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Abstract

Accurate modeling of physical systems governed by partial differential equations
is a central challenge in scientific computing. In oceanography, high-resolution
current data are critical for coastal management, environmental monitoring, and
maritime safety. However, widely used satellite products, such as Copernicus
sea-surface velocity at ~ 0.08° resolution and global ocean models, often lack
the spatial granularity required for detailed local analyses. We (a) introduce a
supervised deep learning framework based on neural operators for solving PDEs
and producing arbitrary-resolution solutions, and (b) propose downscaling models
applied to Copernicus ocean current data. Additionally, our method serves as a
surrogate PDE model that predicts solutions at arbitrary resolution, regardless of
the input resolution. We evaluate on real-world Copernicus ocean current data and
synthetic Navier—Stokes simulation datasets.

1 Introduction

Accurate and high-resolution marine current fields are foundational to numerous marine applications,
coastal engineering design, and autonomous navigation. Datasets like Copernicus ocean analysis
product Copernicus Marine Service| (2025) provide global coverage at roughly 0.08° x 0.08° (ap-
proximately 9 km in mid-latitudes), which are insufficient for applications requiring detailed local
dynamics.

Downscaling methods, both dynamical and statistical, have been used to bridge this resolution gap.
While dynamical downscaling, employing regional ocean models, is physically rigorous, it demands
substantial computational resources, often requiring days of runtime on HPC clusters. Statistical
approaches offer computational efficiency but struggle with the multiscale and non-linear nature of
fluid dynamics Kruyt et al.| (2022).

Deep learning has emerged as an alternative to traditional statistical methods, since it can learn from
data the mappings from coarse- to fine-scale representations. Initial efforts with CNNs and GANs
achieved success in meteorology (Vosper et al., 2022) and image-based super-resolution (Dong,
2015). However, these models typically require fixed upsampling factors and lack fidelity when
generalizing to unseen resolutions or evolving physical dynamics.
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Neural operators, particularly Fourier Neural Operators (FNOs) (Li et al., 2020), Transolver (Wu
et al.||2024)), FactFormer (Li et al.,|2023), and Latent Spectral Models (LSMs) (Wu et al., [2023), have
demonstrated remarkable ability to learn operators governing PDEs. FNOs have been successfully
applied to atmospheric and oceanographic forecasting (Sun et al., [2024)).

Yang et al.[(2023)’s DFNO model addressed downscaling for climate data and PDE solutions at
arbitrary resolutions, where the PDE solution is generated via numerical solvers, not the model itself.
Our work extends this paradigm in two significant directions. First, we generalize their model to
handle temporal sequences, enabling the prediction of PDE solutions at arbitrary spatial resolutions
using the same model. Second, we benchmark multiple downscaling models inspired by the DENO
by applying it to the Copernicus ocean current dataset for static downscaling, to demonstrate its
real-world impact geophysical data.

Our main contributions are as follows.

* We benchmark multiple models for arbitrary-resolution downscaling and apply them to
physical observations that need downscaling (ocean current from Copernicus marine data).

* We develop a surrogate model capable of predicting PDE solutions at arbitrary resolutions-
independent of the input resolution, giving more flexibility and extent to the model.

We present, to our knowledge, one of the first PDE surrogate approaches that generates solutions at
arbitrary output resolution independent of the input resolution

2 Methodology

2.1 Resolution-agnostic Neural Operator Framework for Downscaling
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Figure 1: The figure (inspired by |Yang et al.|(2023))) shows the overall structure of our Temporal/static
downscaling model. The low-resolution input a goes through an optional preprocessing (gradient
transformation for gradient based methods) then a neural network and an upsampling block. Then
an embedding function e() is returned. Finally, a neural operator takes in e() and outputs a function
which gets into a reconstruction block and an optional constraint layer.

We propose a flexible framework for simultaneous PDE solution prediction and downscaling, appli-
cable to both temporal and static settings. The general architecture, illustrated in Figure|l| begins
with a low-resolution input that optionally undergoes preprocessing—such as gradient transformation
in gradient-based models—followed by a neural network and an upsampling block. The resulting
output is then processed by a neural operator. Finally, a reconstruction block and an optional physical
constraint layer complete the pipeline.

For the specific task of ocean current downscaling, we evaluated several model variants within this
framework. We first introduced DUNO, which uses a U-shaped Neural Operator (UNO) in the neural
operator block. UNO generalizes well across different PDE types and is more expressive than the
standard FNO. the rest of the framework follows DFNO |Yang et al.[(2023).

We also introduce the SpecDFNO which extends the standard DFNO architecture by introducing a
second neural operator that predicts the residual between the initial FNO output and the ground truth.
Inspired by |Qin et al.|(2024)), this residual is then added to the base prediction, enhancing the model’s
ability to capture high-frequency components often lost in downscaling.

Extending this further, the SpecDFNO with Diffusion-Based Upsampling (SpecDFNOD:IfY) re-
places the explicit upsampling operation with a learned generative diffusion prior. The diffusion



process is conditioned on the low-resolution input, allowing the model to generate high-resolution
fields that are spatially coherent and physically plausible.

We also explored gradient-based strategies. The MetaGradDFNO model applies the DFNO architec-
ture on gradient fields derived using Sobel filters (applied in the preprocessing block). This model
also uses a meta-learning mechanism (in the upsampling block) that learns a weighted combination
of nearest-neighbor, bilinear, and bicubic interpolation kernels, enabling context-aware upsampling.

Complementary to this, the Multiscale Gradient DFNO (MultiGradDFNO) captures structural
information across multiple scales by using parallel convolutional branches with varying kernel
sizes to process gradient fields (in the reconstruction block). These branches are then merged via a
convolution, which helps retain rich spatial features present even at coarse resolution.

Across all models, physical conservation laws are softly enforced through a softmax constraint layer,
a mechanism demonstrated to be effective in geophysical settings by Harder et al.|(2024).

2.2 Models for Direct PDE Solution Prediction at Multiple Scales

In addition to downscaling tasks, we adapt our architecture for direct prediction of PDE solutions
directly at multiple resolutions. The models Temp_DFNO and Temp_SpecDFNO extend the
DFNO and SpecDFNO architectures by incorporating a temporal dimension. In these versions, the
convolutions are performed not only across spatial axes but also along the temporal axis, allowing the
network to capture spatiotemporal dynamics inherent in time-evolving PDE systems.

3 Experiments

3.1 Datasets and Training

The datasets, training configuration and description of the baselines can be found in Appendix [B]

3.2 Temporal Models for Multiscale PDE Solving

We first evaluate the performance of the model on the 2D incompressible Navier-Stokes dataset.
The goal is to learn a surrogate that accurately simulates spatio-temporal dynamics across multiple
spatial resolutions (Appendix D). Results for two DFNO variants—standard (Temp_DFNO) and
residual-based (Temp_SpecDFNO)—are reported in Table

Our temporal models deliver accurate predictions across multiple spatial resolutions on the
Navier—Stokes benchmark. They achieve competitive performance compared to DFNO-2/-4 Yang
et al.| (2023) while enabling multi-resolution prediction within a single network. Unlike DFNO-2/-4,
which depend on an external numerical solver to generate coarse solutions prior to downscaling, our
approach unifies solution generation and resolution-agnostic inference in a single framework. This
combines the predictive strengths associated with classical solvers and the physics-aware downscaling
of DFNO, without requiring precomputed low-resolution solutions.

Table 1: Performance of Temporal_DFNO, Temporal_SpecDFNO, and DFNO models at different
resolutions. DFNO-2 and DFNO-4 values are taken from|Yang et al.|(2023)); PSNR and SSIM for
these models were not provided.

Model Resolution MAE MSE PSNR SSIM
T6x16 0017941 0.000603 3382 0.9920
Temp_DFNO 30x32 0.017426 0.000573 3405 0.9878
64x64 0019775 0.000722 32.64 0.9805
T6x16 0.017806 0000599 34.00 0.9915
Temp_SpecDFNO  32x32 0.017372  0.000568 34.15  0.9882
64x64 0019736 0000712 3276 09811
33x32 00124 00004 - -
DENQ-2 64x64 00246  0.0018 - -
39x32 00208 00012 - -
DFNO-4 64x64 0.0168  0.0007 - -




Table 2: Downscaling results at 32 x 32 and 64 x 64 .

L2 0.01712  0.00049  40.07214  0.97818 | 0.03879  0.00355  33.90497  0.86177

32x32 6464
Model Loss MAE MSE PSNR SSIM | MAE MSE PSNR SSIM
CNN 2x L1 0.424 0.19343 14.06813  0.10542 0.4246 0.1945 15.3113 0.0992
- L2 0.424 0.18774 14.19797  0.12992 0.4244 0.1890 15.4370 0.1123
CNN 4x L1 0.3954 0.16950 14.64186  0.12584 0.3953 0.1720 15.8440 0.1210
- L2 0.395 0.16639 14.72229  0.12872 0.3954 0.1663 15.9890 0.1163
DENO L1 0.02134  0.00099  36.97443  0.96785 | 0.04057  0.01749  33.15377  0.85038
L2 0.01822  0.00059  39.23959  0.97699 | 0.04151  0.01640  33.23573  0.84019
DUNO L1 0.03501  0.00254  32.88501  0.91708 | 0.04271  0.00320  32.18915  0.82181
L2 0.03440  0.00217  33.57706  0.92083 | 0.04251 0.00314  32.55057  0.82200
MetaGradDENO L1 0.01424  0.00045 4037440  0.98574 | 0.05493  0.00962  30.33814  0.73601
L2 0.01370  0.00033  41.74495  0.98638 | 0.05685  0.00851 30.10898  0.71987
MultiGradDENO L1 0.01465  0.00049  40.07315  0.98396 | 0.05513  0.00851 30.04188  0.73671
uitbra L2 0.01380  0.00034  41.58843  0.98690 | 0.05672  0.00802  29.83308  0.71801
SpecDENO L1 0.03407  0.00242  33.09110  0.92286 | 0.04283  0.00682  32.23081 0.82589
P L2 0.02451 0.00106  36.66621 0.95871 0.03653  0.00655  34.16133  0.87433
SpecDENODiff L1 0.01836  0.00064  38.85981 0.97519 ‘ 0.03796  0.00367  33.97083  0.86536

3.3 Downscaling Copernicus ocean current data

To evaluate the performance of our models on real-world oceanographic data, we used sea surface
velocity fields provided by the Copernicus Marine Environment Monitoring Service. To simulate
coarse observations, we downsampled the original fields using average pooling to generate inputs
at resolutions corresponding to 2x, 4x, and 8x coarsening factors (Appendix D). The model was
then tasked with reconstructing higher-resolution fields from the lowest-resolution inputs. Unlike
the synthetic Navier—Stokes dataset, no temporal supervision was used; each sample was treated
independently as a static snapshot.

The proposed DFNO variants significantly outperform conventional CNN baselines at all downscaling
levels. However, as the resolution gap increases (at 8x), performance deteriorates (Table[3) due to the
lack of informative coarse-scale details.

2x downscaling (16x16 — 32x32): All neural operator variants substantially outperform CNN
baselines. MetaGradDFNO achieves the best overall performance. The dramatic performance gap
between neural operators and CNNs (MAE improvement of 30x) demonstrates the importance of
spectral representations for fluid flow reconstruction.

4x downscaling (16x16 — 64x64): Performance degradation becomes evident as the reconstruc-
tion task becomes more challenging. SpecDFNO emerges as the most robust and consistent model,
while gradient-based variants show reduced effectiveness at this scale and later scales. Interestingly,
DUNO maintains competitive MSE performance.

8x downscaling (16x16 — 128x128)(Appendix[C) : Significant performance degradation occurs in
all models. DUNO demonstrates good performance, and SpecDFNO and SpecDFNODiIff are overall
and perceptually better.

4 Conclusion

We show that neural-operator downscaling can deliver higher-resolution current maps from low-
resolution inputs, with strong gains over CNN baselines for Copernicus currents and accurate multi-
resolution temporal predictions without external solvers. These results position neural operators as
practical, scalable tools for ocean current analysis, and motivate uncertainty-aware and theory-driven
extensions to safely push beyond moderate downscaling.
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A Related Work

A.1 Neural Operators

Neural operators are models that learn mappings between infinite-dimensional function spaces and
have recently emerged as powerful tools to approximate solution operators of partial differential
equations (PDEs) (Li et al., [2020; Wu et al.| 2024; L1 et al., 2023). These models achieve strong
performance on a variety of parametric PDE benchmarks, including Navier-Stokes, the Darcy flow,
and Burgers’ equation, while offering orders-of-magnitude speed-ups over classical numerical solvers.
The Fourier Neural Operator (FNO) (L1 et al., [2020) performs operator learning in Fourier space,
enabling efficient global convolution. Latent Spectral Models (LSMs) project high-dimensional PDE
fields into lower-dimensional latent spaces, where the equations are solved to improve both accuracy
and computational efficiency for fluid and solid mechanics (Wu et al.,|2023)). Transolver (Wu et al.,
2024)) introduces physics-informed attention mechanisms, enabling the learning of PDE dynamics on
unstructured meshes and complex geometries, thus reducing discretization dependence and surpassing
previous neural operator architectures.

Neural operators are increasingly applied in oceanography. For example, Chattopadhyay| (2023)
proposed OceanNet, a hybrid FNO and predictor—evaluate—corrector model that learns Gulf Stream
circulation dynamics and achieves up to 5 x 10° times speedup over classical numerical ocean models.

A.2 Embedding Physics in Deep Learning

In physics-based applications, it is critical that neural network outputs not only approximate ground
truth but also remain consistent with the governing physical laws, which is essential for downstream
applications and model trustworthiness. Incorporating physical priors into neural models has been
shown to better capture observed physical properties. Techniques such as soft and hard constraint
losses have been applied in atmospheric emulation, where physics-constrained models achieve lower
errors while maintaining fidelity to the underlying equations (Beucler et al., [2021; [Dawl, [2020).
Moreover, |Yang et al.|(2023)) demonstrated that the introduction of physics-informed constraint layers
further enhances fidelity and reduces error in climate downscaling tasks (Yang et al.l 2023} |Harder
et al., 2024).

A.3 Arbitrary-Resolution Downscaling

Conventional neural network downscaling models, which operate between finite-dimensional spaces,
are typically limited to fixed input and output sizes. As a result, a single trained model can only
downscale inputs with a predefined upsampling factor; that is, the output resolution must match
the resolution anticipated during training. For example, CNN-based methods have been used to
downscale meteorological fields such as wind (Campbell et al., 2025), precipitation (Vosper et al.|
2022)), and solar radiation, often employing multistep cascades to achieve high-resolution output.
However, these models exhibit degraded performance when applied to unseen upsampling factors.

To address this limitation, [Yang et al.| (2023)) introduced an FNO-based zero-shot downscaling model
that generalizes to arbitrary resolutions without retraining. This approach outperforms both traditional
super-resolution models and conventional neural PDE solvers on Navier—Stokes simulations and
ERAS climate fields. However, it is important to note that, in the PDE setting, the model only
performs downscaling on solutions generated by external numerical solvers. We overcome this
limitation by developing a neural operator that (a) directly solves PDEs and (b) generates solutions
at arbitrary resolution, independent of input resolution.

B Training configuration

B.1 Data Sources

To evaluate our proposed model, we have considered as data sources Navier-Stokes data and satellite
observations of the ocean currents.

Navier-Stokes We used synthetic velocity fields based on the 2D incompressible Navier—Stokes
equations in vorticity form on the periodic unit torus = (0,1)2:



Ow(x,t) + u(z,t) - Vw(z,t) = vAw(z, t) + f(z), (1
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where w is the scalar vorticity, u is the velocity field, and = 10~% is the viscosity. The velocity is
recovered from the vorticity via the stream function v, using:

u= (8y¢> —3x1/))7 _Aw =w. (4)

Following |Li et al| (2020), the forcing term is fixed as f(x) =
0.1 (sin(27w(x1 + x2)) + cos(2m(x1 + x2))), and the initial vorticity wo(z) is sampled from
a Gaussian random field with mean zero and spectral decay: wy ~ N (0, 73/2(—A 4 491)~25),

A total of 10,000 simulations were run at a spatial resolution of 64 x 64, using randomly initialized
conditions. Each simulation was evolved over 50 time steps with a fixed viscosity of 10~%. The
dataset was split into 7,000 training samples, 2,000 validation samples, and 1,000 test samples. For
each time step, we also constructed lower-resolution versions of the data by applying average pooling
to obtain 32 x 32 and 16 x 16 grids, we gave 5 time steps as input and predicted the next 5 timesteps.
The final dataset contains both the full-resolution solutions and their down sampled counterparts from
the same timesteps and a window of 5 consequent timesteps.

Copernicus Data Real-world ocean current data was obtained from the Copernicus Marine En-
vironment Monitoring Service (CMEMS). The dataset consists of global ocean surface velocities
at 0.08° spatial resolution (~8 km), providing northward and eastward velocity components. This
data combines satellite altimetry, in situ observations, and numerical ocean models through data
assimilation. We selected regional subsets covering different oceanographic regimes to evaluate
the generalization of the model in varying flow characteristics and coastal dynamics. We split the
data into 128 x 128 patches. The dataset was then divided into 800 training samples, 200 validation
samples, and 100 test samples.

B.2 Data Preprocessing

* Normalization: Z-score normalization is applied per velocity component (northward and
eastward) independently.

* Train/Validation/Test Split: The datasets are split using a 70%/15%/15% ratio.

B.3 Training Strategy

Temporal Modeling (for PDE Surrogate Task): The model receives a sequence of five consecutive
low resolution frames (16 x 16) as input and predicts the next five frames at both low (16 x 16) and
high (32 x 32) resolutions. The zero shot evaluation is performed on the 64 x 64 output from the
16 x 16 input.

Benchmarking Static Downscaling on Copernicus Data: Models are evaluated on the task of
static downscaling using Copernicus current marine data. Inputs consist of low-resolution velocity
fields, and models predict high-resolution outputs (2x, 4x and 8 x downscaling). Regional subsets
representing different oceanographic regimes are used to assess generalization.

As baselines, we used CNNx2 and CNNx4 models. Each is implemented as a four-level U-Net, with
increasing feature dimensions at each level (64, 128, 256, 512). Each encoder level employs a double
convolution block comprising two 3x3 convolutional layers with batch normalization and ReLLU
activation, followed by 2x2 max pooling for spatial downsampling. The decoder mirrors the encoder
structure with transposed convolutions for upsampling and skip connections to preserve fine-grained
spatial information. CNNx2 and CNNx4 refer to training with 2x and 4x downsampling, respectively.
For evaluation on both 2 times and 4 times downscaling. The 2 times downscaling outputs by CNN-2
increase their resolution to 4 times through model recursion and bicubic interpolation. The 4 times
downscaling outputs by CNN-4 decrease their resolution to 2 times through average pooling and
bicubic interpolation.



Loss Functions and Normalization: We employ both L1 and L2 losses during training and
evaluation. For perceptual quality assessment, PSNR and SSIM metrics are also computed (details
provided in the Appendix). Additionally, input channels are normalized independently using channel-
wise normalization.

B.4 Optimizer and Hyperparameters.
We train all models using the Adam optimizer with an initial learning rate of 1 x 10~2. Each model

is trained for 600 epochs with a batch size of 16.

C Limitations

Gradient-Enhanced Models: MetaGradDFNO and MultiGradDFNO excel at moderate down-
scaling factors, leveraging multiscale information. However, their performance diminishes at higher
ratios, where structural details become increasingly sparse.

Spectral Residual Methods: SpecDFNO shows robust performance across all scales, particularly
excelling at zero-shot 4x downscaling. The diffusion-enhanced variant (SpecDFNOD:iff) provides
marginal improvements but with an increased computational overhead.

Table 3: Downscaling to 128 x 128

Model Loss MAE MSE PSNR SSIM
CNN_2x L1 0.424 0.1952 15.8162 0.09986
L2 0.424 0.1895 15.944 0.105
CNN_4x L1 0.395 0.1723 16.358 0.1176
L2 0.395 0.1666 16.504 0.111
DFNO L1 0.06488  0.00936  29.00970  0.60895
L2 0.06488  0.00936  29.00905  0.60892
DUNO L1 0.06199  0.00797  29.70524  0.62467
L2 0.05851  0.00755  29.94049  0.65233
MetaGradDFNO L1 0.06477  0.00934  29.01829  0.60980

L2 0.06479  0.00935  29.01331 0.60976
MultiGradDENO L1 0.06488  0.00894  29.20734  0.60906
L2 0.06486  0.00936  29.00910  0.60886
SpecDFNO L1 0.06443  0.00923  29.06780  0.61219
L2 0.05971 0.00748  29.98298  0.64175
SpecDENODIff L1 0.06052  0.00752  29.96232  0.63049
L2 0.06386  0.00788  29.75918  0.60965

Zero-shot 8 times downscaling While our models show robust performance at moderate resolution
increases (2x and 4x), their accuracy degrades with higher downscaling factors (e.g., to 128x128). In
these cases, models tend to oversmooth outputs or hallucinate details.

This degradation reflects physical reality: As resolution increases, unresolved subgrid physics (e.g.,
turbulence, stratification, and nonlinear instabilities) becomes dominant. The coarse input data no
longer contain sufficient information to accurately infer high-resolution dynamics.

Future Work

The previously discussed downscaling limitations of our models suggest two immediate directions
for future research. One direction is to further improve the downscaling capability of both the PDE
surrogate models and the static downscaling models applied to Copernicus sea velocity data. Another
important avenue is to theoretically characterize the limits of these models, particularly as the govern-
ing physical behavior and equations change with increasing resolution. Incorporating uncertainty
quantification through probabilistic neural operators and ensemble-based diffusion strategies could
also help express confidence in high-resolution outputs, especially in underdetermined or data-sparse
regimes.



D Visualizations

Here we provide some visualization for the downscaling PDE solver and the benchmarking of DFNO
variants on Copernicus data.

D.1 Downscaling and predicting PDE solutions
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Figure 2: (Temp_DFNO) 5 steps low resolution inputs, and predictions of the model on both 16 x 16
and 32 x 32 resolutions, as well as the residuals in the last 2 rows.
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Figure 3: (Temp_specDFNO) 5 steps low resolution inputs, and predictions of the model on both
16 x 16 and 32 x 32 resolutions, as well as the residuals in the last 2 rows.
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D.2 Copernicus ocean current Downscaling
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Figure 4: Ground truth vs. predictions of SpecDFNO. Rows correspond to different output resolutions:
16 x 16, 32 x 32, 64 x 64, and 128 x 128. The first column shows the model predictions, the second
shows the ground truth, and the third displays the difference between them.
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Figure 5: Ground truth vs. predictions of SpecDFNODIff. Rows correspond to different output
resolutions: 16 x 16, 32 x 32, 64 x 64, and 128 x 128. The first column shows the model predictions,
the second shows the ground truth, and the third displays the difference between them.
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