
Under review as submission to TMLR

End-to-end generation and evaluation of nuclei-aware histol-
ogy patches using diffusion models

Anonymous authors
Paper under double-blind review

Abstract

In recent years, computational pathology has witnessed remarkable progress, particularly
through the adoption of deep learning techniques in segmentation and classification tasks
that enhance diagnostic and prognostic workflows. Despite its importance, training effec-
tive deep learning models for these applications remains a significant challenge due to the
need for large-scale annotated datasets. We present a nuclei-aware semantic tissue genera-
tion framework leveraging advancements in conditional diffusion modeling. Our framework
generates high-quality synthetic tissue patches that are inherently annotated with instances
of six distinct nuclei types. We demonstrate the efficacy of generated samples through
extensive quantitative and expert evaluation.

1 Introduction

Histopathology relies on the microscopic examination of hematoxylin and eosin (H&E) stained tissue biopsies
to identify visual evidence of diseases, including various types of cancer. Accurate diagnosis often hinges
on the expertise and prior experience of pathologists, particularly their exposure to a wide range of disease
subtypes. However, rare disease variants pose challenges due to their limited representation in learning
datasets, making visual identification difficult.

In recent years, deep learning methods have sought to address these challenges by developing accurate
probabilistic models to assist in diagnosis. Segmentation models, for instance, have been widely applied to
localize and classify different nuclei types in tissue samples.

Generative models which synthesize realistic histologic patches with specific features, including patterns
associated with rare disease subtypes, enable the creation of unlimited annotated datasets for training both
humans and deep learning models. These curated datasets can mitigate biases, improve generalization,
and ensure equal representation of disease subtypes. Furthermore, synthetic datasets provide a solution
to privacy concerns surrounding medical data sharing while also reducing the time, labor, and other costs
associated with annotating large medical datasets.

Recent advancements in denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) have demon-
strated remarkable success in generating high-quality real-world images, both conditionally and uncondition-
ally. Notably, the semantic diffusion model (SDM) (Wang et al., 2022) has shown the capability to generate
images from semantic layouts, hinting the potential of DDPMs in medical image synthesis.

In this work,

• We design a first-of-its-kind conditional diffusion model tailored for histology patch synthesis.

• We utilize the Lizard dataset (Graham et al., 2021), a comprehensive collection of colon histology
images, achieving state-of-the-art results in synthetic tissue generation.

• We conduct extensive qualitative, quantitative, and ablative analyses to demonstrate the efficacy of
our framework and its potential applications in pathology pedagogy, model validation, and dataset
augmentation.
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By enabling pixel-perfect localization and diversity in synthetic tissue generation, our approach addresses
key limitations in existing datasets and opens new avenues for both computational and clinical pathology.

2 Background

Deep learning based generative models for histopathology images have seen tremendous progress in recent
years due to advances in digital pathology, compute power, and neural network architectures. Several GAN-
based generative models have been proposed to generate histology patches (Levine et al., 2020; Xue et al.,
2021; Zhou & Yin, 2022). However, GANs suffer from problems of frequent mode collapse and overfitting their
discriminator (Xiao et al., 2021). It is also challenging to capture long-tailed distributions and synthesize
rare samples from imbalanced datasets using GANs. More recently, denoising diffusion models have been
shown to generate highly compelling images by incrementally adding information to noise (Ho et al., 2020).
Success of diffusion models in generating realistic images led to various conditional (Kawar et al., 2022;
Saharia et al., 2022a;b) and unconditional (Dhariwal & Nichol, 2021; Ho et al., 2022; Nichol & Dhariwal,
2021) diffusion models that generate realistic samples with high fidelity. Following this, a morphology-
focused diffusion model has been presented for generating tissue patches based on genotype (Moghadam
et al., 2023). Semantic image synthesis is a task involving generating diverse realistic images from semantic
layouts. GAN-based semantic image synthesis works (Tan et al., 2021a;b; Park et al., 2019) generally
struggled at generating high quality and enforcing semantic correspondence at the same time. To this end,
a semantic diffusion model has been proposed that uses conditional denoising diffusion probabilistic model
and achieves both better fidelity and diversity (Wang et al., 2022). We use this progress in the field of
conditional diffusion models and semantic image synthesis to formulate our framework.

3 Nuclei Aware Diffusion Model

A conditional diffusion model aims to maximize the likelihood pθ(x0 | y), where data x0 ∼ q(x0 | y), y
being the conditioning signal. The forward process of a diffusion model consists of systematically destroys
the information in a given sample using a markovian chain of Gaussian noise addition steps. And the
reverse diffusion process incrementally adds information by denoising a corrupted sample. In conditional
diffusion models the forward diffusion process can ignore the conditioning signal and Gaussian noise can be
incrementally added to corrupt the data sample x0 using the same process as described in DDPM Nichol &
Dhariwal (2021). However, the denoising process is modified to incorporate the conditioning signal and is
defined as a Markov chain with learned Gaussian transitions starting from pure noise, p(xT ) ∼ N (0, I) and
is parameterized as a neural network with parameters θ,

pθ(x0:T | y) = p(xT )
T∏

t=1
pθ(xt−1 | xt, y). (1)

Hence, for each denoising step from t to t − 1,

pθ(xt−1 | xt, y) = N (xt−1; µθ(xt, y, t), Σθ(xt, y, t)). (2)

The parameters θ are optimized using gradient descent. During optimization, time step t is sampled uni-
formly, and the expectation Et,x0,y,ϵ is used to estimate the loss. The denoising neural network can be
parameterized in various ways. In our work, a noise prediction-based formulation results in superior image
quality. Consequently, the denoising model is trained to predict the noise added to the input image given
the semantic layout y and the time step t using the loss described below:

Lsimple = Et,x,ϵ [∥ϵ − ϵθ(xt, y, t)∥2] . (3)

It is important to note that the given simplified loss function does not provide a training signal for Σθ(xt, y, t).
To address this, following the improved DDPMs strategy (Watson et al., 2021), a network is trained to predict
an interpolation coefficient v for each dimension. This coefficient is then converted into variances,

Σθ(xt, y, t) = exp
(

v log βt + (1 − v) log β̃t

)
. (4)
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Figure 1: Training Nuclei Mask Generation Model: Sample a real nuclei mask x0 and corresponding
multi-hot encoded nuclei types y from the dataset. Sample timestep t and Gaussian noise ϵ to perform forward
diffusion and generate noised input xt. The corrupted image xt, timestep t, and nuclei types condition y
are then fed into the denoising model which predicts ϵ̂ as the amount of noise added to the model. Original
noise ϵ and prediction ϵ̂ are used to compute the loss in equation 3.

This is then directly optimized using Lvlb, which is,

Lvlb = DKL(pθ(xt−1 | xt, y) ∥ q(xt−1 | xt, x0)) (5)

During this optimization, a stop gradient is applied to ϵ(xt, y, t), allowing overall Lvlb to guide Σθ(xt, y, t),
while Lsimple in equation 3 primarily guides ϵ(xt, y, t). The overall loss is then a weighted sum of these two
objectives, as follows:

Lhybrid = Lsimple + λLvlb. (6)

3.1 Generating Nuclei Mask

We use a diffusion model conditioned on the presence of six distinct cell types—epithelial cells, lymphocytes,
connective tissue cells, neutrophils, plasma cells, and eosinophils. A multi-hot encoded vector, yNtypes,
specifying the nuclei types to include in the mask is used to control the denoising model approximating the
reverse diffusion process. The model is trained on the annotation masks in the lizard dataset. The dataset
contains histologic patches where each nucleus is pixel-level labeled according to its type. During training,
we add a linear transformation of the multi-hot vector to the time-embedding of the U-Net backbone as
tupdated = t + fθ(yNtypes).

During training, the model learns to reverse the diffusion process in a manner conditioned on the specified cell
types, effectively generating semantic masks that includes only the cell indicated by the multi-hot vector.
This approach enables flexible and controllable generation of histological nuclei masks. These synthetic
semantic masks can then be used with the trained model that is described in the following sections to enable
infinite histological patch generation that is already annotated.

3.2 Semantic Mask Conditioned Patch Generation

To enhance our neural network noise predictor ϵθ(xt, y, t)’s ability to process nuclei semantic map information,
we adapt a U-Net architecture inspired by Wang et al. (Wang et al., 2022). This modified architecture
innovatively integrates time step and semantic information through strategic feature injection.

Encoder: The encoder processes the noisy image using semantic diffusion encoder residual blocks and
attention blocks. These residual blocks incorporate convolution, SiLU activation, and group normalization.
The SiLU activation function (Paul et al., 2022), defined as f(x) = x · sigmoid(x), demonstrates superior
performance compared to ReLU in deeper models.
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Figure 2: Training Patch Generation Model: Given a real image x0 and semantic mask y, we construct
the conditioning signal by expanding the mask and adding an instance edge map. We sample timestep t and
noise ϵ to perform forward diffusion and generate the noised input xt. The corrupted image xt, timestep
t, and semantic condition y are then fed into the denoising model which predicts ϵ̂ as the amount of noise
added to the model. Original noise ϵ and prediction ϵ̂ are used to compute the loss in equation 3.

Time step injection occurs through a learnable scaling and shifting mechanism of intermediate activations.
Specifically, for each feature transformation, we use learnable weight w(t) ∈ R and bias b(t) ∈ R, mathemat-
ically expressed as fi+1 = w(t) · fi + b(t), where fi, fi+1 ∈ R represent input and output features.

Decoder: The semantic label map yNmask is integrated into the decoder’s denoising network through seman-
tic diffusion decoder residual blocks using multi-layer spatially adaptive normalization. Unlike the encoder’s
group normalization, this approach employs a spatially-adaptive normalization technique.

The feature transformation is mathematically represented as:

f i+1 = γi(yNmask) · Norm
(
f i

)
+ βi(yNmask), (7)

where f i and f i+1 are input and output features, Norm(·) denotes parameter-free group normalization, and
γi(yNmask), βi(yNmask) represent spatially-adaptive learned weights and biases derived from the semantic
layout. The conditioning signal is constructed using the semantic mask, with each channel corresponding
to a unique nuclei type. Additionally, a mask containing the edges of all nuclei is concatenated to further
distinguish nuclei instances, enhancing the network’s spatial understanding.

3.3 Data Description

We use the publicly available Lizard dataset Graham et al. (2021), comprising histology image regions of
colon tissue from six distinct sites. These tissue images, obtained at a 20× objective magnification, are
annotated for epithelial cells, connective tissue cells, lymphocytes, plasma cells, neutrophils, and eosinophils.
The dataset consists of 238 tissue images, with an average size of 1055 × 934 pixels. For computational
viability, all the tissue images were divided into smaller image patches of 128 × 128 pixels at 20× objective
magnification. Patching is performed with a 50% overlap in neighboring patches to ensure the information
at the patch boundary is not lost. Patches with less than 50% tissue area were excluded from consideration.
The tissue images yield a total of 59, 726 patches.
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Method Tissue type Conditioning FID(↓) IS(↑)
BigGAN (Brock et al., 2018) bladder none 158.4 -
AttributeGAN (Ye et al., 2021) bladder attributes 53.6 -
ProGAN (Karras et al., 2017) glioma morphology 53.8 1.7
Morph-Diffusion (Moghadam et al., 2023) glioma morphology 20.1 2.1
Morph-Diffusion* (Moghadam et al., 2023) colon morphology 18.8 2.2
NASDM (Real Masks) colon nuclei mask 14.1 2.7
NASDM++ (Generated Masks) colon syn. nuclei mask 15.2 2.6

Table 1: Quantitative Assessment: We report the performance of our method using Fréchet Inception
Distance (FID) and Inception Score (IS) with the metrics reported in existing works. (-) denotes that
corresponding information was not reported in original work. *Note that performance reported for best
competing method on the colon data is from our own implementation, performances for both this and our
method should improve with better tuning. Please refer to our github repo for updated statistics.

4 Experiments

In this section, we first describe our implementation details and training procedure. We then perform quan-
titative and qualitative assessments to demonstrate the efficacy of our nuclei-aware semantic histopathology
generation model.

4.1 Implementation Details

We implement our diffusion models for patch and mask generation using a semantic UNet architecture (as
detailed in Section 3.2), training the model with the objective specified in equation equation 6. Drawing
inspiration from previous research by Nichol et al. (Nichol & Dhariwal, 2021), we set the trade-off parameter
λ at 0.001. For model optimization, we employ the AdamW optimizer and incorporate an exponential moving
average (EMA) of the denoising network weights, applying a decay rate of 0.999. Following the methodology
established in DDPM (Ho et al., 2020), our implementation uses a total of 1000 diffusion steps with a linear
noising schedule corresponding to the timestep t for the forward process. Our training procedure involves
an initial phase with a learning rate of 1e − 4, followed by a learning rate reduction to 2e − 5 to facilitate
fine-tuning. We introduce a dropout rate of 0.2 to augment the classifier-free guidance capabilities during
the sampling phase. The entire framework is developed using PyTorch and trained across 4 NVIDIA Tesla
A100 GPUs, with each GPU processing a batch size of 40. Upon publication or upon request, we will make
the source code available.

4.2 Generative Metrics Evaluation

To the best of our knowledge, ours is the only work that is able to synthesize histology images given a
semantic mask, making a direct quantitative comparison tricky. However, the standard generative metric
Fréchet Inception Distance (FID) measures the distance between distributions of generated and real images
in the Inception-V3 (Kynkäänniemi et al., 2022) latent space, where a lower FID indicates that the model is
able to generate images that are very similar to real data. Therefore, we compare FID and IS metrics with
the values reported in existing works (Ye et al., 2021; Moghadam et al., 2023) (ref. Table 1) in their own
settings. We can observe that our method outperforms all existing methods including both GANs-based
methods as well as the recently proposed morphology-focused generative diffusion model.

4.3 Downstream Task Evaluation

In this study, our objective is twofold: (1) to generate synthetic tissue patches from annotated semantic
masks using a nuclei-aware semantic diffusion model and (2) to train and evaluate nuclei segmentation
models investigating the potential of synthetic data in enhancing downstream segmentation performance. In
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this section, we (1) describe the datasets used for training and validating the patch generation and HoVerNet
models, along with the steps for data preparation, (2) detail the process of nuclei semantics conditioned patch
generation using our method, and (3) outline the training and evaluation of nuclei segmentation model for
downstream experiments.

Figure 3: Overall approach: We have patches x sampled from conditional data distribution, x ∼ q(x | y),
and masks y as the conditioning signal. We train a conditional generative model pϕ(x | y) (left), sample
synthetic images (middle), and then evaluate the efficacy of synthetic images in training nuclei segmentation
models pθ(y | x) (right). Here ϕ and θ represent the parameters of patch generation and HoVerNet models.

In order to investigate the effectiveness of synthetic datasets in improving nuclei segmentation models, we
perform three evaluation experiments: (1) Addition of Synthetic Patches (4.3.3) to the training of nuclei
segmentation models. This experiment explores the impact of supplementing the training dataset of the
HoVerNet model by adding synthetic images generated from our generative model. (2) Replacement with
Synthetic Patches (4.3.4) for nuclei segmentation training. In this experiment, we evaluate the performance
of segmentation models trained on datasets comprising different ratios of real to synthetic patches. And (3)
Synthetic vs Real Patches (4.4) for training downstream nuclei segmentation models. This experiment de-
termines how effective synthetically generated patches are for training nuclei segmentation models compared
to their real counterparts. In all following experiments, the dice score is reported on a held-out real test set
described in Table 2. The models are validated after every two epochs during training, and we report the
metrics of the best-performing model on the test set.

Lizard Dataset

238 Images
59,726 patches

Train Set
// NASDM Training

190 Images
48,337 patches

Real Set (R2)
// HoVerNet Training

36 Images
8,639 patches

Synthetic Set (S2)
// HoVerNet Training

36 Images
8,639 patches

Test Set (S2)
// HoVerNet Testing

12 Images
2,750 patches

Real Train Subset (R1)
// HoVerNet Training

36 Images
8,201 patches

Synthetic Train Subset (S1)
// HoVerNet Training

36 Images
8,201 patches

Figure 4: Overview of data: The figure describes the different subsets of Lizard dataset used for training
and evaluation of the patch generation and HoVerNet models in our experiments. Refer Table 2 for further
details.
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Dataset ID Type NASDM HoVerNet # Images # Patches
Training Training

Train Set Train Real ✓ ✗ 190 48,337
Real Train Subset R1 Real ✓ ✓ 36 8,201
Synthetic Train Subset S1 Synthetic ✗ ✓ 36 8,201
Real Set R2 Real ✗ ✓ 36 8,639
Synthetic Set S2 Synthetic ✗ ✓ 36 8,639
Test Set Test Real ✗ ✗ 12 2,750

Table 2: Overview of data: Different subsets of Lizard dataset used for training and evaluation of the
patch generation and HoVerNet models.

4.3.1 Dataset Setup

We train the generative model on a Train Set containing 190 tissue images from the Lizard dataset tiled
into 48, 337 patches. From this Train Set we select a subset R1 consisting of 36 images (8, 201 patches) and
generate a corresponding synthetic subset S1 from NASDM using R1’s real nuclei masks. From the Lizard
dataset, we select another subset R2 comprising of 36 images tiled into 8, 639 smaller patches. The images in
R2 are not a part of the Train Set used for training the NASDM model. We also generate a synthetic set S2
using the nuclei masks of R2. Lastly, we reserve 12 images with 2, 750 patches, not included in any of the sets
mentioned above, for testing the segmentation models trained in downstream experiments. Table 2 provides
the details of the subsets of the dataset used in different tasks along with their designated nomenclature,
number of images, and number of patches.

4.3.2 Nuclei Segmentation Model Setup

In all our downstream experiments, we employ HoVerNet for nuclear segmentation. The training of HoVerNet
is a two-stage process. In the initial stage, the model is initialized with pre-trained weights from the ImageNet
dataset, and the decoder is trained exclusively for 50 epochs with a batch size of 16. In the second stage, all
the layers are fine-tuned for another 50 epochs. In both stages, we train the model using Adam optimizer
with an initial learning rate of 10−4 and then reduce it to a rate of 10−5 after 25 epochs. We use the
best-performing model over the hundred epochs for testing. To assess the model’s performance we compute
the Dice score and Mean Intersection over Union (IoU) of the predicted masks with respect to their actual
counterparts. The final metric is obtained by averaging scores first by channel and then by batch, providing
a comprehensive evaluation of performance.

4.3.3 Addition of Synthetic Patches

In this experiment, our objective is to assess the effectiveness of using synthetically generated data to augment
existing datasets for nuclei segmentation tasks. Initially, we train a segmentation model exclusively on a
25% subset of R2. We then accumulate synthetic images from S2, which correspond to the masks of the
remaining 75% of R2. We progressively incorporate subsets of these images from the synthetic image set S2
into the training. Note that the size of the training dataset increases with the addition of additional images.
Also, note that we do not use all the images in the set R2 as the base set to make sure that the added
images correspond to new masks that do not exist in the base training set we start with. The Dice scores
and mean IoU of all the models on the Test set are presented in Table 3. We observe that as the training
data is supplemented with synthetic patches, there is a discernible improvement in the model performance.
This trend of gradual improvement underscores the beneficial impact of synthetically generated images in
augmenting datasets and ultimately enhancing the accuracy of segmentation tasks.

Observations from this experiment support the contention that synthetic images generated using a state-of-
the-art conditional diffusion model are already useful for augmenting existing expertly annotated datasets
to improve the performances of downstream nuclei segmentation models trained on them.
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Data # Patches Dice Score Mean IoU
25% R2 2, 159 0.7713 ± 0.0005 0.6409 ± 0.0008
25% R2 + 25% S2 4, 318 0.7869 ± 0.0007 0.6608 ± 0.0012
25% R2 + 50% S2 6, 478 0.7993 ± 0.0006 0.6771 ± 0.0005
25% R2 + 75% S2 8, 639 0.8092 ± 0.0004 0.6889 ± 0.0007

Table 3: Addition of Synthetic Patches: Segmentation performance of the nuclei segmentation model
with consecutive augmenting of training set using synthetic data. We report the mean and standard deviation
across three runs for both metrics.

Data Dice Score Mean IoU
R2 0.8091 ± 0.0012 0.6890 ± 0.0014
75% R2 + 25% S2 0.8098 ± 0.0007 0.6902 ± 0.0009
50% R2 + 50% S2 0.8097 ± 0.0006 0.6898 ± 0.0007
25% R2 + 75% S2 0.8092 ± 0.0004 0.6889 ± 0.0007
S2 0.8087 ± 0.0004 0.6886 ± 0.0002

Table 4: Replacement with Synthetic Patches: Performance of models trained on real data, synthetic
data, and different combinations of both, given the same set of annotation masks. We report the mean and
standard deviation across three runs for both metrics.

4.3.4 Replacement with Synthetic Patches

In this experiment, our goal is to compare the performance of a nuclei segmentation model when trained
entirely on real data against when trained solely on synthetic data. For further clarity, we also evaluate
models trained with combinations of real and synthetic data in different ratios while keeping the size of the
dataset constant. The training utilized set R2 for real images and set S2 for synthetic images. Note that the
set S2 is generated using the masks in the set R2. We first train a segmentation model on only R2 and then
systematically replace a portion of patches in R2 with corresponding synthetic patches from S2, ensuring the
total number of images and the masks used stay the same. The Dice score and mean IoU on the Test Set
are detailed in Table 4. Notably, performance across all runs is comparable indicating that there is no loss
of performance on replacement with synthetic patches. This finding indicates that synthetic data performs
just as effectively, if not better, in the training of nuclei segmentation problems.

4.4 Synthetic vs Manual Annotations

In this experiment, our objective is to assess whether synthetic patches generated using the same masks used
for training the generative model yield a better and more precise set of annotations than the real patches
themselves. This experiment tests the intuition that the generative model should be able to correct for
manual errors between annotators and generate synthetic patches that are more consistent with the masks
than their real counterparts. To test this hypothesis, we strategically select a subset of the training set used
to train the generative model, denoted as R1, and generate synthetic patches based on their corresponding
annotations, forming set S1. We employed both R1 and S1 to train the HoVerNet model independently.
The rationale behind this approach was to evaluate whether the more precise annotations derived from the
generative model could result in a more accurate representation of nuclei boundaries, thereby potentially
yielding a superior Dice score or mean IoU. The results are reported in Table 5. The comparative analysis
of performance in both cases revealed notable consistency. However, it is crucial to acknowledge that the
models are evaluated using manually annotated patches in the test set.

4.5 Expert Evaluation

We have two board-certified pathologists review the synthetic patches generated using both real and synthetic
masks as the condition. We use 60 patches for this review, 20 from the real set with their corresponding
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Data Dice Score Mean IoU
R1 0.8065 ± 0.0005 0.6854 ± 0.0007
S1 0.8053 ± 0.0003 0.6840 ± 0.0003

Table 5: Synthetic vs Manual Annotations: This table showcases the results of our investigation into
the efficacy of annotations of synthetic patches generated by the generative model. We report the mean and
standard deviation across three runs for both metrics.

Figure 5: Generation using synthetic masks: We generate synthetic masks in different nuclei environ-
ments and these use these patches to generate synthetic tissue patches to demonstrate the proficiency of
the model to generate realistic nuclei arrangements. Red: Epithelial cells, Purple: Connective tissue cells,
Orange: Lymphocytes, Yellow: Plasma cells, Purple: Neutrophils, and Green: Eosinophils.

masks, 20 synthetic patches generated using real masks, 20 synthetic patches generated using synthetic masks
from our mask generation model. The evaluation is performed on four criteria. The experts evaluate (1)
whether the boundaries of the nuclei in synthetic patches match the boundaries of the nuclei in the mask;
(2) if each nuclei type in the mask is accurately labeled in the evaluated patch; (3) if the model has failed
to generate a nuclei present in the mask; (4) if there are any excess nuclei in the final patch that are not
present in the mask. Our aim is that by evaluating these four criteria we capture the degree of realism in
the patches generated from synthetic masks. A copy of the survey used for the review can be found on a
public typeform1.

The evaluation results (Figure. 6) indicate that the synthetic patches generated using both real and synthetic
masks perform comparably across all four criteria. The board-certified pathologists found no significant
differences in the accuracy of boundary alignment, nuclei type labeling, omission errors, or excess nuclei
presence between the two types of synthetic patches. This suggests that our mask generation model produces
synthetic masks that are effective in guiding high-fidelity patch synthesis, achieving a level of realism similar
to that of patches generated using real masks.

5 Limitations

Evaluation based on patches: In this study, experts evaluated images within a controlled and specific set-
ting, analyzing 128×128 pixel patches of Whole Slide Images (WSI). This approach deviates from the typical
histopathologic evaluation wherein pathologists examine tissue holistically at varying levels of magnification.
The focus on small image patches may limit the evaluators’ ability to incorporate broader context of the
tissue architecture, thus influencing assessment accuracy. Therefore, our evaluation should be interpreted
within the confines of this artificial setup, and caution must be exercised when extending these results to
more conventional histologic evaluations.

1https://l7d0z1f5um1.typeform.com/to/IkAbnEOv
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Figure 6: Qualitative Review: Compiled results from pathologist review. We have experts assess patches
for, top-left: consistency of the patch with the corresponding mask, top-right: instances of unrecognizable
nuclei types with respect to the annotated mask for each type in the patch, bottom-left: excess instances
of nuclei in the mask with respect to the patch for each type, and bottom-right: excess instances of nuclei
in the patch with respect to the mask for each type.

Scope of the evaluation: Moreover, the evaluation criteria were restricted to the four dimensions explicitly
mentioned previously with the goal of assessing model performance. They do not encompass the complexity
of histopathologic diagnosis, which includes nuanced morphological patterns and clinical context. As a result,
this limited scope may not fully capture the model’s ability to generalize beyond these criteria, nor does it
account for all possible ways in which the generated patches might be useful or flawed in broader medical
practice. We recognize that there may be medically relevant patterns which the model does not replicate
with high fidelity. These patterns may escape detection in the qualitative assessments made by our small
panel of experts.

Size of the expert panel: Notably, our panel consists of only two board-certified pathologists, which
may introduce an element of subjectivity in the evaluation. A larger, more diverse panel comprised of
attending pathologists and Pathology residents would provide a more robust assessment of our model’s
outputs, accounting for differences in evaluator experience and comfort working with model outputs.

Generalization to other tissue types: Furthermore, the model was specifically demonstrated on colonic
tissue. It remains uncertain if the model will have similar performance when applied to other tissues or
disease contexts. Histologic structures and disease presentations vary between tissue types, and thus, the
model’s ability to generalize beyond the colon cannot not be assumed. Future research should aim to extend
the evaluation to include other tissue and disease states to gauge generalizability and performance across
clinical scenarios.

Biases in the generated samples: One relevant limitation inherent to generative models is that they can
only generate samples resembling the training data. As such, the model is inherently biased toward replicating
familiar patterns, and it may not generate plausible histologic representations that are unrepresented in
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the training set. This replication of bias is a well-known issue with generative models, as they do not
possess an intrinsic mechanism to correct for biases present in the training data. Consequently, while our
model demonstrates a reasonable ability to capture and replicate the training data distribution, it must be
recognized that any biases or limitations in the training data will be reflected in the generated samples.

6 Future Work

Expanding conditional signals: In future work, it will be valuable to explore additional conditioning
mechanisms that could improve the model’s ability to generate more diverse and contextually accurate
patches. For instance, conditioning the patch generation process on properties such as stain-distribution,
tissue-type, disease-type, and other relevant clinical variables could allow the model to better capture the
specific characteristics of different histological settings in real-world medical practice. This would also enable
the model to adapt to the unique characteristics of different staining protocols, which vary between labs and
can affect the appearance of histological samples.

Generating larger tissue areas: Furthermore, an interesting avenue for future research would be to
explore the generation of patches conditioned on neighboring patches. This approach could enable the
generation of larger tissue regions by stitching together individual patches, thus allowing for a more holistic
representation of tissue architecture. By considering the spatial relationships between neighboring patches,
the model could capture larger-scale tissue patterns that are critical for accurate histological analysis. This
could open up new possibilities for the application of generative models in histopathology, enabling the
synthesis of realistic tissue sections that can be used for various research and diagnostic purposes.

Addressing biases in future work: Finally, future studies could also consider further refining the model
to address the biases present in the training data. Techniques such as domain adaptation, adversarial
training, or incorporating real-world clinical feedback could be explored to mitigate these biases and ensure
that the model produces more representative and equitable outputs across different tissue types and disease
conditions.
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