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ABSTRACT

Machine learning models are increasingly applied in domains where supervised
performance is not the primary objective. Domains such as healthcare demand
machine learning models which provide representations for complex relationships
between both heterogeneous modes of data, and multiple co-occurring labels. Previ-
ous works have tackled representation learning in such multi-label and multi-modal
setting, but have neglected to consider the common requirement of generalization
to novel, and unknown, tasks at test-time. In this work, we propose an integrated
multi-modal multi-label framework for Deep Metric Learning (DML), which we
term 3ML–DML. Our framework extends existing proxy learning losses from DML
to the multi-label domain, and provides a novel method for enforcement of label
correlations via these proxies. We further introduce a multi-modal component
which builds a standard fusion model but draws from DML literature in order
to incorporate auxiliary, high-dimensional embeddings and feature spaces from
each mode of data as context to match with and refine the output of the fusion
model for further improvements in generalization performance. Indeed, when
exploring our method in a variety of settings, including on healthcare data, we are
able to demonstrate consistent improvements over constructed baselines both in
the context of multi-label multi-modal learning but most poignantly, in zero-shot
generalization to new labels.

1 INTRODUCTION

Learning from multi-modal data is a current frontier of machine learning research (Baltrušaitis
et al., 2018; Nagrani et al., 2021; Zhang et al., 2020). High-impact domains frequently contain
vast information spread across several modalities (Beam & Kohane, 2018), and demand robust
machine learning solutions that can learn sensible representations of these complex data. Further,
representing data that have multiple, simultaneous labels exists as an open area of research. In a
variety of domains, these two tasks (multi-modal and multi-label learning) coincide. For instance,
clinical applications commonly require observation of several distinct data modes, such as vitals,
labs, medical imaging, and outcomes range over possible diagnoses that often co-occur (Irvin et al.,
2019). Identifying similarity across patients is crucial to healthcare tasks like devising effective
treatment plans (Hripcsak et al., 2016), yet defining similarity in high-dimensional, multi-modal data
is notoriously challenging (Ghassemi et al., 2020). Despite its importance, quantifying similarity in
multi-label and multi-modal data remains largely unstudied.
A powerful approach to quantifying similarity in high-dimensional data is through techniques from
Deep Metric Learning (DML). DML aims to learn representation spaces in which semantic similarity
between instances is reflected as distance between embeddings. While the idea conceptually lends
itself to settings with multi-modal data with multiple labels, DML has been primarily developed
for single-label unimodal settings (Schroff et al., 2015; Oh Song et al., 2016; Ge, 2018; Wu et al.,
2017; Roth et al., 2020; Musgrave et al., 2020). Much less emphasis and interest has been placed
in finding solutions to quantify multi-label similarity via DML, with primary focus on multi-label
classification (Liu & Tsang, 2015b; Li et al., 2019; Sun & Zhang, 2021). Unfortunately, a naive
classification setup does not port to tasks requiring explicit quantification of similarity, especially for
classes unseen during training (Schroff et al., 2015; Wu et al., 2017; Milbich et al., 2021). As we
show experimentally, simple extensions of standard DML methods prove insufficient.
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Similarly, little research has been done for multi-modal metric learning (Xie & P Xing, 2013; Won
et al., 2021), with existing methods focusing on the constrained task of standard metric learning or for
highly specific domains. Some recent approaches do seek to learn cross-modal similarity, particularly
for retrieval tasks (Xu et al., 2019; Huang & Peng, 2017; Zhen et al., 2019; Cao et al., 2019; He et al.,
2016b), leveraging multi-modal contrastive and metric learning for tasks such as retrieving the best
text for an image. Instead, we aim to develop multi-modal embedding profiles that combine multiple
modalities, e.g. both text and images, to quantify similarity between multi-modal data instances
towards improved label prediction.
We therefore extend DML to tackle the challenging and important problem of quantifying similarities
for multi-label data across multiple modalities. Given a dataset of multi-label instances from multiple
modalities, we seek to learn an embedding function to a metric presentation space in which instances
with similar label sets should themselves be similar. Importantly, for instances with previously unseen
label-sets, this property should still hold.
To overcome the challenges unique to multi-label, multi-modal DML, we introduce 3ML-DML,
multi-modal multi-label deep metric learning. First, to encourage effective multi-label embeddings,
we extend existing proxy-based loss terms in DML such that each label associates with a learned
proxy in the (concurrently learned) embedding space. However, we iterate over previous multi-
class proxy-based methods by permitting embedded data instances to cluster near multiple proxies,
representing the multi-label nature of the data. Then, we incorporate an additional loss term that
forces the distance space over the learned proxies to match the label correlations between associated
labels. Finally, we introduce a unique way to learn on multi-modal data, which concurrently learns a
(concatenation) fusion model that is encouraged to represent higher dimensional embeddings of each
individual modality via mutual information maximization and self-distillation.
Empirically, we demonstrate the 3ML-DML succeeds in quantification of similarity over multi-modal,
multi-label instances. Using two large datasets, we find that 3ML-DML 1) improves performance
over relevant baselines in multi-modal multi-label tasks; 2) generalizes exceptionally to unseen test
labels and label sets; and 3) unifies its objectives such that each component of the framework stacks
in terms of performance gains.
In summary, we show that our approach outperforms existing DML methods for multi-label learning
tasks on multi-modal data on impactful real-world tasks, both in healthcare and in other domains. To
our knowledge, we are the first to study the integrated multi-modal and multi-label setting for DML.
We additionally present a novel method: we are the first to combine recent key ideas from disparate
research ares into a new and unified framework.

2 RELATED WORK

Deep Metric Learning Advances in similarity learning are majorly driven by novel insights from
Deep Metric Learning (DML), with applications ranging from zeros-shot retrieval (Oh Song et al.,
2016; Wu et al., 2017; Roth et al., 2020), clustering (Ge, 2018; Sohn et al., 2019), verification (Deng
et al., 2019; Liu et al., 2017), few-shot learning (Snell et al., 2017), and unsupervised representation
learning (He et al., 2020; Chen et al., 2020). DML methods are commonly separated based on their
use of ranking objectives (Hadsell et al., 2006; Chen et al., 2017; Sohn, 2016) and tuple mining
heuristics (Schroff et al., 2015; Wu et al., 2017), proxy- or classification-based training (Movshovitz-
Attias et al., 2017; Teh et al., 2020) and orthogonal extensions in multi-task and cross-modal settings
(Roth et al., 2022a; Milbich et al., 2020).
Previous works in DML predominantly tackle unimodal, single-class-per-sample setting. While
initial work has investigated normal metric learning without deep networks in the multi-label setting
(Liu & Tsang, 2015b; Gouk et al., 2016), metric learning for multi-label classification (Li et al., 2019;
Sun & Zhang, 2021) and single-label multi-modal retrieval (Xie & P Xing, 2013; Won et al., 2021),
we are the first to investigate extending DML to multi-label multi-modal retrieval tasks.

Multi-label Learning Multi-label classification defines the task of predicting a label set of a given
data instance and is a cornerstone machine learning task (Liu et al., 2021a). A core concept in
multi-label learning is reasoning over relationships between labels, a feature missed by multi-class
methods. The task is often solved via classifier chains (Chen et al., 2018; Gerych et al., 2021;
Hartvigsen et al., 2020), bayesian networks (Zaragoza et al., 2011), multi-task learning (Liu et al.,
2018), clustering (Shu et al., 2022), and embedding methods (Bhatia et al., 2015). Embedding
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Figure 1: Visualization of our proposed 3ML-DML framework for effective multimodal multilabel
Deep Metric Learning.

methods embed instances into feature vectors for which their k-nearest neighbors have similar label
sets, and can also be applied to the labels themselves (Huang & Lin, 2017). Thus, embedding methods
are pertinent to DML. However, classic multi-label embedding methods are prohibitively slow (Liu &
Tsang, 2015a; Bhatia et al., 2015), so recent works have induced sparsity in embeddings (Shen et al.,
2018) or select features directly (Gonzalez-Lopez et al., 2019).

Multi-modal Representation Learning Multimodal representation learning constitutes the task of
learning feature representations from multiple modes of data (Guo et al., 2019; Zhang et al., 2020).
Prior work has demonstrated the utility of learning from multiple modalities – without overfitting to a
specific modality – as opposed to each modality individually (Liang et al., 2021; Wang et al., 2020;
Wu et al., 2022). Standardly, multi-modal learning is achieved by learning a joint representation that
encodes information from all modalities into a single space. This fusion operation can range from
concatenation (Anastasopoulos et al., 2019) to more complex model-based (Yang et al., 2016) or
attention-based fusion (Nagrani et al., 2021; Jaegle et al., 2021; Pramanik et al., 2019).
A related line of work, cross-modal learning, aims to maintain the similarity structure between
samples across modalities (Zhang et al., 2019). This cross-modal similarity constraint can be
enforced with a static or model-based distance metric (Hsu et al., 2018; Hardoon et al., 2004;
Frome et al., 2013), through direct mutual information maximization (Liao et al., 2021), or through
contrastive learning (Radford et al., 2021; Yuan et al., 2021; Zolfaghari et al., 2021). Cross- and
multi-modal representations have been used in application areas such as zero-shot learning (Radford
et al., 2021; Parida et al., 2020), cross modal ranking and retrieval (Parida et al., 2020; Wang et al.,
2015), and visual question answering (Cadene et al., 2019; Ben-Younes et al., 2019). Ultimately, our
method leverages key insights from fusion models in multi-modal learning and mutual information
maximization in cross-modal learning to produce a highly informative multi-modal representation
that incorporates mode-specific information beyond fusion.

3 METHODS

To quantify similarities on both a multi-modal and multi-label level that allow us to tackle zero-shot
similarity tasks, we build on the Deep Metric Learning (DML) framework. DML provides tools to
quantify non-linear semantic similarities across data points, and as such is a well suited starting point.
We quickly motivate the DML framework in §3.1, before proposing a suitable multi-label DML
objective in §3.1.1. To best leverage the multi-label context, we further propose a novel extension
based on label correlation in §3.1.2 which allows us to incorporate relations between different labels
into the multi-label DML process. To operate on multiple modalities, we propose a multi-modal
architecture well suited to be used in conjunction with a DML-based problem setting in §3.2, which
together form our multi-modal multi-label DML (3ML-DML) objective §3.3. For a visualization of
the complete 3ML-DML framework, we refer to Fig. 1.

3.1 MULTI-LABEL DEEP METRIC LEARNING

Formally, given training data X , the goal in DML is to find a projection ϕ, commonly parametrized
by a deep neural network, into a d-dimensional metric space ϕ : X → Φ ⊂ Rd such that for data
pairs x1, x2 ∈ X , a predefined distance metric d(ϕ(x1), ϕ(x2)) (commonly euclidean or cosine
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distance) between projected ("embedded") data samples quantifies important semantic relations. For
regularization purposes, Φ is commonly projected to the unit hypersphere Sd−1 (Weisstein, 2002;
Wu et al., 2017). In the standard case where samples are only associated with a single label, surrogate
training objectives to optimize ϕ are straightforward to define, for example via ranking-based losses
(e.g. triplet (Schroff et al., 2015; Wu et al., 2017) or other tuple-based approaches (Chen et al., 2017;
Sohn, 2016)) or proxy-based objectives (Movshovitz-Attias et al., 2017; Qian et al., 2019; Teh et al.,
2020; Kim et al., 2020). While the latter is considered to generally perform favourably with better
convergence properties (Movshovitz-Attias et al., 2017; Kim et al., 2020; Roth et al., 2022b), all of
these approaches aim to attract samples from the same while repelling samples from different classes.
However, as we want to quantify similarities between multi-label samples, these standard approaches,
which assume single label instances, become insufficient. To tackle this issue, our goal is to provide
a suitable multi-label DML objective. In particular, as proxy-based objectives provide most of the
current state-of-the-art metric learning models (Kim et al., 2020; Teh et al., 2020; Roth et al., 2022b),
we aim to adapt the proxy-formulation to the multi-label case.

3.1.1 MULTI-PROXY DEEP METRIC LEARNING

In particular, we extend the ProxyNCA formulation (Movshovitz-Attias et al., 2017), which is the
underlying concept behind various recent, more specialized extension Qian et al. (2019); Kim et al.
(2020); Teh et al. (2020); Roth et al. (2022b).
In the single label setting, given class labels c ∈ C, associated proxy representations ψc ∈ Rd, and a
minibatch of samples B, the ProxyNCA loss is defined as

LPNCA = −1

b

∑
xi∈B

log

(
exp

(
−d
(
ϕ(xi), ψc(xi)

)∑
c∗∈C\{c(xi)} exp (−d (ϕ(xi), ψc∗)

)
(1)

where c(xi) denotes the class associated with sample xi. This formulations allows for a straightfor-
ward extensions into the multi-label setting, where every sample is now assigned a label set instead
of a single label. As such, let ℓ ∈ Y be the set of unique labels, to each of which we assign a proxy
ψℓ ∈ Rd. Then, for each sample with label set Y (xi) in the minibatch B, we define the multi-label
ProxyNCA objective as

LMPNCA = −1

b

∑
xi∈B

log

( ∑
ℓ∈Y (xi)

exp (−d (ϕ(xi), ψℓ))∑
ℓ∈Y\{Y (xi)} exp (−d (ϕ(xi), ψℓ))

)
(2)

Within this framework, we aim to minimize the distance between a sample embedding ϕ(xi) and
all associated positive proxies, i.e. those part of the associated label set Y (xi), while repelling the
remaining proxies associated with labels not part of Y (xi).

3.1.2 LABEL CORRELATION ENFORCEMENT

The standalone multi-label ProxyNCA formulation does not account for any relations between
different labels, which is a crucial element in multi-label-based representation learning; the benefit of
having multiple labels is an additional axis of information regarding the interplay between different
class concepts (Tsoumakas & Katakis, 2007; Maxwell et al., 2017; Liu et al., 2021b), as in practice,
labels often appear in correlation. This has to be reflected in the metric representation space. In
particular, proxies that belong to label concepts that share strong correlations should be explicitly
close in the representation space, and vice versa. Unfortunately, the standalone ProxyNCA treats
every label as an independent entity.
We therefore propose a novel label correlation enforcement, which allows us to re-align proxies based
on their associations in the multi-label context - i.e. if two proxies belong to labels that often appear
jointly, the should thus be reasonably close in the final metric representation space. To achieves this,
we minimize the mean squared loss between the pairwise distances over the learned proxies, and the
Pearson correlation coefficient over label variables observed on each batch.
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This works, as for real-valued, standardized vectors u, v (zero mean, unit length), their Pearson
correlation coefficient r is directly related to their Euclidean distance d via

r = (1− d2
/2) (3)

See Supplemental B.2 for derivation.
If we are now given access to a batch ΦB ∈ Rb×d of size b with d-dimensional embeddings generated
from our DML network, where each entry ΦB

i is associated with a multi-hot, c-dimensional label
vector yi ∈ Y ∈ {0, 1}b×c associated with each samples respective label set.
The pairwise Pearson correlation coefficient PCC between pairs of standardized columns in the
multi-label tensor Y, denoted as r, can then be computed as rij = PCC(Y:,i,Y:,j), which gives
an indicator on the relation between two classes ci and cj . If we now compute the euclidean
distance d(·, ·) between respective proxy pairs ψi and ψj such that we are given a distance matrix
dij = d(ψi, ψj), we can align the proxy distances with the associated class correlations rij by using
the relation noted in Eq. 3, such that our label correlation enforcement term can be defined as

Lℓcorr = LMSE(r, 1− d2
/2) (4)

which gives the final, label-correlated multi-label multi-proxy objective as

LlcMPNCA = LMPNCA + γ · Lℓcorr (5)

3.2 METRIC LEARNING FROM MULTIPLE MODALITIES

To incorporate context from multiple different modalities into a single metric representation space,
we require a mechanism that unifies features extracted across modalities.
For that, we begin by adopting a standard concatenation framework for the fusion of multiple modali-
ties following Nagrani et al. (2021); Zhang et al. (2020). In particular, given separate representations
from mode-specific models for nmodalities, ωm

1 ∈ Rk1 , . . . , ωm
n ∈ Rdn , we concatenate the represen-

tations to create a joint multi-modal representation ψm = [ωm
1 , . . . , ω

m
n ] ∈ Rd1•···•dm . The resulting

representation ωm is then passed into the primary part of the fusion model, where the number of
layers before and after the fusion quantify the fusion depth. We elaborate on implementation details
in the Supplemental.
However, simple fusion on its own is insufficient for good multi-modal similarity learning, as in
practice we not only want to merge representation, but we also want relations between samples within
each modality to be retained or at the very least actively used to inform the arrangement in the final
multi-modal metric space.

3.2.1 MULTI-MODAL S2SD

Therefore, to better integrate multiple modalities in a way more suitable for the particular task of
similarity learning, we extend the vanilla fusion approach with a simultaneous similarity-based
self-distillation (S2SD) setup introduced in Roth et al. (2021) (see Supplemental B.1 for vanilla
S2SD). We reframe S2SD for our multi-modal setup by attaching a mode-specific, high-dimensional
MLP ϕmgi to the output of each modality expert model ωm

i , as well as the fused, lower dimensional
multi-modal output ωm, giving ϕm. Similar to the standard S2SD setup, every singly modality expert
is optimized with its on instantiation of the multi-label MultiProxyNCA objective, s.t. every modality
on its own also learns to arrange and relate different samples.
With the new mode-specific, high-dimensional embedding spaces, we finally perform distillation
via the contrastive S2SD distillation objective onto our target fusion embedding ϕm. The complete
multi-modal S2SD objective then reads

LmmS2SD =
1

2
·
[
LMPNCA(Φ

m) +
1

n

∑n
i=1 LMPNCA(Φ

m
gi)

]
+
γ

n

n∑
i=1

Ldist(D
Φm

, DΦm
gi ) + γLdist(D

Φm

, DΩm

)

(6)
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with n different modalities. We use large greek letters to denote the respective batch of embeddings
generated by the different parts of our multi-modal architecture, with Φm := ϕm(B) comprising our
main lower dimensional multi-modal target embedding space.

3.3 MULTI-LABEL MULTI-MODAL METRIC LEARNING

The complete multi-modal multi-label objective, 3ML-DML, thus comprises:
L3ML-DML = LmmS2SD + γLℓcorr (7)

with γ ∈ R a weighting term for the label correlation loss (optimized via simple grid search), which
is only applied on the primary multi-modal embedding space Φm. Conceptually, the complete
objective can be understood as (1) learning a multi-label suitable embedding space through our
MultiProxyNCA objective (Eq. 2), (2) jointly learning and distilling more finegrained, higher-
dimensonal unimodal relations between samples into the main multi-modal space via the multi-modal
S2SD distillation objective (Eq. 6) and finally (3) leveraging interclass relations through our label
correlation enforcement objective (Eq. 4).

4 EXPERIMENTS

4.1 DATASETS

We benchmark our method on the datasets shown in Table 3. The MIMIC-III database Johnson
et al. (2016) consists of clinical time series and clinical notes for over 30,000 patients from an ICU in
Boston. Here, we follow data processing steps defined in prior work to obtain a cohort where the task
is to predict patient membership in one or more 25 HCUP CCS ICD-9 code groups Harutyunyan et al.
(2019). In addition, we use the MM-IMDB Liang et al. (2021); Arevalo et al. (2017) dataset, where
the goal is to determine the genre of a movie using its poster and plot summary.

4.2 IMPLEMENTATION DETAILS

We use the ResNet-50 (He et al., 2016a) architecture for the image encoder. We use BERTBASE
(Devlin et al., 2018) as the text encoder. Further details regarding dataset statistics can be found in
Supplemental A. To build representations on time-series data, we use a Gated Recurrent Unit (GRU)
network (Chung et al., 2014). We split samples from each dataset into 70% training, 15% validation,
15% test sets. We vary the learning rate, embedding dimension, batch size, label correlation loss
weight term, S2SD embedding dimensions, and select the model with the best downstream linear
AUROC on the validation set.

4.3 EVALUATION METRICS

To comprehensively measure the performance of our models, we pull from previous works in multi-
label learning, healthcare, and capitalize on standard metrics in deep metric learning. In particular, we
focus on area-under-receiver-operator-curve (AUROC, or AUC) via linear classification downstream ,
mean average precision (mAP) , and recall@k (see Supplemental for precise definitions). AUROC
constitutes a commonly used metric in multi-label learning, while mAP is standardly used in both
multi-label learning and deep metric learning. We extend standard recall@k in deep metric learning
to the multi-label setting.
In order to adapt recall@k for multi-label tasks, we change the local measure of recall@k from
existence of a positive sample in a point’s k-nearest neighbors to the highest overlap in proportion of
labels between a data point and its k-nearest neighbors.

Definition 1 (Multi-Label Recall@k). Given k ∈ {1, . . . , |X|}, define NNk : Φ ⊂ SD−1 → P(X)
as a function that receives a point ϕ(x) ∈ Φ and returns a set in the powerset ofX , P(X), containing
points in X that map to the k nearest neighbors of ϕ(x) in Φ. Let MultiHot : P(Y) 7→ [0, 1]|Y| be
a function that encodes label sets as multi-hot vectors. Then, multi-label recall@k is defined as:

Recall@k =
1

|X|
∑
x∈X

max
x̃∈NNk(x)

1− ∥MultiHot(Y (x))− MultiHot(Y (x̃))∥1
|Y|

where Y (x) indicates the label set for point x ∈ X .
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We extrapolate on additional adjustments to the proposed multi-label recall@k metric in Supplemen-
tal B.1.

4.4 BASELINES

In order to compare our method as described in Section 3 to relevant constructed baselines, we
propose the following baseline methods for multi-label learning:

• powerset: Given the available labels for a dataset, we construct a proxy for each possible
combination of labels, resulting in 2|Y| proxies, and train a DML model with standard
ProxyNCA loss Movshovitz-Attias et al. (2017).

• supervised: We train the network by adding on a linear layer mapping the embedding
space to R|Y|, and minimize the unweighted sum of binary cross-entropy for each label.

The powerset method presents a naive multi-label method in which label correlations and depen-
dencies are largely ignored and each label set is treated as a separate class, ported to the deep metric
learning space. Comparison with the supervised method establishes differentiation between the
most commonly used multi-label classification training algorithm and our method. Note that both
of these baselines are expected to perform well: the powerset method leverages the ability of
deep metric learning to learn informative embeddings on a large number of classes and generalize to
novel classes; whereas the supervised method is the most commonly used method for multi-label
classification in practice.
To facilitate comparison between our adapted S2SD multi-modal approach, we benchmark against
simple fusion-based multi-modal learning wherein representations from each modality are concate-
nated and a multi-layer dense network is learned on these concatenated representations to obtain the
desired DML embedding space. We use hyperparameter search to optimize the depth at which fusion
occurs, and compare fusion to unimodal models with each modality.

4.5 EXPERIMENTAL SETUP

Given our datasets, we run multiple experiments in order to (1) compare the performance of our
method to relevant constructed baselines; (2) understand the ability of our method to generalize to
novel labels and label sets; and (3) assess the impact of each component of our method.

Novel Label Generalization For each dataset, we train a model on the entire label set for that
dataset and evaluate metrics on the test set for the identical label set for a simple benchmark. However,
as zero-shot generalization is a motivating principle for the proposed method, we build zero-shot
generalization tasks for each of our datasets in order to evaluate the ability of our method to generalize
to novel labels (and thus, novel label sets) at test-time. For each dataset in Table 3, we first remove all
labels with less than 5% prevalence. Then, with the exception of COCO, we randomly select 50% of
labels to train on, and test on the remaining 50% of labels, as is standard in multi-class deep metric
learning. We average metrics over two randomly chosen sets of labels for train / test label split.

Ablation Study In order to further our understanding of which components of our model contribute
to distinct aspects of performance, we perform the following experiments with each dataset. In the
following settings, we perform runs for the entire label set case and in the zero-shot generalization
case:

• S2SD multi-modal loss with multi-label ProxyNCA loss and label correlation (3ML-DML)

• S2SD multi-modal loss with multi-label ProxyNCA loss and no label correlation (−Lcorr)

• Standard multi-modal concatenation fusion (no S2SD) with our multi-label ProxyNCA loss
and label correlation (−S2SD)

• Standard multi-modal concatenation fusion (no S2SD) with our multi-label ProxyNCA loss
and no label correlation (−S2SD, Lcorr)

In our experiments with label correlation, we additionally vary the weighting of the label correlation
term in order to determine to what extent label correlation impacts the performance of the model –
particularly, in the entire label set versus the zero-shot generalization case.
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Dataset Eval Set Loss
Metrics

Linear AUROC mAP Recall@1

MMIMDB

train

3ML-DML 0.868 0.089 0.884
mmS2SD 0.866 0.085 0.883
supervised 0.856 0.110 0.887
powerset 0.858 0.102 0.891
MPNCA- 0.820 0.099 0.880

test

3ML-DML 0.844 0.068 0.873
mmS2SD 0.842 0.065 0.872
supervised 0.808 0.062 0.865
powerset 0.835 0.077 0.876
MPNCA- 0.780 0.065 0.868

MIMIC-III

train

3ML-DML 0.723 0.154 0.793
mmS2SD 0.720 0.145 0.794
supervised 0.713 0.130 0.791
MPNCA- 0.665 0.114 0.782

test

3ML-DML 0.702 0.139 0.789
mmS2SD 0.697 0.141 0.788
supervised 0.699 0.118 0.790
MPNCA- 0.642 0.094 0.780

Table 1: Comparison of performance metrics on baseline methods. Here, MPNCA- is a baseline
using LMPNCA with both positive and negative proxies. Note that the powerset method is
computationally prohibitive as the number of proxies in the powerset grows exponentially with the
label set size. Due to computational constraints, we exclude the “multiproxyncapowerset" results for
the “mimiciii" dataset due to its larger label sizes.

Dataset Eval Set Loss
Metrics

Linear AUROC mAP Recall@1

MMIMDB

train

3ML-DML 0.868 0.089 0.884
−Lcorr 0.866 0.085 0.883
−S2SD 0.871 0.102 0.888
−S2SD, Lcorr 0.871 0.099 0.887

test

3ML-DML 0.844 0.068 0.873
−Lcorr 0.842 0.065 0.872
−S2SD 0.848 0.075 0.876
−S2SD, Lcorr 0.846 0.073 0.874

MIMIC-III

train

3ML-DML 0.723 0.154 0.793
−Lcorr 0.720 0.145 0.794
−S2SD 0.717 0.150 0.792
−S2SD, Lcorr 0.715 0.150 0.793

test

3ML-DML 0.702 0.139 0.789
−Lcorr 0.697 0.141 0.788
−S2SD 0.699 0.139 0.789
−S2SD, Lcorr 0.699 0.137 0.789

Table 2: Comparison of performance metrics when we ablate components from our method 3ML-DML
using the procedure described in Section 4.5. Here, −Lcorr indicates ablating the label correlation
loss, and −S2SD indicates using standard fusion for multi-modal learning.

5 RESULTS

5.1 BASELINE COMPARISON

3ML-DML improves metrics across key baselines In Table 1, we present results of our methods
(3ML-DML and mmS2SD) against the baselines described above. Looking at the case where we
evaluate on the same label set as training, we find that on both MMIMDB and MIMIC-III, our
method performs the best in terms of downstream mean linear AUROC, even outperforming the
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supervised baseline. In terms of the quality of the embedding space learnt, we find that all methods
are fairly comparable in terms of Recall@1. We also find that our method outperforms the baselines
on mAP in MIMIC-III, though supervised learning does do better on MMIMDB.

Generalization to novel labels In the Eval Set = test setting, all models are evaluated on novel
labels not seen during training. Across all metrics, we observe that the model performances generally
all drop slightly when generalizing from the source to target label set distributions, as expected. To
compare our methods (3ML-DML and mmS2SD) with the baselines, we analyze the percent drop
in performance for each method and metric after generalization. In the MIMIC-III dataset, our
methods perform on par with baseline models across all metrics. In the MMIMDB dataset, our methods
perform noticeably better than the baseline supervised and MPNCA- methods with respect to
mAP and marginally better for the two other metrics. The percent drop in mAP is 43.63% for
supervised and 34.3% for MPNCA-, while only 23.6% for 3ML-DML and 23.5% for mmS2SD.

5.2 3ML-DML ABLATION STUDY

Impact of each component on performance metrics According to Table 2, we observe varied
results with respect to differing components of the method. In the case of MIMIC-III, which serves
as our primary application dataset (healthcare), we observe that the unified framework 3ML-DML
provides better AUROC than each of its relative components. In particular, we see that: removing
the label correlation term results in a degradation of 3%, using standard fusion as opposed to multi-
modal S2SD results in a drop of 6% and both in tandem results in degradation of 8%. Thus, we
conclude in our primary application dataset, we observe that each component provides improvement
in the standard and zero-shot generalization case. In the MMIMDB, we observe that S2SD marginally
degrades the overall performance compared to utilizing standard fusion and our proposed multi-label
ProxyNCA alone in terms of AUROC. We hypothesize that such an occurrence arises from greater
informative value in one of the modalities. In the standard fusion case, the fusion layer should
down-weight the less useful modality. However, in S2SD, we ensure maximal mutual information
between both modalities and the ultimate fusion model. Perhaps additionally we are overfitting to the
weaker modality by learning a higher dimensional embedding than necessary in S2SD. We propose
remedying this by further exploration of differing representation dimensionalities for each modality
expert in multi-modal S2SD.

Limits of weighted label correlation In Appendix C.1, we present plots showing the effect of
varying γ (the label correlation weight) on downstream performance metrics on MMIMDB. We find
that, although Lcorr does give marginal improvements as evident in Table 2, there is no clear trend
showing a significant improvement in performance as γ is varied in a grid for the two losses examined.
Exploring the effect of Lcorr and how it varies during the training process, as well as potentially
devising a method to choose γ automatically, is an area of future work.

6 CONCLUSION

In conclusion, we demonstrate significant value in the application of deep metric learning to the task
of multi-modal multi-label learning. We propose a novel method that draws from previous work in
proxy-based learning and relates learned distance functions to label correlations. We additionally
propose a concurrent multi-modal method which utilizes direct distillation from high dimensional
unimodal embeddings to enhance the fusion model. We show improvement in performance over
relevant baselines in the standard and zero-shot generalization settings; and analyze the contribution
of each component of 3ML-DML. To future work, we consider reasoning over label correlations
directly via modifications to the mixture model – for example, via classifier chains Chen et al. (2018);
Gerych et al. (2021); Hartvigsen et al. (2020) on von Mises Fisher conditional distributions; learnable
and anisotropic concentration parameters Roth et al. (2022b); or other geometric characterizations
of the feature space. We push towards further exploration in the space of similarity learning in
multi-modal multi-label settings.
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A DATASET METADATA

Dataset Modalities # Samples # Labels % Exclusive Prediction Task
MIMIC-III {T, TS} 30,558 25 9.8% clinical phenotypes
MM-IMDB {I, T} 25,959 23 23.0% movie genre

Table 3: The table contains useful metadata for the datasets used in experiments. Experiments are
conducted with the displayed four binary multi-label datasets: an unimodal dataset, MIMIC-CXR
Johnson et al. (2019) and three multimodal datasets. In the above table, I denotes image data, T, text
data, TS, time series data, and % exclusive describes the percentage of samples with exactly one
positive label.

B BACKGROUND

B.1 DEEP METRIC LEARNING BACKGROUND

B.1.1 EVALUATION METRICS IN DEEP METRIC LEARNING

Definition 2 (Recall@k). Jegou et al. (2011) Given k ∈ {1, . . . , |X|}, define NNk : Φ ⊂ SD−1 →
P(X) as a function that receives a point ϕ(x) ∈ Φ and returns a set in the powerset of X , P(X),
containing points inX that map to the k nearest neighbors of ϕ(x) in Φ. Then, Recall@k is measured
as:

Recall@k =
1

|X|
∑
x∈X

{
1 ∃x̃ ∈ NNk(x) : Y (x̃) = Y (x)

0 else

B.1.2 PROXY LEARNING AS LIKELIHOOD MAXIMIZATION UNDER VON MISES-FISHER
MIXTURE MODELS

The probability density function of the von Mises-Fischer distribution:

fp(x;µ, κ) = Cp(κ) exp(κµ
⊺x) (8)

where κ ≥ 0 the concentration constant, ∥µ∥ = 1 and normalization constant

Cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
(9)

where Iv denotes the modified Bessel function of the first kind at order v. Idea: project ϵ-balls
on the hypersphere (modulate via concentration parameter κ and normalization constant). Note
that when κ = 1 and normalization constant C = 1/N , where N = |Y| denotes the number of
classes, the distribution expresses Proxy-NCA loss via a maximum-likelihood problem under the von
Mises-Fischer distribution.

Assuming µk to denote some class concept or class prototype, the probability of assigning a sample
representation ϕi to µk is given as p(ϕi|µk) = fp(ϕ(xi);µk, κk). This can be extended to the vMF
mixture model when multiple classes (class prototypes) are available:

pvMFmm(ϕi|µk) =
πkCd(κk)e

κks(ϕi,µk)∑
µ∗∈M πk∗Cd(κk∗)eκk∗s(ϕi,µk∗ )

(10)

Cd(κ) = κd/2−1 ·
[
(2π)d/2Id/2−1(κ)

]−1

(11)

where each class is defined by a unique prototype µk and some (potentially fixed) concentration
κk, with overall probability of assignment controlled by the mixture degrees πk. Assuming indeed
a fixed κk and constant mixture πk, it is easy to recover the Proxy-NCA loss through likelihood
maximization of the mixture model.
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Definition 3 (Proxy-NCA). Kim et al. (2020) ProxyNCA learns class proxies, or class centers,
which each represent a class in the set of unique classes Y . Then, each anchor from the batch is
sampled and a positive or negative proxy ψc ∈ Rd per class c ∈ Y is introduced in lieu of a positive
or negative sample, respectively, giving:

Lproxy = −1

b

∑
xi∈B

log

(
exp

(
−d
(
ϕ(xi), ψY (xi)

)∑
c∈Y\{Y (xi)} exp (−d (ϕ(xi), ψc)

)

B.1.3 SIMULTANEOUS SIMILARITY-BASED SELF-DISTILLATION FOR MULTIMODAL METRIC
LEARNING

S2SD was proposed as an extension to standard metric learning, which utilizes a multi-level distillation
setup. Assuming a low-dimensional target dimensionality of the main embedding space Φ ∈ Rd

and access to a higher-dimensional, shared feature extraction network and respective (batched)
feature representations Φf ∈ Rdf , S2SD generates a sequences of n increasingly higher-dimensional
embedding vectors {Φgi}i=[0,n−1] with |Φgi | < |Φgj | for i < j. To maximize the transfer capabilities
of the primary, low-dimensional embedding space Φ, the S2SD objective is then defined as

LS2SD =
1

2
·
[
LDML(Φ) +

1

n

∑n
i=1 LDML(Φgi)

]
+
γ

n

n∑
i=1

Ldist(D
Φ, DΦgi )+ γLdist(D

Φ, Df ) (12)

with Df , DΦgi , DΦ denoting batch-wise similarity matrices, e.g. DΦ
i,j = ΦT

i Φj over the high-
dimensional feature vectors Φf , the additional S2SD embeddings Φgi and the main embedding space
Φ, respectively.

B.2 PEARSON CORRELATION COEFFICIENT AND EUCLIDEAN DISTANCE

Let u, v ∈ Rk be vectors with zero mean and unit length (i.e., ∥u∥ = ∥v∥ = 1, u = v = 0). The
Pearson Correlation Coefficient r between u and v can thus be written as:

r =

k∑
i=1

(ui − u)(vi − v)

√√√√ k∑
i=1

(ui − u)2

√√√√ k∑
i=1

(vi − v)2 =

∑k
i=1 uivi√∑k

i=1 u
2
i

√∑k
i=1 v

2
i

=

k∑
i=1

uivi

We can further rewrite the euclidean distance between u and v as:

d =

√√√√ k∑
i=1

(ui − vi)2 =

√√√√ k∑
i=1

ui − 2
k∑

i=1

uivi +
k∑

i=1

vi =

√√√√2− 2
k∑

i=1

uivi

Thus, (1− d2
/2) = 1− 2−2

∑k
i=1 uivi
2 =

∑k
i=1 uivi = r.

17



Under review as a conference paper at ICLR 2023

C ADDITIONAL RESULTS

C.1 VARYING LABEL CORRELATION WEIGHT

(a) (b)

Figure 2: Comparison of model performance for 3ML-DML and regular MPNCA as a function of the
label correlation loss weight γ, as measured by (a) mean linear AUROC, and (b) mAP.
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