
Under review as a conference paper at ICLR 2023

BEYOND COUNTING LINEAR REGIONS OF NEURAL
NETWORKS, SIMPLE LINEAR REGIONS DOMINATE!

Anonymous authors
Paper under double-blind review

ABSTRACT

Functions represented by a neural network with the widely-used ReLU activation
are piecewise linear functions over linear regions (polytopes). Figuring out the
properties of such polytopes is of fundamental importance for the development of
neural networks. So far, either theoretical or empirical studies on polytopes stay
at the level of counting their number. Despite successes in explaining the power of
depth and so on, counting the number of polytopes puts all polytopes on an equal
booting, which is essentially an incomplete characterization of polytopes. Beyond
counting, here we study the shapes of polytopes via the number of simplices ob-
tained by triangulations of polytopes. First, we demonstrate the properties of the
number of simplices in triangulations of polytopes, and compute the upper and
lower bounds of the maximum number of simplices that a network can generate.
Next, by computing and analyzing the histogram of simplices across polytopes, we
find that a ReLU network has surprisingly uniform and simple polytopes, although
these polytopes theoretically can be rather diverse and complicated. This finding
is a novel implicit bias that concretely reveals what kind of simple functions a
network learns and sheds light on why deep learning does not overfit. Lastly,
we establish a theorem to illustrate why polytopes produced by a deep network
are simple and uniform. The core idea of the proof is counter-intuitive: adding
depth probably does not create a more complicated polytope. We hope our work
can inspire more research into investigating polytopes of a ReLU neural network,
thereby upgrading the knowledge of neural networks to a new level.

1 INTRODUCTION

It was shown in a thread of studies Chu et al. (2018); Balestriero & Baraniuk (2020); Hanin &
Rolnick (2019b); Schonsheck et al. (2019) that a neural network with the piecewise linear activation
is to partition the input space into many convex regions, mathematically referred to as polytopes,
and each polytope is associated with a linear function (hereafter, we use convex regions, linear
regions, and polytopes interchangeably). Hence, a neural network is essentially a piecewise linear
function over the input domain. Based on this adorable result, the core idea of a variety of important
theoretical advances and empirical findings is to turn the investigation of neural networks into the
investigation of polytopes. By addressing basic questions such as how common operations affect
the formation of polytopes (Zhang & Wu, 2020), how the network topology affects the number of
polytopes (Cohen et al., 2016; Poole et al., 2016; Xiong et al., 2020), and so on, the understanding
to expressivity of the networks is greatly deepened. To demonstrate the utility of the study on
polytopes, we present two representative examples as follows:

The first representative example is the explanation to the power of depth. In the era of deep learning,
many studies (Mohri et al., 2018; Bianchini & Scarselli, 2014; Telgarsky, 2015; Arora et al., 2016)
attempted to explain why a deep network can perform superbly over a shallow one. One explanation
to this question is on the superior representation power of deep networks, i.e., a deep network can
express a more complicated function but a shallow one with a similar size cannot (Cohen et al.,
2016; Poole et al., 2016; Xiong et al., 2020). Their basic idea is to characterize the complexity of
the function expressed by a neural network, thereby demonstrating that increasing depth can greatly
maximize such a complexity measure compared to increasing width. Currently, the number of linear
regions is one of the most popular complexity measures because it respects the functional structure

1

Under review as a conference paper at ICLR 2023

of the widely-used ReLU networks. Pascanu et al. (2013) firstly proposed to use the number of linear
regions as the complexity measure. By directly applying Zaslavsky’s Theorem (Zaslavsky, 1997),
Pascanu et al. (2013) obtained a lower bound

(∏L−1
l=0

⌊
nl

n0

⌋)∑n0

i=0

(
nL

i

)
for the maximum number

of linear regions of a fully-connected ReLU network with n0 inputs and L hidden layers of widths
n1, n2, · · · , nL. Since this work, deriving the lower and upper bounds of the maximum number of
linear regions becomes a hot topic (Montufar et al., 2014; Telgarsky, 2015; Montúfar, 2017; Serra
et al., 2018; Croce et al., 2019; Hu & Zhang, 2018; Xiong et al., 2020). All these bounds suggest
the expressive ability of depth.

The second interesting example is the finding of the high-capacity-low-reality phenomenon (Hu
et al., 2021; Hanin & Rolnick, 2019b), that the theoretical tight upper bound for the number of
polytopes is much larger than what is actually learned by a network, i.e., deep ReLU networks have
surprisingly few polytopes both at initialization and throughout the training. Specifically, Hanin &
Rolnick (2019b) proved that the expected number of linear regions in a ReLU network is bounded
by a function of the number of total neurons and the input dimension. This counter-intuitive phe-
nomenon can also be regarded as an implicit bias, which to some extent suggests why a deep network
does not overfit. Although theoretically a lot of linear regions can be generated to learn a task, a
deep network tends to find a simple function for a given task that is with few polytopes.

Linear Regions

-1 1

1

-1

Simplices

-1 1

1

-1

Figure 1: The number of simplices a
polytope contains can reveal the shape
information of a polytope, with which
one can dig out valuable information of
a neural network.

Despite figuring out the properties of polytopes of a neural
network is of fundamental importance for the understanding
of neural networks, the current studies on the polytopes have
an important limit. So far, either theoretical or empirical stud-
ies only stay at the level of counting the number of polytopes,
which blocks us from gaining other valuable findings. As we
know, in a feed-forward network of L hidden layers, each
polytope is encompassed by a group of hyperplanes, as shown
in Figure 1(a), and each hyperplane is associated with a neu-
ron. The details of how polytopes are formed in a ReLU net-
work can be referred to in Appendix A. Hence, any polytope
is created by at most

∑L
i=1 ni and at least n0+1 hyperplanes, which is a large range. Face numbers

of polytopes can vary a lot. Unfortunately, the existing “counting” studies did not accommodate the
differences among polytopes. Therefore, it is highly necessary to move a step forward, i.e., know
what each polytope is, thereby capturing a more complete picture of a neural network. To realize
so, as a first attempt, we seamlessly divide each polytope into simplices in a triangulation of the
polytope, and we describe the shape of polytopes by the minimum number of simplices to partition
it, as Figure 1 shows. For example in R2, if a polytope comprises three simplices, it is a pentagon.

In this manuscript, 1) to demonstrate the utility of the total number of simplices (#simplices) relative
to the total number of polytopes (#polytopes), we characterize the basic proprieties and estimate
the lower and upper bounds of the maximum #simplices for ReLU networks. The key to bound
estimation is to estimate the total sum of the number of faces for all polytopes. 2) We observe that
polytopes formed by ReLU networks are surprisingly uniform and simple. Here, the uniformity and
simplicity mean that although theoretically quite diverse and complicated polytopes can be derived,
simple polytopes dominate, i.e., deep networks tend to find a function with a uniform and simple
polytope pattern instead of a complicated polytope pattern. This is another high-capacity-low-reality
phenomenon and an implicit simplicity bias of a neural network, implying how fruitful it is to go
beyond counting. Previously, Hanin & Rolnick (2019b) showed that deep ReLU networks have few
polytopes. Our report is that polytopes are not only few but also simple and uniform. Compared to
(Hanin & Rolnick, 2019b), our observation more convincingly illustrates why deep networks do not
overfit. Showing the number of polytopes is few is insufficient to claim that a network learns a simple
solution because a network can have a small number of very complicated polytopes. 3) We establish
a theorem that bounds the average face numbers of polytopes of a network to a small number under
some mild assumption, thereby illustrating why polytopes produced by a deep network are simple
and uniform.

To summarize, our contributions are threefold. 1) We point out the limitation of counting #polytopes.
To solve it, we propose to use the #simplices to investigate the shape of polytopes. Investigating
polytopes of a network can lead to a more complete characterization of ReLU networks and upgrade
the knowledge of ReLU networks to a new level. 2) We empirically find that a ReLU network

2

Under review as a conference paper at ICLR 2023

has surprisingly uniform and simple polytopes. Such an interesting finding is a new implicit bias
from the perspective of linear regions, which can shed light on why deep networks tend not to
overfit. 3) To substantiate our empirical finding, we mathematically derive a tight upper bound for
the average face number of polytopes, which not only offers a theoretical guarantee but also deepens
our understanding of how a ReLU network partitions the space.

2 RELATED WORK

Studies on polytopes of a neural network. Besides the aforementioned works (Pascanu et al.,
2013; Xiong et al., 2020; Montufar et al., 2014; Hu & Zhang, 2018) that count the number of poly-
topes, there are increasingly many studies on polytopes of neural networks. Chu et al. (2018); Hanin
& Rolnick (2019b); Balestriero & Baraniuk (2020) showed that polytopes created by a network
are convex. Zhang & Wu (2020) studied how different optimization techniques influence the local
properties of polytopes, such as the inspheres, the directions of the corresponding hyperplanes, and
the relevance of the surrounding regions. Hu et al. (2020) studied the network using an arbitrary
activation function. They first used a piecewise linear function to approximate the given activation
function. Then, they monitored the change of #polytopes to probe if the network overfits. Park et al.
(2021) proposed the so-called neural activation coding that maximizes the number of linear regions
to enhance the model’s performance. Our work moves one step forward from counting the num-
ber of polytopes to considering the variability in shapes of polytopes, in hope to delineate a more
complete picture of neural networks.

Implicit bias of deep learning. A network used in practice is highly over-parameterized compared
to the number of training samples. A natural question is often asked: why do deep networks not
overfit? To address this question, extensive studies have proposed that a network is implicitly regu-
larized to learn a simple (not more expressive than necessary) solution. Implicit regularization is also
referred to as an implicit bias. Gradient descent algorithms are widely believed to play an essential
role in capacity control even when it is not specified in the loss function (Gunasekar et al., 2018;
Soudry et al., 2018; Arora et al., 2019a; Sekhari et al., 2021; Lyu et al., 2021). Du et al. (2018);
Woodworth et al. (2020) showed that the optimization trajectory of neural networks stays close to
the initialization with the help of neural tangent kernel theory. Both theoretical derivation Tu et al.
(2016); Li et al. (2020) and empirical findings Jing et al. (2020); Huh et al. (2021) suggested that a
deep network tends to find a low-rank solution. To explain why deep networks first learn “simple
patterns”, a line of works Arora et al. (2019b); Cao et al. (2019); Yang & Salman (2019); Choraria
et al. (2022) have analyzed the bias of a deep network towards lower frequencies. In contrast, our
investigation identifies a new implicit bias from the perspective of linear regions. Different from
most implicit biases highlighting a certain property of a network, our implicit bias concretely and
straightforwardly reveals what kind of simple functions a network tends to learn.

3 PRELIMINARIES AND BASIC PROPERTIES

3.1 PRELIMINARIES

Throughout this paper, we always assume that the input space of an NN is a d-dimensional hyper-
cube C(d,B) := [−B,B]d = {x = (x1, x2, . . . , xd) ∈ Rd : −B ≤ xi ≤ B} for some large
enough constant B.

Furthermore, we need the following definition for linear regions (polytopes).
Definition 1 (Linear regions (polytopes) Hanin & Rolnick (2019a); Xiong et al. (2020)). Suppose
that N is a ReLU NN with L hidden layers and input dimension d. An activation pattern of N
is a function P from the set of neurons to the set {1,−1}, i.e., for each neuron z in N , we have
P(z) ∈ {1,−1}. Let θ be a fixed set of parameters in N , and P be an activation pattern. Then the
region corresponding to P and θ is

R(P; θ) := {X ∈ C(d,B) : z(X; θ) · P(z) > 0, ∀z a neuron in N},

where z(X; θ) is the pre-activation of a neuron z. A linear region (polytope) of N at θ is a non-
empty set R(P, θ) ̸= ∅ for some activation pattern P . Let RN ,θ be the number of linear regions
of N at θ, i.e., RN ,θ := #{R(P; θ) : R(P; θ) ̸= ∅ for some activation pattern P}. Moreover,
let RN := maxθ RN ,θ denote the maximum number of linear regions of N when θ ranges over
R#weights+#bias.

3

Under review as a conference paper at ICLR 2023

In the following, Preliminary 1 shows that the polytopes created by a ReLU network are convex,
which is the most important preliminary knowledge used in this manuscript. Since each polytope of
a ReLU network is convex, as Figure 1 shows, one can further divide each polytope into simplices
in a triangulation of polytopes to make it a simplicial complex (Preliminary 2), where a simplex is a
fundamental unit. The number of simplices contained by a polytope can reflect the shape and com-
plexity of the polytope. Then, Preliminary 3 introduces how to compute the vertices of polytopes.
The detailed explanation of Preliminaries 1 and 3 can be seen in Appendix A.

Preliminary 1 (Polytopes of a neural network are convex). A neural network with ReLU activation
partitions the input space into many polytopes (linear regions), such that the function represented by
this neural network becomes linear when restricted in each polytope (linear region). Each polytope
corresponds to a collection of activation states of all neurons, and each polytope is convex (Chu
et al., 2018). In this paper, we mainly focus on (n0 − 1)-dim faces of a n0-dim polytope. For
convenience, we just simply use the terminology face to represent an (n0 − 1)-dim facet of an
n0-dim polytope.
Preliminary 2 (Simplex and simplicial complex). A simplex is just a generalization of the notion
of triangles or tetrahedrons to any dimensions. More precisely, a D-simplex S is a D-dimensional
convex hull provided by convex combinations of D+1 affinely independent vectors {vi}Di=0 ⊂ RD.

In other words, S =

{
D∑
i=0

ξivi | ξi ≥ 0,

D∑
i=0

ξi = 1

}
. The convex hull of any subset of {vi}Di=0

is called a face of S. A simplicial complex S =
⋃
α

Sα is composed of a set of simplices {Sα}

satisfying: 1) every face of a simplex from S is also in S; 2) the non-empty intersection of any two
simplices S1, S2 ∈ S is a face of both S1 and S2. A triangulation of a polytope P is a partition
of P into simplices such that: The union of all simplices equals P , and the intersection of any two
simplices is a common face or empty.

Preliminary 3 (Computation of a polytope). Given a ReLU network of L hidden layers, a collection
of activation states of all neurons leads to a group of inequalities. Mathematically, a polytope with
dimension n0 is defined as {x ∈ Rn0 | akx⊤ + bk ≤ 0, k ∈ [K]}, where K =

∑L−1
i=1 ni and ni is

the number of neurons in the i-th layer. Given a group of inequalities, the vertices of the polytope
can be computed based on the vertex enumeration algorithm (Avis & Fukuda, 1992).

3.2 CHARACTERIZING PROPERTIES OF #SIMPLICES

10 20 30 40
#Simplices of a Polytope

0

5

10

15

20

25

C
o

u
n

t

Figure 2: The histogram of
#simplices with respect to dif-
ferent polytopes.

• Reflecting the shape variability of polytopes: We plot the his-
togram of the number of simplices a polytope contains for a ran-
domly initialized network of the structure 3-20-10-1 in Figure 2. As
can be seen, the most complicated polytope comprises 40 simplices,
while the simplest one only has 3 simplices, suggesting that poly-
topes formed by the network vary significantly. Naturally, these poly-
topes should not be regarded as equally complex. But when counting
#polytopes, polytopes varying a lot are automatically treated equally.
In contrast, since how many simplices a linear region comprises in-
dicates how complex a linear region is, #simplices can characterize
the differences of polytopes in shapes and further reveal more infor-
mation about what kind of functions a ReLU network learns.

• Estimating the bound of the maximum #simplices. Here, we estimate the upper and lower
bounds of the maximum #simplices of a ReLU network. Such results help us grasp the properties
of #simplices and serve as a solid base for future theoretical or empirical applications of #simplices,
such as understanding the generalization behavior of a network, estimating the computation time
when using #simplices in experiments, etc. The detailed proofs are put into Appendix B.

Theorem 1 (Upper Bound). Let N be a multi-layer fully-connected ReLU NN with d input fea-
tures and L hidden layers with n hidden neurons in each layer. Then the number of simplices in
triangulations of all polytopes generated by N is at most

2ndL

(d− 1)!(d!)L−1
+O(ndL−1). (1)

4

Under review as a conference paper at ICLR 2023

In particular, if L = 1, we derive the following upper bound for the maximum number of simplices

#simplices ≤ 2n

d−1∑
i=0

(
n− 1

i

)
+ 2d

d−1∑
i=0

(
n

i

)
.

Theorem 2 (Lower Bound). Let N be a multi-layer fully-connected ReLU NN with d input features
and L hidden layers with n neurons in each layer. Then the maximum number of simplices in
triangulations of polytopes generated by N is at least

ndL

dd(L−1)d!
+O(ndL−1).

Furthermore, if L = 1, we derive the following tighter lower bound for the maximum number of
simplices

#simplices ≥ 2n

d+ 1

d−1∑
i=0

(
n− 1

i

)
.

The basic idea to derive the above upper bound depends on the following observation: for each
(d− 1)-dim face of a d-dim polytope, it can only be a face for one unique simplex in a triangulation
of this polytope, thus the total number of simplices in triangulations of polytopes must be smaller
than or equal to the total number of (d − 1)-dim faces in all polytopes. Therefore, we just need to
derive the upper bound for the total number of (d − 1)-dim faces in all polytopes generated by a
neural network N , which can be done by induction on the number of layers of N . For the lower
bound, we use the fact that each d-simplex with dimension d has d + 1 faces, thus the number of
simplices should be at least the total number of (d− 1)-dim faces in all polytopes divided by d+ 1.

We empirically validate our bounds in Table 1 with 7 structures for a comprehensive evaluation. For
a network structure X-Y1-· · · -YH -1, X represents the dimension of the input, and Yh is the number
of hidden neurons in the h-th hidden layer. For a given MLP architecture, we initialize all the
parameters based on the Xavier uniform initialization. Because all network structures we validate
have a limited number of neurons, we can compute polytopes and their simplices by enumerating
all collective activation states of neurons, which ensures that all polytopes are identifiable. For each
structure, we repeat initialization ten times to report the maximum #simplices. As shown in Table
1, the derived upper bound is compatible with the numerical results of several network structures,
which verifies the correctness of our results.

Table 1: Numerically verify the correctness of the derived upper and lower bounds for the maximum #simplices.

3-4-1 3-5-1 3-6-1 3-7-1 3-8-1 3-9-1 3-10-1
Upper Bounds by Theorem 1 122 206 324 482 686 942 1256

Estimation by Enumeration Method 119 183 317 446 663 893 1140
Lower Bounds by Theorem 2 14 27 48 77 116 166 230

4 DEEP RELU NETWORKS HAVE SIMPLE AND UNIFORM LINEAR REGIONS

Previously, deep neural networks were both theoretically and empirically identified to have surpris-
ingly fewer linear regions than their maximum capacity (Hanin & Rolnick, 2019b). By analyzing
the number of simplices a polytope contains, we observe that linear regions formed by ReLU net-
works are surprisingly simple and uniform. Although theoretically quite diverse linear regions can
be derived, simple linear regions dominate, which is another high-capacity-low-reality phenomenon
(Hu et al., 2021) and a new implicit bias, which may explain why a deep learning model tends not
to overfit. Combining the finding in (Hanin & Rolnick, 2019b), we can upgrade the conclusion to
that deep ReLU networks have surprisingly few, simple, and uniform linear regions. Compared to
other implicit biases emphasizing properties of a network such as capacity, rank, and frequency, we
concretely show what kinds of simple functions a ReLU network learns. We validate our finding
comprehensively at different initialization methods, network depths, sizes of the outer bounding box,
biases, the bottleneck, network architecture, and input dimensions. Furthermore, we showcase that
during the training, although the number of linear regions increases, linear regions keep their uni-
formity and simplicity. To ensure the preciseness of the discovery and be limited by the prohibitive
computational cost of deriving simplices, our experiments are primarily on low-dimensional inputs.

5

Under review as a conference paper at ICLR 2023

4.1 INITIALIZATION

We validate four popular initialization methods: Xavier uniform, Xavier normal1, Kaiming, orthog-
onal initialization (He et al., 2015). For each initialization method, we use two different network
architectures (3-40-20-1, 3-80-40-1). The bias values are set to 0.01 for all neurons. A total of 8,000
points are uniformly sampled from [−1, 1]3 to compute the polytope. At the same time, we check
the activation states of all neurons to avoid counting some polytopes more than once. Each run is
repeated five times. Figure 3 shows the histogram of the #simplices each polytope has. Hereafter,
if no special specification, the x-axis of all figures denotes the number of simplices a polytope has,
and the y-axis denotes the count of polytopes with a certain number of simplices. Without loss of
generality, suppose that in an experiment, the maximum #simplices a polytope has is Ω, we deem
a polytope with no more than Ω/3 as simple; otherwise, it is complex. The spotlight is that for all
initialization methods and network structures, simple polytopes significantly dominate over compli-
cated polytopes. We calculate that simple polytopes take account for at least 57% and at most 76%
of the total. In addition, among different initialization methods, the Xavier normal method tends to
generate more uniform polytopes on four architectures. The achieved polytope is far simpler than
the theoretically most complicated polytope. In Appendices D-I, via systematic experiments, we
find that the simple linear regions still take the majority at different network depths, sizes of the
outer bounding box, biases, the bottleneck, network architecture, and input dimensions.

20 40 60
0

200

400

600

800

1000

Orthogonal

3-40-20-1

0 20 40 60
0

200

400

600

800

1000

1200

Xavier Uniform

3-40-20-1

0 20 40 60
0

250

500

750

1000

1250

1500

Xavier Normal

3-40-20-1

0 20 40 60 80
0

500

1000

1500

2000

2500
Kaiming Normal

3-40-20-1

0 20 40 60
0

500

1000

1500

2000

Orthogonal

3-80-40-1

0 20 40 60 80
0

1000

2000

3000

Xavier Uniform

3-80-40-1

0 20 40 60 80
0

500

1000

1500

2000

2500

3000

Xavier Normal

3-80-40-1

0 20 40 60 80
0

2000

4000

6000

8000
Kaiming Normal

3-80-40-1

Figure 3: Deep ReLU networks have surprisingly uniform linear regions at different initialization methods.

4.2 TRAINING

Earlier, we show that at the initialization stage, deep networks exhibit simple and uniform linear
regions. Next, it is natural to ask will the uniformity and simplicity of linear regions be broken dur-
ing training? We answer this question by training a fully-connected network using ReLU activation
function on a real-world problem and counting the simplices of polytopes. The task is to predict
if a COVID-19 patient will be at high risk, given one’s health status, living habits, and medical
history. This prediction task has 388,878 raw samples, and each has 5 medical features includ-
ing ’HIPERTENSION’,’CARDIOVASCULAR’, ’OBESITY’, ’RENAL CHRONIC’, ’TOBACCO’.
The labels are ’at risk’ or ’no’. The detailed descriptions of data and this task can be referred to in
Kaggle2. The data are preprocessed as follows: The discrete value is assigned to different attributes.
If a patient has that pre-existing disease or habit, 1 will be assigned; otherwise, 0 will be assigned.
Then, the data are randomly split into training and testing sets with a ratio of 0.8:0.2.

We implement a network of 5-20-20-1. The optimizer is Adam with a learning rate of 0.1. The
network is initialized by Xavier uniform. The loss function is the binary cross-entropy function.
The epoch number is 400 to guarantee convergence. A total of 8,000 points are uniformly sampled

1https://pytorch.org/docs/stable/nn.init.html
2https://www.kaggle.com/code/meirnizri/covid-19-risk-prediction

6

Under review as a conference paper at ICLR 2023

from [−1, 1]3 to compute the polytope. The outer bounding box is [−5, 5]3 to ensure as many
polytopes as possible are counted. Figure 4 shows that as the training goes on, the number of linear
regions drops compared to the random initialization. Furthermore, throughout the training, most
polytopes are simple.

0 2500 5000 7500 10000
0

200

400

600

800
Epoch=0

0 2000 4000 6000 8000
0

100

200

300

400

500

Epoch=100

0 2000 4000 6000
0

100

200

300

400

Epoch=200

0 2000 4000 6000 8000
0

100

200

300

400

500
Epoch=300

0 2000 4000 6000
0

100

200

300

400

Epoch=400

0 2000 4000 6000
0

100

200

300

400

Epoch=500

Figure 4: The results show that throughout the training, most polytopes are simple.

We also train networks on MNIST, following the same procedure in (Hanin & Rolnick, 2019b).
Here, we can not compute the polytopes in 28 × 28 dimensional space because the vertex enumer-
ation algorithm suffers the curse of dimensionality. Therefore, we visualize the polytopes in the
cross-section plane. We initialize a network of size 784-7-7-6-10 with Kaiming normalization. The
batch size is 128. The network is trained with Adam with a learning rate of 0.001. The total epoch
number is set to 35, which ensures the sufficient training of the network.

Epoch=0 Epoch=5 Epoch=10 Epoch=15

Epoch=20 Epoch=25 Epoch=30 Epoch=35

Figure 5: A cross-sectional visualization to the polytopes learned by a network at different epochs.

Figure 5 shows the cross-section of the function learned by a network at different epochs. The
cross-section is a plane that pass through two randomly-selected images from MNIST. Figure 5
shows that as the training goes on, the number of polytopes increases. The spotlight is that almost
all the polytopes are triangles or quadrilaterals. Although these polytopes are from a cross-section
other than the whole landscape, one can indirectly sense the uniformity of these polytopes.

5 MATHEMATICAL INTERPRETATION

Here, we mathematically explain why simple polytopes dominate in ReLU networks.

Geometric heuristics. We attribute the uniformity and simplicity of polytopes to the locality created
by the ReLU activation function. Since a ReLU network divides the space into many local polytopes,
to yield a complicated polytope from a local polytope, two or more hyperplanes associated with
neurons in the later layers should intersect within the given local polytope, which is hard because the
area of polytopes is typically small. As such, the complexity of polytopes probably does not increase
as the network goes deeper. Our heuristics are also supported by (Hanin & Rolnick, 2019b)’s proof,
where a deep ReLU network was proved to have few polytopes because hyperplanes do not cross
in a local polytope. Without crossing, complicated polytopes will not emerge either. Furthermore,

7

Under review as a conference paper at ICLR 2023

we believe the average face number is an intrinsic quantity of a ReLU network majorly due to the
property of space partition and the network’s hierarchical structure. Such an intrinsic quantity is
essentially only weakly dependent on the width and depth of a network.

Now, we formalize our heuristic into a tight bound of the average face numbers of polytopes.
Theorem 3 (One-hidden-layer NNs). Let N be a one-hidden-layer fully-connected ReLU NN with
d inputs and n hidden neurons, where d is a fixed positive integer. Suppose that n hyperplanes
generated by n hidden neurons are in general position. Let C(d,B) := [−B,B]d be the input space
of N . Furthermore, assume that n and B are large enough, then the average number of faces in
linear regions of N is at most 2d+ 1.

Proof. By Theorem 1, we obtain that the number of simplices in triangulations of polytopes gener-
ated by N is at most

#simplices ≤ 2n

d−1∑
i=0

(
n− 1

i

)
+ 2d

d−1∑
i=0

(
n

i

)
.

On the other hand, since the n hidden neurons are in general position and B is large enough, we ob-
tain that the total number of polytopes (i.e., linear regions) produced by N is

∑d
i=0

(
n
i

)
. Therefore,

the average number of faces in linear regions of N is at most

2n
∑d−1

i=0

(
n−1
i

)
+ 2d

∑d−1
i=0

(
n
i

)∑d
i=0

(
n
i

) ≤
2n
∑d−1

i=0

(
n−1
i

)
+ 2d

∑d−1
i=0

(
n
i

)∑d−1
i=0

(
n

i+1

) .

For each 0 ≤ i ≤ d− 1, we have

2n ·
(
n−1
i

)
+ 2d

(
n
i

)(
n

i+1

) ≤ 2(i+ 1) +
2d(i+ 1)

n− i
= 2(i+ 1)

(
1 +

d

n− i

)
≤ 2d

(
1 +

d

n− d+ 1

)
.

Therefore, when n is large enough, we have the average number of faces in linear regions of N is at
most 2d+O(1n) ≤ 2d+ 1.

Theorem 4 (Multi-layer NNs). Let N be an L-layer fully-connected ReLU NN with d inputs and
ni hidden neurons in the i-th hidden layer where d is a fixed positive integer. Suppose that for each
linear region S produced by the first (i − 1)-th layers of N , the nS hyperplanes in S generated by
hidden neurons in the i-th layer are always in general position. Let C(d,B) := [−B,B]d be the
input space of N . Furthermore, assume that each nS and B are large enough, then the average
number of faces in linear regions of N is at most 2d+ 1.

Proof. Please see Appendix B.5.

Remark 1. One desirable property about this bound is that it is independent of the width and depth,
which validates our heuristics. Considering that 2d + 1 is a rather small bound, Theorems 3 and 4
can justify why simple polytopes dominate. If the dominating polytopes are complex polytopes, the
average face number should surpass 2d + 1 a lot. If simple polytopes only take up a small portion,
the average face number will be larger than 2d + 1, too. Although we assume that the network is
wide in deriving the bound, based on our geometric heuristics, the average face number should also
be small for narrow networks. We leave this question for future exploration.

6 DISCUSSION AND CONCLUSION

Implication to spectral bias. Previously, a plethora of studies observed that deep networks first
learn patterns of low frequencies (Arora et al., 2019b; Cao et al., 2019; Yang & Salman, 2019;
Choraria et al., 2022). This observation is referred to as the spectral bias. Our finding is highly
relevant to the spectral bias. Combined with the observation in (Hanin & Rolnick, 2019b), since
polytopes are few, simple, and uniform, the function learned by a ReLU network does not produce a
lot of oscillations in all directions, which roughly corresponds to a low-frequency solution. Our
opinion is that the function represented by a ReLU network is initialized to express a function
without too many oscillations. When the stride by gradient descent is small, a network naturally
tends to first learn patterns of low frequencies.

8

Under review as a conference paper at ICLR 2023

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 6: Decoding the learning of neu-
ral network as constructing finite ele-
ment under the stationary functional.

Decoding the learning of neural networks. Going from the
linear regions to the simplices also contributes to a novel un-
derstanding of the training of a neural network. It has been
clear that the learning of a neural network is the process of
the function fitting with a piecewise linear function. The view
of simplices connects with the finite element method (Bathe,
2007). Since a simplex is an elementary unit, we argue that
the learning of a neural network is nothing but formulating
finite elements towards solving the stationarity of the func-
tional:

Π =

∫
Ω

R(u(x)) +
∑
k

δ(x− xk)(u(x)− ū(x))dx, (2)

where u(x) =
∑n

i=1

∑d
j=1 cijNj(x), ū(x) is the ground-

truth function, R(u(x)) denotes some regularization to u(x), Nj(x) is the shape function over a
finite element (simplex) that is obtained through coordinate transform, and cij are coefficient solved
by ∂Π

∂cij
= 0, i = 1, 2, · · · , n, j = 1, 2, · · · , d. The viewpoint of constructing finite elements is

highly related to moving mesh methods in the field of scientific computing (Di et al., 2005), which
could inspire more discoveries in the future.

In this manuscript, we have advocated studying the properties of polytopes instead of just counting
them, towards revealing other valuable properties of a neural network. To show such a direction
is beneficial, we have characterized the desirable properties of #simplices and estimated its upper
and lower bounds to pave the way for future applications. Then, we have presented that deep ReLU
networks have surprisingly simple and uniform linear regions, which is an implicit bias for ReLU
networks, and may explain why deep networks do not overfit. Lastly, we have mathematically
established a small bound for the average number of faces in polytopes to explain our finding. In
the future, more efforts should be put into investigating the polytopes of a network and designing
advanced algorithms to calculate the polytopes.

7 REPRODUCIBILITY STATEMENT

To ensure that the experimental results and conclusions of our paper are totally reproducible, we
make efforts as the following:

Theoretically, we state the full set of preliminaries, list all requisites of theorems, and include com-
plete proofs of theorems in Sections 3 and 5; Appendices A and B.

Experimentally, we provide the code in the supplementary material. Our code contains all necessary
comments and is highly readable to ensure that interested readers can reproduce it. In addition, we
specify all the training and implementation details in Section 4.

REFERENCES

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. arXiv preprint arXiv:1611.01491, 2016.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019a.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019b.

David Avis and Komei Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra. Discrete & Computational Geometry, 8(3):295–313, 1992.

Randall Balestriero and Richard G Baraniuk. Mad max: Affine spline insights into deep learning.
Proceedings of the IEEE, 109(5):704–727, 2020.

9

Under review as a conference paper at ICLR 2023

Klaus-Jürgen Bathe. Finite element method. Wiley encyclopedia of computer science and engineer-
ing, pp. 1–12, 2007.

Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A compar-
ison between shallow and deep architectures. IEEE transactions on neural networks and learning
systems, 25(8):1553–1565, 2014.

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the
spectral bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in four
gpu hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021.

Moulik Choraria, Leello Tadesse Dadi, Grigorios Chrysos, Julien Mairal, and Volkan Cevher. The
spectral bias of polynomial neural networks. arXiv preprint arXiv:2202.13473, 2022.

Lingyang Chu, Xia Hu, Juhua Hu, Lanjun Wang, and Jian Pei. Exact and consistent interpretation
for piecewise linear neural networks: A closed form solution. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1244–1253,
2018.

Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor
analysis. In Conference on learning theory, pp. 698–728. PMLR, 2016.

Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable robustness of relu net-
works via maximization of linear regions. In the 22nd International Conference on Artificial
Intelligence and Statistics, pp. 2057–2066. PMLR, 2019.

Yana Di, Ruo Li, Tao Tang, and Pingwen Zhang. Moving mesh finite element methods for the
incompressible navier–stokes equations. SIAM Journal on Scientific Computing, 26(3):1036–
1056, 2005.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Feng-Lei Fan, Rongjie Lai, and Ge Wang. Quasi-equivalence of width and depth of neural networks.
arXiv preprint arXiv:2002.02515, 2020.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In International Conference on Machine Learning, pp. 1832–
1841. PMLR, 2018.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In International
Conference on Machine Learning, pp. 2596–2604, 2019a.

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns. In
Advances in Neural Information Processing Systems, pp. 359–368, 2019b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In IEEE International Conference on
Computer Vision, pp. 1026–1034, 2015.

Qiang Hu and Hao Zhang. Nearly-tight bounds on linear regions of piecewise linear neural networks.
arXiv preprint arXiv:1810.13192, 2018.

Xia Hu, Weiqing Liu, Jiang Bian, and Jian Pei. Measuring model complexity of neural networks with
curve activation functions. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 1521–1531, 2020.

Xia Hu, Lingyang Chu, Jian Pei, Weiqing Liu, and Jiang Bian. Model complexity of deep learning:
A survey. Knowledge and Information Systems, 63(10):2585–2619, 2021.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.
The low-rank simplicity bias in deep networks. arXiv preprint arXiv:2103.10427, 2021.

10

Under review as a conference paper at ICLR 2023

Li Jing, Jure Zbontar, et al. Implicit rank-minimizing autoencoder. Advances in Neural Information
Processing Systems, 33:14736–14746, 2020.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. arXiv preprint arXiv:2012.09839, 2020.

Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets:
Margin maximization and simplicity bias. Advances in Neural Information Processing Systems,
34:12978–12991, 2021.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

Guido Montúfar. Notes on the number of linear regions of deep neural networks. Sampling Theory
Appl., Tallinn, Estonia, Tech. Rep, 2017.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in neural information processing systems, pp.
2924–2932, 2014.

Yookoon Park, Sangho Lee, Gunhee Kim, and David Blei. Unsupervised representation learning
via neural activation coding. In International Conference on Machine Learning, pp. 8391–8400.
PMLR, 2021.

Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of response regions of deep
feed forward networks with piece-wise linear activations. arXiv preprint arXiv:1312.6098, 2013.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Stefan Schonsheck, Jie Chen, and Rongjie Lai. Chart auto-encoders for manifold structured data.
arXiv preprint arXiv:1912.10094, 2019.

Ayush Sekhari, Karthik Sridharan, and Satyen Kale. Sgd: The role of implicit regularization, batch-
size and multiple-epochs. Advances In Neural Information Processing Systems, 34:27422–27433,
2021.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In International Conference on Machine Learning, pp. 4558–
4566. PMLR, 2018.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
plicit bias of gradient descent on separable data. The Journal of Machine Learning Research, 19
(1):2822–2878, 2018.

Richard P. Stanley. An introduction to hyperplane arrangements. In Lecture Notes, IAS/Park City
Mathematics Institute, 2004.

Richard P Stanley et al. An introduction to hyperplane arrangements. Geometric combinatorics, 13
(389-496):24, 2004.

Matus Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint
arXiv:1509.08101, 2015.

Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and computational
geometry. CRC press, 2017.

Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Ben Recht. Low-rank so-
lutions of linear matrix equations via procrustes flow. In International Conference on Machine
Learning, pp. 964–973. PMLR, 2016.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

11

Under review as a conference paper at ICLR 2023

Huan Xiong, Lei Huang, Mengyang Yu, Li Liu, Fan Zhu, and Ling Shao. On the number of linear
regions of convolutional neural networks. In International Conference on Machine Learning, pp.
10514–10523. PMLR, 2020.

Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. arXiv preprint
arXiv:1907.10599, 2019.

T. Zaslavsky. Facing up to arrangements : face-count formulas for partitions of space by hyper-
planes. Number 154 in Memoirs of the American Mathematical Society. American Mathematical
Society, 1975.

T Zaslavsky. Facing up to arrangements: face-count formulas for partitions of space by hyperplanes.
Memoirs of American Mathematical Society, 154:1–95, 1997.

Xiao Zhang and Dongrui Wu. Empirical studies on the properties of linear regions in deep neural
networks. arXiv preprint arXiv:2001.01072, 2020.

12

Under review as a conference paper at ICLR 2023

A SIMPLICES, POLYTOPES, AND THEIR COMPUTATION

A.1 NOTATIONS OF A NETWORK

For convenience and consistency, we inherit notations from (Chu et al., 2018). For a ReLU network
that contains L hidden layers, we write the l-th layer as Ll. Specially, L0 is the input layer, LL+1 is
the output layer, and the other layers Ll, l ∈ {1, 2, . . . , L} are hidden layers. Hidden layers’ neurons
are called hidden neurons. Let nl represent the number of neurons in Ll.

Given the i-th neuron of the l-th hidden layer, we denote by b
(l)
i its bias, by a

(l)
i its output, and by

z
(l)
i the total weighted sum of its inputs plus the bias. For all the nl neurons in Ll, we arrange all their

biases into a vector b(l) =
[
b
(l)
1 , . . . ,b

(l)
nl

]⊤
, their outputs into a vector a(l) =

[
a
(l)
1 , . . . ,a

(l)
nl

]⊤
,

and their inputs into a vector z(l) =
[
z
(l)
1 , . . . , z

(l)
nl

]⊤
. Neurons in two neighbor layers are linked

by weighted edges. Denote by W
(l)
ij the weight of the edge between the i-th neuron in Ll+1 and the

j-th neuron in Ll. For l ∈ {1, . . . , L}, we compute z(l+1) by

z(l+1) = W (l)a(l) + b(l), (3)

where W (l) is an nl+1-by-nl matrix.

Let σ : R → R be the ReLU activation function. We have a
(l)
i = σ

(
z
(l)
i

)
for all l ∈ {1, . . . , L}. In

an element-wise fashion, we write σ
(
z(l)
)
=
[
σ
(
z
(l)
1

)
, . . . , σ

(
z
(l)
nl

)]⊤
. Then, for l ∈ {1, . . . , L},

we have
a(l) = σ

(
z(l)
)
. (4)

The input is x ∈ X , where X ∈ Rd, and xi is the i-th dimension of x. The input layer L0 contains
n0 = d nodes, where a

(0)
i = xi, i ∈ {1, . . . , d}. The output of the network is a(L+1) ∈ Y , where

Y ⊆ Rnl+1 . The output layer LL+1 employs the softmax function: a(L+1) = softmax
(
z(L+1)

)
.

A.2 DERIVING POLYTOPES OF A NETWORK

For the i-th hidden neuron in Ll, σ
(
z
(l)
i

)
is in the following form:

σ
(
z
(l)
i

)
=

{
z
(l)
i , if z(l)i ≥ 0

0, if z(l)i < 0,
(5)

where σ
(
z
(l)
i

)
consists of two linear parts. Given a network, an instance x ∈ X determines the

value of z(l)i , and further determines σ
(
z
(l)
i

)
= 0 or σ

(
z
(l)
i

)
= z

(l)
i . According to which part

σ
(
z
(l)
i

)
falls into, one can encode the activation status of each hidden neuron by two states, each

of which uniquely corresponds to one part of σ
(
z
(l)
i

)
. Denote by c

(l)
i ∈ {1, 0} the state of the i-th

hidden neuron in Ll, we have z
(l)
i ≥ 0 if and only if c(l)i = 1 and z

(l)
i < 0 if and only if c(l)i = 0.

The states of different hidden neurons usually differ from each other.

Let c(l) =
[
c
(l)
1 , . . . , c

(l)
nl

]
be the states of all hidden neurons in Ll and C =

[
c(1), . . . , c(L)

]
specify

the collective states of all hidden neurons. C of a given fixed network is uniquely determined by the
instance x. We write the function that maps an instance x ∈ X to a configuration C ∈ {1, 0}N as
conf : X → {1, 0}N , where N =

∑L−1
i=0 nl. Then, we rewrite Eq. (4) as

a(l) = σ
(
z(l)
)
= c(l) ◦ z(l), (6)

where c(l) ◦ z(l) is the Hadamard product between c(l) and z(l).

13

Under review as a conference paper at ICLR 2023

By plugging a(l) into Eq. (3), we rewrite z(l+1) as

z(l+1) = W (l)
(
c(l) ◦ z(l)

)
+ b(l) = W̃ (l)z(l) + b̃(l), (7)

where b̃(l) = b(l) , and W̃ (l) = W (l) ◦c(l) is the generalized Hadamard product, such that the entry
at the i-th row and j-th column of W̃ (l) is W̃ (l)

ij = W
(l)
ij c

(l)
j .

By iteratively enforcing Eq. (7), we can write z(l+1), l ∈ {1, . . . , L} as

z(l+1) =

(
l∏

k=1

W̃ (k)

)
z(1) +

l∑
h=1

(
l∏

k=h+1

W̃ (k)

)
b̃(h). (8)

Substituting z(1) = W (0)x+ b(1) into the above equation, we rewrite z(l+1), l ∈ {1, . . . , L} as

z(l+1) =

(
l∏

k=1

W̃ (k)

)
(W (0)x+ b(1)) +

l∑
h=1

(
l∏

k=h+1

W̃ (k)

)
b̃(h)

=

(
l∏

k=0

W̃ (k)

)
x+ b(1)

(
l∏

k=1

W̃ (k)

)
+

l∑
h=1

(
l∏

k=h+1

W̃ (k)

)
b̃(h)

= Ŵ (0:l)x+ b̂(0:l),

(9)

where Ŵ (0:l) is the coefficient matrix of x, and b̂(0:l) is the sum of the remaining bias terms. Natu-
rally, F (x) is

F (x) = softmax
(
Ŵ (0:L)x+ b̂(0:L)

)
. (10)

For a fixed network and a fixed instance x, Ŵ (0:l) and b̂(0:l) are constant parameters uniquely deter-
mined by activation states of all neurons: C = conf(x). Furthermore, according to Eq. (5), C leads
to a group of inequalities:

(2c(l+1) − 1) ◦ (Ŵ (0:l)x+ b̂(0:l)) ≥ 0, l = 0, · · · , L− 1, (11)
which encompasses a convex polytope according to the H-definition of polytopes (Chapter 16, Toth
et al. (2017)). If conf(x1) = conf(x2), x1 and x2 lie in the same polytope due to the uniqueness.

A.3 COMPUTING #SIMPLICES AND POLYTOPES WITH VERTEX ENUMERATION ALGORITHM

Algorithm 1 Calculate the #simplex of a polytope of a neural network

1: Identify a collective activation state of all neurons
2: Derive a group of inequalities whose hyperplanes encompass the targeted polytope
3: Vertex enumeration algorithm to derive the vertices of the polytope
4: Delaunay triangulation
5: Count #simplices

Next, what is essential is to numerically compute #simplices. Unfortunately, the exact computation
relies on enumerating all collective states of neurons, which is only possible i) when the total number
of neurons in a network is small or ii) when the input dimension is low. For the former, we can
enumerate possible activation states of all neurons by repeating 2

∑L−1
i=0 ni times, while for the latter,

we can uniformly sample the input space by (1ϵ)
d times, where ϵ is the needed sampling interval, to

identify the actual collective states of all neurons. As highlighted earlier, the collective activation
states C lead to a group of inequalities, corresponding to a polytope. We can solve all vertices of
the polytope with the vertex enumeration algorithm 3 (Avis & Fukuda, 1992) to find all vertices of
a polytope. The complexity of the vertex enumeration algorithm scales linearly with the number
of inequalities. Then, Delaunay triangulation [Chapter 23, (Toth et al., 2017)] is executed for these
vertices to see how many non-overlapping simplices these vertices can gain. Lastly, we count the
#simplices. Sometimes, one may not need to compute all polytopes of a neural network. Instead,
the polytopes related to data are sufficient. For example, in the training-free NAS experiment (Chen
et al., 2021), the authors exhausted all training data and identify associated unique polytopes.

3https://pypi.org/project/pypoman/

14

Under review as a conference paper at ICLR 2023

B ESTIMATION TO THE MAXIMUM #SIMPLICES

B.1 PRELIMINARY

Let’s recall some basic knowledge on hyperplane arrangements (Stanley et al., 2004). Let V be a
Euclidean space. A hyperplane in the Euclidean space V ≃ Rn, is a subspace H := {X ∈ V :
α·X = b}, where 0 ̸= α ∈ V , b ∈ R and “·” denotes the inner product. A region of an arrangement
A = {Hi ⊂ V : 1 ≤ i ≤ m} is just a connected component in the complement set of the union
of all hyperplanes in the arrangement A. Let r(A) be the number of regions for an arrangement
A. Also, a simplex in an n-dimensional Euclidean space is just a n-dimensional polytope that is the
convex hull of n + 1 vertices. For example, a triangle is a simplex in R2, and a tetrahedron is a
simplex in R3. A triangulation on some polytope is a division of the polytope into into simplices.

The following Zaslavsky’s Theorem is very crucial in the estimation of the number of linear regions.
Lemma 1 (Zaslavsky’s Theorem (Zaslavsky, 1975; Stanley et al., 2004)). Let A be an arrangement
with m hyperplanes in Rn. Then, the number r(A) of regions for the arrangement A satisfies

r(A) ≤
n∑

i=0

(
m

i

)
. (12)

Furthermore, the above equality holds iff A is in general position Stanley (2004).

B.2 MAIN RESULTS - ONE LAYER RELU NNS

Throughout this paper, we always assume that the input space of an NN is a d-dimensional hyper-
cube C(d,B) := {x = (x1, x2, . . . , xd) ∈ Rd : −B ≤ xi ≤ B} for some large enough constant B.
Note that for a one-layer fully-connected ReLU NN, the pre-activation of each hidden neuron is an
affine linear function of input values. Based on the sign of the pre-activation, each hidden neuron
produces a hyperplane that divides the input space into two linear regions. On the other hand, the
d-dimensional hypercube C(d,B) has 2d hyperplanes in its boundary.
Theorem 5. Let N be a one-layer fully-connected ReLU NN with d input features and n hidden
neurons. Then the number of simplices in triangulations of polytopes generated by N is at most

2n

d−1∑
i=0

(
n− 1

i

)
+ 2d

d−1∑
i=0

(
n

i

)
.

Proof. Let H1, H2, . . . ,Hn be the n hyperplanes generated by n hidden neurons and
Hn+1, Hn+2, . . . ,Hn+2d be the 2d hyperplanes in the boundary of C(d,B). Then for each
1 ≤ i ≤ n, the hyperplane Hi may be intersected by other n − 1 hyperplanes in H1, H2, . . . ,Hn.
This will produce at most n − 1 hyperplanes in Hi, thus by Theorem 1, it will divide Hi into at
most

∑d−1
i=0

(
n−1
i

)
pieces since Hi is a (d − 1)-dim hyperplane. Also, for each 1 ≤ i ≤ 2d, the

hyperplane Hn+i may be intersected by H1, H2, . . . ,Hn. This will produce at most n (d− 2)-dim
hyperplanes in Hn+i, thus by Theorem 1, it will divide Hi into at most

∑d−1
i=0

(
n
i

)
pieces since Hi

is a (d− 1)-dim hyperplane. Moreover, each piece could be a face of two linear regions, finally we
will get at most

2n

d−1∑
i=0

(
n− 1

i

)
+ 2d

d−1∑
i=0

(
n

i

)
faces for all the polytopes. On the other hand, each simplex in a triangulation of polytope can be
corresponding to at least one face in the polytope, and each face in the polytope can be corresponding
to exactly one simplex. Therefore, the total number of simplices must be smaller than or equal to the
total number of faces in all polytopes. Thus we obtain that the number of simplices in triangulations
of polytopes generated by N is also at most

2n

d−1∑
i=0

(
n− 1

i

)
+ 2d

d−1∑
i=0

(
n

i

)
.

15

Under review as a conference paper at ICLR 2023

The following results gives a lower bound for the maximum number of simplices in a triangulation
of for a one layer fully-connected ReLU NN.
Theorem 6. Let N be a one-layer fully-connected ReLU NN with d input features and n hidden
neurons. If n corresponding hyperplanes are in general position and C(d,B) is large enough, then
the number of simplices in a triangulation of polytopes among all n corresponding hyperplanes is
at least

2n

d+ 1

d−1∑
i=0

(
n− 1

i

)
=

2nd

(d+ 1)(d− 1)!
+O(nd−1).

Proof. Let H1, H2, . . . ,Hn be n hyperplanes generated by n hidden neurons. Then for each 1 ≤
i ≤ n, the hyperplane Hi will be intersected by other n − 1 hyperplanes in H1, H2, . . . ,Hn. This
will produce exact n − 1 hyperplanes in Hi since H1, H2, . . . ,Hn are in general position, thus by
Theorem 1, it will divide Hi into exact

∑d−1
i=0

(
n−1
i

)
pieces since Hi is a (d − 1)-dim hyperplane.

When C(d,B) is large enough, we can assume that every such a piece has a non-empty intersection
with C(d,B). Therefore, the total sum of number of (d− 1)-faces of all linear regions (polytopes)
will be at least 2n

∑d−1
i=0

(
n−1
i

)
since every piece is counted twice. On the other hand, every d-dim

simplex has d+1 distinct (d− 1)-dim faces, thus every triangulation with N simplices will contain
N(d + 1) number (d − 1)-dim faces. Therefore, if a triangulation of all linear regions (polytopes)
of N contains N simplices, then

N(d+ 1) ≥ 2n

d−1∑
i=0

(
n− 1

i

)
and thus

N ≥ 2n

d+ 1

d−1∑
i=0

(
n− 1

i

)
.

Finally, we derive that a triangulation of all linear regions (polytopes) of N contains at least
2n
d+1

∑d−1
i=0

(
n−1
i

)
= 2nd

(d+1)(d−1)! +O(nd−1) simplices.

B.3 MAIN RESULTS - MULTI-LAYER RELU NNS

To study the multi-layer NNs, we need the following results from (Montúfar, 2017, Proposation 3).
Lemma 2 (Montúfar (2017)). Let N be a multi-layer fully-connected ReLU NN with d input features
and L hidden layers with n1, n2, . . . , nL hidden neurons. Then the number of polytopes of N is at
most

∏L
i=1

∑mi

j=0

(
ni

j

)
, where mi = min{d, n1, n2, . . . , ni}.

Theorem 7. Let N be a multi-layer fully-connected ReLU NN with d input features and L hidden
layers with n hidden neurons in each layer. Then the number of simplices in triangulations of
polytopes generated by N is at most

2ndL

(d− 1)!(d!)L−1
+O(ndL − 1). (13)

Proof. First, we prove by induction that the total number of faces generated by N is at most

2ndL

(d− 1)!(d!)L−1
+O(ndL − 1).

The case L = 1 is proved in Theorem 5. When L ≥ 2, we assume that Eq. (13) holds for L − 1.
Thus by Lemma 2, and the induction hypothesis, the network N ′ with the first L− 1 layers already
has

nd(L−1)

(d!)L−1
+O(nd(L−1)−1)

linear regions and
2nd(L−1)

(d− 1)!(d!)L−2
+O(nd(L−1)−1)

16

Under review as a conference paper at ICLR 2023

faces for all polytopes. Then when we add the L-th layer, for each polytope R with fR faces in N ′,
the n neurons and the fR faces create at most n+ fR hyperplanes in R, similar to Theorem 5 these
creates

2n

d−1∑
i=0

(
n− 1

i

)
+ fR

d−1∑
i=0

(
n

i

)
faces for all the polytopes in R. Therefore, we obtain that the total number of faces is at most

2n

d−1∑
i=0

(
n− 1

i

)
·
(
nd(L−1)

(d!)L−1
+O(nd(L−1)−1)

)
+

d−1∑
i=0

(
n

i

)∑
R

fR

= 2n

d−1∑
i=0

(
n− 1

i

)
·
(
nd(L−1)

(d!)L−1
+O(nd(L−1)−1)

)

+

d−1∑
i=0

(
n

i

)
·
(

2nd(L−1)

(d− 1)!(d!)L−2
+O(nd(L−1)−1)

)
=

2ndL

(d− 1)!(d!)L−1
+O(ndL − 1).

Therefore, the total number of simplices must be smaller than or equal to the total number of faces in
all polytopes. Thus we obtain that the number of simplices in triangulations of polytopes generated
by N is also at most

2ndL

(d− 1)!(d!)L−1
+O(ndL − 1).

On the other hand, by the following lemma it is easy to derive the maximum number of simplices in
triangulations of polytopes generated by multi-layer NNs.

Lemma 3 (Montufar et al. (2014)). Let N be a multi-layer fully-connected ReLU NN with d input
features and L hidden layers with nl hidden neurons in the l-th layer. Then the maximum number of
linear regions of N is at least

∏L−1
l=1

⌊
nl

d

⌋d∑d
j=0

(
nL

j

)
.

For the lower bounds, we have the following results.

Theorem 8. Let N be a multi-layer fully-connected ReLU NN with d input features and L hidden
layers with n neurons in each layer. Then the maximum number of simplices in triangulations of
polytopes generated by N is at least

ndL

dd(L−1)d!
+O(ndL−1).

Proof. By Lemma 3, the the maximum number of linear regions is lower bounded by(
n
d

)d(L−1)∑d
i=0

(
n
i

)
= ndL

dd(L−1)d!
+O(ndL−1). Also, the number of simplies should be larger than

or equal to the number of linear regions. Thus we obtain the number of simplices in a triangulation
of polytopes among all n corresponding hyperplanes is at least ndL

dd(L−1)d!
+O(ndL−1).

Now, we can derive Theorems 1 and 2 in the main text.

Proof of Theorem 1. Directly by Theorems 5 and 7.

Proof of Theorem 2. Directly by Theorems 6 and 8.

17

Under review as a conference paper at ICLR 2023

B.4 COMPARISON OF DIFFERENT NETWORK ARCHITECTURES

The aim of this section is to compare the the maximum #simplices based on bounds obtained in
Section B.2. Our conclusion is that deep NNs usually have more number of simplices than shallow
NNs with the same number of parameters.

First let’s fix some notations. For two functions f(n) and g(n), we write f(n) = Θ(g(n)) if
there exists some positive constants c1, c2 such that c1g(n) ≤ f(n) ≤ c2g(n) for all sufficiently
large n; f(n) = O(g(n)) if there exists some positive constant c > 0 such that f(n) ≤ cg(n)
for all sufficiently large n; and f(n) = Ω(g(n)) if there exists some positive constant c such that
f(n) ≥ cg(n) for all sufficiently large n.

The number of parameters for the fully-connected ReLU NN N is easy to compute (Pascanu et al.,
2013, Proposition 7).
Lemma 4. Let N be a multi-layer fully-connected ReLU NN with d input features and L hidden
layers with n hidden neurons in each layer. Then the number of parameters in N is Θ(Ln2).

Let SN1
be the maximum number of simplices in triangulations of polytopes generated by N . Now

we can derive the number of simplices per parameter for deep NNs and their shallow counterparts.
The following result follows directly from Lemma 4, Theorem 1 and Theorem 2.
Theorem 9. Let N1 be a multi-layer fully-connected ReLU NN with d input features and L hidden
layers with n hidden neurons in each layer, and d = O(1). Then N1 has Θ(Ln2) parameters, and
the ratio of SN1

to the number of parameters of N1 is
SN1

parameters of N1
= Ω

(1
L

· ndL−2

dd(L−1)d!

)
.

For a one-layer fully-connected ReLU NN N2 with d input features and Ln2 hidden neurons, it has
Θ(Ln2) parameters, and the ratio for N2 is

SN2

parameters of N2
= O

(
(Ln2)d−1

(d− 1)!

)
.

From Theorem 9 we obtain that SN1

parameters of N1
grows at least exponentially fast with the depth L

and polynomially fast with the width n. In contrast, SN2

parameters of N2
grows at most polynomially fast

with the numbers L and n.

Therefore, we have that SN1

parameters of N1
is far larger than SN2

parameters of N2
when L and n are suffi-

ciently large. Thus we conclude that fully-connected ReLU NNs usually create much more number
of simplices than one-layer fully-connected ReLU NNs with asymptotically the same number of
input dimensions and parameters. This result suggests that fully-connected ReLU NNs usually have
much more expressivity than one-layer fully-connected ReLU NNs.

B.5 AVERAGE NUMBER OF FACES IN LINEAR REGIONS OF NEURAL NETWORKS

In this subsection, we provide the proofs of Theorem 4.

Proof of Theorem 4. Similar to the proof of Theorem 3, we obtain that for each linear region S
produced by the first (i− 1)-th layers of N , the average number of faces in linear regions of S after
adding the i-th layer is at most

2nS

∑d−1
i=0

(
nS−1

i

)
+ f

∑d−1
i=0

(
nS

i

)∑d
i=0

(
nS

i

) ≤
2nS

∑d−1
i=0

(
nS−1

i

)
+ f

∑d−1
i=0

(
nS

i

)∑d−1
i=0

(
nS

i+1

)
where f is the number of faces of S. For each 0 ≤ i ≤ d− 1, we have

2nS ·
(
nS−1

i

)
+ f

(
nS

i

)(
nS

i+1

) ≤ 2(i+ 1) +
f(i+ 1)

nS − i
≤ 2d

(
1 +

f

2(nS − d+ 1)

)
.

When nS is large enough, f
2(nS−d+1) should tend to 0, thus the right hand side of the last inequality

should be smaller than 2d+1. Therefore, the average number of faces in linear regions of N is also
at most 2d+ 1.

18

Under review as a conference paper at ICLR 2023

C OTHER PROPERTIES OF #SIMPLICES

• One-to-one correspondence via modularization and network transform: A simplex is an ele-
mentary unit. Proposition 1 shows that an arbitrary ReLU network can be transformed into a wide
network whose depth is the input dimension and width is determined by the #simplices. Therefore,
as long as the support of functions represented by two networks is filled by the same #simplices, two
networks can be represented by the network of the same width and depth. As such, we can define the
equivalent class of networks as those with the same #simplices to cover their polytopes. In contrast,
#polytopes cannot be used to rigorously define the equivalent networks because the polytopes are
not elementary units. When one is told that two networks have the same #polytopes, one is still not
totally sure whether two networks are equally complex.
Proposition 1 (#Simplices in network transform (Fan et al., 2020)). Suppose that the representa-
tion of an arbitrary ReLU network is h : [−B, B]D → R, and M is the minimum #simplices to
cover the polytopes to support h, for any δ > 0, there exists a wide ReLU network H of width
O
[
D(D + 1)(2D − 1)M

]
and depth D, satisfying that

m
(
x | h(x) ̸= H(x)}

)
< δ (14)

where m(·) is the standard measure in [−B, B]D.

19

Under review as a conference paper at ICLR 2023

D SUPPLEMENTARY EXPERIMENTS FOR DIFFERENT DEPTHS

0 25 50 75
0

1000

2000

3000

4000

5000

Depth=8

3-20-20-20-20-20-20-20-20-1

0 25 50 75
0

2000

4000

6000

8000
Depth=8

3-40-40-40-40-40-40-40-40-1

0 50 100
0

2000

4000

6000

8000

Depth=8

3-80-80-80-80-80-80-80-80-1

0 50 100
0

2000

4000

6000

8000

Depth=8

3-160-160-160-160-160-160-160-160-1

0 25 50 75
0

1000

2000

3000

Depth=5

3-20-20-20-20-20-1

0 25 50 75
0

2000

4000

6000

Depth=5

3-40-40-40-40-40-1

0 50 100
0

2000

4000

6000

8000

Depth=5

3-80-80-80-80-80-1

0 50
0

2000

4000

6000

8000
Depth=5

3-160-160-160-160-160-1

Figure 7: The uniformity and simplicity hold true for deep networks under Xavier uniform initialization.

0 50 100
0

2000

4000

6000

8000
Depth=8

3-20-20-20-20-20-20-20-20-1

0 25 50 75
0

2000

4000

6000

8000
Depth=8

3-40-40-40-40-40-40-40-40-1

0 50 100
0

2000

4000

6000

8000

Depth=8

3-80-80-80-80-80-80-80-80-1

0 50 100
0

2000

4000

6000

8000

Depth=8

3-160-160-160-160-160-160-160-160-1

0 25 50 75
0

1000

2000

3000

4000

Depth=5

3-20-20-20-20-20-1

0 50 100
0

2000

4000

6000

Depth=5

3-40-40-40-40-40-1

0 50 100
0

2000

4000

6000

8000
Depth=5

3-80-80-80-80-80-1

0 25 50 75
0

2000

4000

6000

8000
Depth=5

3-160-160-160-160-160-1

Figure 8: The uniformity and simplicity hold true for deep networks under Xavier normal initialization.

0 25 50 75
0

2000

4000

6000
Depth=8

3-20-20-20-20-20-20-20-20-1

0 25 50 75
0

2000

4000

6000

8000

Depth=8

3-40-40-40-40-40-40-40-40-1

0 50 100
0

2000

4000

6000

8000

10000

Depth=8

3-80-80-80-80-80-80-80-80-1

0 50 100
0

2000

4000

6000

8000

Depth=8

3-160-160-160-160-160-160-160-160-1

0 25 50 75
0

1000

2000

3000

4000

Depth=5

3-20-20-20-20-20-1

0 25 50 75
0

2000

4000

6000

Depth=5

3-40-40-40-40-40-1

0 50 100
0

2000

4000

6000

8000

10000

Depth=5

3-80-80-80-80-80-1

0 50 100
0

2000

4000

6000

8000

10000
Depth=5

3-160-160-160-160-160-1

Figure 9: The uniformity and simplicity hold true for deep networks under Kaiming initialization.

Here, we evaluate if the uniformity and simplicity of polytopes still hold for deeper networks. This
question is non-trivial, since a deeper network can theoretically generate more complicated poly-
topes. Will the depth break the uniformity? We choose four different widths (20, 40, 80, 160).

20

Under review as a conference paper at ICLR 2023

0 25 50 75
0

2000

4000

6000

Depth=8

3-20-20-20-20-20-20-20-20-1

0 50 100
0

2000

4000

6000

8000

Depth=8

3-40-40-40-40-40-40-40-40-1

0 50 100
0

2000

4000

6000

8000

Depth=8

3-80-80-80-80-80-80-80-80-1

0 50 100
0

2000

4000

6000

8000

Depth=8

3-160-160-160-160-160-160-160-160-1

0 25 50 75
0

1000

2000

3000

4000

5000

Depth=5

3-20-20-20-20-20-1

0 25 50 75
0

2000

4000

6000

Depth=5

3-40-40-40-40-40-1

0 50 100
0

2000

4000

6000

8000
Depth=5

3-80-80-80-80-80-1

0 50 100
0

2000

4000

6000

8000

10000
Depth=5

3-160-160-160-160-160-1

Figure 10: The uniformity and simplicity hold true for deep networks under orthogonal initialization.

For comprehensiveness, the network initialization methods are the Xavier uniform, Xavier normal,
Kaiming, and orthogonal initialization. The depth is set to 5 and 8, respectively. The bias value is
0.01. Likewise, a total of 8,000 points are uniformly sampled from [−1, 1]3 to compute the polytope.
At the same time, we check the activation states of all neurons to avoid counting some polytopes
more than once. Each run is repeated five times. The results under four different initialization are
shown in Figures 7, 8, 9, and 10, from which we draw three highlights. First, we find that both
going deep and going wide can increase the number of polytopes at different initializations. But the
effect of going deep is much more significant than that of going wide. Second, when the network
goes deep, although that the total number of polytopes increases, simple polytopes still dominate
among all polytopes. Third, for different initialization methods and different depths, the dominating
polytope is slightly different. For example, the dominating polytopes for the network 3-40-40-40-
40-40-1 under Xavier normal initialization are those with 6∼10 simplices, while the dominating
polytopes for the network 3-20-20-20-20-20-1 under Xavier uniform initialization are those with
1∼5 simplices.

21

Under review as a conference paper at ICLR 2023

E SUPPLEMENTARY EXPERIMENTS FOR DIFFERENT BIASES

10 20
0

2500

5000

7500

10000

12500
Bias=0

0 25 50 75
0

2000

4000

6000

Bias=0.01

0 25 50 75
0

2000

4000

6000

Bias=0.05

0 25 50 75
0

2000

4000

6000

Bias=0.1

Figure 11: The simplicity and uniformity hold true for different bias values under Xavier initialization.

10 20
0

2500

5000

7500

10000

12500
Bias=0

0 25 50 75
0

1000

2000

3000

4000

5000

Bias=0.01

0 25 50 75
0

1000

2000

3000

4000

5000

Bias=0.05

0 25 50 75
0

2000

4000

6000

Bias=0.1

Figure 12: The simplicity and uniformity hold true for different bias values under Xavier normal initialization.

10 20 30
0

2500

5000

7500

10000

12500
Bias=0

0 25 50 75
0

1000

2000

3000

4000

5000

Bias=0.01

0 25 50 75
0

1000

2000

3000

4000

5000

Bias=0.05

0 25 50 75
0

2000

4000

6000
Bias=0.1

Figure 13: The simplicity and uniformity hold true for different bias values under Kaiming initialization.

10 20 30
0

2500

5000

7500

10000

12500
Bias=0

0 25 50 75
0

1000

2000

3000

4000

5000

Bias=0.01

0 25 50 75
0

1000

2000

3000

4000

5000

Bias=0.05

0 25 50 75
0

2000

4000

6000
Bias=0.1

Figure 14: The simplicity and uniformity hold true for different bias values under orthogonal initialization.

Here, we are curious about how the bias value of neurons will affect the distribution of polytopes. To
address this issue, we set the bias values to 0, 0.01, 0.05, 0.1, respectively for the network 3-80-40-1.
The outer bounding box is [−1, 1]3. A total of 8,000 points are uniformly sampled from [−1, 1]3

to compute the polytope. At the same time, we check the activation states of all neurons to avoid
counting some polytopes more than once. Each run is repeated five times. The initialization methods
are the Xavier uniform, Xavier normal, Kaiming, and orthogonal initialization. As shown in Figures
11, 12, 13, and 14 for different initialization methods, we observe that as the bias value increases,
more polytopes are produced. However, the number of simple polytopes still takes up the majority.
It is worthwhile mentioning that when the bias equals 0, the uniformity is crystal clear. The bias=0
is the extremal case, where all hyperplanes of the first layer intersect at the original point, and much
fewer facets in polytopes are created.

22

Under review as a conference paper at ICLR 2023

F SUPPLEMENTARY EXPERIMENTS FOR BOUNDING BOXES OF DIFFERENT
SIZES

0 50
0

2000

4000

[1, 1]3

0 50
0

2000

4000

6000

[2, 2]3

0 50
0

2000

4000

[5, 5]3

0 50
0

2000

4000

6000

[10, 10]3

Figure 15: The simplicity and uniformity hold true for larger bounding boxes under the Xavier uniform initial-
ization.

0 50
0

2000

4000

[1, 1]3

0 50
0

2000

4000

6000

[2, 2]3

0 50
0

2000

4000

6000

[5, 5]3

0 50 100
0

2000

4000

6000

8000
[10, 10]3

Figure 16: The simplicity and uniformity hold true for larger bounding boxes under the Xavier normal initial-
ization.

0 50
0

2000

4000

[1, 1]3

0 50
0

2000

4000

6000
[2, 2]3

0 50
0

2000

4000

6000
[5, 5]3

0 50
0

2000

4000

6000
[10, 10]3

Figure 17: The simplicity and uniformity hold true for larger bounding boxes under Kaiming initialization.

0 50
0

2000

4000

6000

[1, 1]3

0 50
0

2000

4000

6000

[2, 2]3

0 50
0

2000

4000

6000

[5, 5]3

0 50
0

2000

4000

6000

[10, 10]3

Figure 18: The simplicity and uniformity hold true for larger bounding boxes under the orthogonal initialization.

In the above experiments, we set the outer bounding box to [−1, 1]d, where d is the dimension.
Will the size of the bounding box change the uniformity of linear regions? Potentially, a larger
bounding box will include more regions, and these regions may be complicated. To resolve this
ambiguity, we derive the linear regions of the network 3-80-40-1 when setting the bounding box size
to [−1, 1]3, [−2, 2]3, [−5, 5]3, [−10, 10]3, respectively. Earlier, we have shown that different bias
values do not affect the uniformity and simplicity of polytopes. Therefore, here we randomly set the
bias value to 0.01. The initialization methods are the Xavier uniform, Xavier normal, Kaiming, and
orthogonal initialization. The results are plotted in Figures 15, 16, 17, and 18, from which we have
two observations. First, for different initialization methods, when the size of the outer bounding box

23

Under review as a conference paper at ICLR 2023

increases, the number of polytopes increases. This is probably because more polytopes are included
in the larger area. Second, we find that the uniformity and simplicity of polytopes hold for both
smaller and larger bounding boxes for different initialization methods.

24

Under review as a conference paper at ICLR 2023

G SUPPLEMENTARY EXPERIMENTS FOR NETWORK STRUCTURES

0 20 40 60
0

500

1000

1500

2000

2500

3-40-20-1

0 20 40 60
0

500

1000

1500

2000

2500

3000

3-40-20-10-1

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

3-80-40-20-10-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

7000

3-160-80-40-20-10-1

0 20 40 60 80
0

500

1000

1500

2000

2500

3-20-40-1

0 20 40 60
0

500

1000

1500

2000

2500

3000
3-10-20-40-1

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

3-10-20-40-80-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

3-10-20-40-80-160-1

Figure 19: The simplicity and uniformity hold true for both pyramidal and inverted pyramidal structures under
the Xavier uniform initialization.

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3-40-20-1

0 20 40 60 80
0

500

1000

1500

2000

2500

3000

3500

3-40-20-10-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

7000

3-80-40-20-10-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

7000

3-160-80-40-20-10-1

0 10 20 30 40 50 60
0

250

500

750

1000

1250

1500

1750

2000

3-20-40-1

0 20 40 60 80
0

500

1000

1500

2000

2500

3-10-20-40-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

3-10-20-40-80-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

3-10-20-40-80-160-1

Figure 20: The simplicity and uniformity hold true for pyramidal and inverted pyramidal structures under the
Xavier normal initialization.

0 20 40 60 80
0

500

1000

1500

2000

2500

3000

3-40-20-1

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3-40-20-10-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

7000

3-80-40-20-10-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

7000

8000
3-160-80-40-20-10-1

0 20 40 60 80
0

500

1000

1500

2000

2500

3000

3-20-40-1

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

3-10-20-40-1

0 20 40 60 80
0

1000

2000

3000

4000

5000
3-10-20-40-80-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

3-10-20-40-80-160-1

Figure 21: The simplicity and uniformity hold true for pyramidal and inverted pyramidal structures under the
Kaiming initialization.

In the above experiments, the structures of all networks we use are pyramidal. Here, we investigate
how pyramidal and inverted pyramidal structures affect the uniformity and simplicity of polytopes.

25

Under review as a conference paper at ICLR 2023

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500
3-40-20-1

0 20 40 60 80
0

500

1000

1500

2000

2500

3000

3500

3-40-20-10-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

7000

3-80-40-20-10-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

7000

3-160-80-40-20-10-1

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3-20-40-1

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3-10-20-40-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

3-10-20-40-80-1

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

7000
3-10-20-40-80-160-1

Figure 22: The simplicity and uniformity hold true for pyramidal and inverted pyramidal structures under the
orthogonal initialization.

Earlier, we have shown that different bias values and bounding boxes do not undermine the uni-
formity and simplicity of polytopes. Therefore, here we randomly set the bias value to 0.01, and
the bounding box size to [−1, 1]3. A total of 8,000 points are uniformly sampled from [−1, 1]3

to compute the polytope. At the same time, we check the activation states of all neurons to avoid
counting some polytopes more than once. The initialization methods are the Xavier uniform, Xavier
normal, Kaiming, and orthogonal initialization. The compared network structures are (3-40-20-1, 3-
20-40-1), (3-40-20-10-1, 3-10-20-40-1), (3-80-40-20-1, 3-20-40-80-1), and (3-160-80-40-20-10-1,
3-10-20-40-80-160-1). The histograms are shown in Figures 19, 20, 21, and 22. First, we find that
given the same number of neurons, for different initialization methods, the total number of polytopes
generated by inverted pyramidal strcutures is smaller than that of pyramidal structures. This might
be because a neural network is a sequential model, the earlier layer forms a basis for layer layers
to cut. The earlier layers with more neurons can have more hyperplanes, which can facilitate more
polytopes. Second, for different initialization methods, the uniformity and simplicity of polytopes
are respected by both pyramidal and inverted pyramidal structures.

26

Under review as a conference paper at ICLR 2023

H SUPPLEMENTARY EXPERIMENTS FOR BOTTLENECKS

Here, we investigate if the bottleneck layer in a network will affect the uniformity and simplicity of
polytopes. We randomly set the bounding box size to [−1, 1]3, and the bias value to 0.01. A total
of 8,000 points are uniformly sampled from [−1, 1]3 to compute the polytope. At the same time,
we check the activation states of all neurons to avoid repetitive calculation. The initialization meth-
ods are the Xavier uniform, Xavier normal, Kaiming, and orthogonal initialization. The network
structures with bottlenecks are 3-20-10-20-1, 3-20-10-10-20-1, 3-20-20-10-20-20-1, and 3-20-20-
10-10-20-20-1. The histograms are shown in Figures 23, 24, 25, and 26. We find that for different
initialization methods, the polytopes generated by a network with bottleneck layers are still uniform
and simple.

0 50
0

1000

2000

3-20-10-20-1

0 25 50
0

1000

2000

3000
3-20-10-10-20-1

0 25 50
0

1000

2000

3000

3-20-20-10-20-20-1

0 50
0

2000

4000

60003-20-20-20-10-10-20-20-20-1

Figure 23: The simplicity and uniformity hold true for bottlenecks under Xavier initialization.

0 25 50
0

500

1000

1500

2000
3-20-10-20-1

0 50
0

500

1000

1500

2000

3-20-10-10-20-1

0 50
0

1000

2000

3000

4000 3-20-20-10-20-20-1

0 50
0

2000

4000

3-20-20-20-10-10-20-20-20-1

Figure 24: The simplicity and uniformity hold true for bottlenecks under the Xavier normal initialization.

0 50
0

500

1000

1500

2000 3-20-10-20-1

0 25 50
0

1000

2000

3-20-10-10-20-1

0 50
0

1000

2000

3000

4000

3-20-20-10-20-20-1

0 50
0

2000

4000

60003-20-20-20-10-10-20-20-20-1

Figure 25: The simplicity and uniformity hold true for bottlenecks under the Kaiming initialization.

0 50
0

1000

2000

3-20-10-20-1

0 50
0

1000

2000

3-20-10-10-20-1

0 50
0

1000

2000

3000

4000

3-20-20-10-20-20-1

0 50
0

2000

4000

6000
3-20-20-20-10-10-20-20-20-1

Figure 26: The simplicity and uniformity hold true for bottlenecks under the orthogonal initialization.

27

Under review as a conference paper at ICLR 2023

I SUPPLEMENTARY EXPERIMENTS FOR DIFFERENT DIMENSIONS

0 500 1000
0

2000

4000

6000

8000

Dim=4

0 5000 10000 15000 20000
0

2500

5000

7500

10000

12500
Dim=5

0 100000 200000 300000
0

2500

5000

7500

10000

12500

Dim=6

Figure 27: The simplicity and uniformity hold true for different dimensions under Xavier initialization

0 250 500 750 1000
0

2000

4000

6000

8000
Dim=4

0 5000 10000 15000
0

2000

4000

6000

8000

10000

Dim=5

0 100000 200000
0

2000

4000

6000

8000

10000

Dim=6

Figure 28: The simplicity and uniformity hold true for different dimensions under Xavier normal initialization

0 250 500 750 1000
0

2000

4000

6000

Dim=4

0 5000 10000 15000 20000
0

2500

5000

7500

10000

12500

Dim=5

0 100000 200000 300000
0

2500

5000

7500

10000

12500

Dim=6

Figure 29: The simplicity and uniformity hold true for different dimensions under Kaiming initialization

0 250 500 750 1000
0

2000

4000

6000

8000
Dim=4

0 5000 10000 15000 20000
0

2000

4000

6000

8000

10000

Dim=5

0 100000 200000 300000
0

2500

5000

7500

10000

12500

Dim=6

Figure 30: The simplicity and uniformity hold true for different dimensions under orthogonal initialization

Here, we investigate how the input dimension will affect the distribution of polytopes. We com-
pute the polytopes of three networks: 4-40-20-1, 5-40-20-1, and 6-40-20-1. Due to the intrinsic
difficulty of computing simplices in high dimensional space, it is very time-consuming to go higher
dimensions. We set the bias values to 0.01. The outer bounding box is [−1, 1]d, where d is the
dimensionality. A total of 8,000 points are randomly sampled from [−1, 1]d. At the same time, we
check the activation states of all neurons to avoid computing some polytope more than once. The
initialization methods are the Xavier uniform, Xavier normal, Kaiming, and orthogonal initializa-
tion. Figures 27, 28, 29, and 30 show the distribution of #simplices. As the dimension increases,
a polytope tends to have much more simplices, while the total number of polytopes only slightly

28

Under review as a conference paper at ICLR 2023

increases. We use the triangulation method to compute the number of simplices. According to trian-
gulation properties, the maximum number of simplices approximately equals O(Md/2), where M
is the number of simplices, and d is the dimension. This is why the complexity of the linear regions
will increase. For different initialization methods, most polytopes are those with a smaller number
of simplices.

29

	Introduction
	Related Work
	Preliminaries and Basic Properties
	Preliminaries
	Characterizing Properties of #Simplices

	Deep ReLU Networks Have Simple and Uniform Linear Regions
	Initialization
	Training

	Mathematical Interpretation
	Discussion and Conclusion
	Reproducibility Statement
	Simplices, Polytopes, and Their Computation
	Notations of a Network
	Deriving Polytopes of a Network
	Computing #Simplices and Polytopes with Vertex Enumeration Algorithm

	Estimation to the maximum #Simplices
	Preliminary
	Main results - One Layer ReLU NNs
	Main results - Multi-Layer ReLU NNs
	Comparison of Different Network Architectures
	Average Number of Faces in Linear Regions of Neural Networks

	Other Properties of #Simplices
	Supplementary Experiments for Different Depths
	Supplementary Experiments for Different Biases
	Supplementary Experiments for Bounding Boxes of Different Sizes
	Supplementary Experiments for Network Structures
	Supplementary Experiments for Bottlenecks
	Supplementary Experiments for Different dimensions

