
Under review as a conference paper at ICLR 2023

GANET: GRAPH-AWARE NETWORK FOR POINT
CLOUD COMPLETION WITH DISPLACEMENT-AWARE
POINT AUGMENTOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Remarkably, real-world data (e.g., LiDAR-based point clouds) is commonly
sparse, uneven, occluded, and truncated. The point cloud completion task draws
due attention, which aims to predict a complete and accurate shape from its par-
tial observation. However, existing methods commonly adopt PointNet or Point-
Net++ to extract features of incomplete point clouds. In this paper, we propose
an end-to-end Graph-Aware Network (GANet) to effectively learn from the con-
tour information of the partial point clouds. Moreover, we design Displacements-
Aware Augmentor (DPA) to upsample and refine coarse point clouds. With our
graph-based feature extractors and Displacements-Aware Transformer, our DPA
can precisely capture the geometric and structural features to refine the complete
point clouds. Experiments on PCN and MVP datasets demonstrate that our GANet
achieves state-of-the-art on the task of shape completion.

1 INTRODUCTION

The rapid development of 3D scanning devices (e.g.. LiDAR) has provided an unprecedented ability
to capture point clouds from complex 3D scenes. However, due to limited resolution and occlusion
issues, the scanned point clouds are sparse and incomplete, which is why various applications such
as 3D detection (Zhang et al., 2020b) cannot take full advantage of them.

PointNet (Qi et al., 2017a) has attracted great attention to the learning methods on raw point clouds.
Inspired by PointNet, PCN (Yuan et al., 2018) introduces a coarse-to-fine fashion to learning-based
shape completion. Based on this fashion, subsequent work (Yuan et al., 2018; Tchapmi et al., 2019;
Wang et al., 2020a; Liu et al., 2020; Wang et al., 2020b; Pan et al., 2021) investigates how to optimize
the refinement stage for more detailed results. For example, SnowflakeNet (Xiang et al., 2021a)
proposes snowflake point deconvolution to progressively refine coarse point clouds.

Although difficult to discern as a whole, most incomplete point clouds maintain roughly recog-
nizable contours. This observation motivates us to propose Graph-Aware Network (GANet), a
novel graph-based network for shape completion. Compared with MLP-based methods previous
approaches, which rely heavily on inductive learning and may neglect shape awareness as men-
tioned in Liu et al. (2019b), graph-based methods can extract shape information from the hints of
geometric relation more effectively. An overview of our GANet is shown in Figure 1. Specifically,
we design a Multi-scale Edge Aggregator (MEA) to extract expressive features with rich geometric
information. The MEA first applies a set abstraction proposed by PointNet++ (Qi et al., 2017b) to
reduce the point number of input data. This operation avoids the effects of noise and repeated points
as well as reduces the model’s computation complexity. To learn from the outlines of the partial
point clouds, we construct the local graphs based on the neighbors of the given centroids. Then we
propose a novel scalable module, Local Edge Aggregator (LEA) to process the local graphs. This
module weights the importance of the edges in the local graphs and then aggregates the features of
the edges for the output centroid features. In addition, to capture both the local and global structures
of the input point clouds, we introduce the philosophy of multi-scaling to our LEA.

Furthermore, we design Displacement-Aware Point Augmentor (DPA), a novel upsampling module
to refine the coarse output. We leverage a multi-stage strategy to stack DPA blocks. In particular,
we use the LEA as the feature extractor in every DPA block. The LEA can capture the geometric
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Figure 1: The pipeline of our GANet. GANet consists of an edge aggregator (our MEA) to extract
the global features of a partial point cloud, and MLP to decode the global features for the coarse
output, a priori sampling module for stable output, and three cascaded point augmentors (our DPA)
with skip connection to upsample and refine the coarse output. Nc is the number of the coarse output
points. N1, N2, and N3 are the number of the output points from the three point augmentors.

structure information to provide better representation compared with regular multi-layer perceptron
(MLP). In addition, the current DPA block provides information flow for the next DPA block. This
skip connection can help the next block to refine a better complete point cloud with information
fusion. To effectively utilize previous information, we propose a novel Displacements-Aware Trans-
former (DAFormer). With the cross attention and group feed-forward network, our DAFormer can
learn the precise displacement relation between two point clouds with different resolutions. Finally,
our experiments show that GANet outperforms previous methods on PCN dataset (Yuan et al., 2018)
and MVP (Pan et al., 2021).

Our key contributions are manifold:

• We design a new Graph-Aware Network (GANet) for point cloud completion, which uses
the graph-based scalable module to extract local and geometric features of partial point
cloud.

• We propose a Displacements-Aware Point Augmentor (DAP) to refine coarse com-
plete point clouds. Moreover, we introduce a novel Displacements-Aware Transformer
(DAFormer) to aggregate information between two point clouds with different resolution.

• Our method achieves state-of-the-art on some widely adopted benchmarks including PCN
dataset and MVP.

2 RELATED WORK

2.1 LEARNING ON POINT CLOUDS

Point-based methods (Li et al., 2018a; Zhao & Tao, 2020; Yang et al., 2019; Liu et al., 2019a; Zhao
et al., 2021; Guo et al., 2021; Xiang et al., 2021b; Ma et al., 2021; Ran et al., 2022) have attracted
significant attention for processing on point clouds. PointNet (Qi et al., 2017a) learns a global view
by point-wise MLP followed by max-pooling. Subsequently, PointNet++ (Qi et al., 2017b) intro-
duces a hierarchical framework to learn the local features. Afterward, another branch of methods
(Dai et al., 2017; Groh et al., 2018; Thomas et al., 2019; Li et al., 2018b; Xu et al., 2018; 2021)
based on convolution emerged for the local aggregation, using dynamic strategies of transformation
for the normal work of convolution on point clouds. PointConv (Wu et al., 2019) directly employs
the relationship between local centers and their neighbors to learn a dynamic weight for convolution.

2.2 GRAPH-BASED METHODS

(Groueix et al., 2018; Xu et al., 2020a;b; Hamilton et al., 2017; Kipf & Welling, 2016; Zhou et al.,
2021) achieves notable performance for the local aggregation of geometric features. To capture local
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Figure 2: The design of our Local Edge Aggregator (left) and Multi-scale Edge Aggregator (right).
Local Edge Aggregator (LEA) describes the local geometric structure fK by a combination of graph
aggregation and attention mechanism, and Multi-scale Edge Aggregator (MEA) adopts the philos-
ophy of multi-scaling for more expressive features. We first utilize a set abstraction block (SA) to
extract some key points P ′ and the corresponding features F ′. Then, we feed F ′ into LEAs with dif-
ferent K (i.e., K1, K2, K3) and obtain the output FK1, FK2, FK3. Finally, through a sequence of
operations (i.e., concatenation, mapping γ, and aggreation A), our MEA abstracts a local-to-global
view of feature g. N is the number of input points. N ′ is the number of key points after SA. K is
the number of neighbors to be queried. C and CK are the dimensions of the features in F ′ and FK .

geometric features of point clouds, DGCNN (Wang et al., 2019) learns an edge feature by building
the relations between the node and its neighbors. A similar branch of relation-based models learns
from relations analogous to the edges of graphs. RSCNN (Liu et al., 2019c) predefines geomet-
ric priors equipped with the attention mechanism, while RPNet (Ran et al., 2021) adopts both the
geometric and semantic relations in an efficient block.

2.3 LEARNING-BASED SHAPE COMPLETION

Various shape completion methods (Yang et al., 2018; Vakalopoulou et al., 2018; Tchapmi et al.,
2019; Liu et al., 2020; Xie et al., 2020; Huang et al., 2020; Wang et al., 2020b; Zhang et al., 2020a)
have emerged. PCN (Yuan et al., 2018) unprecedentedly introduces deep learning to shape com-
pletion by utilizing an coarse-to-fine completion framework. CRN (Wang et al., 2020a) proposes a
novel coarse-to-fine pipeline to facilitate the decoder with a cascade refinement strategy. Subsequent
work (Yu et al., 2021; Huang et al., 2021; Zong et al., 2021; Wen et al., 2021a;b; Lyu et al., 2021;
Wang et al., 2021; 2022; Tang et al., 2022) focuses on how to reconstruct more detailed features.
VRCNet (Pan et al., 2021) designs a Relational Enhancement Network to enhance structural rela-
tions for refinement. SnowflakeNet (Xiang et al., 2021a) introduces a snowflake point deconvolution
block to generate the detailed complete point cloud.

3 GRAPH-AWARE NETWORK

In this section, we propose Graph-Aware Network (GANet) for shape completion, following the
coarse-to-fine fashion. As shown in Figure 1, GANet firstly extracts the global features by our
Multi-scale Edge Aggregator (MEA) to predict the coarse output. Afterwards, we upsample the
coarse output to fine complete point clouds through our Displacements-aware Point Augmentor
modules. Finally, we present our Displacement-aware Transformer, loss function and the evaluation
metrics.

3.1 MULTI-SCALE EDGE AGGREGATION

Prior PointNet-based methods (Yang et al., 2018; Vakalopoulou et al., 2018; Tchapmi et al., 2019;
Liu et al., 2020; Yuan et al., 2018; Wang et al., 2020a; Pan et al., 2021) can hardly learn geomet-
ric information as they learn the global and local features from individual points. To tackle this
problem, we exploit the geometric structures by constructing local graphs. We design a Local Edge
Aggregator (LEA), an attention-based instead of the convolution-like module to aggregate the local
graphs. Furthermore, we use a different definition of edge. Based on LEA, we propose a novel
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Multi-Scale Edge Aggregation (MEA) to extract global features. As shown in Figure 2, the MEA
consists of a set abstraction operation and three Local Edge Aggregators (LEA). The set abstraction
is employed to extract key points and their features as well as drop the computation complexity.

As shown in Figure 2, we denote the input as P = {p1, . . . ,pN} ⊆ RN×3. N is the number
of the input point clouds. The output of set abstraction (SA) is a downsampled point cloud P ′ =

{p′
1 . . . ,p

′
N ′} ⊆ RN ′×3 and its corresponding features F ′ = {f ′1 . . . , f ′N ′} ⊆ RN ′×C . N ′ is the

number of points in the downsampled point cloud, and C means the dimension of features F ′. We
then feed F ′ into the multi-scale LEAs. Given the i-th point, its output feature through one LEA
block can be formulated as:

fKi =

K∑
j=1

wij ⊙M ([f ′i , eij ]) , (1)

where we define edge eij = f ′i − f ′j , and wij is the attention weight of eij . K represents the
number of neighbors to be queried by one LEA. ⊙ is element-wise product. [·] is the operation of
concatenation. M is a combination of linear and non-linearity function, i.e., {MLP → ReLU →
MLP}. Here wij is defined as:

wij = Softmax (ω (eij)) , (2)

where ω is a learnable mapping function.

Furthermore, we introduce the philosophy of multi-scale grouping to our edge aggregation. Previous
works (Qi et al., 2017b; Ran et al., 2021) prove the effectiveness of multi-scale grouping. Both the
local and global structures are essential for a sparse point cloud. Empirical results further show its
effectiveness. The global feature of our multi-scale LEAs can be defined as:

g = A
({
γ
([

fK1
i , fK2

i , fK3
i

])
|i ∈ {1, . . . , N ′}

})
, (3)

where K1, K2, K3 and fK1
i , fK2

i , fK3
i are the predefined numbers of neighbors and the output of

different scales of LEAs, respectively. γ is a linear function. To implement our network, we set K1,
K2, K3 to 10, 20, None (all points as neighbors) respectively. A is the function (i.e., max-pooling,
mean-pooling) to aggregate the N ′ features.

Finally, we utilize the input partial point cloud and the extracted global feature g to generate a coarse
complete point cloud through a sequence of operations, i.e., mapping, reshaping, and sampling.

3.2 DISPLACEMENT-AWARE POINT AUGMENTATION

The upsampling operation plays a vital role in the point cloud completion task. In this stage, the aim
is to refine and upsample coarse point clouds. With a multi-stage strategy, previous methods (Wang
et al., 2020a; Xiang et al., 2021a; Tang et al., 2022) can recover local shape details by exploiting local
points features. However, these multi-stage methods ignore the importance of the feature extractor.
They usually employ MLP-based feature extractor to learn the features of the input, which may fail
to exploit the geometric and structural features of the input.

To solve the above problems, we propose a Displacement-aware Point Augmentation (DPA) block,
as shown in Figure 3. Following a multi-stage strategy, we stack three DPA blocks to generate our
final complete shape. Each DPA block takes the output of the previous block as input and then
refines and upsamples the input with more details. The simple yet effective DPA block consists of
a feature extractor, feature fusion, and displacement generator. We adopt one LEA as our feature
extractor for the local feature extraction. This process is roughly the same as Equation 1.

In addition, to refine a better point cloud, we aggregate point features of i−1-th block to the current
i-th block. To fuse two different scale features, we construct a relation between current features Fi

and previous point features Fi−1. The relation can guide the DPA block to generate suitable and
accurate displacements by aggregating information from Pi−1 and Pi. To fuse two point features,
we propose Displacement-aware Transformer (DAFormer).

Specifically, the input of DPA is point cloud Pi =
{
pi
1, . . . ,p

i
Ni

}
⊆ RNi×3, whereNi is its number

of points. Our goal is to obtain a refined point cloud Pi+1 =
{
pi+1
1 , . . . ,pi+1

Ni+1

}
⊆ RNi+1×3. We
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Figure 3: Displacement-aware Point Augmentator (DPA). Our DPA aims to generate a high-
resolution fine output Pi+1 from the coarse input Pi. We first adopt a LEA to extract the local
features Fi. Next, we feed Fi with the combination of the feature after max-pooling gi and the
one from the previous stage g′

i−1 into an MLP η to obtain features F ′
i . The pooled feature g′

i will
be used in the next DPA block. Then, we leverage DAFormer D along with the mapping function
W and the pixel-shuffle-like operation, to generate point displacements with the fusion of F ′

i and
features from the previous stage F ′

i−1. Finally, we use the computed point displacements to obtain
the refined output Pi+1. R is upsampling ratio. Ni is the number of input points Pi. Ni+1 is the
number of output points Pi+1. Ni+1 = R×Ni.

firstly adopt one LEA to extract local features Fi =
{
f i1, . . . , f

i
Ni

}
⊆ RNi×D. Next, we feed Fi with

the combination of the feature after max-pooling gi and the one from the previous stage g′
i−1 into

an MLP η to obtain features F ′
i . The pooled feature g′

i will be used in the next DPA block. Then,
DAFormer D along with the mapping function W and the pixel-shuffle-like operation, utilizes the
fusion of F ′

i and features from the previous stage F ′
i−1 to generate point displacements. We define

a set of point displacements Dj as:

Dj =
{(

W
(
D
(
f i−1
j , η

([
f ij ,gi−1,gi

]))))m |m ∈ {1, . . . , R}
}
. (4)

Thus, after point augmentation, each point of the input Pi will generate R corresponding points
(Ni+1 = R×Ni).

Finally, we obtain the refined point cloud Pi+1 by the summation of the displacements and their
corresponding centroids. Denote djm as an element of Dj . The refined point cloud can be defined
as:

Pi+1 =
{
pi
j + djm|j ∈ {1, . . . , Ni} ,m ∈ {1, . . . , R}

}
. (5)

3.3 DISPLACEMENT-AWARE TRANSFORMER

In the upsampling stage, we learn point displacements to refine the point cloud. To learn better
point displacements, we introduce a novel Transformer, called Displacement-aware Transformer
(DAFormer). As shown on the left of Figure 3, the DAFormer is a global and local transformer,
which consists of a multi-heads cross attention and a group feed-forward network.

Cross Attention. The multi-heads cross-attention (MHCA) is used to learn global displacement
features between Pi and Pi−1. Denote two inputs with different scales as X and X ′. We can
express the MHCA as:

q = ϕ(X), k = β(X ′), v = ψ(X ′),

A = softmax(qkT /
√
C/h),

MHCA(X,X ′) = α(A⊙ v),

(6)

where ϕ, β, and ψ are linear functions, α is a projection function to align the dimension. C and h
are the embedding dimension and number of heads, respectively. ⊙ is matrix multiplication.
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Group Feed-forward Network. Different from the vanilla Transformer proposed by
CrossVit (Chen et al., 2021), we employ a group feed-forward network (FFN) to introduce non-
linear operation. Compared with regular FFN based on MLP, group FFN can aggregate the regional
information by the grouping operation. Specifically, we first leverage a linear function to map the
input channel into the hidden space, which is able to reduce the computing complexity. Next, we
group the neighbors by the k-nearest neighbors (KNN) algorithm in the geometric space. Then,
we use the relation between the center point and its neighbors to learn the displacement features.
Finally, a back projection function is used to align the dimensions for the following residual connec-
tion. Note that, position encoding is not necessary for our DAFormer because we use group FFN to
update the features. The output of the Group FFN can be formulated as:

G(F ) = 1

G

G∑
j=1

{θ(M ([ϕ(fi), β(fj)]))} (7)

where ϕ, β are linear function. θ is a back projection function. M is a mapping function with a
series of MLP. The G denotes the number of neighbors.

Benefiting from the cross attention and group FFN, our DAFormer can learn global and local dis-
placements change to help following point shuffle operation to generate better displacements. The
output of DAFormer can be designed as follows:

F ′ = Fi +MHCA (LN(Fi), LN(Fi−1)) ,

Fout = F ′ + G(LN(F ′))
(8)

where G is a group feed-forward network. LN is the layer normalization (Ba et al., 2016).

3.4 LOSS FUNCTION AND EVALUATION METRICS

We use the Chamfer Distance (CD) and F1-score to evaluate the quality of the reconstructed point
clouds.

CD calculates the average closest point distances between the output X and the ground truth Y,
which can be defined as follows:

CD (X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

∥x− y∥2 +
1

|Y |
∑
y∈Y

min
x∈X

∥y − x∥2. (9)

For an end-to-end training on our GANet, we design the total loss function, which is as follows:

L = CD (P ′, Q) +
n∑

i=1

CD (Pi, Q) , (10)

where P ′ and Pi denote the coarse and fine output of DPA block, respectively. Q is the ground truth.
n is the number of GAP blocks.

4 EXPERIMENTS

Implementation Details. We build our network with PyTorch and CUDA. We train our models
using an Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9 and β2 = 0.999 on NVIDIA V100
16G GPU. The initial learning rate is set to 10−3 with a decay of 0.1 every 50 epochs, and the batch
size is 32.

4.1 RESULTS ON MVP DATASET

Dataset. Pan et al. (2021) proposes a high-quality multi-view partial point cloud dataset (MVP) for
the task of point cloud completion. It utilizes Poisson Disk Sampling (PDS) to generate the ground
truth point clouds, and has multiple camera views (26 uniformly distributed camera poses on a unit
sphere) and various categories. In addition, the MVP dataset provides different resolutions (i.e.,
2048, 4096, 8192, and 16384) of ground truth for more accurate evaluation.
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Table 1: Quantitative results on the MVP dataset (Pan et al., 2021) with different resolutions. “*”
means additional data augmentation.

Method 2048 4096 8192 16384
CD (↓) F1 (↑) CD (↓) F1 (↑) CD (↓) F1 (↑) CD (↓) F1 (↑)

PCN (Yuan et al., 2018) 9.77 0.320 7.96 0.458 6.99 0.563 6.02 0.638
TopNet (Tchapmi et al., 2019) 10.11 0.308 8.20 0.440 7.00 0.533 6.36 0.601
MSN (Liu et al., 2020) 7.90 0.432 6.17 0.585 5.42 0.659 4.90 0.710
CRN (Wang et al., 2020a) 7.25 0.434 5.83 0.569 4.90 0.680 4.30 0.740
VRCNet (Pan et al., 2021) 5.96 0.499 4.70 0.636 3.64 0.727 3.12 0.791
SnowflakeNet (Xiang et al., 2021a) 5.76 0.513 4.42 0.671 3.50 0.746 2.74 0.800
PoinTr (Yu et al., 2021) - - 5.18 0.606 3.94 0.724 3.08 0.767
PDR paradigm (Lyu et al., 2021) * 5.66 0.499 4.26 0.649 3.35 0.754 2.61 0.817
GANet (ours) 4.99 0.527 3.81 0.679 2.87 0.776 2.28 0.828

Input PCN VRCNet PoinTr Snow Ours GT

Figure 4: Visualization on MVP (Pan et al., 2021). From left to right, each column of images is
incomplete point clouds (Input), the results of PCN (Yuan et al., 2018), PoinTr (Yu et al., 2021),
SnowflakeNet (Xiang et al., 2021a), VRCNet (Pan et al., 2021), our GANet and ground truth (GT).

Results. To verify the effectiveness of our GANet, we evaluate our GANet on the MVP dataset
and compare it with the previous methods in Table 1. Our method achieves state-of-the-art results
on all of the resolutions in the metrics of CD and F1-score. Compared with state-of-the-art method
PDR paradigm (Lyu et al., 2021), we reduce the 11.8% CD and improve 5.6% F1-score in the 2048
resolution.

Moreover, we visualize the reconstructed results in Figure 4. Compared with previous methods, our
GANet is able to complete better and more detailed point clouds. Our GANet preserves the whole
contour information of the input point clouds with the help of our graph-based local aggregators
instead of the widely adopted PointNet-based feature extractors.
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Table 2: Quantitative results on PCN dataset (Yuan et al., 2018) on CD (×10−3). #Points of ground
truth is 16384.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Avg (↓)
FoldingNet (Yang et al., 2018) 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31
AtlasNet (Groueix et al., 2018) 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61 10.85
PCN (Yuan et al., 2018) 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59 9.64
TopNet (Tchapmi et al., 2019) 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12 12.15
CRN (Wang et al., 2020a) 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51
GRNet (Xu et al., 2020b) 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83
PMPNet (Wen et al., 2021b) 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25 8.73
NSFA (Zhao et al., 2020) 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48 8.06
PoinTr (Yu et al., 2021) 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29 8.38
VE-PCN (Wang et al., 2021) 4.80 9.85 9.26 8.90 8.68 9.83 7.30 7.93 8.32
SnowflakeNet (Xiang et al., 2021a) 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40 7.21
GANet (ours) 3.98 9.21 7.86 7.43 5.53 8.91 6.35 6.14 6.92

Input PN PN2 MEA(Ours) GT

Figure 5: Visualization between different designed encoders. From left to right, each column of
images is incomplete point clouds (Input), the results of encoders equipped with PointNet (PN) (Qi
et al., 2017a), PointNet++ (PN2) (Qi et al., 2017b), and our MEA, and ground truth (GT).

4.2 RESULTS ON PCN DATASET.

Dataset. PCN (Yuan et al., 2018) uses synthetic CAD models from ShapeNet (Chang et al., 2015) to
create a large-scale dataset containing numerous pairs of partial and complete point clouds. The 3D
partial point clouds come from the back-projecting 2.5D depth maps. The ground truth with 16384
points is uniformly sampled from the model. This dataset includes 28974 CAD models for training
and 1200 CAD models for test.

Results. We compare our GANet with recent most competitive methods on the PCN dataset (Yuan
et al., 2018). Table 2 shows the quantitative results on the PCN dataset, from which we find that our
proposed GANet performs best on the metric of CD.

5 ABLATION STUDY

In this section, we conduct detailed ablation studies to evaluate our designed components.

Table 3: Comparison between different encoders
on CD (×10−4) and F1-score. For the design
of encoder, we have three options (PointNet (Qi
et al., 2017a), PointNet++ (Qi et al., 2017b), and
our MEA)

PN PN2 MEA CD (↓) F1-score (↑)
✓ 5.25 0.526

✓ 5.28 0.526
✓ 4.99 0.527

The design of MEA. We compare our MEA
with PointNet-based encoder (Yuan et al.,
2018) and PointNet2-based encoder (Wen
et al., 2020). The quantitative results are shown
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Table 4: Ablation study of our DAFormer on CD (×10−4) and F1-score. “Skip” means skip con-
nection. “geo” is geometric neighbors, while “sem” is semantic neighbors.

Skip Block neighbors CD (↓) F1-score (↑)
MLP - 5.55 0.508

✓
Cross Transformer - 5.10 0.524

DAFormer sem 5.09 0.523
DAFormer(ours) geo 4.99 0.527

in Table 3. The comparison demonstrates that
our MEA achieves the best performance on CD
and F1-score metrics. We visualize the results
of the model with different encoders in Fig-
ure 5. The figure shows that the generated
shape of our MEA is closer to ground truth in
the whole contours compared with PointNet (PN) and PointNet++ (PN2). Both visualization and
quantitative results prove that our graph-aware MEA improves the performance by exploiting the
whole contour information.

The design of LEA. We ablate the design of LEA in our DPA. We compare our LEA with MLP in
Table 5. Table 5: Comparisons between

MLP and LEA in our DPA block.
Operation CD (↓) F1-score (↑)

MLP 5.50 0.512
LEA (ours) 4.99 0.527

The results demonstrate that LEA is more powerful compared
with vanilla MLP. We argue that the graph-based local ag-
gregators help complete detailed point clouds by extracting
geometric and structural features.

The design of DAFormer. We investigate the effectiveness of our DAFormer. All results test-
ing on our GANet’s architecture and the MVP dataset with 2048 resolutions. We first study the
influence of skip-connection, the regular methods (Yuan et al., 2018; Tchapmi et al., 2019) with-
out skip-connection usually use MLP to learn features. From the comparison, we find that without
skip-connection, our model using MLP also achieves perfect performance, which still outperforms
previous methods (Xiang et al., 2021a; Pan et al., 2021). Then, with the skip-connection, we com-
pare the vanilla Cross Transformer (Chen et al., 2021) and our DAFormer. With the help of group
FFN, our DAFormer gains better metrics in terms of CD and F1-score. Finally, we research the
type of neighbor in the group FFN, including geometric neighbors and semantic neighbors. The
experimented results demonstrate the geometric neighbor is better. We argue that the geometric
neighbor constructs the feature fusion of geometric relation, which is able to generate more accurate
displacements compared with the feature fusion of semantic relation.

6 COMPLEXITY ANALYSIS

Table 6: Comparison between our GANet and the
most recent methods on efficiency.

Methods FLOPs (G) #Params (M) Time (ms)
VRCNet 29.75 17.46 11.46
Pointr 11.14 42.55 10.12
SnowflakeNet 5.52 19.30 4.45
GANet 3.74 5.01 3.26

In this section, we compare the efficiency be-
tween recent methods and our GANet on the
MVP dataset with the resolution of 16384
points. As shown in Table 6, our GANet is
much faster and brings obviously less com-
putation compared with VRCNet (Pan et al.,
2021), SnowflakeNet (Xiang et al., 2021a), and
PoinTr (Yu et al., 2021). Moreover, Table 1 in-
dicates GANet performs much better on CD and F1-score compared with these methods.

7 CONCLUSION

In this paper, we design a graph-aware network GANet for point cloud completion. Equipped with
our proposed multi-scale edge aggregator, our GANet effectively learns from geometric global fea-
tures from the preserved geometric structures of the partial point clouds. In addition, we propose the
Displacement-Aware Point Augmentation (DPA) module to upsample the coarse output from the first

9
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stage. With the graph-based feature extractor and Displacement-Aware Transformer (DAFormer),
DPA generates accurate point displacements to upsample and refine point clouds. Extensive ex-
periments on some benchmarks indicate that our GANet achieves state-of-the-art compared with
previous methods.

10
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ways as follows:
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A EXPERIMENTS DETAILS

In this section, we present our experimental setting in terms of upsampling ratios and our detailed
experiment results on the MVP dataset.

Upsampling ratios. We set the size of coarse output to 512 × 3. In the different resolutions,
the detailed upsampling ratios of three Displacements-Aware Point Augmentor (DPA) blocks are
shown in following:

Resolutions Upsampling ratios
2048 1,2,2
4096 1,2,4
8192 1,2,8

16384 1,2,16

Detailed results on the MVP dataset. We further present the detailed complete results on the MVP
dataset (16384) in terms of F1-score. The results of every category are shown in following:
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Avg (↓)
PCN (Yuan et al., 2018) 0.816 0.614 0.686 0.517 0.455 0.552 0.646 0.628 0.452 0.694 0.546 0.779 0.906 0.665 0.774 0.861 0.638
TopNet (Tchapmi et al., 2019) 0.789 0.621 0.612 0.443 0.387 0.506 0.639 0.609 0.405 0.680 0.524 0.766 0.868 0.619 0.726 0.837 0.601
MSN (Liu et al., 2020) 0.879 0.692 0.693 0.599 0.604 0.627 0.730 0.696 0.569 0.797 0.637 0.806 0.935 0.728 0.809 0.885 0.710
CRN (Wang et al., 2020a) 0.898 0.688 0.725 0.670 0.681 0.641 0.748 0.742 0.600 0.797 0.659 0.802 0.931 0.772 0.843 0.902 0.740
GRNet (Xie et al., 2020) 0.853 0.578 0.646 0.635 0.710 0.580 0.690 0.723 0.586 0.765 0.635 0.682 0.865 0.736 0.787 0.850 0.692
NSFA (Zhang et al., 2020a) 0.903 0.694 0.721 0.737 0.783 0.705 0.817 0.799 0.687 0.845 0.747 0.815 0.932 0.815 0.858 0.894 0.783
VRCNet (Pan et al., 2021) 0.928 0.721 0.756 0.743 0.789 0.696 0.813 0.800 0.674 0.863 0.755 0.832 0.960 0.834 0.887 0.930 0.796
SnowflakeNet (Xiang et al., 2021a) 0.928 0.729 0.731 0.750 0.806 0.722 0.815 0.801 0.701 0.866 0.756 0.834 0.966 0.815 0.877 0.924 0.800
GANet (Ours) 0.945 0.753 0.758 0.787 0.848 0.754 0.848 0.827 0.732 0.890 0.795 0.854 0.977 0.837 0.900 0.955 0.828

From the table, we can see that our GANet achieves state-of-the-art results in all categories.

B THE DESIGN OF EDGE AGGREGATOR.

We ablate the design of multi-scaling (the combination of fK1 , fK2 , fK3 compared with fK1 only)
and multi-layer (three-layer MLP compared with single-layer MLP in M). The results of testing on
the MVP dataset with 2048 resolutions are shown in following.

Scale Layer CD (↓) F1-score (↑)
Single Single 5.19 0.525
Multi Single 5.16 0.523
Single Multi 5.08 0.524
Multi Multi 4.99 0.527

From the comparison, multi-scale with multi-layer works the best on CD and F1-score.

C RESULTS ON THE REAL SCENE

LiDAR scans can be very sparse, with some containing fewer than 10 points. KITTI (Geiger et al.,
2013) is a real-world dataset that scanned point clouds using a Velodyne LiDAR. In order to compare
the sensitivity and performance of models for the sparse point cloud in the LiDAR scans, we test
the general models trained on the PCN ShapeNetCars. The visualized completion results are shown
in Figure. 6. We compare our GANet with previous competitive methods, VRCNet (Pan et al.,
2021), PoinTr (Yu et al., 2021) and SnowflakeNet (Xiang et al., 2021a). All the results show that
our methods perform better in terms of details.

D MORE VISUALIZED RESULTS

In this section, we show more visualized complete results on the MVP dataset. From Figure 7,
Figure 8 and Figure 9, we find that our method generate better shape with structure details compared
with previous methods PCN (Yuan et al., 2018), VRCNet (Pan et al., 2021), PoinTr (Yu et al., 2021),
and SnowflakeNet (Xiang et al., 2021a).
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Inputs VRCNet PoinTr Snow Ours

Figure 6: Visualized results on KITTI dataset.
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Inputs PCN VRCNetPoinTr Snow Ours GT

Figure 7: Visualized results on MVP dataset.
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Inputs PCN VRCNetPoinTr Snow Ours GT

Figure 8: Visualized results on MVP dataset.
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Inputs PCN VRCNet PoinTr Snow Ours GT

Figure 9: Visualized results on MVP dataset.
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