
BAKU: An Efficient Transformer for
Multi-Task Policy Learning

Siddhant Haldar Zhuoran Peng Lerrel Pinto

New York University

Abstract

Training generalist agents capable of solving diverse tasks is challenging, often
requiring large datasets of expert demonstrations. This is particularly problematic
in robotics, where each data point requires physical execution of actions in the real
world. Thus, there is a pressing need for architectures that can effectively leverage
the available training data. In this work, we present BAKU, a simple transformer
architecture that enables efficient learning of multi-task robot policies. BAKU
builds upon recent advancements in offline imitation learning and meticulously
combines observation trunks, action chunking, multi-sensory observations, and
action heads to substantially improve upon prior work. Our experiments on 129
simulated tasks across LIBERO, Meta-World suite, and the Deepmind Control suite
exhibit an overall 18% absolute improvement over RT-1 and MT-ACT, with a 36%
improvement on the harder LIBERO benchmark. On 30 real-world manipulation
tasks, given an average of just 17 demonstrations per task, BAKU achieves a 91%
success rate. Videos of the robot are best viewed at baku-robot.github.io.

1 Introduction

Learning generalist policies that can solve multiple tasks is a long standing problem in decision
making and robotics. While significant advances have been made in computer vision [4, 59] and
natural language processing [2, 53, 69], algorithms that can effectively do so for physical agents are
far behind. A key reason for this is the scale of available data. While large-scale datasets in vision
and language can readily be amassed from the Internet, robotics presents a unique challenge. Given
its interactive nature, data acquisition requires physical engagement with the world, making robot
data considerably more laborious to obtain in terms of both time and financial costs.

A prominent approach for training multi-task policies is to bite the bullet and collect large amounts of
data, often by contracting teleoperators [37, 6, 61]. However, policies trained on such data are quite
inefficient, often achieving performance far below independently trained single-task policies [75, 44,
57]. The current best answer to solve this problem is unfortunately to collect even more demonstration
data from experts.

In this work, we present BAKU, a simple architecture for multi-task policy learning that provides
highly efficient training, particularly in data-scarce problems such as robotics. BAKU builds upon
recent work in multitask learning [5, 6] and has three key features. First, a transformer encoder that
fuses information from multiple modalities like vision and language while incorporating temporal
context. Second, a FiLM-conditioned [46] visual encoder helps the model learn task-specific repre-
sentations by adapting the encoder to the task. Third, an action prediction head that is separated from
the observational encoding trunk, enabling BAKU to be easily retrofitted with state-of-the-art action

Correspondence to: siddhanthaldar@nyu.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://baku-robot.github.io/

(b) Performance on LIBERO-90 (c) Real-world tasks (8 of 30 shown)

(a) Overview

Open the door of the oven

Put ketchup bottle inside fridge Take knife out of the organizer

Fetch glass from the rack Put cream cheese in basket Wipe the board with a towel

Fetch yoghurt bottle from fridge

Success rate

0.52

0.60

0.87

0.90

0.87

Close the door of the oven
Instruction

Camera Views

Robot State X

Z

Y

End effector
pose

̂a…

Sensory
Encoders

Observation
Trunk

Action
Head

Tim
e

Lift white plate off the rack

0

RT-1 MT-ACT

MLP

Transformer

+ Action Chunking

+ History

+ FiLM Conditioning

Baku

(Baku)

(Baku)

Figure 1: (a) We present BAKU, a simple transformer architecture learning multi-task policies across
a diverse range of tasks. BAKU encodes inputs from different modalities using modality-specific
encoders. The encoded representations are merged in an observation trunk before predicting actions
through an action head. (b) We develop a unified policy for 90 tasks in the LIBERO-90 benchmark,
discussing design choices that impact multi-task performance. (c) On our xArm robot, BAKU can
learn a single multi-task policy for 30 tasks with an average of 17 demonstrations collected per task.

generation models [39, 60, 31, 10]. The novelty of BAKU hence lies in carefully combining these
ideas to produce a new transformer architecture particularly suited for multitask decision making.

To demonstrate the effectiveness of BAKU, we run extensive experiments on 129 simulated tasks
across LIBERO [34], Meta-World [76], and DeepMind Control [67], and 30 robotic manipulation
tasks on an xArm robot (see Fig. 1). Our main findings are summarized below:

1. BAKU exhibits an overall 18% absolute performance improvement over prior state-of-the-art
multi-task learning algorithms on 129 tasks across 3 simulated environment suites (Section 4.1).
BAKU sets a state-of-the-art performance on LIBERO with 90% average success rate, a 36%
absolute improvement over prior work (Table 1).

2. On real-world tasks, with an average of 17 demonstrations per task, BAKU achieves an average
success rate of 91% across 30 diverse tasks in a multi-task kitchen environment, with randomized
object initialization. This outperforms prior state-of-the-art algorithms by 35% (Section 4.2).

3. Through an ablation analysis, we study the importance of each component in BAKU (Section 4.4),
particularly the role of action chunking [77] and a multimodal action head in boosting performance,
especially in our real-world experiments.

All of our datasets, and training and evaluation code will be made publicly available. Videos of our
trained policies can be seen here: baku-robot.github.io.

2 Background

Imitation Learning: The goal of imitation learning is to learn a behavior policy πb given access
to either the expert policy πe or trajectories derived from the expert policy T e. While there are a
multitude of settings with differing levels of access to the expert [68], this work operates in the setting
where the agent only has access to observation-based trajectories, i.e. T e ≡ {(ot, at)Tt=0}Nn=0. Here

2

https://baku-robot.github.io/

Observation Trunk

Text

Encoder

Action

Head

Image

Encoder

Image

Encoder

Image

Encoder

Image

Encoder

Action

Token

Multi-step

Action Prediction

at

.
.
.

at−1

at−H

"t#

State

Encoder

st

Close the door of

the oven

10 Hz Control

Figure 2: Overview of BAKU, broken down into modality-specific sensory encoders, an observation
trunk, and an action head predicting a chunk of actions. BAKU takes as input observations from
multiple camera views Ot, robot proprioceptive state st and a task instruction T and enables
performing closed-loop control at 10Hz in our real world experiments on the xArm.

N and T denote the number of trajectory rollouts and episode timesteps respectively. We choose this
specific setting since obtaining observations and actions from expert or near-expert demonstrators is
feasible in real-world settings [77, 24] and falls in line with recent work in this area [77, 11, 31, 10].

Multi-task Behavior Cloning: Behavior Cloning (BC) corresponds to solving the maximum
likelihood problem shown in Eq. 1. Here T e refers to expert demonstrations. When parameterized by
a normal distribution with fixed variance, the objective can be framed as a regression problem where,
given observations oe, πBC needs to output ae.

LBC = E(oe,ae)∼T e∥ae − πBC(oe)∥2 (1)

After training, it enables πBC to mimic the actions corresponding to the observations seen in the
demonstrations. In multi-task settings, we use the same formulation for BC but condition the action
prediction on a goal variable ge. Thus, the loss function for multi-task BC becomes the following.

LBC = E(oe,ae,ge)∼T e∥ae − πBC(oe|ge)∥2 (2)

In this work, we represent goals as either a text description of the task [6, 5] or a goal image [11, 72].

3 BAKU

The design of multi-task learning algorithms involves numerous decisions regarding model architec-
ture and component selection. This often results in complex architectures where the importance of
individual components is sometimes unclear. In this work, we perform a systematic and thorough
ablation study across the various multi-task learning architectures proposed by prior works [6, 5, 63]
and introduce BAKU, a simple architecture for multi-task policy learning. To facilitate our analysis,
we divide the overall model architecture into three main components: sensory encoders, an observa-
tion trunk, and an action head. Sensory encoders process raw sensor inputs from different modalities
into useful feature representations. The observation trunk combines the encoded information from
the different modalities. Finally, the action head utilizes the combined information to predict actions.
Below, we describe these three components in detail, with additional algorithmic details provided in
Appendix A.

3.1 Sensory Encoders

In the real-world, robots encounter diverse data modalities, including vision, depth feedback, propri-
oceptive feedback, and task instructions in various forms such as text, goal images, or task videos.
In BAKU, we focus on vision, robot proprioception, and text or goal image based task instructions.
For vision, we use a ResNet-18 [19] visual encoder to process images of the scene, enhanced with

3

a FiLM [46] layer to integrate task-specific information. Robot proprioception data is processed
through a two-layer multilayer perception (MLP) encoder. For text, we use a 6-layer version of
MiniLM [73] provided in Sentence Transformers [54]. We project the representations obtained from
all modalities to the same dimensionality through additional MLP layers, to facilitate combining the
encoded information. We have included a description of FiLM conditioning in Appendix A.1.

3.2 Observation Trunk

The encoded inputs from all sensory modalities are combined in the observation trunk. We explore
two variants of the trunk network:

Multilayer Perceptron (MLP) The encoded inputs are concatenated into a single feature vector
and passed through a multilayer perceptron. When using a history of observations, the inputs
corresponding to all time steps are concatenated.

Transformer Each encoded input is treated as an observation token and passed through a trans-
former decoder network [70]. A learnable action token is appended to the list of observation tokens
and used to predict the action. When using a historical observation, a separate action token is added
for each time step to enable predicting actions for all time steps. A causal mask is applied to the
transformer to ensure that actions are predicted solely based on past observations.

Both variants output action feature vectors (corresponding to the action tokens for a transformer),
which are then passed through an action head to predict actions.

3.3 Action Head

The final component of our architecture is the action head, an action prediction module that takes as
input the action feature vectors obtained from the observation trunk and predicts the corresponding
actions. An independent action prediction module enables us to unify several state-of-the-art action
generation models within the same framework. We experiment with five action head variants: vanilla
MLP, Gaussian Mixture Model (GMM) [36], Behavior Transformer (BeT) [60], Vector-Quantized
Behavior Transformer (VQ-BeT) [31], and diffusion policy [45, 10, 55]. Considering the temporal
correlation in robot movements, we follow prior work [77, 5] and include action chunking with
exponential temporal averaging to produce smoother behaviors and counteract the covariate shift
often seen in low-data imitation learning scenarios. In contrast to previous works [77, 5] that decode
actions for each time step separately, we predict the action chunk as a single concatenated vector.
We find that this simplification improves performance (see Table 1). More details about each action
head variant has been provided in Appendix A.2 along with details about the exponential temporal
smoothing technique in Appendix A.3.

3.4 Putting it all together

Our proposed architecture is depicted in Figure 2. Through extensive experimentation (see Section 4),
our final architecture includes a modified FiLM-conditioned ResNet-18 vision encoder (provided
with the LIBERO benchmark [34]), an MLP encoder for robot proprioception, and a pre-trained text
encoder for task instructions. For environments with multiple camera views, we use a common visual
encoder across all views. We provide only the current observation as an input and the observation
trunk uses a causal transformer decoder architecture [29]. The base version of our model uses an
MLP action head with action chunking and temporal smoothing to produce smoother motions. We
also experiment with multimodal variants of action heads and have provided the results in Section 4.4.

The parameter counts are approximately 2.1M for the sensory encoders, 6.5M for the observation
trunk, and 1.4M for the action head, bringing the total model size to approximately 10M parameters.

4 Experiments

Our experiments are designed to answer the following questions: (a) How well does BAKU work for
multi-task learning? (b) How does BAKU perform on real-world tasks? (c) How does BAKU perform

4

(a) LIBERO-90 (b) Metaworld (C) DM Control

Figure 3: BAKU is evaluated on 3 simulated benchmarks - LIBERO, Meta-World, and DM Control.

on long-horizon tasks? (d) What design decisions affect multi-task policy learning? Additional results
and analysis have been provided in Appendix D.

Simulation Tasks: We experiment with 90 manipulation tasks from the LIBERO-90 bench-
mark [34], 30 manipulation tasks from Meta-World suite [76], and 9 locomotion tasks from DeepMind
Control Suite (DMC) [67]. Figure 3 depicts the simulated environments. For LIBERO-90, we use
50 demonstrations per task provided with the benchmark and use images from third-person and
gripper camera views, as well as robot proprioception as input. For Meta-World, we obtain 35
demonstrations per task from an expert policy trained with demonstration-guided reinforcement
learning [17, 18], using only the third-person view as input. We use images of size 128 × 128 for
LIBERO-90 and 84× 84 for Meta-World. For DMC, we train state-based locomotion policies using
500 demonstrations per task obtained from experts trained with DrQ-v2 [74]. All evaluations are
conducted using 10 policy rollouts per task. More details about the simulated environments can be
found in Appendix B.

Robot Tasks: Our real-world experiments are performed on a Ufactory xArm 7 robot with an
xArm Gripper in a multi-task kitchen environment. The policies are trained on RGB images of size
128× 128 obtained from four different camera views, including an egocentric camera attached to
the robot gripper. The action space comprises the robot end effector pose and the gripper state. We
collect a total of 520 demonstrations across 30 tasks, averaging 17 demonstrations per task. The
demonstrations were collected using a VR-based teleoperation system [24] at a 30Hz frequency. The
learned policies are deployed at 10Hz. Figure 4 shows selected tasks from our real-world environment.
More details about each task and robot control can be found in Appendix C.

Strong Baselines: In this section, we provide a detailed explanation of our baselines in relation to
BAKU.

1. MT-ACT [5]: Multi-task Action-Chunking Transformer (MT-ACT) is a state-of-the-art trans-
former encoder-decoder architecture for learning multi-task policies. MT-ACT extends Action-
Chunking Transformer (ACT) [77] to a multi-task setting. MT-ACT takes as input observations
from multiple camera views, robot proprioception, and task instructions. Each input modality
passes through dedicated encoders. The encoded observations are then fused in a transformer
encoder, the output of which conditions a transformer decoder to predict chunks of future actions.
Each predicted action corresponds to a position embedding input to the decoder. In ACT and MT-
ACT, a conditional variational autoencoder (CVAE) is used to learn a multimodal style variable
which conditions the encoder to deal with multimodal action distributions. During inference, the
style variable is set to zero, leading to unimodal behavior. In contrast, BAKU uses a decoder-only
transformer architecture that directly predicts action features corresponding to past observations.
This enables us to (1) leverage recent advances in multimodal action generation by plugging in
several unimodal and multimodal heads for action prediction, and (2) incorporate a history of
observations to predict actions for each time step in the history (see Section 4.4 for results on the

5

Table 1: Performance of multi-task policies learned using BAKU on 3 simulated benchmarks -
LIBERO-90, Meta-World, and DM Control - and a real xArm robot. We observe that BAKU
significantly outperforms prior work on both simulated and real world tasks.

Method LIBERO-90
(90 tasks)

Meta-World
(30 tasks)

DMC
(9 tasks)

Real Robot
(20 tasks)

RT-1 0.16 0.65 0.66 0.37
MTACT 0.54 0.13 0.59 0.56
BAKU (Ours) 0.9 0.79 0.7 0.86
BAKU w/ VQ-BeT (Ours) 0.9 0.78 0.7 0.91

use of observation history). Further, using a multimodal action head enables BAKU to exhibit
multimodal behavior during inference, improving real-world performance (Table 1).

2. RT-1 [6]: RT-1 is a transformer-based multi-task policy learning architecture that models actions
as discrete classes by uniformly discretizing them into bins. RT-1 uses a FiLM-conditioned vision
encoder (ResNet-18 in our implementation), but instead of directly using the final 512-dimensional
representation, it splits an intermediate feature map of size k × k × 512 into k2 tokens of 512
dimensions each. These tokens are passed through a Token Learner [58] module to reduce them
to 8 tokens per image. The reduced number of tokens is then passed through a decoder-only
transformer architecture to predict a discrete action. In contrast, BAKU directly uses the final
512-dimensional representation from the vision encoder, without summarizing tokens via a token
learner. Additionally, BAKU predicts a continuous action through an unimodal or multimodal
action head. Based on our experiments (Table 1), we observe that these design choices in BAKU
lead to significant improvements in performance over RT-1.

4.1 How well does BAKU work for multi-task learning?

We evaluate the multi-task performance of BAKU on 90 tasks from the LIBERO-90 benchmark, 30
tasks from Meta-World, and 9 tasks from DMC. Table 1 compares the performance of BAKU with
our baselines, RT-1 [6] and MT-ACT [5]. BAKU outperforms the strongest baseline by 36% and 14%
on LIBERO-90 and Meta-World respectively, demonstrating more effective multi-task learning on
complex manipulation tasks. On the simpler DMC locomotion tasks, BAKU outperforms the strongest
baseline by 4%. Overall, these results suggest that BAKU more effectively leverages relationships
between tasks to achieve superior multi-task learning performance compared to prior methods.

4.2 How does BAKU perform on real-world tasks?

We evaluate BAKU on 30 manipulation tasks in our real-world kitchen environment, comparing it
with MT-ACT and RT-1. During evaluations, the xArm was always initialized at the same pose and
the objects being manipulated were placed in a fixed set of positions for all methods. We conducted 5
evaluation runs per task, totaling 150 evaluation runs per method. Table 1 includes our real-world
results. We observe that BAKU achieves an 86% success rate across all tasks, outperforming the
strongest baseline by 30%. Replacing the MLP action head with a multimodal VQ-BeT [31] head
further improves the success rate to 91%, outperforming the strongest baseline by 35%. Figure 4
shows real-world rollout trajectories for a selected task set with all tasks included in Appendix C.
Appendix D.1 provides the task-wise performance for each method. Overall, these results indicate
BAKU’s promise for deploying multi-task policies on real-world robotic systems.

4.3 How does BAKU perform on long-horizon tasks?

We also evaluate BAKU on long-horizon tasks in the simulated LIBERO-10 benchmark and our
real-world multi-task kitchen environment. Table 2 provides the results on 10 tasks in LIBERO-10
and 5 long-horizon tasks in the real kitchen environment, each composed of two shorter tasks chained
sequentially. We use 50 demonstrations per task for LIBERO-10 and an average of 19 demonstrations
per task for the real robot. We observe that BAKU significantly outperforms our strongest baseline,
MT-ACT, on these long horizon tasks, achieving on average 19% higher success rate. This highlights
BAKU’s ability to learn policies that can effectively plan and execute sequences of actions over

6

Open oven door: Open the door of the oven.

Fetch glass from rack: Fetch the glass from the lower rack.

Put cream cheese in basket: Pick up the block of cream cheese and put it in the basket.

Wipe towel: Wipe the cutting board with a towel.

Put ketchup bottle inside fridge: Pick up the bottle of tomato ketchup and put it inside the fridge.

Fetch yoghurt bottle from fridge door: Take the bottle of yoghurt out from the door of the fridge.

Lift white plate from rack: Lift the white plate kept on the upper rack.

Fetch knife from organizer: Fetch the knife from the organizer placed on the kitchen counter.

Figure 4: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

7

Table 2: Performance of multi-task policies learned using BAKU on long-horizon tasks in the
LIBERO-10 simulated benchmark and a real xArm robot. We observe that BAKU significantly
outperforms prior work on both simulated and real world tasks.

Method LIBERO-10
(10 tasks)

Real Robot
(5 tasks)

MT-ACT 0.68 0.64
BAKU (Ours) 0.86 0.84

extended time horizons. Real world rollouts of these long-horizon tasks have been included in
Appendix C with the task-wise performance and demonstration details in Appendix D.1.

4.4 What design decisions affect multi-task policy learning?

As described in Section 3, our multi-task policy architecture consists of three main components:
sensory encoders, an observation trunk, and an action head. In this section, we analyze the design
choices within each component and their effect on overall multi-task performance. We consider BAKU
with an MLP action head (described in Section 3.4) as our base model. For ablations, we vary only a
single property at a time while keeping all other aspects identical. This experimental setup allows us
to clearly isolate the impact of individual design decisions. We examine different observation trunks,
model sizes, action heads, goal modalities, and the use of action chunking, observation history, and
task conditioning through FiLM [46]. The results of our ablation study are provided in Table 3 with
more analysis in Appendix D. The results provide insights into which components and properties are
most important for effective multi-task learning with BAKU.

Effect of Observation Trunk: We experiment with two trunk types: an MLP and a transformer
architecture. In Table 3, we observe a slight performance dip when using an MLP trunk on Meta-
World and DMC. For LIBERO-90, our most complex simulated benchmark, an MLP trunk resulted
in a 9% lower success rate than a transformer trunk. This highlights the efficacy of transformers for
modeling complex relationships between observations from multiple sensing modalities and actions.

Effect of Model Size: We study the effect of model size on multi-task performance by evaluating
configurations with 4.4M, 10M, 31M, and 114M parameters. For each variant, we vary the size of
the observation trunk and the action head while keeping the sensory encoders constant. The results in
Table 3 show that the 4.4M, 10M, and 31M parameter models achieve similar performance across
benchmarks. Surprisingly, the largest 114M parameter model severely underperforms on the harder
LIBERO-90 benchmark. We suspect this poor performance may have been due to overfitting on the
training data with a larger capacity. Based on these results, we use the 10M parameter model for
BAKU since it is the smallest model with the best performance on 2 of the 3 simulated benchmarks.

Effect of Action Head: We compare the performance of BAKU retrofitted with five different
action heads: MLP, GMM [36], BeT [60], VQ-BeT [31], and diffusion [10]. Having an independent
action head enables us to extend these state-of-the-art action generation models to multi-task settings.
Table 3 shows that on simulated benchmarks, a simple MLP head performs just as well or better
than other multimodal action heads. Among the multimodal variants, VQ-BeT achieves the best
performance. As a result, we also evaluate BAKU with a VQ-BeT action head in our real-world
setup (Table 1). On the real robot, having a multimodal action head proves advantageous with
the VQ-BeT head achieving a success rate of 91%, a 5% improvement over an MLP action head.
Hence, our experiments demonstrate that while multimodal heads may provide benefits for real-world
deployment, a simple MLP head can perform well on simulated data with limited behavioral diversity.

Effect of Action Chunking: We study the effect of action chunking on multi-task policy perfor-
mance. For the image-based LIBERO-90 and Meta-World benchmarks, we predict a chunk of 10
future actions. For the locomotion tasks in DMC, we predicted 3 future actions. Based on the results
in Table 3, we observe the largest difference on LIBERO-90, where removing action chunking and
instead predicting a single action led to a 14% drop in performance. In contrast, there is no perceptible
difference in performance on Meta-World with and without chunking. For the locomotion domains in

8

Table 3: Study of design decisions for BAKU that affects multi-task performance.

Category Variant LIBERO-90 Meta-World DMC
Observation Trunk MLP 0.81 0.78 0.68

Transformer 0.90 0.79 0.70
Model Size 4.4M 0.85 0.78 0.68

10M 0.9 0.79 0.70
31M 0.87 0.81 0.70
114M 0.19 0.81 0.68

Action Head MLP 0.90 0.79 0.70
GMM 0.84 0.65 0.67
BeT 0.89 0.78 0.60
VQ-BeT 0.90 0.78 0.70
Diffusion 0.89 0.45 0.61

Action Chunking ✗ 0.76 0.78 0.74
✓ 0.90 0.79 0.70

Observation History ✗ 0.90 0.79 0.70
With last-step loss 0.54 0.08 0.37
With multi-step loss 0.90 0.82 0.68

Goal Modality Text 0.90 0.79 N/A
Goal Image 0.88 0.81 N/A
Intermediate Image 0.91 0.80 N/A

FiLM ✗ 0.87 0.79 N/A
✓ 0.90 0.79 N/A

DMC, we see a 4% performance increase when removing chunking. Hence, action chunking benefits
manipulation tasks while mildly hindering locomotion tasks from our experiments.

Effect of Observation History: We study the effect of using an observation history on multi-task
performance. As shown in Table 3, naively using an observation history where the action prediction
loss is only computed for the last time step significantly degrades performance. However, since
BAKU uses a transformer observation encoder, it allows predicting actions for all observations in the
history and computing the prediction loss over all time steps. Empirically, we found this multi-step
prediction loss provides richer supervision and improves the single-step loss performance by an
average of 47% across all benchmarks. However, incorporating an observation history with multi-step
action prediction did not noticeably improve overall policy performance compared to using no history.
Therefore, our final architecture only uses the most recent observation as an input.

Effect of Goal Modality: We experiment with 3 different goal modalities: text instruction, goal
image, and intermediate goal image. The text instructions are directly obtained from the task data.
The goal image is obtained by randomly sampling a demonstration from the training dataset and
taking the last frame. For an intermediate goal image, we consider this randomly sampled task
demonstration, and for every time step, treat the frame k steps in the future as the goal image [72].
Table 3 contains the results on LIBERO-90 and Meta-World, as goal images do not apply to the
state-based DMC tasks. We set k to 50 steps for LIBERO-90 and 30 steps for Meta-World. Since
LIBERO-90 has two camera views, we use the third-person view to obtain goal images. We observe
that all three goal modalities show a similar performance with slight variations. Overall, our approach
supports different goal representations with only minor variations in performance.

Effect of FiLM Conditioning: We examine the impact of using a FiLM-conditioned vision encoder
for language-guided multi-task policies. As shown in Table 3, on the image-based LIBERO-90 and
Meta-World benchmarks, a FiLM-conditioned vision encoder performs equally well or better than
an unconditional encoder. FiLM conditioning allows modulating the vision encoder’s parameters
conditioned on the language input. This provides an effective way to fuse visual and linguistic
information for solving tasks. Therefore, BAKU employs a FiLM-conditioned vision encoder for our
image-based experiments.

9

5 Related Work

Imitation Learning (IL) IL [23] refers to the setting where agents learn from demonstrations
without access to environment rewards. IL can be broadly categorized into Behavior Cloning
(BC) [48, 68] and Inverse Reinforcement Learning (IRL) [41, 1]. BC solely learns from offline
demonstrations but suffers on out-of-distributions samples [56] whereas IRL focuses on learning
a robust reward function through online interactions but suffers from sample inefficiency [17, 18].
In this work, we focus on using BC for learning multi-task policies. In recent years, there have
been significant advances in single-task behavior cloning with the development of multimodal action
generation models using GMMs [36, 39], EBMs [13], BeT [60, 11, 31], and diffusion [45, 10, 55, 7].
There has also been notable progress in solving long-horizon tasks through imitation learning with
some works relying solely on robot data [38, 21, 9, 77, 33, 65] while others attempt to bootstrap
learning from human data [72]. Further, these advances in policy learning combined with significant
strides in self-supervised representation learning [8, 42, 20] have enabled deploying these policies in
messy and unpredictable environments such as our homes [61] as well as zero-shot deployment in-the-
wild [62, 64]. However, despite the large body of work advancing single-task robotic policy learning,
there still exists a gap between single-task and multi-task performance for policy learning [75, 44, 57].

Multi-task Learning Robotics has a long history of multi-task learning. There is a significant
body of work focusing on learning policies for robotic grasping with the aim of generalizing to
new tasks [32, 47, 14, 71, 12], robotic language understanding [40, 35, 66, 3], and framing multi-
task learning as a goal reaching problem [51, 28, 22]. Additionally, several works have collected
varied multi-task robotics datasets [38, 34, 5, 43, 30]. Recently, there has been an increased use of
transformer-based architectures for multi-task robot learning, spanning across robot navigation [62,
64], locomotion [27, 15, 49, 50], and manipulation [6, 78, 11, 5]. While most of these works
use text conditioning for task specification, some go beyond text to use goal images [11, 16] and
videos [26, 25] as well. Another emerging trend is co-training these robot policies with additional
tasks, such as visual question answering and image captioning [52, 78], to develop more generalizable
policies. Overall, multi-task learning has been widely applied in robotics and, more recently, using
high-capacity transformer models to learn robot control policies has become common practice in the
field. Despite their effectiveness, the architectures for these policies often become complicated, with
the necessary components sometimes being unclear. Our proposed model, BAKU, combines key ideas
from prior work into a single architecture to produce a model that is both simple and outperforms
state-of-the-art methods in multi-task policy learning.

6 Conclusion and Limitations

In this work, we presented BAKU, a simple transformer architecture that demonstrates improved
multi-task policy learning performance on a variety of simulated and real-world domains compared
to prior state-of-the-art methods. We recognize a few limitations in this work: (a) In our real-world
experiments, while BAKU achieved good performance on most tasks, it struggled on some precise
manipulation tasks, such as opening an oven door or placing a tea bottle in the fridge. This suggests
that data sharing across tasks of varying difficulty may hinder performance on more precise skills.
Developing techniques to learn a single policy for different task complexity levels could help address
this. (b) Currently, we focus on performing a single skill at a time. Developing algorithms capable
of chaining multiple such skills can enable effective long-horizon robot manipulation. (c) In this
work, we primarily studied the policy architecture and did not analyze the generalization benefits of
multi-task learning as the number of tasks increases. A study of the emergence of such generalization
with greater task diversity would be another interesting direction. Overall, we hope that BAKU serves
as an important step towards developing multi-task policies capable of performing precise robotic
manipulation.

Acknowledgments and Disclosure of Funding

We thank Nur Muhammad Shafiullah, Ulyana Piterbarg, Ademi Adeniji, Ben Evans, Gaoyue Zhou,
and Irmak Güzey for valuable feedback and discussions. This work was supported by grants from
Honda, Google, NSF award 2339096 and ONR awards N00014-21-1-2758 and N00014-22-1-2773.
LP is supported by the Packard Fellowship.

10

References
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In

Proceedings of the twenty-first international conference on Machine learning, page 1, 2004. 10

[2] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023. 1

[3] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022. 10

[4] J. Betker, G. Goh, L. Jing, T. Brooks, J. Wang, L. Li, L. Ouyang, J. Zhuang, J. Lee, Y. Guo,
et al. Improving image generation with better captions. Computer Science. https://cdn. openai.
com/papers/dall-e-3. pdf, 2(3):8, 2023. 1

[5] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and V. Kumar. Roboagent:
Generalization and efficiency in robot manipulation via semantic augmentations and action
chunking. arXiv preprint arXiv:2309.01918, 2023. 1, 3, 4, 5, 6, 10, 16, 17

[6] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022. 1, 3, 6, 10, 17

[7] L. Chen, S. Bahl, and D. Pathak. Playfusion: Skill acquisition via diffusion from language-
annotated play. In Conference on Robot Learning, pages 2012–2029. PMLR, 2023. 10

[8] X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision transformers.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 9640–9649,
2021. 10

[9] Y. Chen, C. Wang, L. Fei-Fei, and C. K. Liu. Sequential dexterity: Chaining dexterous policies
for long-horizon manipulation. arXiv preprint arXiv:2309.00987, 2023. 10

[10] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023. 2, 3, 4, 8, 10, 16

[11] Z. J. Cui, Y. Wang, N. M. M. Shafiullah, and L. Pinto. From play to policy: Conditional behavior
generation from uncurated robot data. arXiv preprint arXiv:2210.10047, 2022. 3, 10

[12] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie, and C. Lu. Anygrasp:
Robust and efficient grasp perception in spatial and temporal domains. IEEE Transactions on
Robotics, 2023. 10

[13] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee,
I. Mordatch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning,
pages 158–168. PMLR, 2022. 10

[14] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto. Robot learning in homes: Improving
generalization and reducing dataset bias. Advances in neural information processing systems,
31, 2018. 10

[15] A. Gupta, L. Fan, S. Ganguli, and L. Fei-Fei. Metamorph: Learning universal controllers with
transformers. arXiv preprint arXiv:2203.11931, 2022. 10

[16] S. Haldar and L. Pinto. Polytask: Learning unified policies through behavior distillation. arXiv
preprint arXiv:2310.08573, 2023. 10

[17] S. Haldar, V. Mathur, D. Yarats, and L. Pinto. Watch and match: Supercharging imitation with
regularized optimal transport. In Conference on Robot Learning, pages 32–43. PMLR, 2023. 5,
10

11

[18] S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a robot to fish: Versatile imitation from one
minute of demonstrations. arXiv preprint arXiv:2303.01497, 2023. 5, 10

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016. 3

[20] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16000–16009, 2022. 10

[21] M. Heo, Y. Lee, D. Lee, and J. J. Lim. Furniturebench: Reproducible real-world benchmark for
long-horizon complex manipulation. arXiv preprint arXiv:2305.12821, 2023. 10

[22] D.-A. Huang, Y.-W. Chao, C. Paxton, X. Deng, L. Fei-Fei, J. C. Niebles, A. Garg, and D. Fox.
Motion reasoning for goal-based imitation learning. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 4878–4884. IEEE, 2020. 10

[23] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017. 10

[24] A. Iyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and L. Pinto. Open teach: A versatile
teleoperation system for robotic manipulation. arXiv preprint arXiv:2403.07870, 2024. 3, 5

[25] V. Jain, M. Attarian, N. J. Joshi, A. Wahid, D. Driess, Q. Vuong, P. R. Sanketi, P. Sermanet,
S. Welker, C. Chan, I. Gilitschenski, Y. Bisk, and D. Dwibedi. Vid2robot: End-to-end video-
conditioned policy learning with cross-attention transformers, 2024. 10

[26] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learning,
pages 991–1002. PMLR, 2022. 10

[27] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273–1286, 2021. 10

[28] T. Jurgenson, O. Avner, E. Groshev, and A. Tamar. Sub-goal trees a framework for goal-based
reinforcement learning. In International conference on machine learning, pages 5020–5030.
PMLR, 2020. 10

[29] A. Karpathy. mingpt: A minimal pytorch re-implementation of the openai gpt. https:
//github.com/karpathy/minGPT, 2021. 4, 18

[30] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany, M. K.
Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation dataset.
arXiv preprint arXiv:2403.12945, 2024. 10

[31] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and L. Pinto. Behavior generation
with latent actions. arXiv preprint arXiv:2403.03181, 2024. 2, 3, 4, 6, 8, 10, 16

[32] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. The International
Journal of Robotics Research, 34(4-5):705–724, 2015. 10

[33] T. Lin, Y. Zhang, Q. Li, H. Qi, B. Yi, S. Levine, and J. Malik. Learning visuotactile skills with
two multifingered hands. arXiv:2404.16823, 2024. 10

[34] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowledge
transfer for lifelong robot learning. Advances in Neural Information Processing Systems, 36,
2024. 2, 4, 5, 10, 17

[35] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data.
arXiv preprint arXiv:2005.07648, 2020. 10

[36] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In Conference on robot learning, pages 1113–1132. PMLR, 2020. 4, 8,
10, 16

12

https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT

[37] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, et al. Roboturk: A crowdsourcing platform for robotic skill learning through imitation.
In Conference on Robot Learning, pages 879–893. PMLR, 2018. 1

[38] A. Mandlekar, D. Xu, R. Martín-Martín, S. Savarese, and L. Fei-Fei. Learning to generalize
across long-horizon tasks from human demonstrations. arXiv preprint arXiv:2003.06085, 2020.
10

[39] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martín-Martín. What matters in learning from offline human demonstrations for
robot manipulation. arXiv preprint arXiv:2108.03298, 2021. 2, 10

[40] H. Mei, M. Bansal, and M. Walter. Listen, attend, and walk: Neural mapping of navigational in-
structions to action sequences. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016. 10

[41] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
page 2, 2000. 10

[42] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023. 10

[43] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Singh,
A. Brohan, et al. Open x-embodiment: Robotic learning datasets and rt-x models. arXiv preprint
arXiv:2310.08864, 2023. 10

[44] E. Parisotto, J. L. Ba, and R. Salakhutdinov. Actor-mimic: Deep multitask and transfer
reinforcement learning. arXiv preprint arXiv:1511.06342, 2015. 1, 10

[45] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z. Tan,
I. Momennejad, K. Hofmann, et al. Imitating human behaviour with diffusion models. arXiv
preprint arXiv:2301.10677, 2023. 4, 10, 16

[46] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a
general conditioning layer. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018. 1, 4, 8, 16

[47] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In 2016 IEEE international conference on robotics and automation (ICRA), pages
3406–3413. IEEE, 2016. 10

[48] D. Pomerleau. An autonomous land vehicle in a neural network. Advances in Neural Information
Processing Systems, 1, 1998. 10

[49] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath. Learning humanoid
locomotion with transformers. arXiv e-prints, pages arXiv–2303, 2023. 10

[50] I. Radosavovic, B. Zhang, B. Shi, J. Rajasegaran, S. Kamat, T. Darrell, K. Sreenath, and J. Malik.
Humanoid locomotion as next token prediction. arXiv preprint arXiv:2402.19469, 2024. 10

[51] A. Raffin, A. Hill, R. Traoré, T. Lesort, N. Díaz-Rodríguez, and D. Filliat. Decoupling feature
extraction from policy learning: assessing benefits of state representation learning in goal based
robotics. arXiv preprint arXiv:1901.08651, 2019. 10

[52] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175,
2022. 10

[53] M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin, T. Lillicrap, J.-b. Alayrac, R. Soricut,
A. Lazaridou, O. Firat, J. Schrittwieser, et al. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024. 1

13

[54] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.
10084. 4

[55] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal-conditioned imitation learning using score-based
diffusion policies. arXiv preprint arXiv:2304.02532, 2023. 4, 10, 16

[56] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings,
2011. 10

[57] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih,
K. Kavukcuoglu, and R. Hadsell. Policy distillation. arXiv preprint arXiv:1511.06295, 2015. 1,
10

[58] M. Ryoo, A. Piergiovanni, A. Arnab, M. Dehghani, and A. Angelova. Tokenlearner: Adaptive
space-time tokenization for videos. Advances in neural information processing systems, 34:
12786–12797, 2021. 6

[59] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gon-
tijo Lopes, B. Karagol Ayan, T. Salimans, et al. Photorealistic text-to-image diffusion models
with deep language understanding. Advances in neural information processing systems, 35:
36479–36494, 2022. 1

[60] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k
modes with one stone. Advances in neural information processing systems, 35:22955–22968,
2022. 2, 4, 8, 10, 16

[61] N. M. M. Shafiullah, A. Rai, H. Etukuru, Y. Liu, I. Misra, S. Chintala, and L. Pinto. On bringing
robots home. arXiv preprint arXiv:2311.16098, 2023. 1, 10

[62] D. Shah, A. Sridhar, N. Dashora, K. Stachowicz, K. Black, N. Hirose, and S. Levine. Vint: A
foundation model for visual navigation. arXiv preprint arXiv:2306.14846, 2023. 10

[63] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning, pages 785–799. PMLR, 2023. 3

[64] A. Sridhar, D. Shah, C. Glossop, and S. Levine. Nomad: Goal masked diffusion policies for
navigation and exploration. arXiv preprint arXiv:2310.07896, 2023. 10

[65] K. Sridhar, S. Dutta, D. Jayaraman, J. Weimer, and I. Lee. Memory-consistent neural networks
for imitation learning. arXiv preprint arXiv:2310.06171, 2023. 10

[66] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor. Language-
conditioned imitation learning for robot manipulation tasks. Advances in Neural Information
Processing Systems, 33:13139–13150, 2020. 10

[67] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018. 2,
5, 17

[68] F. Torabi, G. Warnell, and P. Stone. Recent advances in imitation learning from observation.
arXiv preprint arXiv:1905.13566, 2019. 2, 10

[69] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023. 1

[70] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017. 4

14

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

[71] U. Viereck, A. Pas, K. Saenko, and R. Platt. Learning a visuomotor controller for real world
robotic grasping using simulated depth images. In Conference on robot learning, pages 291–300.
PMLR, 2017. 10

[72] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:
Long-horizon imitation learning by watching human play. In 7th Annual Conference on Robot
Learning, 2023. 3, 9, 10

[73] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou. Minilm: Deep self-attention
distillation for task-agnostic compression of pre-trained transformers, 2020. 4

[74] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021. 5

[75] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. Gradient surgery for multi-task
learning. Advances in Neural Information Processing Systems, 33:5824–5836, 2020. 1, 10

[76] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
robot learning, pages 1094–1100. PMLR, 2020. 2, 5, 17

[77] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023. 2, 3, 4, 5, 10, 16, 17

[78] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid, et al.
Rt-2: Vision-language-action models transfer web knowledge to robotic control. In Conference
on Robot Learning, pages 2165–2183. PMLR, 2023. 10

15

A Algorithmic Details

A.1 FiLM Conditioning

Feature-wise Linear Modulation (FiLM) [46] is a technique used for conditioning neural networks
that allows the network to modulate its behavior based on an external conditioning signal, such as
text instructions or observations. In the context of text conditioning for policy learning, the text
instructions are first encoded into a conditioning vector. This conditioning vector is then used to
modulate the activations of the neural network through FiLM layers. FiLM applies a feature-wise
affine transformation (scaling and shifting) to the activations of the network, conditioned on the text
embedding. In other word, assuming x is a FiLM layer’s input, z is a conditioning input, and γ and β
are z-dependent scaling and shifting vectors,

FiLM(x) = γ(z)⊙ x + β(z) (3)

This allows the network to adapt its computation and output based on the given text instructions,
enabling tasks like instruction following or conditioning the policy on language descriptions.

A.2 Action Heads

Having a separate action prediction module allows BAKU to leverage state-of-the-art techniques for
action generation. In this work, we evaluate five different action head variants. Below we briefly
describe each variant. For more details on these methods, please refer to the original publications.

Multilayer Perceptron (MLP) This is a simple neural network comprising multiple dense layers.
We use a two-layer MLP for our experiments.

Gaussian Mixture Model (GMM) [36] A Gaussian mixture model (GMM) action head models
the policy as a mixture of Gaussians, enabling multi-modal action sampling for continuous control
problems. The GMM parameters are part of the learned policy network. For our experiments, we
employ a two-layer GMM action head with five action modes and a Softplus activation function.

Behavior Transformer (BeT) [60] The Behavior Transformer (BeT) models continuous action
prediction as a two-part problem. Actions in the training data are first clustered into k bins using
k-means clustering. A discrete action head classifies the cluster an action belongs to, while an offset
action head predicts an offset value added to the corresponding cluster center. The discrete head uses
a focal loss, while the offset head uses L2 loss. For our experiments, we use BeT with 64 action
clusters.

Vector-Quantized Behavior Transformer (VQ-BeT) [31] The Vector-Quantized Behavior Trans-
former (VQ-BeT) extends BeT by replacing k-means clustering with residual VQVAE-based tok-
enization, significantly improving performance over BeT. For our experiments, we employ VQ-BeT
with two residual VQ layers of codebook size and latent dimension 16 and 256, respectively.

Diffusion [45, 10, 55] A diffusion action head models action prediction as a diffusion process
that generates actions over time by iteratively denoising samples from a Gaussian distribution.
While highly effective for multi-modal distributions, the iterative denoising during inference slows
deployment speed. In this work, we use a transformer-based diffusion head introduced by prior
work [45, 10]. We use a two-layer diffusion head for our experiments.

A.3 Temporal smoothing over action chunking

A naïve implementation of action chunking, where a new environment observation in incorporated
every k steps can be suboptimal and can result in jerky robot motion. To improve the smoothness
in robot motion, we incorporate an exponential temporal ensembling technique, following prior
work [77, 5]. Instead of querying the policy every k steps, we query it at every timestep. This results
in an overlap in predicted action chunks and at any given timestep, there will be more than one
predicted actions. Instead of using only the current action prediction, we use a temporal ensemble to

16

combine all the past predictions. This temporal ensemble performs a weighted average over these
predictions with an exponential weighing scheme wi = exp(−m ∗ i), where w0 is the weight for the
oldest action. The speed for incorporating a new observation is governed by m, where a smaller m
means faster incorporation. It must be noted that this ensembling incurs no additional training cost,
only extra inference-time computation. In our experiments, similar to prior work [77, 5], we find both
action chunking and temporal ensembling to be important for producing precise and smooth motion.

A.4 Hyperparameters

The complete list of hyperparameters is provided in Table 4. For RT-1 [6], we use our implementation
with an RT-1 action head that discretizes the continuous action into discrete bins uniformly. For
MT-ACT [5], we use the open-source implementation with the default hyperparameters. We vary the
action chunk length for MT-ACT for different benchmarks, the values for which have been provided
in Table 4.

Training time Below we provide details about the time required to train BAKU on a single NVIDIA
RTX A4000 GPU.

1. LIBERO: Training for 600k steps with a batch size of 64 and 2 camera views and robot proprio-
ception as input requires around 10.5 hours.

2. Meta-World: Training for 600k steps with a batch size of 64 and 1 camera view as input requires
around 8 hours.

3. DM Control: Training for 2M steps with a batch size of 128 and robot state as input requires
around 26 hours.

4. xArm Robot: Training for 200k steps with a batch size of 64 and 4 camera views and robot
proprioception as input requires around 6 hours.

B Simulation Tasks

We evaluate BAKU on three simulated benchmarks: LIBERO-90 [34], MetaWorld [76], and DM
Control [67]. For LIBERO-90, we directly use the dataset provided, which includes demonstrations
for all 90 tasks. For details on the specific LIBERO-90 tasks, please refer to the original paper [34].
For MetaWorld and DM Control, we collected demonstrations from expert agents trained with
reinforcement learning (RL). We include only the tasks for which we were able to obtain expert
demonstration data. Table 5 lists the 30 MetaWorld tasks and 9 DM Control tasks used in our
experiments.

C Robot Tasks

We evaluate BAKU on 30 tasks in our real-world multi-task kitchen environment. We provide the
task description along with policy deployment rollouts with BAKU for each task in Figures 5, 6, 7, 8,
and 9. The long-horizon task rollouts have been shown in Figure 10.

Robot control We deploy our learned policies at 10Hz using a high-level controller. To facilitate
smooth motion on the robot, we deploy a low-level Minimum-Jerk Controller at 100Hz.

D Additional Results and Analysis

D.1 Real-World Task-wise Results

Table 6 provides the task-wise performance for all 30 tasks in our real-world multi-task kitchen
environment. We collect an average of 17 demonstrations per task, with a total of 520 demonstrations
across all tasks. Task-wise performance for the real-world long-horizon tasks has been included in
Table 7.

17

Table 4: List of hyperparameters.

Method Parameter Value

Common Learning rate 1e−4

Image size 128× 128 (LIBERO-90, xArm)

84× 84 (Meta-World)

Mini-batch size 64 (LIBERO-90, Meta-World, xArm)

128 (DM Control)

Optimizer Adam

Number of training steps 600000 (LIBERO-90, Meta-World)

2000000 (DM Control)

200000 (xArm)

Number of demonstrations 50 (LIBERO-90)

35 (Meta-World)

500 (DM Control)

15 (xArm)

Transformer architecture minGPT [29] (with 8 layers and 4 heads)

Action chunk length 10 (LIBERO-90, Meta-World)

3 (DMC)

20 (xArm)

BAKU Observation trunk Transformer

Action head MLP (base)

GMM, BeT, VQ-BeT, Diffusion (variants)

Hidden dim 256

Observation history False

Action chunking True

Intermediate goal steps (k) 50 (LIBERO-90)

30 (Meta-World)

RT-1 Observation trunk Transformer

Action head MLP (base)

Hidden dim 512

Observation history True

History length 6

Action chunking False

MT-ACT Observation history False

Action chunking True

18

Table 5: List of tasks in Meta-World and DM Control.

Meta-World DM Control

basketball-v2 cartpole swingup
bin-picking-v2 cheetah run
button-press-v2 hopper stand
button-press-topdown-v2 quadruped run
button-press-topdown-wall-v2 quadruped walk
button-press-wall-v2 teacher easy
coffee-button-v2 walker stand
coffee-pull-v2 walker walk
coffee-push-v2 walker run
dial-turn-v2
disassemble-v2
door-lock-v2
door-open-v2
door-unlock-v2
drawer-close-v2
drawer-open-v2
faucet-close-v2
faucet-open-v2
hammer-v2
handle-press-v2
handle-press-side-v2
handle-pull-v2
handle-pull-side-v2
peg-insert-side-v2
peg-unplug-side-v2
plate-slide-v2
plate-slide-back-v2
plate-slide-back-side-v2
plate-slide-side-v2
shelf-place-v2
soccer-v2
stick-push-v2
sweep-v2
sweep-into-v2
window-close-v2
window-open-v2

D.2 Additional Analysis

In addition to the analysis in Section 4.4, we provide further comparisons here to better justify our
design choices.

Separate vs. Shared Vision Encoders On the LIBERO-90 benchmark, environment observations
include images from two camera views. Table 12 compares multi-task performance using either a
common encoder for both views or separate view-specific encoders. While separate encoders provide
a 2% boost in performance, this minor gain comes at the cost of a 15% increase in parameter count
per camera view added (since the visual encoders comprise 1.5M parameters in our 10M parameter
model). For our real-world experiments involving 4 camera views, this parameter increase would be
even more significant. Therefore, in BAKU, we use a shared encoder for all views to keep the model
compact, assisting with faster inference speeds.

19

Fetch glass from rack: Fetch the glass from the lower rack.

Fetch water bottle from rack: Fetch the bottle of vitamin water from the lower rack.

Pick blue mug: Pick up the blue mug from the kitchen counter.

Pick light blue bowl: Pick up the light blue bowl from the kitchen counter.

Fetch towel from rack: Fetch the towel from the lower rack.

Fetch tea bottle from rack: Fetch the bottle of green tea from the lower rack.

Pick orange from bowl: Pick up the orange from inside the light blue bowl kept on the kitchen counter.

Figure 5: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

Data Efficiency Analysis We analyze the performance of BAKU with varying number of demon-
strations in Table 8 and Table 9. We observe that at each level of data availability, BAKU shows a
significantly higher success rate than MT-ACT and RT-1.

20

Pick coffee bag: Pick up the bag of coffee from the kitchen counter.

Lift white plate from rack: Lift the white plate kept on the upper rack.

Lift black plate from rack: Lift the black plate kept on the upper rack.

Pick box of corn starch: Pick up the box of corn starch from the kitchen counter.

Lift blue plate from rack: Lift the blue plate kept on the upper rack.

Close oven door: Close the door of the oven.

Open oven door: Open the door of the oven.

Figure 6: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

Robustness to training seeds We provide results on BAKU, RT-1, and MT-ACT across 3 seeds in
Table 10. We observe that all three methods are robust to different seed values. Further, probabilistic
approaches like GMM and diffusion might be sensitive to favorable seed values, and evaluating on a
single seed might make the result unreliable. Thus, Table 11 includes results across 3 seeds on BAKU

21

Place glass on rack: Place the glass on the lower rack.

Put coke can in basket: Pick up the can of coke and put it in the basket.

Lift pan lid: Lift the lid of the pan kept on the kitchen counter.

Put pear in bowl: Pick up the pear and put it in the bowl.

Put orange in bowl: Pick up the orange and put it in the bowl.

Wipe towel: Wipe the cutting board with a towel.

Put cream cheese in basket: Pick up the block of cream cheese and put it in the basket.

Figure 7: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

with different multimodal heads. We observe that BAKU with different action heads is robust to the
value of the random seed. Due to limited compute and the large number of multi-task experiments,
we provide these results on the LIBERO-90 and Metaworld benchmarks.

22

Put tea bottle in fridge door: Pick up the bottle of green tea and place it in the door of the fridge.

Put tomato can inside fridge: Pick up the can of tomato soup and put it inside the fridge.

Put yoghurt bottle in fridge door: Pick up the bottle of yoghurt and place it in the door of the fridge.

Fetch tea bottle from fridge door: Take the bottle of green tea out from the door of the fridge.

Put ketchup bottle inside fridge: Pick up the bottle of tomato ketchup and put it inside the fridge.

Fetch tomato can from fridge: Take the can of tomato soup out of the fridge.

Fetch yoghurt bottle from fridge door: Take the bottle of yoghurt out from the door of the fridge.

Figure 8: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

Observation trunk input In our proposed architecture (see Section 3.4), the encoded observations
from different modalities are passed individually as tokens into the observation trunk along with the
action token to output the action feature representation. An alternative approach is to concatenate
all the encoded inputs into a single vector and pass it through the observation trunk. As shown
in Table 12, for Meta-World and DMC, which each have only a single input source, there is no

23

Fetch water bottle from fridge: Take the bottle of vitamin water out of the fridge.

Fetch knife from organizer: Fetch the knife from the organizer placed on the kitchen counter.

Figure 9: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

Set up table: Place the white plate and the glass on the kitchen counter.

Pick broom and sweep: Pick up the broom and sweep the cutting board.

Pick towel and wipe: Pick up the towel from the lower rack and wipe the cutting board.

Take bowl out of the oven: Take the bowl out of the oven and place it on the kitchen counter.

Put yoghurt inside and take water bottle out of fridge: Put the yoghurt in the door of the fridge and

take out the bottle of water from inside the fridge.

Figure 10: Real-world policy rollouts showing BAKU’s capability on long-horizon manipulation
tasks.

24

Table 6: Real task-wise performance

Task Number of
Demonstrations Successes (out of 5)

RT-1 MTACT Baku Baku w/
VQ-BeT

Fetch glass from rack 20 5 5 5 5
Fetch towel from rack 28 5 2 5 5
Fetch tea bottle from rack 16 0 3 5 5
Fetch water bottle from rack 16 0 0 5 5
Pick blue mug 16 5 5 5 5
Pick light blue bowl 25 5 5 5 5
Pick orange from bowl 27 0 0 3 4
Pick coffee bag 19 3 5 5 5
Pick box of corn starch 14 0 3 5 5
Lift blue plate from the rack 18 0 4 5 5
Lift white plate from the rack 18 5 5 5 5
Lift black plate from the rack 12 2 3 5 5
Open oven door 17 0 0 0 3
Close oven door 27 0 3 3 4
Place glass on rack 19 5 5 5 5
Wipe towel 17 4 5 5 5
Lift pan lid 18 1 2 4 4
Put coke can in basket 19 0 0 3 3
Put cream cheese in basket 19 0 3 5 5
Put orange into bowl 14 0 0 4 5
Put pear into bowl 17 0 0 3 5
Put tea bottle in fridge door 18 0 0 1 0
Put yoghurt bottle in fridge door 17 3 5 3 5
Put ketchup bottle inside fridge 15 5 4 5 5
Put tomato can inside fridge 11 0 0 5 4
Fetch tea bottle from fridge door 11 5 5 5 5
Fetch tomato can from fridge door 11 0 1 5 5
Fetch yoghurt bottle from fridge door 10 0 3 5 4
Fetch water bottle from fridge 11 2 3 5 5
Fetch knife from organizer 20 0 5 5 5
Mean 17 1.83 2.8 4.3 4.53
Mean success rate (out of 1) – 0.37 0.56 0.86 0.91

difference in performance, as expected. However, for LIBERO-90, which uses two camera views and
the robot’s proprioceptive state as inputs, there is a 3% absolute improvement in performance when
using separate observation tokens as compare to a single concatenated vector.

E Broader Impacts

In this work, we present BAKU, a simple and efficient transformer architecture for multi-task policy
learning. This work takes an important step toward enabling more efficient training of generalist
robotic agents capable of performing diverse tasks, reducing the need for large datasets of expert
demonstrations which are costly and time-consuming to collect. Further, BAKU focuses on improving
data efficiency by maximally leveraging available training data, which is particularly valuable in
robotics where data collection is expensive.

25

Table 7: Real task-wise performance for long-horizon tasks

Task Number of
Demonstrations Successes (out of 5)

MTACT Baku
Set up table 34 3 3
Pick broom and sweep 13 4 5
Pick towel and wipe 14 2 4
Take bowl out of the oven 18 5 5
Put yoghurt inside and take water bottle out of fridge 17 2 4
Mean 19 3.2 4.2
Mean success rate (out of 1) – 0.64 0.84

Table 8: Data efficiency analysis on the
LIBERO-90 benchmark.

Demos RT-1 MT-ACT BAKU
5 0 0.31 0.58
10 0.01 0.48 0.71
25 0.04 0.49 0.83
50 0.16 0.54 0.9

Table 9: Data efficiency analysis on the Meta-
World benchmark.

Demos RT-1 MT-ACT BAKU
5 0.40 0.07 0.59

10 0.49 0.10 0.67
25 0.62 0.11 0.76
35 0.65 0.13 0.79

Table 10: Performance of multi-task policies learned using BAKU on LIBERO-90 and Meta-World.
We report the mean and standard deviation for each variant across 3 seeds.

Method LIBERO-90
(90 tasks)

Meta-World
(30 tasks)

RT-1 0.14 ± 0.02 0.64 ± 0.01
MTACT 0.55 ± 0.01 0.12 ± 0.01
BAKU (Ours) 0.89 ± 0.01 0.81 ± 0.02

Table 11: Performance of BAKU with different action heads on LIBERO-90 and Meta-World. We
report the mean and standard deviation for each variant across 3 seeds.

Action Head LIBERO-90 Meta-World
MLP 0.89 ± 0.01 0.81 ± 0.02
GMM 0.83 ± 0.02 0.64 ± 0.02
BeT 0.88 ± 0.01 0.77 ± 0.01
VQ-BeT 0.9 ± 0.01 0.78 ± 0.005
Diffusion 0.88 ± 0.01 0.64 ± 0.01

Table 12: Study of design decisions for the model architecture that affects multi-task performance.

Category Variant LIBERO-90 Meta-World DMC
Separate vs. Shared Vision Encoders Common 0.90 – –

Separate 0.92 – –
Observation Trunk Input Separate 0.90 0.79 0.70

Concatenated 0.87 0.79 0.70

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 3 explain the architecture in detail with the performance and ablations
presented in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations have been discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

27

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include our architecture details in Section 3.4 and experimental details
in Section 4 and Appendix A.4. We will also be making our code and data public on the
project website.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

28

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will also be making our code and data public on the project website.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include our architecture details in Section 3.4 and all experimental details
in Section 4 and Appendix A.4. We will also be making our code and data public on the
project website.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are not reported because of insufficient computational resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The details have been included in Appendix A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: The paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include of broader impacts statement of our work in Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

30

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and environments used in this work are open-source and have
been appropriately cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

31

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: We will be releasing documented code on the project website along with our
real-world dataset. The submission has been appropriately anonymized.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32

