).) The key idea is to select a subset of boundary nodes independently from each partition,
then to store and communicate merely those selected boundary nodes instead of the full set, and
to update the selection randomly for every epoch.

Algorithm 1 outlines our boundary sampling method for partition parallel training of GCNs. In
each partition, we randomly keep boundary nodes with a probability of p, and drop the rest at the
beginning of each epoch. Then these selected node indices are shared across all partitions such that
each partition can “know” others’ selections and can record its local node Vi that is selected by the
other i-th partition. During forward pass of every layer, each partition sends those features H l

Vi of
previously recorded nodes to the corresponding i-th partition, respectively, and meanwhile receives
features of its own selected boundary nodes to perform GCN operations. (Here, if mean aggregator
is used, we replace sent/received feature vector h with h/p for unbiased feature estimation.) During
backward pass of every layer, each partition sends and receives feature gradients of the selected
boundary nodes while generating weight gradients of the GCN model. Lastly, weight gradients are
aggregated across all partitions via AllReduce to perform local weight updates.

The proposed boundary sampling reduces the number of boundary nodes by a factor of 1
p , together

with the same factor of reduction in memory and communication costs (according to both Equ 3 and
4). Meanwhile, boundary sampling introduces only negligible overhead due to random sampling on
node indices, making it a simple-yet-effective approach. Note that our boundary sampling can not
only boost the efficiency and scalability of vanilla partition parallelism, but also be easily plugged
into any partition parallel training methods (such as ROC (Jia et al., 2020) and CAGNET (Tripathy
et al., 2020)) for furthering their training efficiency.

Lastly, we compare the proposed boundary sampling with existing sampling methods:

• Node Sampling: GraphSAGE (Hamilton et al., 2017), VR-GCN (Chen et al., 2017), AS-GCN
(Huang et al., 2018) propose node sampling, which would sample the same nodes multiple times
from the previous layers, which restricts the depth of GCNs and training efficiency. Furthermore,
BDS-GCN does not sample neighbors in each subgragh, reducing estimation variance.
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• Layer Sampling: Boundary sampling is similar to layer sampling as nodes in the same subgraph
share the same sampled boundary nodes in the previous layer. Different from layer sampling such
as FastGCN (Chen et al., 2018), boundary sampling has much denser sampled layers, and thus
potentially improves the training quality.

• Subgraph Sampling: Boundary sampling can be viewed as one kind of subgraph sampling that
drops boundary nodes from other subgraphs/partitions. ClusterGCN (Chiang et al., 2019) and
GraphSAINT (Zeng et al., 2019) propose subgraph sampling, yet their number of selected sam-
ples are small (e.g., ClusterGCN and GraphSAINT sample only 1.3% and 5.3% of nodes, respec-
tively), leading to a higher variance of their feature estimation.

• DropEdge and Dropout: These techniques can be potentially integrated into BDS-GCN. However,
applying them directly is not practical as they do not directly reduce boundary nodes. Most
experiments in DropEdge drop at most 50% edges (Rong et al., 2019) and the resulting dropped
boundary nodes are still too few to support large graph training.

4 EXPERIMENTS

Datasets and Setup

We evaluate the efficacy of our methods on two standard large-scale datasets, Reddit (Hamilton
et al., 2017) and ogbn-products (Hu et al., 2020), and list used GCN models as following:

• Reddit: An inductive classification task. The graph consists of 233K nodes and 114M edges with
a feature size of 602. We use a 4-layer model with 256 hidden units and set learning rate as 0.01
for Adam optimizer with 1500 epochs.

• ogbn-products: A transductive classification task. The graph consists of 2.4M nodes and 62M
edges with a feature size of 100. We use a 3-layer model with 128 hidden units and set learning
rate as 0.001 for Adam optimizer with 500 epochs.

• Yelp: An inductive multi-label classification task. The graph consists of 716K nodes and 7.0M
edges with a feature size of 300. We use a 4-layer model (2 GraphSAGE layers and 2 linear layers)
with 512 hidden units and set learning rate as 0.001 for Adam optimizer with 3000 epochs.

To ensure the reproducibility and robustness of BDS-GCN, we do not tune but fix hyperparameters
for boundary node sampling throughout all experiments.

We implement BDS-GCN in PyTorch (Paszke et al., 2019) and DGL (Wang et al., 2019). All
experiments are conducted on a single machine with 10 RTX-2080Ti (11GB).

Performance Benefit of BDS-GCN

2 3 4 5
Number of partitions

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Th
ro

ug
hp

ut
 (e

po
ch

s/
s) ROC

CAGNET (c = 1)
CAGNET (c = 2)

BDS-GCN (p = 1.0)
BDS-GCN (p = 0.1)
BDS-GCN (p = 0.01)

Figure 3: Throughput comparison on Reddit
data. Each partition uses one GPU, except
CAGNET(c=2) uses doubled GPUs.

We evaluate the training performance of BDS-
GCN and compare it with the state-of-the-art
works, ROC (Jia et al., 2020) and CAGNET
(Tripathy et al., 2020), for distributed training
of GCNs on full large graphs. The result is
shown in Fig. 3, where each partition uses a sin-
gle GPU for all methods except that CAGNET
(c=2) requires doubled GPUs. From Fig. 3,
we observe that BDS-GCN outperforms other
methods consistently across different number
of partitions and different boundary sampling
rate p. When p = 0.01, BDS-GCN offers a
promising throughput improvement of up-to 500% compared with ROC and 118% compared with
CAGNET(c=2). Even when p = 1, BDS-GCN still improves the throughput by up-to 190% com-
pared with ROC and 49% compared with CAGNET(c=1). The advantage of BDS-GCN can be
attributed to not only the reduced communication overhead with boundary sampling, but also no
swap between CPU and GPU (as in ROC) nor redundant broadcast and synchronization overhead
(as in CAGNET). Meanwhile, we also find that increasing the number of partitions do not always
boost the performance for all methods, because the issue of boundary nodes can become more severe
and incur more communication overhead.
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Figure 4: Training time breakdown of BDS-
GCN with different boundary sampling rates.
Time are normalized against baselines without
sampling in each number of partitions.
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duction achieved by BDS-GCN. Reduction are
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Detailed Performance Benefits of BDS-GCN

To further understand the performance of BDS-GCN, we breakdown the training time into four
major components (local computation, communication for boundary nodes, wait, and allreduce on
model gradient) and present them in Fig. 4. We observe that local computation time is relatively
small but communication (and wait) dominate the total training time, i.e., up-to 52% and 48% of
the epoch time are paid for communication in baselines (p=1) on Reddit and obgn-products, respec-
tively. With boundary sampling (p < 1), such heavy overhead is reduced substantially. Especially,
the p=0.01 almost removes entire communication time for 4 ∼ 10 partitions on Reddit and obgn-
products, thus significantly cutting the total training time of GCNs. Note that this experiment is
conducted in a single machines where all traffics enjoy high-bandwidth PCIe, but when scaling
up further with multiple machines connected via lower bandwidth Ethernet, the distributed GCNs
training could suffer from more severe communication bottleneck and thus making the proposed
boundary sampling more desirable.

Besides, we also examine benefit of BDS-GCN in memory saving. We measure the application-
level memory usage of BDS-GCN under the same experiment setting, and summarize the achieved
memory usage reduction in Fig. 5, where BDS-GCN(p=1) serves as the baseline. From Fig. 5,
we observe that boundary sampling consistently reduce memory usage across different number of
partition on two datasets. For the denser Reddit, BDS-GCN(p=0.01) saves 58% memory for 8 GPUs.
For the sparser obgn-products, BDS-GCN(p=0.01) also still saves 27% memory for 10 GPUs.

Full-Graph Accuracy of BDS-GCN

Besides improving system performance, BDS-GCN also maintains the accuracy of full-graph train-
ing. To validate this, we have conducted extensive experiments to evaluate the test accuracy under
the settings of various sampling rates and different numbers of partitions in distributed GCN train-
ing, and compare the results with the state-of-the-art sampling-based methods (using GraphSAGE
architecture) in Tab. 2 (Hu et al., 2020; with Code, 2020; Chiang et al., 2019; Chen et al., 2017;
Zeng et al., 2019; Hamilton et al., 2017; Cong et al., 2020; Zou et al., 2019; Chen et al., 2020).
From Tab. 2, we observe that full-graph training (BDS-GCN with p=1) always achieves a higher
accuracy than exisiting sampling-based methods, regardless of different datasets or number of par-
titions, which is consistent with results of ROC (Jia et al., 2020).

More importantly, BDS-GCN always maintains or even increases the full-graph accuracy, regard-
less of the sampling rates (e.g., p=0.1/0.01), the number of partitions, or different datasets. For
instance, on Reddit, p=0.1 achieves a test accuracy of 97.10%, 97.12%, 97.07% under 2, 4, and 8
partitions, respectively, which are consistently equal or better than the 97.07% of full-graph unsam-
pled training, thus validating the effectiveness and robustness of boundary node sampling.

However, we also observe that the special case of BDS-GCN (p=0) always suffers from the worst
test accuracy/score on the three datasets, compared with other cases (p=1/0.1/0.01). We understand
that the accuracy/score drop is due to the full isolation of each partition after completely removing all
boundary nodes, leading to no boundary node features during “neighbor aggregation” throughout the
end-to-end training. Therefore, to retain a full-graph prediction accuracy, a relatively high sampling
rate like p=0.1/0.01 is preferred when using BDS-GCN.
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Table 2: Comparison of test accuracy (%) with the state-of-the-art methods on Reddit and ogbn-
products, and comparison of test set F1-micro score (%) on Yelp. BDS-GCN with various (bound-
ary sampling rate) and under different numbers of partitions are shown. Symbol ¶ denotes the
equivalence of full-graph training across a different number of partitions.

Method Reddit ogbn-products Yelp
Sampling-based methods

FastGCN 93.7 - 26.5
GraphSAGE 95.4 78.70 63.4

AS-GCN 96.3 - -
LADIES 94.3 - 60.2
VR-GCN 96.3 - 64.0

ClusterGCN 96.6 78.97 60.9
GraphSAINT 96.6 79.08 64.7

BDS-GCN
# Partitions 2 4 8 5 8 10 3 6 10

BDS-GCN (1.0) ¶ 97.07 ¶ ¶ 79.29 ¶ ¶ 64.91 ¶
BDS-GCN (0.1) 97.10 97.12 97.07 79.45 79.44 79.41 65.29 65.38 65.47
BDS-GCN (0.01) 97.03 96.94 96.89 79.53 79.44 79.24 65.29 65.40 65.44
BDS-GCN (0.0) 96.94 96.83 96.78 79.27 79.18 79.19 64.87 64.84 64.85
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Figure 6: Convergence comparison between unsampled full-graph distributed training (i.e., BDS-
GCN with p=1) and boundary-node sampled distributed training (i.e., BDS-GCN with p < 1) over
different numbers of partitions on Reddit.

To the best of our knowledge, BDS-GCN achieves the best accuracy of training GraphSAGE-layer
based GCNs on both Reddit and ogbn-product dataset compared with all existing works.

Convergence Speedup of BDS-GCN

To further understand the affect of BDS-GCN on convergence of distributed GCNs training, we also
evaluate the validation accuracy under the same settings of Tab. 2. Fig. 6 compares convergence
speed of those settings on Reddit. From Fig. 6, we observe that the boundary node sampling method
demonstrates a desirable convergence speed at a high sampling rate. Specifically, p=0.1 achieves
the same (or even slightly better) convergence speed as the full-graph training, regardless of differ-
ent numbers of partitions. We also notice that (1) p=0 suffers from the slowest convergence (i.e.,
0.1 ∼ 0.4% drop in validation accuracy from p=1) across different number of partitions, and (2) the
convergence gap between p=0 and p=1/0.1 worsens as more partitions are involved.

5 CONCLUSION

In this paper, partition parallel training of GCNs on large full-graph is studied, and its major chal-
lenges and underlying cause are identified. With careful analysis of the partition parallelism, a
boundary-sampling based method, BDS-GCNs, is proposed and its effectiveness is validated by
empirical evaluations. These findings and the proposed method can provide researchers better un-
derstanding in distributed GCN trainings and potentially inspires further ideas in this direction.
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