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Abstract

Designing adaptive mechanisms to align individual and collective interests remains
a central challenge in artificial social intelligence. Existing methods often strug-
gle with modeling heterogeneous agents possessing persistent latent traits (e.g.,
skills, preferences) and dealing with complex multi-agent system dynamics. These
challenges are compounded by the critical need for high sample efficiency due to
costly real-world interactions. World Models, by learning to predict environmental
dynamics, offer a promising pathway to enhance mechanism design in heteroge-
neous and complex systems. In this paper, we introduce a novel method named
SWM-AP (Social World Model-Augmented Mechanism Design Policy Learning),
which learns a social world model hierarchically modeling agents’ behavior to
enhance mechanism design. Specifically, the social world model infers agents’
traits from their interaction trajectories and learns a trait-based model to predict
agents’ responses to the deployed mechanisms. The mechanism design policy
collects extensive training trajectories by interacting with the social world model,
while concurrently inferring agents’ traits online during real-world interactions
to further boost policy learning efficiency. Experiments in diverse settings (tax
policy design, team coordination, and facility location) demonstrate that SWM-AP
outperforms established model-based and model-free RL baselines in cumulative
rewards and sample efficiency.

1 Introduction

Mechanism design, the art of engineering incentive structures to guide self-interested agents towards
desirable collective outcomes, underpins a vast array of societal functions, from resource allocation in
digital economies and smart cities to the formulation of public policies [23]. Its profound significance
lies in its potential to maximize social welfare, foster efficient cooperation, and resolve complex coor-
dination problems in multi-agent systems [25]. However, traditional mechanism design paradigms
often grapple with fundamental challenges inherent in real-world social systems. Chief among these
is agent heterogeneity. Real-world populations consist of diverse individuals possessing persistent
yet often unobservable latent traits (e.g., skills, preferences, risk attitudes), which critically influence
their responses to incentives [21, 1]. Classical models frequently resort to simplifying assumptions of
homogeneity or rely on unrealistic full information, leading to suboptimal or ineffective mechanisms.
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Figure 1: The AI mechanism designer (principal) makes decisions within a complex social system,
exemplified by the facility location problem(see subsection 4.1 for details) shown on the left of the
figure, which involves selecting the optimal site from potential locations (a or b). Directly interacting
with the real social system is costly and risky. Such social systems typically present two major
challenges. (1) Complex system dynamics, where individual interactions and environmental changes
give rise to intricate and evolving system behaviors. (2) Heterogeneous agent traits, where individuals
possess diverse latent preferences and needs (as illustrated in the magnified area on the left, where
color intensity indicates preference for a facility, and the overall agent distribution also impacts
the optimal location choice). Our proposed Social World Model aids the principal by simulating
interaction in a secure and efficient manner.

Furthermore, these systems are characterized by complex system dynamics, which are difficult to
capture using static, equilibrium-based analyses. Compounding these issues is the pervasive informa-
tion asymmetry, where mechanism designers typically lack direct access to the crucial latent traits
driving agent behavior. The advent of Artificial Intelligence, particularly Reinforcement Learning
(RL), has ushered in a new era for mechanism design [39], offering unprecedented capabilities
to develop adaptive and data-driven mechanisms capable of navigating increasingly complex and
dynamic environments.

Model-Based Reinforcement Learning (MBRL) has emerged as a promising avenue for enhancing
the efficacy and sample efficiency of mechanism design. By learning a model of the environment’s
dynamics, MBRL allows simulating trial-and-error exploration and counterfactual reasoning [22, 8],
significantly reducing the reliance on costly real-world interactions, a critical advantage in high-stakes
social systems. Despite this potential, the direct application of existing MBRL techniques to social
mechanism design faces considerable hurdles. A primary limitation is the persistent neglect of
agent heterogeneity. Many contemporary world models still treat agents as homogeneous entities
or struggle to effectively represent and leverage their distinguishing latent traits. This oversight
directly conflicts with the core need to design mechanisms tailored to the characteristics of the diverse
agents [26, 12]. Moreover, modeling the intricate complexity of social interactions, encompassing
cooperation, competition, and influence dynamics that can lead to highly non-linear and emergent
system behaviors, poses a substantial challenge for standard world models [34], especially when
individual agents are fundamentally driven by their underlying, unobservable traits.

To address these pressing challenges, we introduce a novel framework, named Social World Model-
Augmented Mechanism Design Policy Learning (SWM-AP). Our approach, leveraging a model-based
reinforcement learning paradigm, comprises two primary, interconnected components. The first
is a sophisticated Social World Model (SWM), engineered to perform latent trait inference by
unearthing agents’ persistent hidden characteristics (e.g., skills, preferences) from their interaction
trajectories in an unsupervised manner. It also learns trait-conditioned system dynamics, predicting
how the social system evolves (i.e., state transitions and reward generation) as a function of these
inferred traits and deployed mechanisms. The second core component is the Mechanism Design
Policy. It is responsible for deploying optimal incentive mechanisms. This policy leverages the
capabilities of SWM in two key ways: first, its prior mind tracker module conducts real-time inference
of background agents’ traits using the posterior mind tracker of SWM as the supervision signal;

2



second, it interacts with SWM’s simulative environment to efficiently explore and refine its strategies.
This synergy allows the Mechanism Design Policy to devise more adaptive, targeted, and ultimately
effective incentive structures, aiming to maximize social welfare while minimizing the need for costly
real-world samples, as shown in Figure 1.

The paper is structured as follows. We first review relevant literature on world models and mechanism
design. Subsequently, we detail our SWM-AP framework with a theoretical analysis of algorithm
feasibility. Through extensive numerical experiments across multiple scenarios, including facility
location games, team optimization, and tax policy design, we validate our method’s effectiveness. We
conclude by summarizing contributions and proposing future directions for applying world models to
real-world mechanism design research.

2 Related Works

2.1 Mechanism Design in Reinforcement Learning

The integration of Reinforcement Learning (RL) with mechanism design offers a powerful paradigm
for dynamic systems, overcoming limitations of classical game-theoretic approaches tied to static
equilibria and strict rationality. While foundational theories like Mirrlees’ theory of optimal taxa-
tion [21] exist, they often struggle in dynamic, heterogeneous environments where agent preferences
and capabilities evolve [4]. RL enables data-driven policy optimization via sequential interaction in
complex settings [32, 18, 11, 2, 27]. However, contemporary RL-based mechanism design often over-
simplifies agents as homogeneous, neglecting crucial cognitive traits (e.g., risk tolerance) that drive
real-world decisions [30, 3]. While Inverse Reinforcement Learning (IRL) methods like ‘Democratic
AI’ can infer latent preferences, they face scalability issues in co-training [16, 17]. Cognitive-aware
RL advances this frontier: The M3RL framework [31] incorporates psychological states into policy
adaptation but relies on explicit reward structures. Our work bridges these gaps by introducing
a social world model that co-optimizes mechanism design. Many MARL approaches flat social
structures for cooperative coordination [33, 24, 35, 15], while our hierarchical mechanism design
guides self-interested agents.

2.2 World Model

Model-Based Reinforcement Learning methods learn dynamic models to guide policy optimization,
reducing sample complexity while maintaining performance. The learned dynamic models fall into
two categories. First is enhancing model-free methods with the learned model. Model-enhanced
methods include MBPO [14], which trains the SAC or PPO algorithm using generated and real
trajectories. Similar ideas have been extended to offline model-based RL settings [36]. Impressive
advancements have also been made in learning dynamic changes in latent variable spaces [6, 5,
7, 8]. Furthermore, the application of transformers as world models [20] has demonstrated robust
performance in humanoid robots [28, 38]. The second way is to use the model for planning. TD-
MPC [10, 9] incorporates terminal value estimates for long-term reward estimates. Some existing
works on multi-agent reinforcement learning employ world models to simulate the dynamics of
multiple systems [37, 34, 19]. However, due to their lack of modeling complex social relationships
among agents or explicit specification of agents’ inherent attributes to simplify the problem, these
approaches face challenges in deployment to real-world social environments. In contrast, our
methodology simulates the dynamics of multi-agent systems characterized by individual heterogeneity
and complex interaction relationships.

3 Method

In this paper, we propose a Social World Model-Augmented Mechanism Design Policy Learning
(SWM-AP) approach, as illustrated in Figure 2 and Algorithm 1. In Subsection 3.1, we formally
define the research problem through decision-making processes. Subsection 3.2 details the learning
architecture of our SWM-AP approach, including the specifics of the Social World Model with
its hidden trait inference tracker, and the training of the Mechanism Design Policy. Subsection
3.3 provides theoretical justification via ELBO derivation for our approach combining latent trait
inference with world model learning, demonstrating the feasibility of jointly learning latent traits
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and system dynamics, thereby supporting our approach of using trait inference to enhance the state
prediction accuracy.

3.1 Problem Formulation

We formalize AI-driven mechanism design as an episodic Markov game between an institutional
planner (principal) and a population of background agents. The principal operates as an algorithmic
policy designer that dynamically deploys incentive mechanisms to optimize social welfare(the sum
of all the background agents’ returns). Each background agent maintains a fixed trait (such as skill or
preference), which regulates the agent’s response to the mechanism and shapes its behavior during
interactions with other agents. These traits are private and unobservable to the principal, constituting
a central challenge for adaptive mechanism design.

This problem can be succinctly summarized by the tuple ⟨N, {Mi},Sobs,A, P,Rsoc, γ⟩. Here, N
is the number of background agents, each agent i with a latent trait mi ∈ Mi. Sobs represents the
principal’s comprehensive observation space, encompassing background agents’ states (s1, ..sN ) that
are visible to principal (like agents’ locations) and global environment state sE (like the distribution
of resources). The principal acts by selecting a mechanism policy π ∼ Π(π|sobs), while each
background agent i takes action following its policy ϕi(ai|sobs, π,mi). The system transition function
P describes how observations evolve given current observations and the deployed mechanism policy.
That is

sobs
t+1 ∼ P (sobs

t+1|sobs
t , πt). (1)

The principal infers the system transition function P and learns a mechanism policy π to maximize
the expected cumulative social welfare

max
π

E

[ ∞∑
t=0

γtrsoct

]
, (2)

where rsoc =
∑
i r
i is principal’s reward, named the social welfare, ri = Ri(sobs, a1, ..., aN ) is the

reward of background agent i, and γ is the discount factor.

Thus, our formulation of AI-driven mechanism design presents two fundamental departures from
classical mechanism design theory. 1) Principal has no prior knowledge of background agents’
behavior patterns, which adaptively respond to the policies of principal and other background
agents. Principal needs to conduct online inference of these patterns through interactions with
them. 2) Agents exhibit heterogeneity, possessing diverse and persistent latent traits that individually
shape their behaviors. Consequently, the principal must infer these distinct agent-specific traits and
behavioral patterns from interaction trajectories, rather than relying on aggregated or homogeneous
population models.

3.2 Social World Model-Augmented Mechanism Design Policy Learning

Our approach to AI-driven mechanism design problems within heterogeneous and dynamic multi-
agent systems, termed Social World Model-Augmented Mechanism Design Policy Learning (SWM-
AP), leverages a model-based reinforcement learning framework. The core of our method consists of
two primary, interconnected components: a Social World Model (SWM) that learns the complex
dynamics of state transition, and a Mechanism Design Policy that learns to deploy optimal incentive
mechanisms. This overall architecture is designed to address the challenge of unobservable agent
traits and to maximize social welfare with a minimized sample.

Social World Model: SWM is tasked with learning a comprehensive model of the state transition
function. Specifically, given the current observation sobs

t , the deployed mechanism πt, and an estimate
of the agents’ latent traits m̂ = (m̂1, ..., m̂N ), SWM learns to predict the next observation sobs

t+1 and
the immediate social welfare rsoc

t .

An important component of SWM is the Posterior Trait Tracker. Since the background agents’ traits
m are latent, accurate modeling of environment dynamics necessitates inferring these traits. The
Posterior Trait Tracker is designed to infer these latent traits, m̂post, by analyzing complete interaction
trajectories τ = (sobs

0 , π0, r
soc
0 , . . . , sobs

T , πT , r
soc
T ) collected during training. This module processes

entire trajectory segments to capture long-term behavioral patterns indicative of the underlying
traits. SWM, including its state prediction component, is then trained by minimizing the discrepancy
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Figure 2: Algorithm diagram of SWM-AP. The Social World Model (SWM) utilizes a Posterior
Trait Tracker to infer latent agent traits from full trajectories, which subsequently aid in predicting
the future states of background agents. Concurrently, the Mechanism Design Policy employs a Prior
Trait Tracker for real-time inference of agent traits based on partial history, informing its mechanism
design. Interactions between the policy and the learned SWM, leveraging imagined trajectories,
enhance sample efficiency for policy learning.

between its predicted future states and the actual observed states, utilizing these inferred traits m̂post.
The objective function of SWM can be expressed as:

JSWM(ψ, ϕ) = Eτ∼D

[∑
t

∥ŝobs
t+1(s

obs
t , πt, m̂post)− sobs

t+1∥22 + cDKL (p(m̂post)||U (m))

]
. (3)

Here, JSWM(ψ, ϕ) represents the loss function for SWM with parameters ψ and the Posterior Trait
Tracker with parameters ϕ. The expectation Eτ∼D is taken over trajectories τ sampled from a dataset
D of past experiences. ŝobs

t+1 is the next state observation predicted by SWM, conditioned on the
current state sobs

t , mechanism πt, and the traits m̂post inferred by the Posterior Trait Tracker. sobs
t+1 is

the actual observed next state. The term ∥ · ∥22 denotes the squared L2 norm (Euclidean distance),
measuring the prediction error. p(m̂post) is the probability output by the Posterior Trait Tracker,
while U(m) is the uniform distribution for every element in m. c is the regularization coefficient.
This joint optimization allows SWM to learn environment dynamics that are conditioned on a rich
understanding of agent traits.

Mechanism Design Policy: The Mechanism Design Policy, denoted as Π(πt|sobs
t , m̂prior), is respon-

sible for selecting and deploying incentive mechanisms πt to maximize the expected cumulative
discounted social welfare, as defined in Equation 2. This policy is trained using PPO [29], interacting
with the environment (either real or simulated by SWM) to gather experiences. The social welfare
rsoc
t serves directly as the reward signal for policy updates.

A critical challenge during policy deployment is that complete future trajectories are unavailable for
the Posterior Trait Tracker. To address this, the policy component incorporates a Prior Trait Tracker.
This module is trained to perform real-time inference of background agents’ traits, m̂prior, based
on the historically observed partial trajectory up to timestep t, i.e., (sobs

0 , π0, . . . , s
obs
t ). The Prior

Trait Tracker is trained in a supervised fashion, typically by minimizing the discrepancy between its
predictions m̂prior,t and the "ground truth" traits m̂post inferred by the Posterior Trait Tracker from
complete trajectories during offline training. For example, a common objective is to minimize a
cross-entropy loss if traits are categorical or a mean squared error if traits are continuous, at each
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step:

JPrior(ξ) = Eτ∼D

[∑
t

L(m̂prior,t(s
obs
≤t , π<t,a<t), m̂post)

]
. (4)

Here, JPrior(ξ) is the loss for the Prior Trait Tracker with parameters ξ. L is loss function comparing
the prior tracker’s estimate at time t, m̂prior,t, which is based on observations up to t, with the more
accurate posterior estimate m̂post derived from the full trajectory.

During online interaction (policy execution), the inferred trait m̂prior from the Prior Trait Tracker
is fed as input to both the Mechanism Design Policy Π (to inform its decision-making) and to
SWM (when SWM is used for generating imagined trajectories). This allows the policy to adapt its
mechanism design strategy dynamically based on its evolving understanding of the agents’ latent
traits. Furthermore, the policy interacts with the learned SWM to enhance sample efficiency. For
instance, SWM can generate simulated rollouts under different candidate mechanisms, allowing the
policy to be refined with significantly more data than direct environment interaction alone would
permit. The Prior Trait Tracker’s output can also be a probability distribution over possible traits,
reflecting its prediction certainty, which the policy can leverage for more robust strategy learning [40].
This two-pronged approach, combining a world model that understands agent traits with a policy that
leverages this understanding for real-time adaptation and efficient learning, forms the backbone of
our method.

3.3 Theoretical Analysis

We derive the Evidence Lower Bound (ELBO) to provide a theoretical basis for unsupervised learning
of latent agent traits from interaction data, within the episodic framework defined in subsection 3.1.

We denote the principal’s trajectory as τ = (sobs
0 , π0, s

obs
1 , π1, · · · , sobs

T−1, πT−1, s
obs
T ), the joint actions

as at = (a1t , · · · , aNt ), and the joint traits as m = (m1, · · · ,mN ). We assume the joint distribution
of τ and m follows a generative process:

p(τ,m) = p(m)p(sobs
0 )

T−1∏
t=0

p(πt|sobs
≤t)

∫
at

(
p(sobs

t+1|sobs
t , πt,at,m)

(
N∏
i=1

βi(a
i
t|sit,mi, πt)

))
dat,

(5)
where p(m) is the prior of the joint traits, and βi(·|sit,mi, πt) is the agent’s fixed policy conditioned
on its trait mi the deployed mechanism πt.

The world model pψ(s
obs
t+1|st, πt,m) approximates the dynamics∫

at

(
p(sobs

t+1|sobs
t , πt,at,m)

(∏N
i=1 βi(a

i
t|sit,m, πt)

))
dat. The policy of the principal Πθ(πt|s≤t)

provides p(πt|s≤t). Thus, the likelihood is estimated as

pψ,θ(τ |m) = p(sobs
0 )

T−1∏
t=0

Πθ(πt|sobs
≤t)pψ(s

obs
t+1|sobs

t , πt,m).

To generate new trajectories, we need to sample m from the posterior p(m|τ) rather than the
prior p(m). However, p(m|τ) is intractable, and we use the Posterior Trait Tracker qϕ(m|τ) to
approximate it.

To maximize the log evidence log p(τ), we need to maximize the ELBO:

LELBO(ϕ, ψ, θ; τ) =

T−1∑
t=0

Eqϕ(m|τ)[log pψ(s
obs
t+1|sobs

t , πt,m)]︸ ︷︷ ︸
state prediction likelihood

(6)

+

T−1∑
t=0

Eqϕ(m|τ)[log Πθ(πt|s≤t)]︸ ︷︷ ︸
principal policy likelihood

−DKL(qϕ(m|τ)||p(m))︸ ︷︷ ︸
regularization

.

As we use the same principal policy Πθ to collect real trajectories and generate simulated trajectories,
the principal policy likelihood is always maximized for ELBO. We minimize Equation 3 to maximize
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Equation 6 under assumptions that p(sobs
t+1|sobs

t , πt,m) is Gaussian and each element of p(m) is
uniform. Please check the derivation details in Appendix A.

Algorithm 1 SWM-AP Learning framework

1: Initialize: Mechanism Design Policy Πθ(πt|sobs
t , m̂prior,t), Dynamic Model

Mϕ(ŝ
obs
t+1|sobs

t , πt, m̂post), Posterior Trait Tracker qφ(m̂post|τ), Prior Trait Tracker pξ(m̂prior,t|Ht)

where Ht = (sobs
≤t , π<t,a<t), Environment, Model Datasets Denv, Dmodel

2: for NEpochs do
3: Collect real trajectories τ = (sobs

0 , π0, r
soc
0 , . . . , sobs

T , πT , r
soc
T ) in Environment using policy Πθ

and Prior Trait Tracker pξ. Store in Denv .
4: Jointly train Posterior Trait Tracker qφ and Dynamic Model Mϕ on dataset Denv, using

objective based on Equation 3, implicitly training qφ to produce m̂post.
5: Train Prior Trait Tracker pξ on dataset Denv , using objective based on Equation 4 to align

pξ(·|Ht) with qφ(·|τ).
6: Generate imagined trajectories τ̂ = (ŝobs

0 , π0, r̂
soc
0 , . . . ) using Dynamic Model Mϕ, policy Πθ,

and Posterior Trait Tracker pξ. Store in Dmodel.
7: Optimize policy Πθ using data from Denv and Dmodel , maximizing objective Equation 2

using PPO on combined data.
8: end for
9: Return: Policy Πθ, SWM pψ

4 Experiments

4.1 Facility Location

We designed a facility location game to examine the effectiveness of the methodology, where we
developed learning strategies to enhance the capability of higher-level agents in selecting optimal
facility construction locations for the background populations of rule-based agents.

Environment Setting: In the facility location game, the mechanism designer is tasked with selecting
appropriate facility locations for multiple agents distributed across a map. Different agents exhibit
heterogeneous preferences regarding facility locations. Our approach achieves optimal mechanism
design by learning dynamic mechanism design strategies to maximize the collective reward of
multiple low-level agents. The environment is configured as a matrix where each agent maintains
a fixed global position at the beginning of each round, representing their permanent residence in
real-world scenarios. The mechanism designer determines facility locations each round with a fixed
total number of facilities, where each location configuration influences the total visitation frequency
of low-level agents to facilities. The reward is defined as the summation of visitation frequencies from
low-level agents to facilities. This experimental setup corresponds to the classical facility location
game in mechanism design theory. Specifically, we implement a configuration with five facilities and
eight agents distributed across an 8× 8 grid.

Performance Analysis: We evaluate our proposed SWM-AP method against several baselines:
the model-based reinforcement learning algorithms Dreamer and MBPO, and the model-free RL
algorithm PPO. The comparative results are presented in Figure 3. Figure 3a utilizes a dual y-axis
plot to illustrate two key performance aspects: sample efficiency and final converged reward. On
this plot, the circles, aligned with the right y-axis, represent the mean final reward (± standard
deviation) achieved by each algorithm upon convergence. The bars, corresponding to the left y-axis,
indicate the number of training steps required for each method to reach a predefined performance
target, specifically PPO’s final converged reward. The results demonstrate that model-based methods
generally exhibit superior sample efficiency compared to their model-free counterparts. Notably,
our method not only achieves the highest sample efficiency, requiring the fewest training steps to
meet the performance target, but also attains the highest final converged reward among all evaluated
algorithms. Figure 3b and Figure 3c display the learning loss curves for system states and immediate
rewards, respectively. We find that our SWM achieves more accurate predictions for both metrics
when compared to other baselines.
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(a) Facility location: Sample efficiency and final performance

(b) State prediction loss

(c) Reward prediction loss

Figure 3: Facility location performance analysis. (a) Comparison of sample efficiency and final
converged performance. (b) State prediction loss and (c) Reward prediction loss curves for our SWM
compared to baselines.

4.2 Team Structure Optimization

Team structure optimization, where the team structure of background agents can be dynamically
adjusted by principal, is another widely studied mechanism design problem. We conduct the
experiments in AdaSociety [13], a highly customizable multi-agent environment supporting dynamic
social relationships and heterogeneous agents with open-ended tasks. By controlling the relationships
between background agents, principal aims to maximize the collective reward of background agents.

Environment Setting: The environment consists of an 8× 8 grid with four types of basic resources
(10 units each, positioned at the corners), where two basic resources can be converted into one
advanced resource (valued at 5, compared to 1 for basic resources). Four agent types exist, each
capable of producing a specific basic resource but unable to store it. Instead, they can store one other
predefined resource type. Agents form teams of arbitrary size, with each agent restricted to one team,
and incur a maintenance cost of 0.05(x − 1) per step, where x is the team size. Agents produce
resources matching their type and only store resources to earn rewards if a teammate can produce
their storable types. In each episode, four background agents are initialized with randomly assigned
types. Principal observes the current map without knowing agents’ types, and then reassigns the
team structure every 10 steps starting at step 5, aiming to maximize total group reward. Each episode
lasts for 50 timesteps. The task challenges principal to optimize collective efficiency in a resource-
constrained multi-agent system, where principal must balance production, storage dependencies, and
team coordination costs.
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Algorithm Comparison: Sample Efficiency and Final Performance

Steps to Target (Lower is Better)
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(a) Performance
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SWM
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(b) State loss (c) An example

Figure 4: Performance comparison in team structure optimization

Performance Analysis: We evaluate our SWM-AP method against representative model-based
and model-free RL baselines in the dynamic team structure optimization task within AdaSociety.
The comparative results are presented in Figure 4. Figure 4a highlights key performance metrics:
sample efficiency (bars, left y-axis), indicating training steps to reach a target performance, and final
converged group reward (circles/points, right y-axis, with ± standard deviation). Consistent with
findings in other domains, model-based approaches demonstrate superior sample efficiency. Notably,
our method not only achieves the highest sample efficiency, requiring the fewest steps to reach the
target, but also secures the highest final converged group reward, showcasing its effectiveness in
optimizing team configurations under resource constraints and dynamic reassignments. Figure 4b
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depicts the learning curves for the predictive components of the world model. These plots indicate
that our SWM, which explicitly infers and uses agent traits to model team dynamics, achieves lower
prediction errors compared to model-based baselines. Figure 4c illustrates an example of SWM
and MBPO in this environment. Both algorithms take the current state (left sub-graph) as input and
predict the location of each agent in the next timestep. These predictions are shown in the right
sub-graph, with our SWM’s prediction marked in pink and MBPO’s in yellow. The right sub-graph
also displays the actual location of the agent in the next timestep for comparison. Overall, SWM’s
predictions are more accurate. For instance, for the agent in the lower right corner, SWM correctly
predicts that the agent will move to the grid on the right, where resources are located, while MBPO
predicts that the agent will stay in its current position, where the manufacturing of advanced resources
is taking place. This accuracy is likely because SWM has a better understanding of background
agents’ traits, enabling it to more precisely infer these agents’ action plans.

4.3 Tax Adjustment

In this experimental setup, low-level agents are trained using reinforcement learning. As a result,
the planner interacts with a continually adapting and improving population of agents, making the
environment increasingly complex over time.

Environment Setting: In AI-Economist [39], background agents engage in activities such as
collecting materials (specifically wood and stone) to construct houses in exchange for income. They
can also trade resources on the market. Agents possess varying levels of skills in house construction,
and their primary objective is to maximize individual utility. This utility is positively influenced by
income but negatively affected by labor effort. Therefore, agents make decisions by considering
several economic variables, including their construction skills, resource endowments, and applicable
tax rates. These factors influence both their work and consumption choices. Principal, whose role is
to design tax policies, seeks to enhance social welfare by balancing overall economic productivity
with income equality. Notably, principal lacks visibility into the agents’ specific construction skills.
For this experiment, the environment consists of four low-level agents operating within a 25× 25
map. Each episode spans 1000 time steps, while principal updates tax policies every 100 steps.

(a) Overall performance (b) Equality (c) Productivity (d) State loss

Figure 5: Performance comparison in AI-Economist

Performance Analysis: We assess the effectiveness of our SWM-AP by comparing it with two
baseline algorithms: the model-based MBPO and the model-free PPO. The evaluation is based
on three social metrics recorded after 1,000 agent steps: equality, productivity, and their product,
equality × productivity. The product metric serves as an indicator of overall social welfare within the
simulated environment. The comparative results are presented in Figure 5. As shown, our method
exhibits effective control over taxation, enabling principal to optimize social welfare. Notably, our
method attains a level of productivity comparable to that of PPO while significantly enhancing
equality. This suggests that our SWM is capable of promoting a more equitable society without
compromising economic output. In contrast, MBPO yields suboptimal performance. Although it
attempts to increase equality, this comes at the cost of a marked decline in productivity, ultimately
resulting in lower overall social welfare relative to our method. We attribute the superior performance
of our method to its ability to reduce state prediction error more efficiently during the early phases
of training (as shown in Figure 5d). This improved predictive accuracy facilitates more effective
principal optimization, thereby leading to better overall outcomes.

5 Conclusion
This paper proposes a social world model-augmented mechanism design policy learning method,
named SWM-AP, which employs unsupervised learning to infer the hidden trait of background
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agents, thereby enhancing the prediction of group dynamics and mechanism design policy learning.
Experimental results in facility location, team structure optimization, and taxation setting tasks
demonstrate that our method outperforms both model-based and model-free reinforcement learning
approaches. Our approach inspires new directions for world model research towards more complex
and realistic social world.

Limitations and Future Work: Current limitations include the scalability of SWM to extremely
large-scale systems and the challenge of ensuring the direct interpretability of all inferred latent
traits. Future work will focus on developing more scalable SWM architectures, potentially leverag-
ing structured priors, and on enhancing trait interpretability through techniques like disentangled
representation learning.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions: a novel
Social World Model -augmented mechanism design policy learning framework that addresses
agent heterogeneity and improves sample efficiency. These claims are directly supported by
the proposed methodology and are intended to be validated through experimental results in
tasks like tax policy, team formation, and facility location. The scope is defined as AI-driven
mechanism design in complex social systems.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated "Limitations and Future Work" part 5 within
the Conclusion. This subsection explicitly discusses limitations such as the scalability of
the Social World Model (SWM) to extremely large-scale systems and challenges related to
the interpretability of inferred latent traits. It also outlines corresponding future research
directions to address these points.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper presents a theoretical analysis, including the derivation of the
Evidence Lower Bound (ELBO) for the unsupervised learning of latent agent traits 3.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper details the experimental setup for each task (facility location, team
structure optimization, taxation) including environment configurations, agent details (if
applicable), and evaluation metrics. Hyperparameter settings for our method and baselines,
as well as architectural details of the models, are provided in appendix, supplemental
materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We are currently organizing and refining our source code and experimental
environments. We anticipate making them available at a later stage once the organization
process is complete.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies the training procedures, including the number of
epochs/timesteps, and batch sizes for our method and baselines. Details on hyperparameter
selection and architectural choices for neural networks are provided in the experimental
sections and further elaborated in the appendix, supplemental materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experimental results presented in figures 3, 4, 5 include error bars over
multiple independent runs. This provides an indication of the variability and consistency of
the results. The method for calculating these error bars is based on aggregating results from
these multiple runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Information regarding the computational resources used for experiments,
including the type of GPUs (e.g., NVIDIA RTX 3090) and CPUs, in the appendix, supple-
mental materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in this paper involves the development and simulation-
based evaluation of algorithms for mechanism design. It does not involve direct interaction
with human subjects, collection of personally identifiable information, or applications with
immediate high-risk societal implications in its current form. We have adhered to standard
academic practices and believe our work conforms to the NeurIPS Code of Ethics.
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Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the potential positive societal impacts of improved mech-
anism design, such as more efficient resource allocation, optimized public policies (e.g.,
taxation), and enhanced team coordination, leading to better social welfare. We also briefly
acknowledge potential negative societal impacts in the "Limitations and Future Work"
section by touching upon the need for interpretability and robustness, as poorly understood
or biased SWMs could lead to suboptimal or unfair mechanisms if deployed without caution.
Further discussion on mitigating misuse.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The models developed in this research (Social World Model and Mechanism
Design Policy) are trained from scratch for specific simulated mechanism design tasks and
do not fall into the category of large pretrained models with immediate high-risk misuse
potential like large language models or image generators. We do not use scraped datasets that
might pose privacy or safety risks. While any powerful simulation tool could theoretically
be misused, the current research focuses on foundational algorithmic development within
controlled simulated environments.

Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]

Justification: Existing assets used are properly credited through citations to their original
publications in the bibliography.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper introduces a novel methodological framework and algorithms, but
does not introduce new standalone datasets or pre-trained models as primary contributions
for release beyond the described research. The focus is on the algorithmic approach and its
empirical validation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This research does not involve crowdsourcing or direct experiments with
human subjects. All experiments are conducted in simulated multi-agent environments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve human subjects, and therefore, IRB approval
was not required or sought.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology presented in this paper for Social World Model-
Augmented Mechanism Design Policy Learning does not involve the use of Large Language
Models (LLMs) as an important, original, or non-standard component. Any LLM usage was
limited to aiding in writing and editing, without impacting the core scientific contributions
or methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A ELBO Derivation

We denote the principal’s trajectory as τ = (sobs
0 , π0, s

obs
1 , π1, · · · , sobs

T−1, πT−1, s
obs
T ), the joint actions

as at = (a1t , · · · , aNt ), and the joint traits as m = (m1, · · · ,mN ). We assume the joint distribution
of τ and m follows a generative process:

p(τ,m) = p(m)p(sobs
0 )

T−1∏
t=0

p(πt|sobs
≤t)

∫
at

(
p(sobs

t+1|sobs
t , πt,at,m)

(
N∏
i=1

βi(a
i
t|sit,mi, πt)

))
dat,

(7)
where p(m) is the prior of the joint traits, and βi(·|sit,mi, πt) is the agent’s fixed policy conditioned
on its trait mi the deployed mechanism πt.

The world model pψ(s
obs
t+1|st, πt,m) approximates the dynamics∫

at

(
p(sobs

t+1|sobs
t , πt,at,m)

(∏N
i=1 βi(a

i
t|sit,m, πt)

))
dat. The policy of the principal Πθ(πt|s≤t)

provides p(πt|s≤t). Thus, the likelihood is estimated as

pψ,θ(τ |m) = p(sobs
0 )

T−1∏
t=0

Πθ(πt|sobs
≤t)pψ(s

obs
t+1|sobs

t , πt,m).

To generate new trajectories, we need to sample m from the posterior p(m|τ) rather than the
prior p(m). However, p(m|τ) is intractable, and we use the Posterior Trait Tracker qϕ(m|τ) to
approximate it.

Here, we derive a lower bound for the log evidence log pψ,ϕ,θ(τ):

log pψ,ϕ,θ(τ) = Eqϕ(m|τ)[log pψ,θ(τ)]

= Eqϕ(m|τ)[log
pψ,θ(τ,m)

pψ,θ(m|τ)
]

= Eqϕ(m|τ)[log
pψ,θ(τ,m)

qϕ(m|τ)
] + Eqϕ(m|τ)[log

qϕ(m|τ)
pψ,θ(m|τ)

]

= Eqϕ(m|τ)[log
pψ,θ(τ,m)

qϕ(m|τ)
] +DKL(qϕ(m|τ)||pψ,θ(m|τ))

≥ Eqϕ(m|τ)[log
pψ,θ(τ,m)

qϕ(m|τ)
]

= Eqϕ(m|τ)[log pψ,θ(τ,m)− log qϕ(m|τ)]
= Eqϕ(m|τ)[log pψ,θ(τ |m) + log p(m)− log qϕ(m|τ)]

= Eqϕ(m|τ)[log pψ,θ(τ |m)]− Eqϕ(m|τ)[log
qϕ(m|τ)
p(m)

]

= Eqϕ(m|τ)[log pψ,θ(τ |m)]−DKL(qϕ(m|τ)||p(m))

= log p(sobs
0 ) +

T−1∑
t=0

Eqϕ(m|τ)[log pψ(s
obs
t+1|sobs

t , πt,m)]︸ ︷︷ ︸
State Prediction Likelihood

+

T−1∑
t=0

Eqϕ(m|τ)[log βθ(πt|sobs
≤t)]︸ ︷︷ ︸

principal policy likelihood

−DKL(qϕ(m|τ)||p(m))︸ ︷︷ ︸
Regularization Term

.
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B Trait Inference Confusion Matrices

In our framework, a “trait” (m) represents a persistent, intrinsic characteristic of an agent. In tasks
such as AdaSociety, it manifests as an agent’s inherent production capability, while the SWM-AP
method infers these unobservable attributes (e.g., skills, preferences, or risk attitudes) from agent
interaction trajectories, shaping their behavior. This trait is not directly encapsulated in the observation
space (st), rendering it inaccessible to the principal. We argue that the necessity of modeling such
traits is directly tied to the degree of observational ambiguity in a system. In real-world scenarios, a
principal (e.g., a government or platform) must make decisions under conditions of incomplete and
ambiguous information. An individual’s observable state (st) at any given moment, such as their
current location or recent purchase, is often a highly ambiguous signal of their underlying trait (m),
such as risk aversion, long-term preferences, or intrinsic skills. For instance, two individuals might
be observed in the same location (st), but one is a risk-averse local resident (trait m1) while the other
is an adventurous tourist (trait m2). Their immediate responses (at) and future state (st+1) to a new
incentive (e.g., dynamic pricing) will diverge drastically, and predicting this divergence is impossible
without inferring their underlying traits.

To test this hypothesis and explore trait interpretability under observational ambiguity, we conducted
diagnostic experiments in the AdaSociety task. In standard training, the Posterior Trait Tracker
produces a confusion matrix with clear diagonal dominance, indicating successful differentiation
between agent types(Figure 6, left). However, non-trivial off-diagonal values suggest room for
improvement, attributable to “modeling shortcuts”. In later episode stages, the environment’s
predictability allows the model to rely on state history rather than precise trait inference, achieving
low prediction error. To address this, we trained the tracker exclusively on high-ambiguity initial
states, where agents’ fixed starting positions provide minimal clues about their randomly assigned
types. The resulting confusion matrix (Figure 6, right) exhibits stronger diagonal dominance. This
demonstrates that SWM-AP’s ability to learn interpretable traits is significantly enhanced under
high-ambiguity conditions, which directly addresses persistent informational asymmetry in real-world
scenarios.

Figure 6: Confusion matrices for trait inference in AdaSociety. Left: Standard training on mixed-
ambiguity states, showing moderate diagonal dominance due to modeling shortcuts in low-ambiguity
late-episode states. Right: High-ambiguity training on initial states, demonstrating improved trait
disentanglement with stronger diagonal dominance.

C Performance and Efficiency Results

To assess the scalability of SWM-AP in larger multi-agent settings, we extended the Facility Location
task to 32 agents on a 7x7 grid with 5 placeable facilities. Each agent was randomly assigned one of
two unobservable latent traits at the start of each episode, governing their behavior based on distance
and congestion, with fixed home locations. The principal made 5 mechanism design decisions per
episode. Results, averaged over 3 independent runs with different random seeds, are presented in
Table 1. Efficiency is measured as the number of training steps required to reach MBPO’s final
performance (reward of 6.43), with lower values indicating better sample efficiency.
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Table 1: Performance and efficiency results for the 32-agent Facility Location task.
Algorithm Final Reward (Mean ± Std) Steps to MBPO Final Perf.

PPO 6.55 ± 0.03 353,600
MBPO 6.43 ± 0.04 433,600
Dreamer 6.57 ± 0.06 300,800
SWM-AP 6.62 ± 0.06 274,667

These results demonstrate that SWM-AP achieves a superior sample efficiency compared to baselines.

D Computational Benchmarks

We report the runtime and memory usage benchmarked against the number of agents. The results
indicate that both the runtime and memory footprint of our method fall within an acceptable range.

Table 2: Computational benchmarks for the Facility Location task across different agent numbers,
per 100k training steps.

Agents Training Time (hrs) Memory Footprint (MB)

2 0.91 538
4 1.15 618
8 1.93 898
16 3.45 1786
32 5.25 5104

E Experimental Details

This appendix provides essential details for reproducibility. Key configurations and hyperparameters
are summarized below. Table 3 summarizes crucial parameters for the experimental environments
and core algorithms.

Table 3: Key Environment and Algorithm Configurations.

Category Parameter Facility Location Team Structure Optimization Tax Adjustment
Environment Specifics

Env. Source Matrix AdaSociety AI Economist
Agent Count 8 4 4
Latent Trait Count. 256 4 4
Mechanism Action Select a point from Map(8*8) Assign a team structures among 14 different types Set a tax rate for each of the 7 tax brackets
Episode Length 5 50 1000 (for agents), 10 (for planner)

SWM-AP: Social World Model (SWM)
Latent Inference Arch. MLP (L:2, H:512) MLP (L:2, H:512) + LSTM (L:1, H:512) + MLP (L:2, H:512) MLP (L:2, H:512) + LSTM (L:1, H:512) + MLP (L:2, H:512)
Dynamics Predict. Arch. MLP (L:3, H:256) GCN (L:3, H:[64, 128]) + MLP (L:2, H:128) GCN (L:3, H:[64, 128]) + MLP (L:2, H:128)
SWM Optimizer & LR Adam, 10−3 Adam, 10−3 Adam, 10−3

SWM-AP: Mechanism Design Policy (PPO based)
Policy/Value Arch. MLP (L:2, H:128) GCN (L:3, H:[64, 64]) + MLP (L:2, H:256) MLP (L:2, H:256) + LSTM(L:1,H:256) + MLP (L:1,H:256)
Optimizer & LR Adam, 2.5× 10−4 Adam, 5× 10−4 Adam, 1× 10−4

Discount (γ) 0.99 0.99 0.99
Imagined Rollout (SWM) 5 steps 50 steps 1000 steps

Baselines: PPO
Policy/Value Arch. MLP (L:2, H:128) GCN (L:3, H:[64, 64]) + MLP (L:2, H:256) MLP (L:2, H:256) + LSTM(L:1,H:256) + MLP (L:1,H:256)
Optimizer & LR Adam, 2.5× 10−4 Adam, 5× 10−4 Adam, 1× 10−4

Discount (γ) 0.99 0.99 0.99

Baselines: MBPO
Policy/Value Arch. MLP (L:2, H:128) GCN (L:3, H:[64, 64]) + MLP (L:2, H:256) GCN(L:3, H:[64, 64]) + MLP (L:2, H:256)
Optimizer & LR Adam, 2.5× 10−4 Adam, 5× 10−4 Adam, 5× 10−4

Discount (γ) 0.99 0.99 0.99

General Training & Compute
Total Timesteps 106 1× 108 5× 108

Num. Random Seeds 3 3 3
Error Bars ± SEM over 3 runs ± SEM over 3 runs ± SEM over 3 runs
GPUs Used NVIDIA RTX 3090 (1 per run) NVIDIA RTX 3090 (1 per run) NVIDIA A100 (1 per run)

Further Details on SWM-AP: SWM is trained to minimize Mean Squared Error for dynamics
prediction, potentially with an additional VAE-like loss for trait inference if applicable. Further
Details on Baselines: Model-free baselines like PPO implemented with standard configurations. For
PPO, a clipping epsilon of 0.2 was used.
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