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ABSTRACT

Counterfactual explanations often become invalid if the underlying model changes
because they are usually quite close to the decision boundary. Thus, the robust-
ness of counterfactual explanations to potential model changes is an important
desideratum. In this work, we propose entropic risk as a novel measure of ro-
bustness for counterfactual explanations. Entropic risk is a convex risk measure
and satisfies several desirable properties. Furthermore, we show several ways of
incorporating our proposed risk measure in the generation of robust counterfactuals.
The main significance of our measure is that it establishes a connection between
existing approaches for worst-case robust (min-max optimization) and robustness-
constrained counterfactuals. A limiting case of our entropic-risk-based approach
yields a worst-case min-max optimization scenario. On the other hand, we also
provide a constrained optimization algorithm with probabilistic guarantees that
can find counterfactuals, balancing our measure of robustness and the cost of the
counterfactual. We study the trade-off between the cost of the counterfactuals and
their validity under model changes for varying degrees of risk aversion, as deter-
mined by our risk parameter knob. We examine the performance of our algorithm
on several datasets. Our proposed risk measure is rooted in large deviation theory
and has close connections with mathematical finance and risk-sensitive control.

1 INTRODUCTION

The widespread adoption of machine learning models in critical decision-making, from education
to finance (Dennis, 2018; Bogen, 2019; Chen, 2018; Hao & Stray, 2019), has raised concerns
about the explainability of these models (Molnar, 2019; Lipton, 2018). To address this issue, a
recently-emerging category of explanations that has gained tremendous interest is: counterfactual
explanation (Wachter et al., 2017). In binary classification, given a specific data point and a model,
a counterfactual explanation (also referred to as “counterfactual”) is a feature vector leading to a
different decision under the same model. Typically, counterfactuals are based on the closest point on
the other side of the decision boundary of the model, also referred to as closest counterfactual. The
closest counterfactual is a popular technique to explain a decision made by a machine learning model
(see Karimi et al. (2020); Barocas et al. (2020); Mishra et al. (2021) for surveys on counterfactual
explanations). For example, in automated lending models, a counterfactual can inform a denied loan
applicant about specific changes, like increasing collateral, that could have led to loan approval.

However, machine learning models often undergo periodic updates, either due to more data becoming
available, or due to retraining with new hyperparameters or seeds (Upadhyay et al., 2021; Black et al.,
2021). Such updates can cause the closest counterfactual to become invalid by the time the user
gets to act on it because these counterfactuals are typically close to the decision boundary. In our
lending example, the counterfactual might indicate that a higher-valued collateral could have led to
loan approval. However, if the borrower returns later with improved collateral, they could still face
denial due to model updates. This not only impacts the loan applicant’s trust but also the institution’s
reputation, and raises ethical and legal concerns. This motivates another important desideratum for
counterfactuals: robustness. Robustness catalyzes the adoption of counterfactual explanations and
promotes their use for high-stakes applications (Verma et al., 2020).

To make sure counterfactual explanations are useful and actionable to the users, we not only need
them to be close but also require them to stay valid under model changes. In general, it might be
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impossible to guarantee the existence of a counterfactual that stays valid for all possible changes
to a model (see Dutta et al. (2022); Hamman et al. (2023) for impossibility results). However, one
might be able to provide guarantees for a class of changes to the models. This leads to the notion
of defining classes of model changes and consequently robustness of counterfactuals with respect
to a specific class of model changes. The robustness of a counterfactual can then be quantified by a
robustness measure, that might provide guarantees under a certain class of model changes. Then the
optimization objective is to leverage the robustness measure to find a counterfactual that balances the
cost of the counterfactual with respect to the original point (distance) and the robustness measure to
ensure the validity of the counterfactual under model changes.

Related Works. The importance of robustness in local explanation methods was studied in works
as early as Hancox-Li (2020), but only a handful of recent works have explored algorithms for
generating robust counterfactuals. Existing literature has looked at both worst-case robust approaches,
e.g. Upadhyay et al. (2021), as well as robustness-constrained approaches, e.g. Black et al. (2021)
and Hamman et al. (2023). The robustness-constrained methods quantify counterfactual robustness
within a Lipschitz model’s local neighborhood, integrating it as a constraint in optimization to
ensure the counterfactual’s validity under model variations. In contrast, the worst-case robust
techniques (Upadhyay et al., 2021) hedge against the worst model within a model class, employing
min-max optimization to find robust counterfactuals. Notably, the connection between these two
approaches has not been studied in existing literature. Other related works on the robustness of
counterfactuals to model changes include Rawal et al. (2020); Dutta et al. (2022); Jiang et al. (2022);
Nguyen et al. (2022). See Appendix D for a more comprehensive literature review.

We also note that there have been alternative perspectives on the robustness of counterfactuals. Two
notable examples include Laugel et al. (2019); Alvarez-Melis & Jaakkola (2018) that propose an
alternative perspective of robustness in explanations (called L-stability in Alvarez-Melis & Jaakkola
(2018)) which is built on similar individuals receiving similar explanations, and Pawelczyk et al.
(2022); Maragno et al. (2023); Dominguez-Olmedo et al. (2022) that focus on robustness to input
perturbations (noisy counterfactuals) rather than model changes. In contrast to these, our focus is on
counterfactuals remaining valid after model changes.

Our Contributions. In this work, we propose a novel entropic risk measure to quantify the ro-
bustness of counterfactuals. Entropic risk is a convex risk measure and satisfies several desirable
properties. Furthermore, we show several ways of incorporating our proposed risk measure in the
generation of robust counterfactuals. The main significance of our measure is its ability to establish a
unifying connection between existing approaches for worst-case robust (min-max optimization) and
robustness-constrained counterfactuals. Our proposed measure is rooted in large deviation theory and
mathematical finance (Föllmer & Schied, 2002). Our contributions in this work are as follows:

1. An Entropic Risk Measure for Robustness: We propose a novel entropic risk measure to
quantify the robustness of counterfactuals to model changes. Our measure is convex and satisfies
several desirable properties. It has a “knob”– the risk parameter– that can be adjusted to trade-off
between risk-constrained and worst-case (adversarially robust) approaches. While risk-constrained
accounts for general model changes in an expected sense, the adversarial robustness prioritizes the
worst-case perturbations to the model, thus having a higher cost. Our approach enables one to
tune “how much” a user wants to prioritize for the worst-case model changes, by trading off cost.

2. Connection to Min-Max Optimization: Our proposed entropic risk measure enables us to
establish the connection between the worst-case robust counterfactuals (min-max optimization
P2) and the robustness-constrained counterfactuals (constrained optimization P3). The worst-
case robustness approaches are in fact a limiting case of our entropic-risk-based approach (see
Theorem 1). The extreme value of the knob (risk parameter) maps our measure back to a min-
max/adversarial approach. By establishing this connection, we show that our proposed measure is
not postulated and stems from the mathematical connection with worst-case robustness analysis.

3. Estimation of Risk Measure with Probabilistic Guarantees: This contribution is to serve as
an example of how our theoretical contribution can be capitalized for algorithmic development.
While our main contribution is a theoretical link between our method and worst-case robust
counterfactuals , to the end of showcasing the potential algorithmic impact of our work, we also
propose a relaxed estimator for the entropic risk measure that can be computed from sampling
around the counterfactual. When the exact distribution of the changed model is known, we may
be able to exactly compute our risk measure and directly solve P3, as we demonstrate through

2



Under review as a conference paper at ICLR 2024

some examples (see Examples 1 and 2). However, this may not be the case always, requiring us
to explore alternate approaches for algorithmic development. In such cases, we show that under
certain regularity conditions, our relaxed estimator is a lower bound to the entropic risk with
high probability (see Theorem 2). This further allows us to relax optimization P3 to P4 which is
amenable to implementation using Auto-differentiation (TensorFlow, 2023).

4. Algorithm and Experimental Results: We include an algorithm that leverages our relaxed
risk measure and finds counterfactuals that are close and robust. We provide a trade-off analysis
between the cost (distance) and robustness of the counterfactual for our algorithm. Our experiments
are aimed at showing that our method performs on par with SNS algorithm (Black et al., 2021)
while being grounded in the solid theoretical foundation of large deviation theory, without relying
on any populations, enabling a unifying theory for robust counterfactuals. Our method outperforms
the min-max algorithm ROAR (Upadhyay et al., 2021) across various well-known datasets.

2 PRELIMINARIES

Here, we provide some contextual details, definitions, and background materials, and set our notation.
We consider machine learning models m(·) : Rd → [0, 1] for binary classification that takes an input
value x ∈ X ⊆ Rd and output a probability between 0 and 1. Let S = {xi ∈ X}ni=1 be a dataset of
n independent and identically distributed data points generated from an unknown density over X .
Definition 1 (γ−Lipschitz). A function m(·) is said to be γ−Lipschitz with respect to p-norm if

|m(x)−m(x′)| ≤ γ∥x− x′∥p, ∀x, x′ ∈ Rd

where ∥ · ∥p denotes the p-norm.
Definition 2 (Closest Counterfactual Cp(x,m)). A closest counterfactual with respect to the model
m(·) of a given point x ∈ Rd such that m(x) < 0.5 is a point x′ ∈ Rd such that m(x′) ≥ 0.5 and
the p-norm ∥x− x′∥p is minimized.

Cp(x,m) = argmin
x′∈Rd

c(x, x′) s.t. m(x′) ≥ 0.5.

For example, norm p = 1 results in counterfactuals with as few feature changes as possible, enforcing
a sparsity constraint (also referred to as “sparse” counterfactuals (Pawelczyk et al., 2020)).

Goals: In this work, our goal is to obtain a systematic measure of the robustness of counterfactuals to
potential model changes that satisfy desirable properties. Towards this goal, we propose an entropic
risk measure that leads to a unifying connection between worst-case robustness methods (min-max
optimization) and constrained-optimization-based robustness methods. Our objective involves: (i)
arriving at a robustness measure for a counterfactual x and a given model m(·), that quantifies its
robustness to potential model changes; (ii) establishing the connection between our proposed-entropic-
risk-based approach and the worst-case robustness approaches, and (iii) showing the algorithmic
impacts of our measure by developing several algorithms for generating robust counterfactuals based
on our robustness measure. The existing methods for finding robust counterfactuals can be divided
into either worst-case robust or robustness-constrained approaches. Our research closes the gap
between these two perspectives by showing that the worst-case approach is a limiting case of our
proposed entropic risk-based approach. Furthermore, we also propose a relaxed estimator for our risk
measure that (i) is an upper-bound to our entropic risk measure with high probability; and (ii) can be
computed easily by sampling around the counterfactual and incorporated into the optimization.

3 MAIN RESULTS: ROBUSTNESS VIA ENTROPIC RISK MEASURE

Robustness is essential for a counterfactual to be trusted as a reliable explanation of the model’s
predictions. The robustness is achieved at the expense of a higher cost, resulting in a counterfactual
that is further away from the original input vector. This means that to find a robust counterfactual
with respect to a changed model, we need to balance the cost and robustness of the counterfactual.
To ensure the counterfactual is valid under all plausible model changes, we formulate a general
multi-objective optimization that hedges against the worst model change and balances the cost and
robustness of the worst model, i.e.,

min
x′∈Rd

(c(x, x′), max
M∈M

ℓ(M(x′))) s.t. m(x′) ≥ 0.5. (P)
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Here c : X × X → R+ is the cost of changing an instance x to x′, e.g., c(x, x′) = ∥x− x′∥p where
1 ≤ p ≤ ∞, and ℓ : M × X → R+ is a differentiable loss function which ensures that M(x′)
is close to the desired value of 1, e.g., ℓ(M(x)) = 1 − M(x). We denote the changed model by
M(·) : Rd → [0, 1]. Recall that m(·) denotes a given model and is not random. The second objective
function maxM∈M ℓ(M(x′)) is the worst-case loss over all possible model changes in the set M.

To address a multi-objective optimization problem of this nature, we can seek the Pareto optimal
front using established techniques, such as linear scalarization or the epsilon-constraint methods
(Miettinen, 1999). The linear scalarization approach, for instance, entails solving

min
x′∈Rd

max
M∈M

c(x, x′) + λℓ(M(x′)) s.t. m(x′) ≥ 0.5 (P1)

for different values of λ to generate Pareto optimal solutions (e.g., a relaxed variant of this approach
is employed in Upadhyay et al. (2021)), meanwhile, the epsilon-constraint method addresses the
problem by solving

min
x′∈Rd

c(x, x′) s.t. max
M∈M

ℓ(M(x′)) < τ, m(x′) ≥ 0.5 (P2)

for different values of τ (e.g., a relaxed variant of this approach is employed in Hamman et al. (2023)).

By varying λ in P1 or τ in P2, different points on the Pareto front can be obtained (also see the
book Miettinen (1999)). To see the equivalence of the threshold τ and the multiplier λ, note that the
sensitivities of the cost c(x, x′) with respect to changes in the threshold τ (evaluated at the optimal
x′∗) is the negative of the optimal multiplier (dual variable) λ (for a background on multi-objective
optimization, please refer to Appendix A.4 (Castillo et al., 2008)), i.e, ∂c(x,x′∗)/∂τ = −λ∗. Each
λ and τ results in a point on the Pareto optimal front of the multi-objective optimization problem
(Miettinen, 1999; Castillo et al., 2008). Both P1 and P2 lead to the same Pareto front, and λ and
τ can be chosen such that P1 and P2 have the same solutions. The Pareto front characterizes the
trade-off between the cost and robustness of the counterfactuals.

The worst-case loss maxM∈M ℓ(M(x′)) hedges against the worst possible model, but can often lead
to somewhat conservative counterfactuals, i.e., ones which are quite well within the boundary and
have a high cost (distance). To mitigate this issue, we use a risk measure that allows us to hedge
against the models based on their probability of occurrence. We assume the changed model M is
drawn from a probability distribution P over the set of models M. Here, we propose the entropic
risk measure as a quantification of robustness for counterfactuals which is defined as follows:
Definition 3. The entropic risk measure of a random variable with the risk aversion parameter θ > 0
is denoted by ρentθ (·) and is given by:

ρentθ (ℓ(M(x′))) :=
1

θ
log(EM∼P [e

θℓ(M(x′))]), θ > 0. (1)

The parameter θ is called the risk parameter. A positive risk parameter results in risk-averse behavior.
Hence, we refer to a positive risk parameter as the risk-aversion parameter. We show in Theorem 1
that as we increase the risk-aversion parameter, our probabilistic method converges to a worst-case
formulation. Definition 3 allows us to reformulate our problem as follows:

min
x′∈Rd

c(x, x′) s.t. ρentθ (ℓ(M(x′))) < τ, m(x′) ≥ 0.5. (P3)

Properties of Entropic Risk Measure. Entropic risk measure is rooted in large deviation theory
and is not postulated. This measure enables establishing a connection to worst-case approaches for
finding counterfactuals. Taylor’s expansion of the exponential shows that the entropic risk measure is
the infinite sum of the moments of the distribution. Furthermore, it is well-known (Föllmer & Schied,
2002) that entropic risk measure is a convex risk measure and as such, for a positive risk parameter
θ>0, satisfies the properties of (1) monotonicity, (2) translation-invariance, and (3) convexity.

1. Monotonicity. ℓ(M1(·)) ≥ ℓ(M2(·)) ⇒ ρentθ (ℓ(M1(·))) ≥ ρentθ (ℓ(M2(·))).
2. Translation invariance. For constant α ∈ R, ρentθ (ℓ(M(·)) + α) = ρentθ (ℓ(M(·))) + α.

3. Convexity. For α ∈ [0, 1],

ρentθ (αℓ(M1(·)) + (1− α)ℓ(M2(·))) ≤ αρentθ (ℓ(M1(·))) + (1− α)ρentθ (ℓ(M2(·))).
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For the sake of simplicity, consider the choice of cost function ℓ(M(x)) = 1 −M(x). Then, the
monotonicity implies that a model with greater output probabilities has less risk. The translation
invariance implies that adding a constant to the output of the predictor effectively reduces the risk by
the same amount. The convexity is quite desirable since it means that the risk for a combined model
is lower than the risk for the two of them individually.

To gain a deeper understanding of the risk constraint described in P3, we examine distributions
characterized by their analytical Moment Generating Functions (MGFs). Two notable examples of
such distributions are the Uniform and truncated Gaussian distributions. For simplicity, we use the
cost function ℓ(M(x′))=1−M(x′). In our formulation, this loss function is minimized, encouraging
a counterfactual with a higher predicted value. When using this specific cost function, any value of
the threshold τ outside the interval [0, 1] renders the problem infeasible. Given these choices for the
cost and model distribution, we provide the explicit form of the constraint in P3.
Example 1. Let the distribution of the output of the changed model at the counterfactual point,
M(x′), follow a uniform distribution on a δ-ball around the output of the original model m(x′), i.e.,
M(x′) ∼ U [m(x′)− δ,m(x′)+ δ] for some δ > 0. With these choices, the constraint in P3 becomes:

m(x′) > (1− τ) +Kδ,θ, Kδ,θ :=
1

θ
log(

eθδ − e−θδ

2θδ
).

For the Uniform distribution, due to the monotonicity of Kδ,θ with respect to θ, as the value of θ
increases, a higher value of m(x′) is required to satisfy the constraint. It can be verified that Kδ,θ in
limit of θ → ∞ is δ. Given this, for the case when θ → ∞, our constraint becomes m(x′) > 1−τ+δ.
As the value of θ approaches to 0, Kδ,θ approaches 0 and the constraint becomes m(x′) > (1− τ),
i.e., finding counterfactual x′ with just high m(x′).
Example 2 (Truncated Gaussian). Let the distribution of the output of the changed model at the
counterfactual point, M(x′), follow a truncated Gaussian distribution with a mean equal to the
output of the original model m(x′) and a variance of σ2 that lies between 0 and 1. With these choices,
the constraint in P3 becomes:

m(x′) > (1− τ) + θ
σ2

2
+

1

θ
log(Kθ), Kθ :=

Φ(β + σθ)− Φ(α+ σθ)

Φ(β)− Φ(α)

where α := −µ
σ and β := 1−µ

σ and Φ(x) = 1/2(1 + erf(x/
√
2)). The error function, denoted by erf ,

is defined as erf z = 2/
√
π

∫ z

0

e−t2 dt.

As the θ approaches 0, our constraint becomes m(x′) > 1− τ . As the value of θ increases, greater
weight is placed on the variance term, emphasizing its importance. In both examples, when the
distributions are unknown, determining the precise threshold for model output to satisfy the constraint
becomes challenging. This is because higher values are more conservative (less risky), but incur
higher costs. To address this challenge, we must devise techniques that do not rely the explicit
knowledge of the distribution, as explored further in the next subsections.

3.1 CONNECTION OF ENTROPIC-RISK-BASED APPROACH WITH WORST-CASE ROBUSTNESS

The two main approaches to finding robust counterfactuals: (i) with hard guarantees by hedging
against the worst-case; and (ii) with probabilistic guarantees by leveraging robustness constraints
can be bridged by leveraging our entropic risk measure. We first establish the connection between
our risk-based and the worst-case formulations in the following theorem. The theorem states that the
worst-case approach is the limiting case of our risk-based method as θ → ∞.
Theorem 1. In the limit as the risk-aversion parameter θ approaches infinity, the optimization P3,
which involves constraining the entropic risk measure associated with the robustness of models within
a specific model class, asymptotically converges to the optimization problem P2, where the constraint
pertains to the robustness of the worst model within the same model class.

Theorem 1 shows how the entropic risk measure provides a single parameter (knob) that determines
the risk-aversion of the counterfactual and can be used to study the effect of risk-aversion on the
behavior of algorithms that generate robust counterfactuals.

Proof: We discuss the proof in Appendix A. The proof uses Vardhan’s Lemma presented here.
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Lemma 1. (Föllmer & Schied, 2002) Let X be a random variable. The entropic risk measure is a
convex risk measure and as such has a dual representation. The dual representation with the risk
aversion parameter θ > 0 is given by

ρentθ (X) =
1

θ
log

(
EX∼P [e

θX ]
)
= sup

Q≪P

{
EQ[X]− 1

θ
D(Q|P )

}
where D(Q|P ) := EQ [log dQ/dP ] is the Kullback-Libeler (KL) divergence between distributions P
and Q, and Q ≪ P denotes the distribution Q is absolutely continuous with respect to P .

3.2 TOWARDS ESTIMATION OF THE RISK MEASURE WITH PROBABILISTIC GUARANTEES

We previously showed (see Examples 1 and 2) that when distributions are known, we can often
compute and directly solve P3. For other cases, when the distributions are not known or are complex
and the entropic risk measure is not computable due to the expectation over the changed models,
we now use a high probability upper-bound on the entropic risk measure that can be computed by
sampling the input space around the counterfactual (see Theorem 2). We use this upper-bound to
propose a computable risk measure to quantify the robustness of counterfactuals.

Proposed Relaxation. We first introduce the following computable risk measure and discuss its
properties. We then discuss its merit and its connections with entropic risk measures.

Definition 4. The relaxed entropic risk measure for the robustness of a counterfactual x is given
by: 1

k

∑k
i=1 e

θℓ(m(Xi)), where the k data points are drawn from a Gaussian distribution N (x, σ2Id)
where Id is the identity matrix. The constant θ > 0 is a design parameter.

This relaxed risk measure is computable by using the evaluation of the model in points sampled
around a candidate counterfactual. Thus, we are able to reformulate our optimization as follows:

min
x′∈Rd

c(x, x′) s.t. (1/θ) log
1

k

k∑
i=1

(eθℓ(m(Xi))) < τ, m(x′) ≥ 0.5. (P4)

Here the k samples are drawn from a normal distribution N(x′, σ2I).

For concreteness and simplicity, we focus on the loss function ℓ(M(x)) := 1−M(x). The choice of
ℓ is not crucial and all our results hold for any differentiable ℓ. Then we have:

min
x′∈Rd

c(x, x′) s.t. Rθ,k(x
′,m) := (1/θ) log

1

k

k∑
i=1

(e−θm(Xi)) < τ − 1, m(x′) ≥ 0.5. (P5)

This estimator of entropic risk, defined by Rθ,k(x
′,m) := (1/θ) log 1

k

∑k
i=1(e

−θm(Xi)), is amenable
to implementation using automatic differentiation (TensorFlow, 2023) as discussed in Section 4.

Properties of the Proposed Measure: Before discussing our implementation of P5, we also briefly
discuss some desirable properties of our relaxed risk measure here.

Proposition 1. Our proposed robustness measure lies between [−1, 0], that is

−1 ≤ Rθ,k(x
′,m) ≤ 0, θ > 0

For a given risk parameter θ, the measure Rθ,k(x
′,m) = −1 when the model outputs m(x) = 1 for

all x and Rθ,k(x
′,m) = 0 when it outputs m(x) = 0.

Remark 1. Rθ,k(x
′,m) is a scaled LogSumExp function. LogSumExp is a smooth approximation

to the maximum function which becomes more exact as the scaling parameter θ increases.

Proposition 2. This metric also inherits the entropic risk measure properties of (1) monotonicity, (2)
translation-invariance, and (3) convexity. The proofs are included in Appendix A.

Remark 2. Our proposed measure aligns with the desired properties of a robustness measure
discussed in Dutta et al. (2022): The counterfactual is less likely to be invalidated under model
changes if the points around the counterfactual have high model outputs and low variability.
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The Merit of the Proposed Relaxed Measure. When distributions of changed models are known,
our risk measure (see Definition 3) can be computed and P3 is directly solvable (see Examples 1 and
2). When the distributions are not known, our measure is not computable since it needs computing
expectations over the changed models. However, in cases where our setup permits us to assume
that both the distributions of m(Xi) and M(x′) characteristics and the models exhibit Lipschitz
continuity, we can use this to employ an alternative, computable metric. This metric samples around
the counterfactual and uses the original model outputs at those points.

Here, we assume the Lipschitness of the models and that the MGFs of the changed models at the
counterfactual (M(x′)) and the output of the original model at points chosen randomly around the
counterfactual (m(Xi)) are relatively close. Within this framework, we deliberately opt for relatively
strong assumptions on MGFs, primarily for the purpose of illustration, showcasing the potential for
algorithmic advancements using our theoretical insights. Relaxing this assumption, while requiring
more intricate proofs, opens the door to less assertive yet still valuable probabilistic guarantees.

MGF characterizes the properties of a random variable and can uniquely identify the distribution of a
random variable by a certain set of moments. The MGF of a random variable X is defined as E[eθX ],
where ‘θ’ is a real-valued parameter. We introduce a class of model changes based on their MGF and
derive probabilistic guarantees for our proposed robustness metric under such class of model changes.

Definition 5 (MGF (ϵ̃, θ)-Equivalence). The MGF (ϵ̃, θ)-Equivalence class of model changes for a
given model m is the set of all models M such that the following hold:∣∣∣E[eθℓ(M(x)) − 1

k

k∑
i=1

eθℓ(m(Xi))
]∣∣∣ < ϵ̃

where M and Xi ∼ N(x, σ2I) are random variables.

This condition ensures that all moments of the distribution of M(x′) at the counterfactual point
would stay close to the average behavior of the original model m within the neighborhood of the
counterfactual x′. This can be seen by the Taylor expansion of the exponential function which is the
infinite sum of its moments.
Assumption 1 (Liptschitz Countinuity). We assume the original model ℓ(m(x)) is Lipschitz continu-
ous with respect to x with constant γ.

Assumption 1 on Lipschitz continuity of the model is a critical factor enabling our sampling approach
to offer a computable metric for counterfactuals. This continuity ensures that the sampled points
around a counterfactual remain meaningfully related to the models’ output. Since the neural networks
can often satisfy local Lipschitz continuity (Virmaux & Scaman, 2018), this assumption does not
impose significant restrictions on the feasibility of our method. However, a limitation of our work is
that a large Lipschitz constant can weaken the robustness guarantees. Now, we formally state the
probabilistic guarantee for our method.
Theorem 2 (Probabilistic Guarantees). Let (X1, X2, . . . , Xk) be points drawn from a Gaussian
distribution centered around a point x, N (x, σ2Id) where Id is the identity matrix. Let M be a
(ϵ̃, θ)-Equivalent model for the model m. Then under Assumption 1, for all ϵ > 2ϵ̃, the following
upper-bound holds

Pr
(
E[eθℓ(M(x))] ≤ 1

k

k∑
i=1

eθℓ(m(Xi)) + (ϵ+ ϵ̃)
)
> 1− exp

(
− kϵ2

2γ2
eσ

2

)
for all ϵ, ϵ̃ > 0.

where γe := γθeθ. The constant θ > 0 is a design parameter that is bounded.

Proof Sketch: The proof is in the appendix. It uses the well-known concentration bound for Lipschitz
functions of Gaussians (Boucheron et al., 2013).

4 EXPERIMENTAL RESULTS

Our main contribution in this paper is to demonstrate a theoretical connection between our method
and the worst-case robust counterfactuals. Our experiments here simply aim to showcase that our
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Figure 1: The left figure plots the data points and the decision boundary of the trained model for the
Moon dataset. The middle figure plots a randomly chosen data point and it’s closest counterfactual
(cc) alongside its robust counterfactuals obtained by ROAR (a worst-case min-max method), SNS
(a risk-constrained method), and our method for a given threshold τ=0.25 and a varying risk
parameter θ={0.25, 100}. The right figure plots the same randomly chosen data point and its closest
counterfactual (cc) alongside its robust counterfactuals obtained by ROAR, SNS, and our method for
a given risk parameter θ=0.25 and a varying threshold τ={0.25, 0.65, 0.95}.

method performs on par with SNS (Black et al., 2021) algorithm, while being grounded in the solid
theoretical foundation of large deviation theory without relying on any postulations, enabling a
unifying theory for robust counterfactuals. Furthermore, our method outperformed the min-max type
algorithm ROAR (Upadhyay et al., 2021).

Algorithmic Strategy. To solve P5, we use a counterfactual generating algorithm and optimize
our risk constraint iteratively. To incorporate our method, we compute the robustness metric for
the generated counterfactual and, if needed, a gradient ascent process updates the counterfactual
until a robust counterfactual that meets the desired robustness is found. This process can leverage
any existing method to generate counterfactual x′ for x. We check if Rk,σ2(x′,m) ≤ τ − 1 which
in that case outputs the counterfactual x′. Otherwise, it performs a gradient descent step x′ =
x′ − η∆x′Rk,σ2(x′,m) in the direction of the gradient of the robustness measure ∆x′Rk,σ2(x′,m).
This step repeats until a suitable x′ is found or a maximum number of steps is reached. The
differentiation is performed using Auto-differentiation (TensorFlow, 2023). This is similar to T-Rex
algorithm proposed in Hamman et al. (2023) which we use in conjugation with our proposed risk
measure. We refer to our method as Entropic T-Rex.

(Synthetic) 2D Dataset. To enhance the clarity and comprehension of our ideas, we first present
experimental results using a synthetic 2D dataset. The 2D dataset allows visual demonstration to
showcase the core principles of our proposed algorithm and the way it is bridging the gap between
the two approaches in robust counterfactual. We generated 500 sample data points from the synthetic
moon dataset of Scikit-learn with the noise parameter set to 0.55. We trained a neural network with
3 hidden layers each with 128 neurons and tanh activation function. Figure 1 (left) shows the data
points and the decision boundary of the trained model. In Figure 1 (middle), a randomly selected
data point and its closest counterfactual are depicted, along with its robust counterfactuals obtained
through three distinct methods: ROAR (a worst-case min-max approach), SNS (a risk-constrained
method), and our proposed method. This shows that the counterfactual point progressively keeps
moving inwards to avert more risk as θ is increased. This illustration is presented with a fixed
threshold and varying risk parameters. Similarly, in Figure 1 (right), the same randomly selected data
point, its closest counterfactual, and robust counterfactuals are showcased using ROAR, SNS, and
our method, but this time with a fixed risk parameter and varying threshold values.

Benchmark Datasets. We present our experimental results on existing datasets. Our experimental
results confirm our theoretical understanding and show the efficacy of our proposed method.

Datasets. We run our experiments on a number of benchmark datasets. The results for the German
Credit (Dua & Graff, 2017) and HELOC (FICO, 2018) dataset are reported here. We report the
results for the HELOC dataset here. The results for the other datasets are qualitatively similar and are
included in Appendix B. The results for the dataset Cardiotocography (CTG) (Dua & Graff, 2017)
are in Appendix B. We normalize the feature vectors to lie between [0, 1] for simplicity.
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Performance Metrics. Robust counterfactual-generating algorithms balance the cost (distance)
and robustness (validity). In particular, we consider: (i) Cost: average l1 or l2 distance between
counterfactuals x′ and the input point x and (ii) Validity(%): The percentage of counterfactuals that
remain valid under the new model M .

Methodology. We train 51 neural networks to find counterfactuals. We use one neural network, m,
to find the counterfactuals and the other 50, M , to evaluate the robustness of the counterfactual. To
evaluate the validity of counterfactuals, the model changes include (i) Training models using the
same hyperparameters but different weight initialization; and (ii) Retraining models by randomly
removing a small portion, 1%, of the training data each time and using different weight initialization.

Hyperparameter Selection. We choose k=1000. This was sufficient to ensure
a high probability bound, but to keep the computational requirements of our algo-
rithm in check. We chose σ by analyzing the standard deviation of the features.
We experimented with some hyperparameters and selected a value of σ = 0.1.

Table 1: Experimental results for HELOC dataset.

HELOC l1 based l2 based

COST VAL. COST VAL.

Closest Counterfactual 0.45 69% 0.54 77%
Entropic T-Rex (ours) 2.82 100% 0.76 100%

SNS 1.25 98% 0.33 98%
ROAR 3.14 100% 1.22 100%

The parameters τ ′(=1−τ) and θ are spe-
cific to our proposed robustness measure.
The threshold θ is a hyper-parameter that
trade-offs the cost for the desired effec-
tive validity. Recall θ is the risk-aversion
parameter and in the limit as θ → ∞ our
proposed measure becomes a worst-case
measure. Higher values of τ ′ result in
counterfactuals with higher validity (ro-
bustness), and higher cost. There is an
interaction between τ ′ and θ, so these
parameters need to be chosen together. Here we report the results for θ = 1 and τ ′ = 0.2.

Results. Our experimental results are consistent with our theoretical analysis. We observe the
minimum cost counterfactual may not be robust. Our proposed method, Entropic T-Rex, provides a
knob that can be adjusted to control and improve the validity of the counterfactuals, at the price of
higher cost. Our algorithm achieves comparable results to the SNS method and T-Rex. The advantage
of our algorithm is in the theoretical results that connect it to the robust worst-case model. The
averages are reported in the table and we report the standard deviation in Appendix B.
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x
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Figure 2: ∥x− x′∥2 vs. Rθ,k(x
′) on HELOC.

Trade-Off Analysis. Figure 2 shows the trade-
off between the cost and robustness. To study
the behavior of our algorithm and understand
the effects of the threshold τ on the cost and
robustness of the counterfactuals. We run exper-
iments and keep all hyper-parameters the same
except the threshold τ ′.

5 CONCLUSION & LIMITATIONS

With our entropic risk measure, we showed that
the risk-aversion parameter can be adjusted for
balancing cost and robustness of counterfactuals
by considering the impact of the worst model.
We showed that the worst-case approach is a
limiting case of our approach based on entropic
risk measures. This establishes the connection
between our approach and the worst-case ap-
proaches and explains the robust nature of the counterfactuals generated by our algorithm. Though
our method is practically implementable and potentially applicable to all model changes and datasets,
our guarantees may not apply to all models or datasets due to our assumptions. Another limitation of
our work is the dependence of our guarantee on the Lipschitz constant of the models since a large
constant can weaken the guarantees. The reliance of our method on sampling and gradient estimation
has the drawback of having high computational complexity. A more comprehensive discussion is
included in Appendix C.
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6 REPRODUCIBILITY STATEMENT

For the synthetic dataset, the point is chosen randomly. For the real datasets, we repeated the
experiments and have reported the standard deviation alongside the average performance within the
tables featured in our Appendix. The code will be release on acceptance.
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A BACKGROUND AND PROOFS

A.1 PROOF OF THEOREM 1

Theorem 1. In the limit as the risk-aversion parameter θ approaches infinity, the optimization P3,
which involves constraining the entropic risk measure associated with the robustness of models within
a specific model class, asymptotically converges to the optimization problem P2, where the constraint
pertains to the robustness of the worst model within the same model class.

Theorem 1 shows how the entropic risk measure provides a single parameter (knob) that determines
the risk-aversion of the counterfactual and can be used to study the effect of risk-aversion on the
behavior of algorithms that generate robust counterfactuals.

The proof of Theorem 1 uses the results in Lemma 1 and 2.

Lemma 1. (Föllmer & Schied, 2002) Let X be a random variable. The entropic risk measure is a
convex risk measure and as such has a dual representation. The dual representation with the risk
aversion parameter θ > 0 is given by

ρentθ (X) =
1

θ
log

(
EX∼P [e

θX ]
)
= sup

Q≪P

{
EQ[X]− 1

θ
D(Q|P )

}
where D(Q|P ) := EQ [log dQ/dP ] is the Kullback-Libeler (KL) divergence between distributions P
and Q, and Q ≪ P denotes the distribution Q is absolutely continuous with respect to P .

Note that Q is absolutely continuous with respect to P if Q(x) = 0 when P (x) = 0. This assumption
ensures that the KL divergence is finite. Then, we have,

lim
θ→∞

ρent(X) = sup
Q≪P

{EQ[X]} . (2)

For simplicity, we let both Q(m̃) > 0 and P (m̃) > 0 over the set of models M which is a compact
and bounded set. Next, we show the following result.

Lemma 2. Let Q be any probability distribution over the set of models M such that Q(m̃) > 0
everywhere, and M be a compact and bounded set. Then we have,

sup
Q
EQ[ℓ(M)] = max

mi∈M
ℓ(mi)

Proof. We prove the equality by establishing two directions of the inequality. First, we note that the
expected value of a set of values is always less than or equal to its maximum value. Thus,

EQ[ℓ(M)] ≤ max
m∈M

ℓ(m), ∀Q

Since it holds for all Q’s we have

sup
Q
EQ[ℓ(M)] ≤ max

m∈M
ℓ(m) (3)

To prove the reverse direction, let Qm be a probability distribution such that

Qm(m̃) =

{
1− δ m̃ = m

δm̃ m̃ ̸= m

where δm̃ ̸= 0, for all m̃∈M and δ =
∑

m̃∈M,m̃ ̸=m δm̃. Then, we have

EQm
[ℓ(M)] = (1− δ)ℓ(m) +

∑
m̃∈M,m̸̃=m

δm̃ℓ(m̃), ∀m

Thus,

sup
Q
E[ℓ(M)] ≥ EQm [ℓ(M)] = (1− δ)ℓ(m) +

∑
m̃∈M,m̃ ̸=m

δm̃ℓ(m̃), ∀m
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Let m∗ = argmaxm ℓ(m). Then we have,

sup
Q
E[ℓ(M)] ≥ (1− δ)ℓ(m∗) +

∑
m̃∈M,m̸̃=m∗

δm̃ℓ(m̃)

By noting that δ can be made arbitrarily small, we have

sup
Q
E[ℓ(M)] ≥ max

m∈M
ℓ(m)− ϵ(δ)

for an arbitrarily small ϵ(δ) > 0. Thus the result holds.

The set M needs to be such that the maximum exists, e.g., a bounded and compact set.

Now using Lemma 2, we have

lim
θ→∞

ρentθ (ℓ(m(x′))) :=
1

θ
log(EM∼P [e

θℓ(M(x)])
(a)
= sup

Q∈M1

{EQ[ℓ(M(x))]} (b)
= sup

m∈M
ℓ(m(x′)),

where (a) holds since limθ→∞ ρent(X) = maxQ≪P {EQ[X]} as shown in equation 2 and (b) follows
from Lemma 2.

A.2 PROOF OF THEOREM 2

Theorem 2 (Probabilistic Guarantees). Let (X1, X2, . . . , Xk) be points drawn from a Gaussian
distribution centered around a point x, N (x, σ2Id) where Id is the identity matrix. Let M be a
(ϵ̃, θ)-Equivalent model for the model m. Then under Assumption 1, for all ϵ > 2ϵ̃, the following
upper-bound holds

Pr
(
E[eθℓ(M(x))] ≤ 1

k

k∑
i=1

eθℓ(m(Xi)) + (ϵ+ ϵ̃)
)
> 1− exp

(
− kϵ2

2γ2
eσ

2

)
for all ϵ, ϵ̃ > 0.

where γe := γθeθ. The constant θ > 0 is a design parameter that is bounded.

The proof relies on the Lipschitz property of ℓ(M) and its boundedness. The proof uses the results in
the following lemmas.
Lemma 3 (Gaussian Concentration Inequality). Let X = (X1, X2, . . . , Xn) consist of n i.i.d.
random variables belonging to N (0, σ2), and Z = f(X) be a γ-Lipschitz function, i.e., |f(X) −
f(X ′)| ≤ γ∥X −X ′∥. Then, we have,

Pr(Z − E[Z] ≥ ϵ) ≤ exp

(
− ϵ2

2γ2σ2

)
for all ϵ > 0. (4)

Let f(X) = Z := E[eθℓ(M(Xi)) | Xi = x] − 1
k

∑k
i=1 e

θℓ(m(Xi)). Then we show that f is γe√
k

-
Lipschitz continuous.
Lemma 4. Let ℓ(M(x)) be γ-Lipschitz and ℓ(M(x)) ∈ [0, 1] for all x ∈ Rn. Then, the function
eθℓ(M(x)) is Lipschitz continuous with Lipschitz constant γe := γθeθ for bounded θ.

Proof. By the chain rule, we have deθℓ(M(x))

dx = dℓ(M(x))
dx θeθM(x). Recall ℓ(M(x)) is Lipschitz with

constant γ, that is, dℓ(M(x))
dx ≤ γ. Then, due to the bounded nature of M(x) ∈ [0, 1], we have

deθℓ(M(x))

dx ≤ γθeθ.

Lemma 5. f is Lipschitz-continuous.

|f(X)− f(X ′)| = |1
k

k∑
i=1

eθℓ(m(Xi)) − eθℓ(m(X′
i))|

≤ 1

k

k∑
i=1

|eθℓ(m(Xi)) − eθℓ(m(X′
i))| ≤ γe

k

k∑
i=1

|Xi −X ′
i| ≤

γe√
k
∥X −X ′∥2
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Proof. The first line follows directly from the definition f(X) = Z. The first inequality follows from
Triangle inequality. The second inequality follows follows from Lipschitz-continuity of eθm(x). The
last inequality uses the l1-l2 inequality.

Using these lemmas and substituting our definition of Z and the Lip-constant of the lemma in the
statement of the Gaussian concentration bound concludes the proof.

A.3 PROPERTIES OF THE PROPOSED MEASURE:

1. Monotonicity. m(x) ≤ m′(x) ⇒ Rθ,k(x,m(·)) ≥ Rθ,k(x,m
′(·)).

Proof. To see this, recall Rθ,k(x
′,m) := (1/θ) log 1

k

∑k
i=1(e

−θm(Xi)). From the premise
m(x) ≤ m′(x) and by the positivity of the risk parameter θ > 0, it is immediate that
−θm(x) ≥ −θm′(x). Then, from the monotonicity of the exponential function, it fol-
lows that e−θm(x) ≥ e−θm′(x). Then, by the positivity of the risk parameter θ, we have
Rθ,k(x,m(·)) ≥ Rθ,k(x,m

′(·))

2. Translation invariance. For constant α ∈ R, Rθ,k(x,m(·) + α) = Rθ,k(x,m(·))− α.

Proof. This follows directly from the property of the exponential func-
tion that em(·)+α = em(·)eα and the property of the log function that
(1/θ) log(eα(1/θ) log 1

k

∑k
i=1(e

−θm(Xi))) = −α+ (1/θ) log 1
k

∑k
i=1(e

−θm(Xi))).

3. Convexity. For 0 ≤ α ≤ 1,

Rθ,k(x, αm(·) + (1− α)m′(·)) ≤ αRθ,k(x,m(·)) + (1− α)Rθ,k(x,m
′(·)).

Proof. The convexity follows directly from the convexity of the exponential function e−m.

A.4 BACKGROUND ON MULTI-OBJECTIVE OPTIMIZATION

Consider a non-linear programming problem with inequality constraints such as:

min
x′

c(x, x′) subject to: R(x, x′) ≤ τ

where c and R are regular enough for the mathematical developments to be valid over the feasible
region. It is also assumed that the problem has an optimum. Then the sensitivities of the objective
function with respect to the threshold τ can be calculated using the following theorem:
Theorem 3. Castillo et al. (2008) Assume that the solution of the above optimization problem is a
regular point and that no degenerate inequality constraints exist. Then, the sensitivity of the objective
function with respect to the parameter a is given by the gradient of the Lagrangian function

L = c(x, x′) + λT (R(x, x′)− τ)

with respect to τ evaluated at the optimal solution x∗, i.e.,

∂c(x, x∗)

∂τ
= ∇τL = −λ∗

where λ∗ is the dual optimal solution. This shows how much the objective function value c changes
when parameter τ changes.

B EXPERIMENTS.

B.1 DATASETS

HELOC. The FICO HELOC (FICO, 2018) dataset contains anonymized information about home
equity line of credit applications made by homeowners in the US, with a binary response indicating
whether or not the applicant has ever been more than 90 days delinquent for a payment. It can be
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used to train a machine learning model to predict whether the homeowner qualifies for a line of credit
or not. The dataset consists of 10459 rows and 40 features, which we have normalized to be between
zero and one.

German Credit. The German Credit Dataset (Dua & Graff, 2017) comprises of 1000 entries, each
representing an individual who has taken a credit from a bank. These entries are characterized by 20
categorical features, which are used to classify each person as a good or bad credit risk. To prepare
the dataset for analysis, we one-hot encoded the data and normalized it such that all features fall
between 0 and 1. Additionally, we partitioned the dataset into a training set and a test set, with a
70:30 ratio respectively.

CTG. The CTG dataset (Dua & Graff, 2017) consists of 2126 fetal cardiotocograms, which have
been evaluated and categorized by experienced obstetricians into three categories: healthy, suspect,
and pathological. We process this dataset based on Black et al. (2021). The problem was transformed
into a binary classification task, where healthy fetuses are distinguished from the other two categories.
We divided the dataset into a training set of 1,700 instances and a validation set of 425 instances.
Each instance is described by 21 features, which we normalized to have values between zero and one.

B.2 MODEL ARCHITECTURE

We initially trained a base neural network model. We use this model to generate counterfactuals. The
architecture of our base model consists of two hidden layers, each comprising 128 hidden units. For
activation, we used the Rectified Linear Unit (ReLU) function and employed the Adam optimizer. The
training process involved 50 epochs with a batch size of 32. This model architecture and training setup
for three datasets: HELOC, German Credit, and CTG, since it yielded a satisfactory level of accuracy
on all of them. To assess the robustness of the counterfactual examples, we proceeded to train 50
additional models, denoted as Mnew. Under various model change scenarios, we evaluated the
validity of the counterfactuals using these new models. All 50 models followed the same architecture
and training setup as the base model. These modifications encompassed Weight Initialization (WI),
involving retraining the models using the same hyperparameters but different weight initialization
methods. Specifically, we used distinct random seeds for each model to vary the weight initialization.

B.3 RESULTS.

Here, we present our experimental results on existing datasets. Our experimental results are consistent
with our theoretical analysis. We observe the minimum cost counterfactual may not be robust. The
averages are reported alongside with the standard deviations (average ± standard deviation) reported
in the tables. Robust counterfactuals have higher validity at the cost of higher costs. We report LOF,
but none of the models incorporate LOF into their algorithm. We report the results for hyperparameters
τ = 0.8 and σ = 1. The risk parameter θ is specific to our algorithm and is set to θ = 1.

Remark. Our proposed method, Entropic T-Rex, achieves comparable results to the SNS algorithm
(Black et al., 2021). The advantage of our algorithm is in the theoretical results that connect it to the
robust worst-case models such as ROAR algorithm (Upadhyay et al., 2021).

Table 2: Experimental results for HELOC dataset.

HELOC l1 based l2 based

COST VAL. COST VAL.

Closest Counterfactual 0.45±0.66 69% ± 0.16 0.14±0.08 54%±0.22
Entropic T-Rex (ours) 2.82±0.65 100%±0.01 0.76±0.11 100%±0.02

SNS 1.25±0.64 98%±0.03 0.33±0.08 99%±0.02
ROAR 3.14± 0.48 100% ± 0.00 1.22± 0.20 100%± 0.00
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Table 3: Experimental results for German Credit dataset.

German Credit l1 based l2 based

COST VAL. COST VAL.

Closest Counterfactual 1.45 ± 1.50 60%±5 0.48±0.31 27%± 6
Entropic T-Rex (ours) 4.62±1.44 98%±0 1.21±0.30 100%±6

SNS 2.38±1.52 81%±4 0.68±0.31 63%±8
ROAR 2.06±0.39 100%± 0 2.34±0.43 100%±0.0

Table 4: Experimental results for CTG dataset.

CTG l1 based l2 based

COST VAL. COST VAL.

Closest Counterfactual 0.24±0.19 97%±5 0.10±0.04 87%±20
Entropic T-Rex (ours) 2.80±0.15 100%±0 0.98±0.04 100%±0.0

SNS 0.90±0.20 100%±0 0.9±0.12 100%±0.0
ROAR 1.98±0.13 100% ± 0.0 1.50± 0.10 100%±0.0

C LIMITATIONS AND IMPLICATIONS.

The integration of Machine Learning (ML) systems into our daily lives has wide-ranging and complex
implications. These implications range from economic to societal to ethical and legal considerations,
necessitating a comprehensive approach to address the sociotechnical evolution driven by ML. While
our current robust counterfactual approach represents a step towards developing trustworthy ML
algorithms, it falls short in considering other important factors. Besides the robustness of counter-
factuals which was the focal point of our research in this work, counterfactual explanations suffer
from a multitude of limitations such as privacy due to leaked model parameters and fairness ((Sharma
et al., 2019; Ley et al., 2022)). For example, neglecting fairness in counterfactual generation can
result in algorithms that make decisions with significant moral, ethical, social, and legal implications.
Consider this scenario, when examining a loan approval, a counterfactual suggesting an increase in
the value of the applicant’s collateral might be perceived as fairer for an elderly applicant, as opposed
to a counterfactual suggesting an increase in education level or student status. Therefore, in our
future work, we will explore approaches that incorporate additional metrics beyond explainability
and robustness to generate counterfactuals, addressing fairness and other relevant considerations.

The implications of our research on the robustness of counterfactuals extend beyond end-users to
practitioners. By ensuring the reliability and trustworthiness of counterfactuals from both user and
institutional perspectives, we can foster greater trust in ML systems, leading to broader economic
benefits. However, it is important to recognize that achieving the robustness of counterfactuals
requires solving computationally more expensive constrained optimization problems compared to
unconstrained optimization of the closest counterfactual. Therefore, future efforts should focus on
devising efficient algorithms and computational techniques to overcome this challenge and ensure the
sustainability of robust counterfactual approaches.

An inherent limitations of robust counterfactual methods is the class of model changes we considered.
Our method focuses on the robustness of a classification model with respect to model changes.
Though our method is practically implementable and potentially applicable to all model changes
and datasets, the probabilistic guarantees in Theorem 2 may not apply to all models or datasets due
to our assumptions. A limitation of our work is the dependence of our probabilistic guarantee on
the Lipschitz constant of the models since a large Lipschitz constant can weaken the robustness
guarantees. The reliance of our method on sampling and gradient estimation has the drawback of
having high computational complexity.
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D RELATED WORK.

The importance of robustness in local explanation methods was studied in works as early as (Hancox-
Li, 2020), but only a handful of recent works have explored algorithms for generating robust
counterfactuals. Existing literature has looked at both worst-case robust approaches, e.g. Upadhyay
et al. (2021), as well as robustness-constrained approaches, e.g. Black et al. (2021) and Hamman et al.
(2023). The robustness-constrained methods quantify counterfactual robustness within a Lipschitz
model’s local neighborhood, integrating it as a constraint in optimization to ensure the explanation’s
validity under model variations. In contrast, the worst-case robust techniques (Upadhyay et al.,
2021) hedge against the worst model within a model class, employing min-max optimization to find
robust counterfactuals. Notably, the connection between these two approaches has not been studied
in existing literature. Other related works on the robustness of counterfactuals to model changes
include (Rawal et al., 2020; Dutta et al., 2022; Jiang et al., 2022; Nguyen et al., 2022). Upadhyay
et al. (2021) propose ROAR that uses min-max optimization (a worst-case approach) to find robust
counterfactuals. Rawal et al. (2020) focus on analytical trade-offs between validity and cost. Jiang
et al. (2022) introduce a method for identifying close and robust counterfactuals. Black et al. (2021)
propose the Stable Neighbor Search (SNS) algorithm that uses local Lipschitzness to generate robust
(consistent) counterfactuals for neural networks. Hamman et al. (2023) propose TRex that uses
Gaussian sampling around the counterfactual to provide robust counterfactuals. Dutta et al. (2022)
focus only on tree-based models (non-differentiable). Mishra et al. (2021) provide a more detailed
survey of the literature on counterfactual explanations prior to 2021. We also note that there have
been alternative perspectives on the robustness of counterfactuals. Two notable examples include the
work by (Laugel et al., 2019; Alvarez-Melis & Jaakkola, 2018) proposes an alternative perspective of
robustness in explanations (called L-stability in Alvarez-Melis & Jaakkola (2018)) which is built on
similar individuals receiving similar explanations, and the work by (Pawelczyk et al., 2022; Maragno
et al., 2023; Dominguez-Olmedo et al., 2022) that focus on robustness to input perturbations (noisy
counterfactuals) rather than model changes.

In contrast to these and similar to (Upadhyay et al., 2021; Rawal et al., 2020; Black et al., 2021;
Dutta et al., 2022; Jiang et al., 2022; Nguyen et al., 2022; Hamman et al., 2023) , our focus is on
counterfactuals remaining valid after model changes.

Entropic risk measure has been the cornerstone of risk-sensitive control (see Jacobson (1973); Speyer
et al. (1974); Kumar & Van Schuppen (1981); James et al. (1994); Baras & (1997); James & Baras
(1995); James & Baras (1996); Baras & Patel (1998)) and risk-sensitive Markov decision processes
(see Howard & Matheson (1972)). In the context of controls, the connection between risk-sensitive
control and robust control has been shown in its full generality (James et al., 1994), establishing that
the entropic risk measure emerges from the mathematical analysis of H-infinity output robust control
for general non-linear systems. Further analytical development of such mathematical analysis for
financial applications has been studied extensively; see Föllmer & Schied (2002) and references
therein.
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