
Under review as a conference paper at ICLR 2021

LEARNING REPRESENTATIONS FROM
TEMPORALLY SMOOTH DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Events in the real world are correlated across nearby points in time, and we must
learn from this temporally “smooth” data. However, when neural networks are
trained to categorize or reconstruct single items, the common practice is to ran-
domize the order of training items. What are the effects of temporally smooth
training data on the efficiency of learning? We first tested the effects of smooth-
ness in training data on incremental learning in feedforward nets and found that
smoother data slowed learning. Moreover, sampling so as to minimize tempo-
ral smoothness produced more efficient learning than sampling randomly. If
smoothness generally impairs incremental learning, then how can networks be
modified to benefit from smoothness in the training data? We hypothesized that
two simple brain-inspired mechanisms – leaky memory in activation units and
memory-gating – could enable networks to rapidly extract useful representations
from smooth data. Across all levels of data smoothness, these brain-inspired ar-
chitectures achieved more efficient category learning than feedforward networks.
This advantage persisted, even when leaky memory networks with gating were
trained on smooth data and tested on randomly-ordered data. Finally, we inves-
tigated how these brain-inspired mechanisms altered the internal representations
learned by the networks. We found that networks with multi-scale leaky mem-
ory and memory-gating could learn internal representations that “un-mixed” data
sources which vary on fast and slow timescales across training samples. Alto-
gether, we identified simple mechanisms enabling neural networks to learn more
quickly from temporally smooth data, and to generate internal representations that
separate timescales in the training signal.

1 INTRODUCTION

Events in the world are correlated in time: the information that we receive at one moment is usually
similar to the information that we receive at the next. For example, when having a conversation with
someone, we see multiple samples of the same face from different angles over the course of several
seconds. However, when we train neural networks for categorization or reconstruction tasks, we
commonly ignore temporal ordering of samples and use randomly ordered data. Given that humans
can learn robustly and efficiently when learning incrementally from sequentially correlated, it is
important to examine what kinds of architectures and inductive biases may support such learning
(Hadsell et al., 2020). Therefore, we asked how does the sequential correlation structure in the data
affect learning in neural networks that are performing categorization or reconstruction of one input
at a time? Moreover, we asked: which mechanisms can a network employ to exploit the temporal
autocorrelation (“smoothness”) of data, without needing to perform backpropagation through time
(BPTT) (Sutskever, 2013)?

We investigated this question in three stages. In the first stage, we examined the effects of tempo-
rally smooth training data on feedforward neural networks performing category learning. Here we
confirmed that autocorrelation in training data slows learning in feeforward nets.

In the second stage, we investigated conditions under which these classifier networks might take ad-
vantage of smooth data. We hypothesized that human brains may possess mechanisms (or inductive
biases) that maximize the benefits of learning from temporally smooth data. We therefore tested
two network mechanisms inspired by properties of cortical circuits: leaky memory (associated with

1

Under review as a conference paper at ICLR 2021

autocorrelated brain dynamics), and memory gating (associated with rapid changes of brain states
at event boundaries). We compared the performance of these mechanisms relative to memoryless
networks and also against a long short-term memory (LSTM) architecture trained using BPTT.

Finally, having demonstrated that leaky memory can speed learning from temporally smooth data,
we studied the internal representations learned by these neural networks. In particular, we showed
that networks with multi-scale leaky memory and resetting could learn internal representations that
separate fast-changing and slow-changing data sources.

2 RELATED WORK

Effects of sampling strategies on incremental learning. The ordering of training examples affects
the speed and quality of learning. For example, learning can be sped by presenting “easier” examples
earlier, and then gradually increasing difficulty (Elman, 1993; Bengio et al., 2009; Kumar et al.,
2010; Lee & Grauman, 2011). Similarly, learning can be more efficient if training data is organized
so that the magnitude of weight updates increases over training samples (Gao & Jojic, 2016).

Here, we do not manipulate the order based on item difficulty or proximity to category boundaries;
we only explore the effects of ordering similar items nearby in time. We aim to identify mechanisms
that can aid efficient learning across many levels of temporal autocorrelation, adapting to what is
present in the data. This ability to adapt to the properties of the data is important in real-world set-
tings, where a learner may lack control over the training order, or prior knowledge of item difficulty
is unavailable.

Potential costs and benefits of training with smooth data. In machine learning research, it is often
assumed that the training samples are independent and identically distributed (iid) (Dundar et al.,
2007). When training with random sampling, one can approximately satisfy iid assumptions because
shuffling samples eliminates any sequential correlations. However, in many real-world situations,
the iid assumption is violated and consecutive training samples are strongly correlated.

Temporally correlated data may slow learning in feedforward neural networks. If consecutive items
are similar, then the gradients induced by them will be related, especially early in training. If we
consider the average of the gradients induced by the whole training set as the “ideal” gradient, then
subsets of similar samples provide a higher-variance (i.e. noisier) estimate of this ideal. Moreover,
smoothness in data may slow learning due to catastrophic forgetting (French, 1999). Suppose that,
for smoother training, we sample multiple times from a category before moving to another category.
This means that the next presentation of each category will be, on average, farther apart from its
previous appearance. This increased distance could lead to greater forgetting for that category, thus
slowing learning overall. On the other hand, smoother training data might also benefit learning. For
example, there may be some category-diagnostic features that will not reliably be extracted by a
learning algorithm unless multiple weight updates occur for that feature nearby in time; smoother
training data would be more liable to present such features nearby in time.

3 RESEARCH QUESTIONS AND HYPOTHESES

1. How does training with temporally smooth data affect learning in feedforward networks? In light
of the work reviewed above, we hypothesized that temporally smooth data would slow learning in
feedforward nets.

2. How can neural networks benefit from temporally smooth data, in terms of either learning ef-
ficiency or learning more meaningfully structured representations? We hypothesized that a combi-
nation of two brain-inspired mechanisms — leaky memory and memory-resetting — could enable
networks to learn more efficiently from temporally smooth data, even without BPTT.

4 EFFECTS OF TEMPORAL SMOOTHNESS IN TRAINING DATA ON LEARNING
IN FEEDFORWARD NEURAL NETWORKS

We first explored how smoothness of data affects the speed and accuracy of category learning (classi-
fication) in feedforward networks. See Appendix A.1 for similar results with unsupervised learning.

2

Under review as a conference paper at ICLR 2021

Minimum smoothness
(1 repeat of a category)

Random sampling

Adding smoothness
(3 repeats of a category)

Manipulating smoothness in the sequence of training
B

Random sampling in training neural nets

Smooth information in the real world
A

Adding smoothness
(5 repeats of a category)

Figure 1: Temporal smoothness in the real world and in neural network training. A) Top: smooth
information in the real world. Bottom: randomly ordered data in training neural networks.2B)
Manipulating smoothness levels in training data using the ordering of training samples. Colored
rectangles indicate the amount of smoothness induced by repeating a category.

4.1 METHODS

4.1.1 MANIPULATING SMOOTHNESS IN TRAINING DATA

We manipulated smoothness in training data by varying the number of consecutive samples drawn
from the same category. We began each training session by generating a random “category order”,
which was a permutation of the numbers from 1 to N (e.g. the ordering in Figure 1.B is 2-1-3). The
same category order was used for all smoothness conditions in that training session.

To sample with minimum smoothness, we sampled exactly one exemplar from each category, before
sampling from the next category in the category order (1 repeat) (Figure 1.B). This condition is
called “minimum smoothness” because all consecutive items were from different categories, and
there were not more examples from a category until all other categories were sampled. We increased
smoothness by increasing the number of consecutive samples drawn from each category (3 repeats
and 5 repeats in Figure 1.B). Finally, we also used the standard random sampling method, in which
items were sampled at random, without replacement, from the training set (Figure 1.B). The training
set was identical across all conditions, as was the order in which samples were drawn from within a
category (Figure 1.B).

4.1.2 FEEDFORWARD NEURAL NETWORK

Dataset. We tested MNIST, Fashion-MNIST, and synthetic datasets containing low category over-
lap (LeCun et al., 2010; Xiao et al., 2017). An example synthetic dataset is shown in Appendix A.2.
For creating synthetic datasets, we used Numpy (Harris et al., 2020). For creating and testing the
models, we used PyTorch(Paszke et al., 2019).
Learning rule and objective function. We used backpropagation with both mean squared error
(MSE) and cross-entropy (CE) loss functions. The results reported here are using MSE, primarily
for the ease of comparison with later reconstruction error measures in this manuscript. However,
the same pattern was observed using CE loss, as shown in Appendix A.3. Also, it has been shown
MSE loss provides comparable performance to commonly utilized classification models with CE
loss function (Illing et al., 2019). To test incremental learning, we employed stochastic gradient
descent (SGD), updating weights for each training sample.
Optimization, initialization, and activation function. We tested the model both with and without
RMSprop optimization, along with Xavier initialization (Tieleman & Hinton, 2012; Glorot & Ben-
gio, 2010). We applied ReLU to hidden units and Softmax or Sigmoid to the output units.
Hyperparameters. For MNIST and Fashion-MNIST, we used a 3-layer fully connected network
with (784, 392, 10) dimensions and a learning rate of 0.01. The learning rate was not tuned for a
specific condition. We used the same learning rate across all conditions; only smoothness varied
across conditions. To compensate for potential advantage of a specific set of hyperparameters for a
specific condition, we ran 5 runs, each with a different random weight initialization, and reported

2Photos in this section are taken from the FRIENDS TV series, Warner Brothers (Kauffman et al., 1994).

3

Under review as a conference paper at ICLR 2021

Feedforward

0.6

0.4

0.2

Te
st

 E
rr

or

Leaky memory Leaky memory with gating

“Three”

Time Time

“Three” “Three”

A B C

1 repetition
5 repetitions

random
10 repetitions

100

0
60

No. of iterations

Te
st

 A
cc

ur
ac

y
(%

)

40001000 2000 3000

70

80

90

100

0
60

No. of iterations
40001000 2000 3000

70

80

90

100

0
60

No. of iterations
40001000 2000 3000

70

80

90

0.6

0.4

0.2

0.6

0.4

0.2

gating

Figure 2: Neural architectures for classifying temporally smooth data. A) Test error (MSE loss)
and test accuracy in SGD training of a feedforward neural network (MNIST data) across different
smoothness levels. B) The same as A, for a neural network with leaky memory in internal represen-
tations. C) The same as A, for a neural network with leaky memory and gating mechanism. Random
sampling in all 3 plots are identical and can be used as a common reference. [Curves in this fig-
ure have been averaged over 5 runs with different initialization and were further smoothed using a
100-iteration moving average.]

the averaged results. For hyperparameters in synthetic dataset see Appendix A.2. When RMSprop
was implemented, β1 and β2 were set to 0.9 and 0.99, respectively (Ruder, 2016).

4.2 RESULTS

Smooth training data slowed incremental learning (Figure 2.A). Moreover, minimum smoothness
yielded more efficient learning than random sampling (Figure 2.A). These observations generalized
across all tested datasets and across MSE and CE loss, with and without RMSprop optimization.

4.3 DISCUSSION

The superiority of minimum smoothness over other conditions suggests that any level of smoothness
slows incremental learning, even the smoothness that can occur by chance in random sampling
(Figure 2.A). Therefore, given a fixed time budget for training, a sampling strategy that minimizes
smoothness can reach a higher performance than random sampling.

Sampling with minimum smoothness may be advantageous because it reduces the representation
overlap across consecutive training items. Catastrophic forgetting can be reduced by decreasing
the overlap between learned representations, for example, via orthogonalization (French, 1999).
Though we did not explicitly seek to reduce interference by sampling with minimum smoothness,
this method does likely reduce the representational overlap of nearby items. In addition, training
with minimum smoothness may improve learning by maintaining a near-uniform distribution of
sampled categories. Training with “low-discrepancy” sequences, such as those with uniformly dis-
tributed data, avoids classification bias and enhances learning (Iwata & Ishii, 2002; Mishra & Rusch,
2020).

4

Under review as a conference paper at ICLR 2021

5 EXPLOITING TEMPORAL SMOOTHNESS IN TRAINING DATA FOR LEARNING
IN NEURAL NETWORKS

Although temporally-correlated data slows learning in feedforward nets, it appears that humans
are able to rapidly extract meaningful representations in such settings, even while learning incre-
mentally. How might our brains maximize the benefits of temporally smooth training sets? Two
properties of cortical population dynamics appear especially relevant to incremental learning: (i) all
cortical dynamics exhibit autocorrelation on the scale of milliseconds to seconds, so that correlation
in consecutive internal states is unavoidable (Murray et al., 2014; Honey et al., 2012; Bright et al.,
2020); (ii) neural circuits appear to shift state suddenly at event boundaries, and this appears to be
associated with “resetting” of context representations (DuBrow et al., 2017; Chien & Honey, 2020;
Baldassano et al., 2018). We hypothesized that these two neural properties represent an inductive
bias in cortical learning. In particular, we hypothesized that (i) data sampled from a slowly-changing
environment may contain important features that are stable over time, which can be better extracted
by mixing current input with a memory of recent input; and (ii) the interference of irrelevant prior
information can be reduced by ”resetting” memory at boundaries between events. Therefore, we
examined how neural network learning was affected by two brain-inspired mechanisms: (i) leaky
memory in internal representations; (ii) a memory gating mechanism that resets internal representa-
tion at transitions between categories.

5.1 BRAIN-INSPIRED NEURAL ARCHITECTURE FOR SUPERVISED LEARNING

Can brain-inspired architectural tweaks – leaky memory and memory gating – increase the efficiency
of learning in supervised classification tasks?

5.1.1 METHODS

Leaky memory: We added leaky memory to the internal representations (hidden units) by linearly
mixing them across consecutive time points. Hidden unit activations were updated according to
following function:

H(n) = αH(n− 1) + (1− α)ReLU(WIHI(n)) (1)

where H(n) is the state of the hidden units for trial n, I(n) is the state of the input units for trial n,
α is a leak parameter, WIH are the connections from the input layer to the hidden layer, and ReLU
is a rectified linear activation. We set α = 0.5 in these experiments.

Memory Gating: In order to reduce the interference between items from different categories in
the leaky memory, we employed a gating mechanism to reset memory at the transitions between
categories. Therefore, if sample n was drawn from a category other than the category of sample
n− 1, then we set α = 0 in Eq.(1) on that trial n (Figure 2.C).

For the learning rule, we used backpropagation, however the gradient computation did not account
for the fact that the neurons were leaky. Therefore, the update rule in [leaky memory + reset]
model is different from the common update rule in recurrent models (e.g. LSTM). LSTM uses
backpropagation through time (BPTT), which is implausible for biological settings. In learning
with BPTT, the same neurons must store and retrieve their entire activation history (Sutskever, 2013;
Lillicrap & Santoro, 2019). In contrast, in the [leaky memory + reset] model, neurons only use local
information from their most recent history. Therefore, it is computationally much simpler because it
does not require to maintain the whole history and to compute the gradient relative to all that history.

Optimization and initialization methods, and the hyperparameters were identical to those used in
training and testing feedforward neural networks.

5.1.2 RESULTS

Smoothness in training data increased learning efficiency in learners with leaky memory, as shown in
Figure 2.B. This result is in contrast to the detrimental effects of smoothness in memoryless learners
(Figure 2.A). Moreover, adding a gating mechanism to the leaky memory units further increased
their learning (Figure 2.C). In learners with leaky memory and gating, all levels of smoothness
significantly outperformed random sampling and sampling with minimum smoothness (1 repeat)

5

Under review as a conference paper at ICLR 2021

(Figure 2.C). These findings generalized across MNIST, Fashion-MNIST, and synthetic datasets
[Appendix A.4].

5.1.3 DISCUSSION

When data sampled at a given moment shares category-relevant features with recent samples, learn-
ers with leaky memory were able to exploit this property for more efficient category learning (Figure
2.B, C). Importantly, the resetting mechanism prevented the mixing of hidden representations from
samples of different categories, allowing the system to benefit most from the data smoothness, while
not suffering from between-category interference.

Why does averaging of current and prior states produce more efficient learning from sequen-
tially correlated data streams? Our working hypothesis is that averaging across multiple members
of the same category increases (in some datasets) the proportion of variance in the hidden units that
is associated with category-diagnostic features. This hypothesis predicts that if consecutive items in
the data stream, do not share any local features, then the benefits of leaky memory will be eliminated.
We confirmed this prediction empirically (Appendix A.7).

Importantly, networks with leaky memory and resetting surpassed the performance of feedforward
networks, for all levels of smoothness (Figure 2.A, C). Also, leaky memory networks trained with
smooth data surpassed feedforward networks, even when tested on data streams that were not
smooth. This finding is notable because it indicates that the leaky memory networks learned better
single-exemplar representations, because they could generalize to novel temporal contexts. More-
over, the superior learning was obtained without BPTT, only using a linear mixture of activations
over time-steps, which is easy to implement in brain dynamics (Honey et al., 2012; Murray et al.,
2014) .

How does the [leaky memory + reset] net compare with a more flexible recurrent net trained
with BPTT? The leaky-memory model with reset is trained without BPTT, but it is important to
compare this to the performance of a more flexible model that can directly learn from task-relevant
temporal structure. We found that an LSTM trained with BPTT was able to benefit from training
with smooth data, learning more slowly at first, but ultimately achieving the lowest test error of all
models (See Appendix A.8 and A.9). However, the performance advantage of the LSTM trained
with BPTT was not preserved when the models were tested out-of-domain. In particular, when
models were trained on data that contained temporal smoothness, but tested on data with minimum
smoothness (1 repetition per category), the leaky-memory with reset model showed the best perfor-
mance of all models (See Appendix A.10). We interpret these results as evidence that the LSTM
has a much more flexible architecture, and via BPTT it can be calibrated to the exact structure of the
training data stream (e.g. there are precisely 5 repetitions in a block). Conversely, the leaky memory
model with reset is more biologically plausible, it is trained without BPTT, it showed performance
competitive with the LSTM in this setting, and it generalized better across different levels of tem-
poral smoothness. Note that we found these results despite the fact that in the LSTM, the gradient
updates are mathematically optimized for the task (via BPTT), whereas, in the [leaky memory +
reset] model, the gradient computations do not account for the recurrence in the network at all.

Are the benefits of leaky-memory due to a form of gradient averaging, analogous to mini-
batching? Leaky-memory networks average activations over time, while batching averages gradi-
ents over time. The two mechanisms appear to differ, because leaky-memory effects can be reversed
when the training categories contain non-overlapping features (Appendix A.7) and leaky-memory
and mini-batching affect performance in different ways as a function of the amount of category
repetition (Appendix A.5 and A.6).

5.2 BRAIN-INSPIRED ARCHITECTURES FOR UNSUPERVISED LEARNING ACROSS TEMPORAL
SCALES

In the real world, we may need to learn from data with multiple levels of smoothness. For instance,
returning to the example of having a face-to-face conversation: the features around a person’s mouth
change quickly, while their face’s outline changes more slowly (Figure 3.A). Moreover, there are
no pre-defined labels to support the learning of representations in this setting. We hypothesized
that neural networks equipped with multi-scale (i.e. fast and slow) leaky memory could learn more

6

Under review as a conference paper at ICLR 2021

meaningful representations in this settings, by separating their representations of structures that vary
on fast and slow timescales.

5.2.1 METHODS

Dataset. To test the un-mixing abilities of our networks, we synthesized simplified training datasets
which contained three levels of temporal structure. The input to the model at each time point con-
sisted of 3 subcomponents (top, middle, bottom), and each subcomponent had two elements. Each
subcomponent was generated to express a different level of smoothness over time: for example, the
top, middle and bottom rows changed feature-category every 1, 3 or 5, iterations, respectively (Fig-
ure 3.B). The individual features sampled at each time were generated as the sum of (i) an underlying
binary state variable (which would switch every 1, 3 or 5 iterations) and (ii) uniformly-distributed
noise (Appendix A.12). As a result, the model was provided with features that varied at 3 time-
scales: fast (top row), medium (middle row), and slow (bottom row). For creating the dataset, and
designing and analyzing the models we used Numpy (Harris et al., 2020).
Architectures. We used the same brain-inspired mechanisms for unsupervised learning models:
leaky memory and gating mechanisms. To evaluate the effectiveness of the added mechanisms, we
compared 5 types of autoencoder (AE) models (See Figure 3.C): i) Feedforward AE; ii) AE with
leakymemory in internal representations; iii) AE with multi-scale leaky memory in internal represen-
tations, inspired by evidence showing that levels of processing in the brain can integrate information
at different time-scales (Honey et al., 2012; Murray et al., 2014; Bright et al., 2020), and that multiple
time-scales are present even within a single circuit (Bernacchia et al., 2011; Ulanovsky et al., 2004);
iv) AE with leaky memory in internal representations and boundary-sensitive gating, motivated by
the evidence showing that processing in cortical circuits are sensitive to event-boundaries and these
boundaries can shift learned representations (DuBrow et al., 2017; Chien & Honey, 2020); and (v)
AE with multi-scale leaky memory in internal representations and boundary-sensitive gating. Gating
mechanism was sensitive to change in the input stream. It would use information from current and
previous input to decide to reset memory when the change passed a threshold (see Appendix A.11)
(Chien & Honey, 2020).
Learning algorithm, optimization, and initialization. We used backpropagation with MSE loss,
both with and without RMSprop optimization method, and Xavier initialization (Tieleman & Hinton,
2012; Glorot & Bengio, 2010). We applied ReLU and Sigmoid as activation functions for hidden
and output units, respectively.
Hyperparameters. To implement leaky memory at multiple scales, we varied the time constants
across the nodes in the hidden layer. Thus, the variable in Eq.(1) was set to 0, 0.3, and 0.6 for “short
memory”, “medium-memory”, and “long-memory” nodes, respectively. The networks were 3-layer,
fully connected autoencoders with (6, 3, 6) dimension. Learning rate was 0.01. In cases where
RMSprop was implemented, the beta-1 and beta-2 were set to 0.9 and 0.99. For leaky memory in
internal representations in Eq.(1) was set to 0.5 (See Figure 3.C).
Un-mixing Measures. We measured the network’s ability to “un-mix” the time-scales of its input.
By un-mixing, we mean learning representations that selectively track distinct latent sources that
generated features within each training sample. In particular, we tested whether no-memory, short-
memory, and long-memory nodes in the network would track the fast-, medium-, and slow-changing
features in the data. To this end we measured the Pearson correlation between each hidden unit (no-
memory, short-memory, and long-memory) and all of the data features (fast, medium and slowly
changing). We then quantified the “timescale-selectivity” — e.g. whether the slow-changing feature
was more correlated with long-memory node than other nodes (no-memory and short-memory) (See
Figure 3.E).
Learning Efficiency Measure. Learning speed was measured using the reconstruction error of the
test data, computed as the MSE across all 3 subcomponents of each data sample.

5.2.2 RESULTS

We first confirmed that all of the autoencoder (AE) models could learn to reconstruct the input
(Figure 3.D). The most efficient architectures were the [leaky + resetting] AE, [multiscale leaky +
resetting] AE, and the memoryless AE.

Both networks with memory and resetting could successfully un-mix fast and slow data sources.
The individual hidden state units in these AE models were selectively more correlated with their

7

Under review as a conference paper at ICLR 2021

Multiple levels of smoothness
in the real world

Multiple levels of smoothness in synthesized dataBA

Fast-changing
Medium-changing
Slow-changing

Time

Time
Boundary of
fast-feature

iter1 iter2 iter3 iter4 iter5 iter6 iter7 iter8 iter9 iter10

Boundary of
medium-feature

Boundary of
slow-feature

0 1000 2000 3000
No. of iterations

0.1

0.2

0.3

0.4

0.5

Te
st

 E
rr

or

0.00

0.10

0.20

0.30

D
iff

 b
/w

 C
or

r

D E

C

Timescale-Selectivity
No memory
Leaky memory (LM)
Multiscale LM
LM + reset
Multiscale LM + reset

1

2

3

No memory Leaky memory (LM) Multiscale LM LM + reset Multiscale LM + reset

Different AE Models

1
2
3

0
0
0

1
2
3

0.5
0.5
0.5

1
2
3

0
0.3
0.6

1
2
3

0.5
0.5
0.5

1
2
3

0
0.3
0.6

Figure 3: Unsupervised learning from data with multiple levels of smoothness. A) Example of
multiple levels of smoothness in samples from the real world: mouth changing fast, while face-
shape changes slowly. B) Multiple levels of smoothness in synthesized data: top row changes every
item; middle row changes every 3 items; bottom row changes every 5 items. X-axis shows time,
each 3-by-2 item is one sample. C) 5 Different AE models. α1, α2, and α3 show the memory
coefficient in the hidden representations. D) Reconstruction test error (MSE loss) during training
for individual items across 5 different AE models. All the curves in this plot have been averaged over
50 runs with different random initialization. E) Comparing the “timescale- selectivity” of models,
by computing the difference between the squared Pearson correlations for time-scale matching units
and non-matching units (e.g. correlation of long-memory with slow features minus correlation of
long-memory with fast and medium features). In no-memory systems and in leaky-memory systems
with uniform memory, we measured these correlations for hidden units in the corresponding position
as those in the multi-scale leaky memory. Error bars show the mean and standard deviation across
10,000 bootstraps, with 50 values per bootstrap.

corresponding data features (i.e. the slow-changing feature was more correlated with the long-
memory node than with the other nodes; Figure 3.E)).

These findings generalized across synthesized datasets and across learning rates (See Appendix
A.12).

5.2.3 DISCUSSION

The two autoencoder models that had both memory and resetting mechanisms were most successful
in learning internal representations that tracked distinct timescales of the input. Slowly (or quickly)
varying features were extracted by slowly (or quickly) varying subsets of the network, analogous to a
matched filter (see also Mozer (1992)). Features that change on different timescales may correspond
to different levels of structure in the world (Wiskott & Sejnowski, 2002). Thus, by adding leaky
memory and memory-gating to a simple feedforward AE model, we equipped it with an ability to
separate different levels of structure in the environment. Moreover, because intrinsic dynamics vary
on multiple scales in the human brain (Stephens et al., 2013; Murray et al., 2014; Honey et al.,
2012; Raut et al., 2020), this implies that slowly-varying brain circuits may be biased to extract
slowly-varying structure from the world (Honey et al., 2017).

8

Under review as a conference paper at ICLR 2021

Why did the no-memory (feedforward) model produce slightly lower reconstruction error than mod-
els with memory? In models with memory, there is a (small) cost in the overall test error, because
slowly-changing internal states are ineffective for reconstructing quickly-changing features. How-
ever, the error introduced by nodes reconstructing input from a mismatched timescale is small, and
it is accompanied by a significant benefit: learning more meaningful, un-mixed representations of
a multi-scale data stream. Indeed, if a model’s ”slow” hidden units (i.e. medium and long memory
units) were correlated with the state fast-changing features in the data, the model’s per-feature error
was worse (Appendix A.14, Figure A.14).

6 CONCLUSION

Inspired by temporal properties of the training signal and the learning architectures in primate brains,
we investigated how the smoothness of training data affects incremental learning in neural networks.

First, we examined the speed of learning. We found that data smoothness slowed learning in mem-
oryless learners (feedforward neural nets), but sped learning in systems with leaky memory (Figure
2). Moreover, adding a simple gating mechanism to leaky-memory networks enabled them to flexi-
bly adapt to the smoothness in the data, so that they could benefit from repeating structure while not
the interference of unrelated prior information.

Second, we examined the representations learned when unlabeled data contained temporal structure
on multiple smoothness levels. Neural networks with memory and feature-sensitive gating learned
representations that un-mixed features varying on different timescales. If distinct timescales in data
reflect distinct data generators, these “un-mixed” representations may provide a more ”meaningful”
description of the input data (Mitchell, 2020; Mahto et al., 2020).

Leaky memory networks exhibited more efficient learning and more interpretable representations,
even though they were trained with a learning rule that did not employ any temporal information. In
particular, all networks were trained incrementally using backpropagation and a loss function that
only depended on the immediate state of the network. Architectures with leaky memory and gating
can thus exploit temporal structure in a way that is computationally simpler and more biologically
plausible than backpropagation through time (Sutskever, 2013; Lillicrap & Santoro, 2019). With
respect to biological plausibility, we note that the leaky-memory-plus-gating system works well
even for autoencoders (Figure 3), for which there are simple activation-based learning rules that do
not require the propagation of partial derivatives (Lee et al., 2015). On the computational side, we
highlight that the gradients computed for the leaky memory networks were, in a sense “inaccurate”,
because the update rule was unaware of the recurrent leak connections, and yet learning in the leaky
nets was still faster than in feedforward nets, for which the gradients should be more accurate.

Future work should test whether these results generalize to larger architectures and more realistic
datasets, and should include a broader search of the hyperparameter space. The results may have
some generality , because we used simple architectures and made few domain-specific assumptions,
but at present the results serve as demonstrations of the basic phenomena. We expect the method to
work best for datasets in which important or diagnostic data features persist over time. It will also
be interesting to investigate the broader consequences of learning with leaky memory: for example,
human internal representations of natural sensory input sequences appear to be smooth in time, in
contrast to the representations of most feedforward nets (Hénaff et al., 2019)), and training with
smooth data and leaky memory could potentially reduce this difference.

In sum, we identified simple mechanisms which enabled neural networks (i) to learn quickly from
temporally smooth data and (ii) to generate internal representations that separated distinct timescales
of the data, without propagating gradients in time.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Christopher Baldassano, Uri Hasson, and Kenneth A Norman. Representation of real-world event
schemas during narrative perception. Journal of Neuroscience, 38(45):9689–9699, 2018.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Alberto Bernacchia, Hyojung Seo, Daeyeol Lee, and Xiao-Jing Wang. A reservoir of time constants
for memory traces in cortical neurons. Nature neuroscience, 14(3):366–372, 2011.

Ian M Bright, Miriam LR Meister, Nathanael A Cruzado, Zoran Tiganj, Elizabeth A Buffalo, and
Marc W Howard. A temporal record of the past with a spectrum of time constants in the mon-
key entorhinal cortex. Proceedings of the National Academy of Sciences, 117(33):20274–20283,
2020.

Hsiang-Yun Sherry Chien and Christopher J Honey. Constructing and forgetting temporal context
in the human cerebral cortex. Neuron, 2020.

Sarah DuBrow, Nina Rouhani, Yael Niv, and Kenneth A Norman. Does mental context drift or shift?
Current opinion in behavioral sciences, 17:141–146, 2017.

Murat Dundar, Balaji Krishnapuram, Jinbo Bi, and R Bharat Rao. Learning classifiers when the
training data is not iid. In IJCAI, pp. 756–761, 2007.

Jeffrey L Elman. Learning and development in neural networks: The importance of starting small.
Cognition, 48(1):71–99, 1993.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.

Tianxiang Gao and Vladimir Jojic. Sample importance in training deep neural networks. 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in Cognitive Sciences, 2020.

Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357–362, 2020.

Olivier J Hénaff, Robbe LT Goris, and Eero P Simoncelli. Perceptual straightening of natural videos.
Nature neuroscience, 22(6):984–991, 2019.

Christopher J Honey, Thomas Thesen, Tobias H Donner, Lauren J Silbert, Chad E Carlson, Orrin
Devinsky, Werner K Doyle, Nava Rubin, David J Heeger, and Uri Hasson. Slow cortical dynamics
and the accumulation of information over long timescales. Neuron, 76(2):423–434, 2012.

Christopher J Honey, Ehren L Newman, and Anna C Schapiro. Switching between internal and
external modes: a multiscale learning principle. Network Neuroscience, 1(4):339–356, 2017.

Bernd Illing, Wulfram Gerstner, and Johanni Brea. Biologically plausible deep learning—but how
far can we go with shallow networks? Neural Networks, 118:90–101, 2019.

Kazunori Iwata and Naohiro Ishii. Discrepancy as a quality measure for avoiding classification bias.
In Proceedings of the IEEE Internatinal Symposium on Intelligent Control, pp. 532–537. IEEE,
2002.

Marta Kauffman, David Crane, and Kevin S Bright. Friends. season 1, 1994. Produced by Warner
Home Video, [Online; Retrieved on 10th September, 2020].

10

Under review as a conference paper at ICLR 2021

M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In Advances in neural information processing systems, pp. 1189–1197, 2010.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Joint european conference on machine learning and knowledge discovery in databases, pp.
498–515. Springer, 2015.

Yong Jae Lee and Kristen Grauman. Learning the easy things first: Self-paced visual category
discovery. In CVPR 2011, pp. 1721–1728. IEEE, 2011.

Timothy P Lillicrap and Adam Santoro. Backpropagation through time and the brain. Current
opinion in neurobiology, 55:82–89, 2019.

Shivangi Mahto, Vy A. Vo, Javier S. Turek, and Alexander G. Huth. Multi-timescale representation
learning in lstm language models, 2020.

Siddhartha Mishra and T Konstantin Rusch. Enhancing accuracy of deep learning algorithms by
training with low-discrepancy sequences. arXiv preprint arXiv:2005.12564, 2020.

Melanie Mitchell. On crashing the barrier of meaning in artificial intelligence. AI Magazine, 41(2):
86–92, 2020.

Michael C Mozer. Induction of multiscale temporal structure. In Advances in neural information
processing systems, pp. 275–282, 1992.

John D Murray, Alberto Bernacchia, David J Freedman, Ranulfo Romo, Jonathan D Wallis, Xinying
Cai, Camillo Padoa-Schioppa, Tatiana Pasternak, Hyojung Seo, Daeyeol Lee, et al. A hierarchy
of intrinsic timescales across primate cortex. Nature neuroscience, 17(12):1661–1663, 2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, pp.
8026–8037, 2019.

Ryan V Raut, Abraham Z Snyder, and Marcus E Raichle. Hierarchical dynamics as a macroscopic
organizing principle of the human brain. Proceedings of the National Academy of Sciences, 117
(34):20890–20897, 2020.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Greg J Stephens, Christopher J Honey, and Uri Hasson. A place for time: the spatiotemporal struc-
ture of neural dynamics during natural audition. Journal of neurophysiology, 110(9):2019–2026,
2013.

Ilya Sutskever. Training recurrent neural networks. University of Toronto Toronto, Canada, 2013.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Nachum Ulanovsky, Liora Las, Dina Farkas, and Israel Nelken. Multiple time scales of adaptation
in auditory cortex neurons. Journal of Neuroscience, 24(46):10440–10453, 2004.

Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised learning of invari-
ances. Neural computation, 14(4):715–770, 2002.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

11

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 EFFECTS OF SMOOTHNESS ON CATEGORIZATION VERSUS RECONSTRUCTION TASKS

Classification networks (performing categorization) and autoencoder networks (performing recon-
struction) were similarly affected by temporal smoothness of training data (Figure A.1). Increased
smoothness decreased learning efficiency. Also, ”minimum smoothness” sampling exhibited the
best performance across both types of networks. We used 3-layer fully connected networks for both
classification and reconstruction. The network dimension for classification was (16, 8, 4) and for
reconstruction was (16, 4, 16). Learning rate was 0.01 for all conditions in classification, and 0.005
for all conditions in reconstruction.

D
iff

 in
 te

st
 e

rr
or

 fr
om

 ra
nd

om

1 rep

−0.04

−0.02

0.00

0.02

−0.04

−0.02

0.00

0.02

2 rep
3 rep

4 rep
5 rep

1 rep
2 rep

3 rep
4 rep

5 rep

Classi�cation Reconstruction

Figure A.1: Comparing the effects of smoothness on classification and reconstruction for a synthetic
dataset (Figure A.2). Left: Difference between the test error with random sampling and the test
error in other sampling conditions (e.g. Error(random) - Error(1 repetition)) in the classification
task. The dashed line shows the baseline for random sampling. Test errors were computed at the end
of the first training epoch. We ran 100 runs with different weight initializations. Error bars show the
mean and standard deviation of bootstrapping 10,000 times on 100 values from 100 runs. Right: As
for the left panel, but for the reconstruction task.

A.2 SYNTHETIC DATASET

We synthesized a dataset with low between-category overlap. The dataset consisted of 4 categories,
each with 300 training items. Each item was a 1-by-16 vector. Different exemplars of a category
were created by adding uniform noise to the template of the category.

Example from ctg 1 Example from ctg 4Example from ctg 2 Example from ctg 3

Figure A.2: Example items from each of the 4 categories in the synthetic dataset.

A.3 SMOOTHNESS EFFECTS FOR CLASSIFICATION USING CROSS-ENTROPY LOSS

Similar to the results obtained with mean-square error (MSE) loss, we found that temporally smooth
data slowed category learning with training with cross-entropy (CE) loss. Figure A.3 shows this

12

Under review as a conference paper at ICLR 2021

effect for the MNIST dataset. We used the same neural architecture and hyperparameters as those
in MSE, explained in section 4.1.2.

Te
st

 e
rr

or

No. of iterations
10008006004002000

Early in the training

No. of iterations
1000096009200880084008000

Later in the training

0.40

1 repetition

5 repetitions

10 repetitions

random

0.4

1.8

0.6

0.8

1.0

1.2

1.4

1.6

0.20

0.25

0.30

0.35

Figure A.3: Test error (CE loss) for SGD training of feedforward neural network on MNIST dataset,
early vs later in the training process. Each color shows a different smoothness condition in the
training data.

A.4 CATEGORIZATION OF SYNTHETIC DATA BY LEAKY MEMORY NETWORKS WITH GATING

Figure A.4 shows the effects of temporal smoothness in training data for neural network models
equipped with leaky memory and gating for the synthetic dataset. Similar to the pattern observed in
Figure2.B, we can see that, in the network with leaky memory, higher levels of smoothness generate
better performance. Moreover, adding a gating mechanism enhanced learning, such that all levels
of smoothness surpassed the ”minimum smoothness” (1 repetition) condition, as was observed in
Figure2.C.

1
re

p

3
re

p

5
re

p

10
 re

p

0.02

0.04

0.06

0.08

Fi
na

l T
es

t E
rr

or

1
re

p

3
re

p

5
re

p

10
 re

p

0.02

0.04

0.06

0.08

Fi
na

l T
es

t E
rr

or

Leaky memory Leaky memory and gating

Figure A.4: Effects of temporal smoothness on categorization of synthetic data in networks with
leaky memory. Left: Test error (MSE loss) at the end of first training epoch with SGD on synthetic
dataset, for network with leaky memory in internal representation. Right: As for the left panel, but
for networks with leaky memory in internal representations and gating. Error bars show the mean
and standard deviation of bootstrapping 10,000 times on 100 values from 100 runs with different
weight initialization.

13

Under review as a conference paper at ICLR 2021

A.5 COMPARING THE LEAKY MEMORY APPROACH AGAINST MINI-BATCH TRAINING

1 repetition
5 repetitions
10 repetitions

0.0

0.6

0 2000 10000800060004000 0 2000 10000800060004000
No. of Samples Seen

0 2000 10000800060004000
No. of Samples Seen

0 2000 10000800060004000
No. of Samples Seen

No. of Samples Seen

Te
st

 E
rr

or

Te
st

 E
rr

or 1 repetition - batch of 1
5 repetitions - batch of 5
10 repetitions - batch of 10

0.5

0.4

0.3

0.2

0.1

0.0

0.6

0.5

0.4

0.3

0.2

0.1

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

Mini-batching Leaky memory with reset

1 repetition
5 repetitions
10 repetitions

1 repetition - batch of 1
5 repetitions - batch of 5
10 repetitions - batch of 10

Te
st

 A
cc

ur
ac

y

Te
st

 A
cc

ur
ac

y

Figure A.5: Mini-batching and [Leaky memory + reset] models are affected in a qualitatively differ-
ent manner by increasing the number of category repetitions. Left) Test error and test accuracy of
mini-batch training on MNIST data. Right) Test error and test accuracy of [leaky memory + reset]
model on MNIST data. Both models had the dimension of (784, 392, 10), learning rate of 0.01, and
the optimization method of SGD.

A.6 EFFECTS OF SMOOTHNESS IN DATA ON MINI-NATCH TRAINING

We explored how smooth data affects learning when weights were updated using mini-batch training.
We used the MNIST dataset and trained each network with batches of size 16. Network dimension
and other hyperparameters were identical to those used in incremental SGD. We found that the level
of smoothness in the training did not influence mini-batch training similarly to SGD training. Early
in the training, minimum smoothness showed the fastest learning and higher levels of smoothness
showed slower learning. However, later in the training, another pattern was observed: the condition
with the smoothness level equal to the batch size (e.g. 16 repetitions for batch of 16) showed the
greatest learning efficiency compared to both lower levels of smoothness (e.g. 10 repetitions) and
higher levels of smoothness (e.g. 24 repetitions).

In connecting the mini-batch data to the results reported in Figure 2, consider that ”smoothness”
can happen at 2 levels: samples can be similar to one another within a batch (”smooth within a
batch”) and the composition of samples can be similar across consecutive mini-batches (”smooth
across batches”). It seems that early in the training, the conditions with minimum ”within-batch
smoothness” have the highest learning speed; this makes sense as the composition of each mini-
batch is most reflective of the overall composition of the test data. However, later in the training,
the condition with minimum ”across-batch smoothness” has the best learning speed. Minimum

14

Under review as a conference paper at ICLR 2021

Te
st

 e
rr

or

Early in the training Later in the training 1 repetition

5 repetitions

10 repetitions

random

0.5

0.4

0.3

0.2

0.1

0.0
0 500100 200 300 400

No. of batch iterations
3000 3100 3200 3300 3400 3500

0.066

0.064

0.062

0.060

0.058

No. of batch iterations

16 repetitions

24 repetitions

Figure A.6: Left) Test error (MSE loss) in different levels of smoothness in data, early in mini-batch
training of MNIST dataset for classification. Right) The same as left, for later in the training, toward
the end of first epoch.

across-batch smoothness refers to the condition where each batch consists of items from only one
category (e.g. 16 repetitions for batch of 16). Note that when each individual batch contains items
all from one category, this also implies that consecutive batches will not contain any items from the
same categories, leading to a ”minimum smoothness at the batch level”. Thus, the advantage for
minimum across-batch smoothness may be analogous to what is observed in Figure 2 at the single
item level, but occurring at the batch level.

These results are of course, only preliminary, and future work should elaborate how the smoothness
of the training data interacts with mini-batch training.

A.7 SYNTHETIC DATA STREAMS IN WHICH LEAKY MEMORY IS DISADVANTAGEOUS

0 10 20 30 40 50 60 70 80

No. of Iterations

0.40

0.65

Te
st

 E
rr

or

0 10 20 30 40 50 60 70 80

No. of Iterations

0.05

0.10

0.15

0.20

Te
st

 E
rr

or No memory
Leaky memory
Leaky memory + reset

0.70

0.60

0.55

0.50

0.45

0.25
Reconstruction Tasks Classification Tasks

Figure A.7: Synthetic data streams for which leaky memory is disadvantageous. Left) Test error
for reconstruction tasks in an autoencoder model. Right) Test error for classification tasks.

We hypothesized that the averaging mechanism in leaky memory models increases the proportional
signal variance allocated to category diagnostic features, by emphasizing the features that are shared
across multiple members of a category. In order to demonstrate this, we trained our model on a data
structure in which the consecutive items did not share any local features.

15

Under review as a conference paper at ICLR 2021

We used a synthesized dataset and organized the data so that consecutive items did not have shared
features. For resetting mechanism, we tried a range of resetting (e.g. every 2 items, every 3 items,
etc). In this setting, the leaky memory advantage was eliminated, and leaky memory, with or without
reset, was always less effective than learning without memory.

A.8 EFFECTS OF TEMPORAL SMOOTHNESS ON CATEGORY-LEARNING IN AN LSTM TRAINED
WITH BPTT

We explored how training with smooth data affects category-learning in an LSTM trained with
backpropagation through time. The dataset, network dimension, learning rate, and optimization
method were identical to ones used in section 5.1.1.

We found that higher smoothness in training data resulted in better classification performance in
LSTM.

1 repetition
5 repetitions

random
10 repetitions

2.5

0.0

0.5

1.0

1.5

2.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000 3000 4000 0 1000 2000 3000 4000

Te
st

 E
rr

or

Te
st

 A
cc

ur
ac

y

No. of Iterations No. of Iterations

Figure A.8: Effects of smoothness in data on learning LSTM. Left) LSTM test error for different
amounts of smoothness in training data. Right) LSTM test error for different amounts of smoothness
in training data.

A.9 COMPARING LSTM AND [LEAKY-MEMORY WITH RESET] MODELS

0 4000

No. of Iterations No. of Iterations

1000 2000 3000 0 40001000 2000 3000

0.2

1.2

0.4

0.6

0.8

1.0

0.2

1.2

0.4

0.6

0.8

1.0

[LSTM]- 5-rep data
[Leaky memory +reset]- 5-rep data

[No memory]- 1-rep data
[No memory]- 5-rep data

Te
st

 E
rr

or

Te
st

 E
rr

or

[LSTM]- 10-rep data
[Leaky memory +reset]- 10-rep data

[No memory]- 1-rep data
[No memory]- 10-rep data

Figure A.9: Comparing LSTM, the [leaky memory + reset] model, and the no-memory model. Left)
Test error for classification with smoothness level equal to 5-repetitions of each category. Right)
Test error for classification with smoothness level equal to 10-repetitions of each category. In both
plots, we also show 1-repetition to be used as a reference.

We compared LSTM, the [leaky memory + reset] model, and the no-memory model. We first tested
both the LSTM and the [leaky memory + reset] model on the same data structure that they were

16

Under review as a conference paper at ICLR 2021

trained on (e.g. training with 5-repetitions and testing on 5-repetitions). This means that we included
memory in the testing process and tested the models on the same order that they were trained on. In
this setting, LSTM was the best model, and the leaky-memory model was second-best, better than
no-memory model.

A.10 GENERALIZATION OF LSTM AND [LEAKY MEMORY + RESET] MODELS TO DATASETS
WITH DIFFERENT TEMPORAL STRUCTURE

We compared LSTM and the [leaky memory + reset] model on their generalizability. To do so, we
first trained and tested both models on the same sequence of samples (e.g. trained on 5-repetitions
and tested on 5-repetitions). Then we tested them on a different sequence of samples from the one
they were trained on (e.g. trained on 5-repetitions and tested on 1-repetition). We found that LSTM
outperformed the [leaky memory + reset] model when tested on the same sequence used for training.
However, [leaky memory + reset] model was superior to LSTM when tested on a data stream with
different temporal structure from training. Differences between LSTM and the [leaky memory +
reset] model suggest that the two do not exploit the temporal structure of the data stream in the
same way. The LSTM makes use of information about the specific task structure (e.g. there are
precisely 5 repetitions in a block) and its performance is reduced when this assumption is violated
in generalization data. Conversely, the [leaky memory + reset] model simply uses the temporal
smoothness in the training data to learn more useful internal representations.

1.0

0 1000 2000 3000 4000
0.0

Te
st

 E
rr

or

1.0

0.8

0 1000 2000 3000 4000

Te
st

 A
cc

ur
ac

y

No. of Iterations No. of Iterations

LSTM
Trained and Tested on the Same Seq. of Samples
Trained and Tested on Different Seq. of Samples

Leaky memory with reset
Trained and Tested on the Same Seq. of Samples
Trained and Tested on Different Seq. of Samples

0.9

0.5

Figure A.10: Generalization of LSTM and leaky-memory models to data streams with different
temporal structure. Left) Test error for LSTM and [leaky memory + reset] model, trained and tested
on the same sequence of samples or on a different sequence of samples. Right) Test accuracy for
LSTM and [leaky memory + reset] model, trained and tested on the same sequence of samples or on
a different sequence of samples.

A.11 UNSUPERVISED LOCAL RESETTING MECHANISM

For learning multiscale data we have implemented a “resetting” mechanism in a straightforward
and unsupervised way using only local computations, while preserving the same gains in learning
efficiency. To do so, we have used the comparison between the difference and the average of the
following input items as the resetting criterion, but other sorts of computations are also possible. Our
implemented method is consistent with neurophysiological studies that demonstrate a sudden shift
in memory representations in the face of a surprise in the input stimuli (DuBrow et al., 2017; Chien
& Honey, 2020). The bioplasible event-related resetting: Reset the memory when the difference
between the consecutive inputs is larger than their average. For instance, the memory of the hidden
node with long memory will be reset based on the amount of change in the slow-changing feature
of the input. [t represents the iteration number during training, It is the current state, It−1 previous
state] |It − It−1| > |(It + It−1)/2|

A.12 GENERALIZABILITY OF FINDING IN LEARNING FROM MULTISCALE DATA FOR A
DIFFERENT LEARNING RATE AND A DIFFERENT DATASET

To investigate the generalizability of the findings from section 5.2, we examined the performance of
the model for a range of learning rates. Part A in figure A.12 shows the results for learning rate of
0.003, in the same dataset reported in section 5.2.2. To investigate the generalizability of the findings

17

Under review as a conference paper at ICLR 2021

from section 5.2, we examined the performance of the model for different synthesized datasets. Part
B in Figure A.12 shows the results for a different synthesized dataset (learning rate = 0.005).

Timescale-Selectivity

Timescale-Selectivity

iter 1 iter 2 iter 3 iter 4 iter 5 iter 6 iter 7 iter 8 iter 9

Top row is fast-changing feature

Middle row is medium-changing feature
Bottom row is slow-changing feature

No memory
Leaky memory
Multiscale leaky memory
Leaky memory + reset
Multiscale leaky memory + reset

Different AE Models
0 1000 2000 3000 4000 5000

No. of Iterations

0.1

0.2

0.3

0.4

0.5

Te
st

 E
rr

or

0.00

0.10

0.20

0.30

D
iff

 in
 P

ea
rs

on
 C

or
r

iter 1 iter 2 iter 4 iter 5 iter 6 iter 7 iter 9iter 8iter 3

0.1

0.2

0.3

0.4

0.5

Te
st

 E
rr

or

0 1000 2000 3000 4000

No. of Iterations

0.00

0.10

0.20

0.30

D
iff

 in
 P

ea
rs

on
 C

or
r

No memory
Leaky memory
Multiscale leaky memory
Leaky memory + reset
Multiscale leaky memory + reset

Different AE Models

Top row is fast-changing feature

Middle row is medium-changing feature

Bottom row is slow-changing feature

A

B

Figure A.12: A) Learning performance and internal representations of autoencoder models with and
without memory for learning rate of 0.003 in the same dataset used in Figure 4. (See Figure 4 for
more details.) B) Learning performance and internal representations of autoencoder models with
and without memory for a different dataset from the one used in Figure 4.

A.13 DOES FASTER CONVERGENCE IN THE NO-MEMORY MODEL FROM 5.2 CONTRADICT
THE BENEFIT OF THE MEMORY-RESET MODEL FROM 5.1?

The findings from section 5.1 and 5.2 are complementary rather than contradictory. Consider that
the multiscale data stream in part-2 is composed of three different subcomponents (top, middle
and bottom rows of the input). Thus, the multi-scale stream can be understood as a combination
of the 1-rep condition from part-1 (feature changes with every sample), the 3-rep condition from
part-1(feature changes at a medium speed across samples), and the 5-rep condition from part-1
(the feature changes slowly across samples).In part-1, we showed that the [leaky memory + reset]
model performs better when the data has higher smoothness (e.g. in Figure 2.C, category learning
is more efficient for 5-repetitions than for 1-repetition). If the same pattern holds in the context of
multi-scale autoencoders, for models with memory and reset, we should see that the slow-changing

18

Under review as a conference paper at ICLR 2021

feature (5-repetitions) is more quickly learned than the fast-changing feature (1-repetition). To test
this, we measured the per feature error (e.g. test error for reconstructing a specific feature) and we
compared the fast and slow-changing features. Consistent with the pattern observed in part-1 of the
paper, we saw that both the [leaky memory + reset] model and [multiscale leaky memory + reset]
model exhibited the predicted pattern (Figure A.13): the reconstruction error for the slow changing
feature was lower than the reconstruction error for the fast-changing feature.

0.04

0.08

0.12

0.16

Te
st

 E
rr

or

0.05

0.10

0.15

0.20

Te
st

 E
rr

or
0 1000 2000 3000 4000 5000

No. of Iterations
0 1000 2000 3000 4000 5000

No. of Iterations

0.20

[Leaky memory + reset] model [Multiscale leaky memory + reset] model

Fast-changing feature (1-rep)
Slow-changing feature (5-rep)

Figure A.13: Per feature error for fast-changing and slow-changing features. Left) Feature-wise test
error for [leaky memory + rest] model. Right) Feature-wise test error for [multiscale leaky memory
+ reset] model.

A.14 WHY DOES THE [NO-MEMORY] MODEL OUTPERFORM THE [MULTISCALE MEMORY +
RESET] MODEL IN TEST-ERROR (IN SECTION 5.2)

The multi-scale model faces a challenge that was not faced by the single-scale models that were
tested in the category learning components of this study. Because all nodes in the hidden layer of the
multi-scale model project to all nodes in the reconstruction later, the slowly changing hidden states
of the model (i.e. the nodes with longer memory) are contributing to the reconstruction of quickly-
changing features in the data stream. There is a (small) cost in the overall test error, because slowly-
changing internal states are ineffective for reconstructing quickly-changing features. We emphasize
that the quantity of noise introduced is small, and that it is accompanied by a significant benefit in
learning more interpretable, un-mixed representations of a multi-scale datastream. To demonstrate
that these slow units are indeed the source of poorer learning, we tested the hypothesis that (i) a
higher correlation between hidden units with memory (units with short or long memory) and fast-
changing part of the output would result in a worse performance in reconstructing the fast-changing
feature; whereas (ii) a higher correlation between hidden unit with no-memory and fast-changing
part of the output would not result in worse performance in reconstructing the fast-changing feature.
These hypotheses were confirmed in our analyses [Figure A.14].

19

Under review as a conference paper at ICLR 2021

0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

D
iff

 in
 E

rr
or

 (f
ro

m
 n

o-
m

em
)

0.0 0.2 0.4 0.6 0.8 1.00.00.2 0.4 0.6 0.8 1.00.0

0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.00.2 0.4 0.6 0.8 1.00.0

Corr [fast output] and [no-mem hidden]

Corr [fast output] and [no-mem hidden]

D
iff

 in
 E

rr
or

 (f
ro

m
 n

o-
m

em
)

Corr [fast output] and [short-mem hidden]

Corr [fast output] and [short-mem hidden]

Corr [fast output] and [long-mem hidden]

Corr [fast output] and [long-mem hidden]

[Multiscale leaky memory] model

[Multiscale leaky memory + reset] model

Figure A.14: Higher correlation between slow hidden nodes and fast-changing feature of the output
resulted in worse performance in reconstructing fast-feature.

20

Under review as a conference paper at ICLR 2021

A.15 DYNAMICS OF HIDDEN UNITS IN DIFFERENT AUTOENCODER MODELS THAT ARE
LEARNING TO RECONSTRUCT MULTI-TIMESCALE INPUTS

0 20 40 60 80

No. of Samples

0 20 40 60 80

No. of Samples

0.55

0.65

0.75

0.85

O
ut

pu
t D

yn
am

ic
s

Dynamics of Output:

1.00

1.50

2.00

2.50

3.00

H
id

de
n

U
ni

t D
yn

am
ic

s

1.00

1.50

2.00

2.50

3.00

H
id

de
n

U
ni

t D
yn

am
ic

s

1.00

1.50

2.00

2.50

3.00

H
id

de
n

U
ni

t D
yn

am
ic

s

1.00

1.50

2.00

2.50

3.00

H
id

de
n

U
ni

t D
yn

am
ic

s

1.00

1.50

2.00

2.50

3.00

H
id

de
n

U
ni

t D
yn

am
ic

s
No memory

Fast-changing feature
Medium-changing feature
Slow-changing feature

Dynamics of Hidden Units:
No-memory unit
Short-memory unit
Long-memory unit

Leaky memory

Multiscale leaky memory

Leaky memory + reset

Multiscale leaky memory + reset

Figure A.15: Visualization of dynamics of hidden units from different AE models on the held out
data.

21

Under review as a conference paper at ICLR 2021

A.16 OPEN-SOURCE

The source code will be shared on authors’ github after the reviewing process.

22

	Introduction
	Related Work
	Research Questions and Hypotheses
	Effects of temporal smoothness in training data on learning in feedforward neural networks
	Methods
	Manipulating smoothness in training data
	Feedforward Neural Network

	Results
	Discussion

	 Exploiting temporal smoothness in training data for learning in neural networks
	Brain-inspired neural architecture for supervised learning
	Methods
	Results
	Discussion

	Brain-inspired architectures for unsupervised learning across temporal scales
	Methods
	Results
	Discussion

	Conclusion
	Appendix
	Effects of smoothness on categorization versus reconstruction tasks
	Synthetic dataset
	Smoothness effects for classification using cross-entropy loss
	Categorization of synthetic data by leaky memory networks with gating
	Comparing the leaky memory approach against mini-batch training
	Effects of smoothness in data on mini-natch training
	Synthetic data streams in which leaky memory is disadvantageous
	Effects of temporal smoothness on category-learning in an LSTM trained with BPTT
	Comparing LSTM and [leaky-memory with reset] models
	Generalization of LSTM and [leaky memory + reset] models to datasets with different temporal structure
	Unsupervised local resetting mechanism
	 Generalizability of finding in learning from multiscale data for a different learning rate and a different dataset
	Does faster convergence in the no-memory model from 5.2 contradict the benefit of the memory-reset model from 5.1?
	Why does the [no-memory] model outperform the [multiscale memory + reset] model in test-error (in Section 5.2)
	Dynamics of hidden units in different autoencoder models that are learning to reconstruct multi-timescale inputs
	Open-Source

