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Abstract

Point cloud sampling is a less explored research topic
for this data representation. The most commonly used sam-
pling methods are still classical random sampling and far-
thest point sampling. With the development of neural net-
works, various methods have been proposed to sample point
clouds in a task-based learning manner. However, these
methods are mostly generative-based, rather than selecting
points directly using mathematical statistics. Inspired by
the Canny edge detection algorithm for images and with
the help of the attention mechanism, this paper proposes a
non-generative Attention-based Point cloud Edge Sampling
method (APES), which captures salient points in the point
cloud outline. Both qualitative and quantitative experimen-
tal results show the superior performance of our sampling
method on common benchmark tasks.

1. Introduction
Point clouds are a widely used data representation in var-

ious domains including autonomous driving, augmented re-
ality, and robotics. Due to the typically large amount of
data, the sampling of a representative subset of points is a
fundamental and important task in 3D computer vision.

Apart from random sampling (RS), other classical point
sampling methods including grid sampling, uniform sam-
pling, and geometric sampling have been well-established.
Grid sampling samples points with regular grids and thus
cannot control the number of sampled points exactly. Uni-
form sampling takes the points in the point cloud evenly
and is more popular due to its robustness. Farthest point
sampling (FPS) [9, 29] is the most famous of them and has
been widely used in many current methods when downsam-
pling operations are required [19, 34, 47, 52, 56]. Geomet-
ric sampling samples points based on local geometry, such
as the curvature of the underlying shape. Another example
of Inverse Density Importance Sampling (IDIS) [11] sam-
ples points whose distance sum values with neighbors are
smaller. But this method requires the point cloud to have a
high density throughout, and it performs even worse when
the raw point cloud has an uneven distribution.

Figure 1. Similar to the Canny edge detection algorithm that de-
tects edge pixels in images, our proposed APES algorithm samples
edge points which indicate the outline of the input point clouds.
The blue grids/spheres represent the local patches for given center
pixels/points.

In addition to the above mathematical statistics-based
methods, with the development of deep learning techniques,
several neural network-based methods have been proposed
for task-oriented sampling, including S-Net [8], SampleNet
[16], DA-Net [21], etc. They use simple multi-layer per-
ceptrons (MLPs) to generate new point cloud sets of desired
sizes as resampled results, supplemented by different post-
processing operations. MOPS-Net [36] learns a sampling
transformation matrix first, and then generates the sampled
point cloud by multiplying it with the original point cloud.
However, all these methods are generative-based, rather
than selecting points directly. On the other hand, there is an
increasing body of work designing neural network-based lo-
cal feature aggregation operators for point clouds. Although
some of them (e.g., PointCNN [19], PointASNL [52], GSS
[53]) decrease the point number while learning latent fea-
tures, they can hardly be considered as sampling methods
in the true sense as no real spatial points exist during the
processing. Moreover, none of the above methods consider
shape outlines as special features.

In this paper, we propose a point cloud edge sampling
method that combines neural network-based learning and
mathematical statistics-based direct point selecting. One
key to the success of 2D image processing with neural net-
works is that they can detect primary edges and use them
to form shape contours implicitly in the latent space [55].



Inspired by that insight, we pursue the idea of focusing
on salient outline points (edge points) for the sampling of
point cloud subsets for downstream tasks. Broadly speak-
ing, edge detection may be considered a special sampling
strategy. Hence, by revisiting the Canny edge detection al-
gorithm [4] which is a widely-recognized classical edge de-
tection method for images, we propose our attention-based
point cloud edge sampling (APES) method for point clouds.
It uses the attention mechanism [42] to compute correla-
tion maps and sample edge points whose properties are re-
flected in these correlation maps. We propose two kinds
of APES with two different attention modes. Based on
neighbor-to-point (N2P) attention which computes correla-
tion maps between each point and its neighbors, local-based
APES is proposed. Based on point-to-point (P2P) atten-
tion which computes a correlation map between all points,
global-based APES is proposed. Our proposed method se-
lects sampled points directly, and the intermediate result
preserves the point index meaning so they can be visualized
easily. Moreover, our method can downsample the input
point cloud to any desired size.

We summarize our contributions as follows:
• A point cloud edge sampling method termed APES that

combines neural network-based learning and mathemat-
ical statistics-based direct point selecting.

• Two variants of local-based APES and global-based
APES, by using two different attention modes.

• Good qualitative and quantitative results on common
point cloud benchmarks, demonstrating the effectiveness
of the proposed sampling method.

2. Related Work
2.1. Point Cloud Sampling

In the past decades, non-learning-based sampling meth-
ods are mostly used for point cloud sampling. FPS [9, 29]
is the most widely used sampling method, which selects
the farthest points iteratively. FPS is easy to implement
and has been frequently used in neural networks that aggre-
gate local features, e.g., PointNet++ [34], PointCNN [19],
PointConv [47], and RS-CNN [24]. Besides, RS has also
been adopted to process large-scale point clouds with great
computational efficiency in lots of works, including Voxel-
Net [60], RandLA-Net [13] and P2B [35]. A more recently
proposed method of IDIS [11] defines the inverse density
importance of a point by simply adding up all distances be-
tween the center point and its neighbors, and samples points
whose sum values are smaller.

Recently, learning-based sampling methods show bet-
ter performances on point cloud sampling when trained
in a task-oriented manner. The pioneering work of S-
Net [8] generates new point coordinates directly from the
global representation. Its subsequent work of SampleNet

[16] further introduces a soft projection operation for bet-
ter point approximation in the post-processing step. Al-
ternatively, DA-Net [21] extends S-Net with a density-
adaptive sampling strategy, which decreases the influence
of noisy points. By learning a sampling transformation ma-
trix, MOPS-Net [36] multiplies it with the original point
cloud to generate a new one as the sampled point cloud.
CPL [31] samples points by investigating the output in the
max-pooling layer. Replacing the MLP layers in S-Net
with several self-attention layers, PST-NET [43] reports
better performances on trained tasks. Its subsequent work
of LighTN [44] proposes a lightweight Transformer frame-
work for resource-limited cases.

2.2. Deep Learning on Point Clouds

Prior to the emergence of PointNet [33], deep learning-
based methods for point cloud analysis are usually multi-
view-based [1, 3, 17, 40] or volumetric-based [14, 18, 28].
PointNet [33] is the first DL-based method that learns di-
rectly on points and it uses point-wise MLP to extract
global features. Its subsequent work of PointNet++ [34] fur-
ther considers local information. Convolution-based meth-
ods [19, 22, 41, 46, 47, 49, 58] bring the convolution opera-
tion into point cloud feature learning. For example, Point-
Conv [47] and KPConv [41] propose point-wise convolu-
tion operators with which points are convoluted with neigh-
bor points. Graph-based methods [5, 20, 23, 24, 45, 50, 57]
analyze point clouds by using graph structure. For example,
Simonovsky et al. [38] treat each point as a graph vertex
and apply graph convolution. In DGCNN [45], EdgeConv
blocks update the neighbor information dynamically based
on dynamic graphs. More recently, Attention-based meth-
ods [2,7,10,12,13,26,27,32] are starting to trend. PCT [12]
pioneers this direction by replacing the encoder layers in
the PointNet framework with self-attention layers, while
PT [59] is based on U-Net [37]. 3DCTN [27] uses offset
attention blocks, while a deformable self-attention module
is proposed in SA-Det3D [2], and a dual self-attention mod-
ule is proposed in 3DPCT [26]. Stratified Transformer [15]
additionally samples distant points as the key input to cap-
ture long-range contexts.

3. Methodology
3.1. Revisiting Canny Edge Detection on Images

The Canny edge detector uses a multi-stage algorithm to
detect edges in images. It consists of five steps: (i) Ap-
ply Gaussian filter to smooth the image; (ii) Find the inten-
sity gradients of the image; (iii) Apply gradient magnitude
thresholding or lower bound cut-off suppression; (iv) Apply
double threshold to determine potential edges; (v) Finalize
the detection of edges by suppressing all the other edges
that are weak and not connected to strong edges.



Figure 2. Illustration of using standard deviation to select edge
pixels/points. A normalized correlation map is computed between
the center pixel/point and its neighbors. The center pixel/point is
self-contained as a neighbor. A larger standard deviation in the
normalized correlation map means a higher possibility that it is an
edge pixel/point.

The key to the effectiveness of the Canny edge detector
is how edge pixels are defined. The intensity gradient of
each pixel i is computed in comparison to its neighbors in
a patch set Si, which is typically a 3 × 3 or 5 × 5 patch.
Pixels with larger intensity gradients are defined as edge
pixels. We make the following observation: If there are
large differences between the pixels from a patch set Si, then
the standard deviation σi of the intensities in the patch is
also high. Hence, an alternative method for edge detection
is to select pixels whose patch sets have larger σi.

We further generalize beyond pixel intensities to any (la-
tent) per-pixel features pi with a “measure of feature cor-
relation” h(pi,pij) defined between the center pixel i and
its neighbor pixel j. In each patch Si, we call the vector
mi = softmax

(
h(pi,pij)j∈Si

)
the normalized correlation

map between the center pixel and its neighbors. Then the
standard deviation σi is computed over the elements of mi,
and pixels with larger σi are selected as edge pixels. An
illustration is given in the top row of Figure 2. When the
neighbor number k is fixed (e.g., k = 9 for the top row, the
center pixel is self-contained as a neighbor), for each patch,
the mean value of its normalized correlation map is always
1/k. However, for edge pixels, the standard deviations of
their normalized correlation maps are larger.

For images, the proposed alternative edge detection algo-
rithm, and in particular using the standard deviation for the
normalized correlation map, is computationally much more
expensive compared to the Canny edge detector. However,
it provides the starting point to transfer the idea to point
cloud edge sampling. Unlike images where pixels are well-

Figure 3. The key idea of proposed methods. N denotes the total
number of points, while k denotes the number of neighbors used
for local-based sampling method.

aligned and patch operators can be easily defined and ap-
plied, point clouds are usually irregular, unordered, and po-
tentially sparse. Voxel-based 3D convolution kernels are not
applicable. Moreover, image pixels come with a color value
(e.g. RGB or grayscale). For many point clouds, however,
the point coordinates are the only available feature.

3.2. Local-based Point Cloud Edge Sampling

To adopt the previously introduced alternative edge de-
tection algorithm to a point cloud set with |S| = N points,
we use k-nearest neighbor to define a local patch Si ⊆ S for
each point i to compute normalized correlation maps. As il-
lustrated in the bottom row of Figure 2, when the neighbor
number k is fixed (e.g., k = 8 for the bottom row, the cen-
ter point is self-contained as a neighbor), for each patch,
the mean value of its normalized correlation map is again
always 1/k. However, for edge points, the standard devia-
tions of their normalized correlation maps are larger.

On the other hand, the attention mechanism is an ideal
option to serve as the “measure of correlation” between
point features within each patch, i.e., the attention map
serves as the normalized correlation map directly. The
local-based correlation measure hl(·) is defined as

hl(pi,pij) = Q(pi)
⊤K(pij − pi) (1)

where Q and K stand for the linear layers applied on the
query input and the key input, respectively. Here we use the
(latent) features of the center point pi as the query input,
and the feature difference between the neighbor point and
the center point pij − pi as the key input. As in the orig-
inal Transformer model [42], the square root of the feature
dimension count

√
d serves as a scaling factor. The final

normalized correlation map ml
i is given as

ml
i = softmax

(
hl(pi,pij)j∈Si

/
√
d
)
. (2)

Again, a standard deviation σi is computed for each nor-
malized correlation map. The edge points are sampled by
selecting the points with higher σi.



Figure 4. Network architectures for classification (top left) and segmentation (top right). The structures of N2P attention feature learning
layer (bottom left), two alternative downsample layers (bottom middle), and upsample layer (bottom right) are also given. Both kinds of
downsample layers downsample a point cloud from N points to M points, while upsample layer upsamples it from M points to N points.

3.3. Global-based Point Cloud Edge Sampling

We term the above-applied attention as neighbor-to-point
(N2P) attention, which is specifically designed to capture
local information using patches. For sampling problems,
global information is also crucial. Considering the special
case where all points are included in the local patch (i.e.,
k = N ), a new global correlation map Mg of size N ×N is
obtained with the linear layers Q and K being shared for all
points. Now the N2P attention simplifies into the common
self-attention. We term it point-to-point (P2P) attention in
this paper. In this case, the correlation measure hg(·) and
the normalized correlation map are defined as:

hg(pi,pj) = Q(pi)
⊤K(pj) (3)

mg
i = softmax

(
hg(pi,pj)j∈S/

√
d
)

(4)

Note that all mg
i now have the same point order, but the at-

tention result for each point pair is not affected by the order.
The global correlation map Mg regroups the point-wise

normalized correlation maps into a N ×N matrix:

Mg =


mg

1
⊤

mg
2
⊤

...
mg

N
⊤

 (5)

In the context of the global correlation map Mg , instead
of computing row-wise standard deviations for selecting
points, we propose an alternative approach. Denote mij

as the value of ith row and jth column in Mg . For point
i, if it is an edge point, mg

i has a larger standard deviation.
In this case, considering its neighboring area, if a point j is
close (based on 3d spatial space or latent space) to point i,

mij is larger and point j is also likely to be an edge point.
Given this property, now consider Mg column-wise. For a
point j, in order to qualify it as an edge point, it needs to
rank a higher value of mij in Mg more often compared to
other points. Hence instead of computing row-wise stan-
dard deviations, we compute column-wise sums. Denote
uj =

∑
i mij , we then sample the points with higher uj .

Overall, we can consider it as follows: if a point contributes
more in the self-attention correlation map, it is more likely
to be an “important” point. An illustrative figure of the two
proposed methods is given as Figure 3.

4. Experimental Results

4.1. Classification

Dataset. ModelNet40 [48] contains 12311 manufac-
tured 3D CAD models in 40 common object categories.
For a fair comparison, we use the official train-test split,
in which 9843 models are used for training and 2468 mod-
els for testing. From each model mesh surface, points are
uniformly sampled and normalized to the unit sphere. Only
3D coordinates are used as point cloud input. For data aug-
mentation, we randomly scale, rotate, and shift each object
point cloud in the 3D space. During the test, no data aug-
mentation or voting methods were used.

Network Architecture Design. The classification net-
work architecture is given in Figure 4. The embedding layer
converts the input 3D coordinates into a higher-dimensional
feature with multiple EdgeConv blocks. For feature learn-
ing layers, it is possible to use the layers designed for a
similar purpose in other papers. Alternatively, the afore-
mentioned N2P attention or P2P attention can also be used
as feature learning layers. We use k = 32 neighbor points
as default in local-based APES downsample layers. For an



Figure 5. Visualized sampling results of local-based APES and global-based APES on different shapes. All shapes are from the test set.

input point cloud of N points from the previous layer, each
downsample layer samples it to N/2 points. Note that our
method can actually sample the point cloud to any desired
number of points. The optional residual links are used for
better feature transmission.

Training Details. To train the model, we use AdamW
optimizer with an initial learning rate 1 × 10−4 and de-
cay it to 1 × 10−8 with a cosine annealing schedule. The
weight decay hyperparameter for network weights is set as
1. Dropout with a probability of 0.5 is used in the last two
fully connected layers. We train the network with a batch
size of 8 for 200 epochs.

Quantitative and Qualitative Results. The quantita-
tive comparison with the SOTA methods is summarized
in Table 1, where our proposed APES is among the best-
performing methods. Qualitative results are presented in
Figure 5. From it, we can observe that both local-based
APES and global-based APES achieve good edge sampling
results. On the other hand, local-based APES focuses more
strictly on edge points, while global-based APES ignores
some edge points and leverages a bit more on other non-
edge points that are close to the edges. For example, in
chair shapes, global-based APES discards some chair leg
points and selects more points for chair seat edges to make
the edges “thicker”. We contribute its slightly better quan-
titative results to this. Overall, sampling more edge points
improves the performance of downstream tasks. However,
this can be overdone, and selecting only edge points can be
detrimental. APES uses end-to-end training that includes
the downstream task to make a good trade-off in the sample
selection. Local-based APES imposes stronger mathemati-

Method Overall Accuracy

PointNet [33] 89.2%
PointNet++ [34] 91.9%
SpiderCNN [51] 92.4%
DGCNN [45] 92.9%
PointCNN [19] 92.2%
PointConv [47] 92.5%
PVCNN [25] 92.4%
KPConv [41] 92.9%
PointASNL [52] 93.2%
PT1 [10] 92.8%
PT2 [59] 93.7%
PCT [12] 93.2%
PRA-Net [6] 93.7%
PAConv [49] 93.6%
CurveNet [30] 93.8%
DeltaConv [46] 93.8%

APES (local-based) 93.5%
APES (global-based) 93.8%

Table 1. Classification results on ModelNet40. In comparison with
other SOTA methods that also only use raw point clouds as input.
Note that our reported results did not consider the voting strategy.

cal statistics constraints during the task loss minimization,
while global-based APES pursues better performance by al-
lowing sampling the points that are less belong to the edge
yet more important globally.

4.2. Part Segmentation

Dataset. The ShapeNetPart dataset [54] is annotated for
3D object part segmentation. It consists of 16,880 models
from 16 shape categories, with 14,006 3D models for train-



Figure 6. Visualized segmentation results as shape point clouds are downsampled. All shapes are from the test set.

ing and 2,874 for testing. The number of parts for each
category is between 2 and 6, with 50 different parts in total.
We use the sampled point sets produced in [34] for a fair
comparison with prior work. For evaluation metrics, we re-
port category mIoU and instance mIoU.

Network Architecture Design. The segmentation net-
work architecture is given in Figure 4. Most network layers
are identical to the layers in the classification model, except
for the spatial transform network (STN) and the upsample
layer. The optional STN layer learns a spatial transforma-
tion matrix to transform the input cloud for better initial
alignment [33,45]. The upsample layer is a cross-attention-
based layer to map the input point cloud to an upsampled
size. Its key and value input is the feature from the last
layer, while the query input is the corresponding residual
feature within the downsample process.

Training Details. To train the model, we use AdamW
optimizer with an initial learning rate 1 × 10−4 and de-
cay it to 1 × 10−8 with a cosine annealing schedule. The
weight decay hyperparameter for network weights is set as
1 × 10−4. The dropout with a probability of 0.5 is used in
the last two fully connected layers. We train the network
with a batch size of 16 for 200 epochs.

Quantitative and Qualitative Results. The segmenta-
tion quantitative results are given in Table 2. Our method
achieves decent performance but is not on par with the best
ones. However, as we compute the same metrics on the
intermediate downsampled point clouds in Table 3, we sur-
prisingly find that their performances are extremely good,
even far better than the SOTA methods. This indicates the
downsampled edge points contribute more to the perfor-
mance, while the features of the discarded non-edge points
are not well reconstructed by the upsample layer. Most
other neural network papers use FPS for downsampling and
FPS preserves a similar data distribution compared to the
original point cloud. When upsampling, simple interpola-

Method Cat. mIoU Ins. mIoU

PointNet [33] 80.4% 83.7%
PointNet++ [34] 81.9% 85.1%
SpiderCNN [51] 82.4% 85.3%
DGCNN [45] 82.3% 85.2%
SPLATNet [39] 83.7% 85.4%
PointCNN [19] 84.6% 86.1%
PointConv [47] 82.8% 85.7%
KPConv [41] 85.0% 86.2%
PT1 [10] - 85.9%
PT2 [59] 83.7% 86.6%
PCT [12] - 86.4%
PRA-Net [6] 83.7% 86.3%
PAConv [49] 84.6% 86.1%
CurveNet [30] - 86.6%
StratifiedTransformer [15] 85.1% 86.6%

APES (local-based) 83.1% 85.6%
APES (global-based) 83.7% 85.8%

Table 2. Segmentation results on ShapeNet Part.

Method
Points Cat. mIoU (%) Ins. mIoU (%)

2048 1024 512 2048 1024 512

APES (local) 83.11 85.56 86.17 85.58 87.27 87.41
APES (global) 83.67 84.86 85.44 85.81 87.78 88.06

Table 3. Segmentation results of the full point clouds and interme-
diate downsampled point clouds of different sizes.

tion operations [15, 34, 59] are used to create new points.
However, our method focuses on edge points and the sam-
pled result has a quite different data distribution than the
original point cloud. For non-edge points, especially those
far from edges, neighbor-based interpolation methods are
no longer applicable. We have designed a cross attention-
based layer for upsampling, but it is still hard to get the fea-
tures of the former discarded points back, even with resid-
ual links. Note that in this case, the upsampling problem



Method Feature Learning Layer OA (%)

DGCNN EdgeConv 92.90

APES (local-based)
EdgeConv 93.02

P2P Attention 93.30
N2P Attention 93.47

APES (global-based)
EdgeConv 93.18

P2P Attention 93.46
N2P Attention 93.81

Table 4. Ablation study of using different feature learning layers
in the classification network.

Method Embedding Dimension OA (%)

APES (local-based)
64 93.10

128 93.47
192 93.54

APES (global-based)
64 93.34

128 93.81
192 93.83

Table 5. Ablation study of using a different number of embedding
dimensions for the classification task.

actually turns into a point cloud completion or reconstruc-
tion task, which is another advanced topic for point cloud
analysis. We would like to leave this for future work. The
qualitative segmentation results are given in Figure 6, inter-
mediate visualization results are also provided.

4.3. Ablation study

In this subsection, multiple ablation studies are con-
ducted regarding the design choices of neural network ar-
chitectures. All following experiments are performed on
the classification benchmark of ModelNet40.

Feature Learning Layer. The feature learning layer we
used in the above experiments is the N2P attention layer.
However, as discussed in Section 4.1, it is possible to re-
place it with other feature layers. We additionally report
the results of using EdgeConv or P2P attention as the fea-
ture learning layer in Table 4. From it, we can observe that
N2P attention achieves the best performance. Meanwhile,
the results of using EdgeConv are improved when using our
proposed sampling methods.

Embedding Dimension. In most network-based meth-
ods, it is often reported that better performances are
achieved when a larger embedding dimension is used. In
our experiments, we use an embedding dimension of 128
as the default. We additionally report the results of using
embedding dimensions of 64 and 192 in Table 5.

Choice of k in local-based APES. When local-based
APES is used, the parameter of neighbor number k is a very
important parameter since it decides the perception area size
of local patches. We additionally report the results of using
different k in Table 6.

k 8 16 32 64 128 256 512

OA (%) 93.14 93.26 93.47 93.52 93.54 93.59 93.63

Table 6. Ablation study of using a different number of neighbors
for local-based edge point sampling.

Edge Supervision None Pre-trained and Fixed Joint Training

APES (local-based) 93.47% 93.45% 93.46%
APES (global-based) 93.81% 93.47% 93.51%

Table 7. Ablation study of considering the edge supervision. Re-
sults of using it for pre-training or joint training are both presented.

Figure 7. Sampling results of successively sampling to a fourth of
the original size and directly sampling by a factor of four.

Successive sampling vs. Direct sampling. An advan-
tage of our proposed method is that we can sample any de-
sired number of points with it. We further provide quali-
tative comparison results of successively sampling the raw
point cloud to a quarter (N → N/2 → N/4) and directly
sampling it to a quarter (N → N/4) in Figure 7. We ob-
serve that the sampled results are mostly similar. With the
exception of a few extreme edge points which are better
captured by successive sampling.

Additional edge point supervision. Since it is possi-
ble to compute ”ground-truth” edge points from the shapes
using local curvatures, we further study the cases where
an edge supervision loss term is introduced. Experiments
of not using the edge supervision, using it for pre-training
(and fixing it during the downstream task training), and us-
ing it for joint training are conducted. Numerical results are
given in Table 7. The results are consistent with our conclu-
sion in subsection 4.1. For local-based APES which already
focuses on edge point sampling, edge supervision has no
significant impact. However, for global-based APES, edge
supervision decreases performance slightly.



M Voxel RS FPS [9] S-NET [8] PST-NET [43] SampleNet [16] MOPS-Net [36] DA-Net [21] LighTN [44] APES (local) APES (global)

512 73.82 87.52 88.34 87.80 87.94 88.16 86.67 89.01 89.91 90.79 90.81
256 73.50 77.09 83.64 82.38 83.15 84.27 86.63 86.24 88.21 90.38 90.40
128 68.15 56.44 70.34 77.53 80.11 80.75 86.06 85.67 86.26 89.73 89.77
64 58.31 31.69 46.42 70.45 76.06 79.86 85.25 85.55 86.51 88.68 89.57
32 20.02 16.35 26.58 60.70 63.92 77.31 84.28 85.11 86.18 86.49 88.56

Table 8. Comparison with other sampling methods. Evaluated on the ModelNet40 classification benchmark with multiple sampling sizes.

Method S-NET PST-NET SampleNet MOPS-Net LighTN APES (local) APES (global)

Params 0.33M 0.42M 0.46M 0.44M 0.37M 0.35M 0.35M
FLOPs 152M 122M 167M 149M 115M 142M 114M

Table 9. Computation complexity of different sampling methods.
Here “M” stands for million.

Figure 8. Framework for sampling methods evaluation.

5. Sampling Methods Comparison
5.1. Experiment Setting

We additionally compare our sampling method to previ-
ous work including RS, FPS, and the more recent learning-
based S-Net, SampleNet, LighTN, etc. The same evaluation
framework from [8, 16, 44] is used, as illustrated in Figure
8. The task here is the ModelNet40 Classification, and the
task network is PointNet. Sampling methods are evaluated
with multiple sampling sizes.

As discussed in the results part of Section 4.2, edge
point sampling changes the data distribution compared to
the original point cloud, especially when a large downsam-
pling ratio (defined as N/M ) is used. Hence for a fair com-
parison, in order to achieve a downsampled point cloud size
of M , we first sample the input point cloud to a size of
2M with FPS, then sample it to the desired size M with
our method APES. The computation complexity of differ-
ent sampling models is given in Table 9. For a fair compari-
son, we use the same sampling size M = 512 and the same
point embedding dimension of 128 in this table.

5.2. Quantitative and Qualitative Results

Quantitative results are given in Table 8, from which we
can observe that both local-based and global-based APES
achieve good classification results with the task network un-
der different sampling ratios. Additional qualitative results
are provided in Figure 9. Although other learning-based
methods achieve decent numerical results, it is difficult to
identify their sampling patterns from the visualization re-
sults. Their results look quite similar to random sampling.
On the other hand, our proposed method shows a compre-
hensive sampling pattern of sampling point cloud outlines.

Figure 9. Qualitative comparison for the sampling of 128 points
from input point clouds with 1024 points.

6. Conclusion
In this paper, an attention-based point cloud edge sam-

pling (APES) method is proposed. It uses the attention
mechanism to compute correlation maps and sample edge
points accordingly. Two variations of local-based APES
and global-based APES are proposed based on different at-
tention modes. Qualitative and quantitative results show
that our method achieves excellent performance on com-
mon point cloud benchmark tasks.

For future work, it is possible to design other supplemen-
tary losses for the training. Moreover, we noticed that the
different point distribution by edge point sampling hinders
later upsampling operations and segmentation performance.
It would be interesting to design upsampling methods that
can better cope with edge point sampling.
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