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ABSTRACT

We present a novel gradient-based multi-task learning (MTL) approach that bal-
ances training in multi-task systems by aligning the independent components of
the training objective. In contrast to state-of-the-art MTL approaches, our method
is stable and preserves the ratio of highly correlated tasks gradients. The method is
scalable, reduces overfitting, and can seamlessly handle multi-task objectives with
a large difference in gradient magnitudes. We demonstrate the effectiveness of the
proposed approach on a variety of MTL problems including digit classification,
multi-label image classification, camera relocalization, and scene understanding.
Our approach performs favourably compared to other gradient-based adaptive
balancing methods, and its performance is backed up by theoretical analysis.

1 INTRODUCTION

In multi-task learning (MTL, e.g., Caruana, 1993; Doersch & Zisserman, 2017), several tasks are
optimized simultaneously using a single model and by leveraging shared information across tasks to
improve generalization and boost performance for all tasks. MTL is a key component in real-world
applications, such as natural language processing (Liu et al., 2019c), computer vision (Kendall
et al., 2015; Kokkinos, 2017), and reinforcement learning (Parisotto et al., 2016; Teh et al., 2017).
However, these systems are difficult to train since different tasks need to be properly balanced, which
is challenging when the multi-task gradient is dominated by the gradient of one of the tasks.

MTL approaches have demonstrated rapid progress, and in general, they can be divided into two
categories. The first group of methods aims at designing multi-task neural network architectures
which should learn both task-shared and task-specific features by using hard and soft parameter
sharing (Liu et al., 2019b; Lu et al.; Houlsby et al., 2019; Pfeiffer et al., 2021). The methods in the
second group focus on multi-task optimization strategies. To learn all tasks with equal importance,
some methods use gradient replacement (Yu et al., 2020; Lopez-Paz & Ranzato, 2017) or balance
the individual loss functions with weights sampled from a uniform distribution, learned by using
task-dependant uncertainty (Kendall et al., 2018), determined by utilising the learning speed for
the task (Liu et al., 2019a;b; Lee & Son, 2020), or obtained by minimizing an auxiliary loss (Chen
et al., 2018). However, combining individual loss functions into one using a weighted average can
be hard and prone to errors if some task gradients are in conflict with each other. To alleviate this
limitation, a variety of multi-objective optimization methods have been proposed (Désidéri, 2012;
Sener & Koltun, 2018). They aim to find Pareto-stationary solutions for which the performance of
any of the objectives can only be improved by deteriorating performance of some other objective.
Although these methods demonstrate good performance, their main limitation is local convergence.
Specifically, if the objective function is non-convex, which is typical in deep learning, the methods
converge to a poor Pareto-stationary solution. Moreover, there is a gap between optimization and
generalization performance as proven by Lin et al. (2019).

This work hinges on the realization that improving upon the overall performance in multi-task
learning can be formulated by conservatism in the individual learning steps of uncorrelated losses. We
formulate an approach that aims to guarantee consistent improvement over dynamically constructed
linearly independent tasks at every step. This results in a multi-objective optimization algorithm
that automatically balances training in multi-task systems by aligning orthogonal components of
the objective. We address the problem of a large difference in the task gradient magnitudes through
the condition number of the gradient matrix. This number defines the dominance rate in the multi-
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Adam, f( ) = −93.21

(c) Trajectories of gradient updates

Figure 1: Synthetic multi-task problem. Following Yu et al. (2020), we evaluate our approach and
recent baseline MTL methods on a multi-task optimization problem, where the multi-task objective
gradient is dominated by one task. For each MTL method, we visualize the trajectory of gradient
updates computed for an equal number of iterations. The proposed θ-aligned method can handle the
imbalance and converges faster compared to prior state-of-the-art MTL approaches.

objective task and is obtained as the ratio of maximum and minimum singular values. Fig. 1 illustrates
the proposed approach and shows its performance compared to other gradient-based MTL methods
when the difference in the task gradient magnitudes is large.

The contributions of this paper are summarized as follows. (i) We present a novel gradient-based
MTL approach that dynamically constructs consistent losses and seamlessly handles the problem
of a large difference in task gradients. (ii) We provide a computationally efficient approximation
for the approach with constant time complexity and which is directly applicable to large-scale
problems. (iii) We formulate a new metric, the dominance rate, as an interpretable way of establishing
the maximum possible dominance in the gradient system. Additionally, we perform an extensive
evaluation of the proposed approach on various MTL benchmarks and demonstrate that our method
outperforms prior state-of-the-art MTL methods.

2 RELATED WORK

A multi-task formulation is well motivated and ubiquitous to many application domains such as
computer vision (Bilen & Vedaldi, 2016; Kokkinos, 2017; Zamir et al., 2018; Nekrasov et al., 2019;
Kendall et al., 2018), natural language processing (Collobert & Weston, 2008; Luong et al., 2015;
Dong et al., 2015), speech processing (Seltzer & Droppo, 2013), and robotics (Wulfmeier et al., 2020;
Levine et al., 2016). In this work we focus on gradient-based malti-task learning strategies and refer
the interested reader to comprehensive surveys by Caruana (1993), Ruder (2017), and Crawshaw
(2020) for a more detailed overview. One way to ease multi-task optimization is to balance the
individual loss functions for different tasks. Prior methods to simultaneously learning multiple tasks
parameterize the total objective as a weighted sum of task-specific loss functions whose weighting
coefficients are manually tuned (Kendall et al., 2015; Laskar et al., 2017). However, using grid search
for an optimal weighting is computationally inefficient especially when the number of tasks is large.
To address this limitation, Kendall et al. (2018) utilize homoscedastic uncertainty of each task to
derive a weighted multi-task loss. Chen et al. (2018) propose a heuristic to tune loss weights based
on task gradient magnitudes.

One of the main challenges in MTL is the presence of conflicting gradients when tasks have gradients
pointing in opposing directions, i.e. negative transfer (Lee et al., 2018). Among other approaches to
mitigate the problem of negative transfer, the methods based on explicit gradient modulation have
shown great potential (Lopez-Paz & Ranzato, 2017; Yu et al., 2020; Chaudhry et al., 2019). The core
idea is to replace a task gradient which conflicts with some other task by a modified, non-conflicting,
gradient. Yu et al. (2020) propose a ‘gradient surgery’ technique which makes the new gradient
non-conflicting with the average of task gradients at the previous step. However, it requires checking
multiple gradients for conflicts at each update step leading to a large computational overhead.

On the other hand, multi-objective optimization (MOO) is the process of optimizing a set of possibly
contrasting objectives simultaneously (Fliege & Svaiter, 2000; Schäffler et al., 2002; Désidéri, 2012;

2



Under review as a conference paper at ICLR 2022

Peitz & Dellnitz, 2018; Poirion et al., 2017). These methods find a direction that decreases all
objectives relying on multi-objective Karush–Kuhn–Tucker (KKT) conditions (Kuhn & Tucker,
1951). The work by Sener & Koltun (2018) extends the classical MGDA (Désidéri, 2012) method
to a form that scales well to high-dimensional problems. However, it converges to a non-optimal
Pareto-stationary solution if the objective function is non-convex. We empirically compare our
approach to a number of MOO methods and demonstrate its superior performance.

3 PROBLEM FORMULATION AND NOTATION

Multi-task learning is concerned with finding the set of parameters for a parametric model that
correspond to a high average performance across all tasks. More formally, we consider a MTL
problem defined over the input space X and a series of targets {Y1, . . . ,YT }, where T is the
number of tasks. We consider a parametric model f(x;θsh,θ1, . . . ,θT ) with shared, θsh, and
task-specific parameters, θi. Each task has a corresponding differentiable loss function Li(ŷi,yi) :
Yi × Yi → R. Moreover, we can include prior knowledge on user preferences p(Y) in the model.
The MTL problem can be formulated as an empirical risk minimisation (ERM) problem on a data set
{(xj ,y1

j , . . . ,y
T
j )}Nj=1 of i.i.d. data points:

min
θsh

θ1,...,θT

EYi∼p(Y)

[
Li(θsh,θi)

]
= min

θsh

θ1,...,θT

T∑
i=1

wiLi(θsh,θi) = min
θsh

θ1,...,θT

T∑
i=1

wiLi(θ = θsh). (1)

The vector of preferences w defines the importance of each task: w = 1 for MTL; w 6= 1 for
auxiliary task learning. We consider shared parameters, unless otherwise specified. Since the
gradients of θi and θsh are linearly independent pairwise, task-specific parameters have a single
gradient, and thus can be omitted without loss of generality.

4 INDEPENDENT COMPONENT ALIGNMENT

One of the key challenges in MTL is overfitting to one of the tasks caused by the dominance of
the gradient of some linear component in the loss function. In practice, the overfitting might be
defined by a dominating direction which has the fastest learning rate compared to others. This
dominance can be caused by, for example, gradient interference between the individual loss functions
or a significant difference in their magnitudes. Such a situation is illustrated in Fig. 2a, where the
gradient for task 2 dominates task 1. Recent works on the interactions of individual tasks (Zamir
et al., 2018; 2020) demonstrate that tasks may have a common component. This means that the
uniqueness of a particular task is determined by another, unique, component independent to the
common one. In this regard, the interference of gradients leads to a faster training rate of the joint
subtask reducing the efficiency of learning unique components for each task. Therefore, we need
to analyze the independent components of the gradient system, rather than the individual gradients
themselves. We define dominance in the system of gradients as follows:
Definition 1 (Dominance rate). The rate of dominance of the system of loss functions is the condition
number of the matrix composed of the gradients of these functions over the shared parameters:

D(L1(θ), . . . ,LT (θ)) = D(Gθ) =
σmax(Gθ)

σmin(Gθ)
, where Gθ =

(
∇θL1(θ), . . . ,∇θLT (θ)

)
. (2)

This definition is based on the singular value decomposition (SVD) and has a geometric interpretation.
The dominance coefficient defines the maximum possible dominance in the gradient system and is
obtained as the ratio of the maximum and minimum learning rates of the orthonormal components
of the gradient system (as in Fig. 2a). Recently, Wang et al. (2020) propose a metric, OGR to
quantitatively estimate the significance of overfitting of multi-modal networks for classification.
Although related, the metric is obtained by using an assumption that target distribution is well
approximated by a validation data set. In contrast, our measure does not require such a strong prior
and solely based on gradients with respect to the training set.

4.1 MODEL-AGNOSTIC ALIGNMENT

For effective training over all tasks, the system of gradients of loss functions should be consistent and
have a small dominance rate. We take this as a design principle, and aim for avoiding domination and
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Figure 2: Geometric interpretation. (a) Decomposition of the original problem to orthogonal
components through a SVD. (b) Re-weighting the gradient directions by balancing the conditioning.
(c) The aligned task gradients defining the step directions. Here, ui, σi are left singular vector and
singular value of gradient matrixGθ, respectively.

inconsistency altogether. We propose constructing a new (consistent) gradient system that best (under
conditions that follow) describes the given directions, but whose dominance coefficient is equal to
minimum dominance over the task gradients, i.e. unit dominance. More formally, we define a new
aligned gradient as follows.

Definition 2 (θ-aligned). We define a θ-aligned gradient as ∇θaθ L(θ) := σmin(Gθ)Ĝθw, where
vector w denotes a pre-selected task preference and Ĝθ is the solution to the Procrustes problem:

Ĝθ = arg min
Q
‖Gθ −Q‖F , s.t. Q>Q = I. (3)

In order to calculate the θ-aligned gradient, the solution to the general Procrustes problem is needed.
Schönemann (1966) shows that the problem has an analytical solution, namely:

Ĝθ = UV >, where U ,V : Gθ = UΣV >(given by a SVD). (4)

The analytical solution allows us to avoid the costly procedure for finding the minimum, which
reduces the computational cost of our approach. Additionally, this leads to the dominance rate of
the resulting matrix being equal to unit dominance: D(σmin(Gθ)Ĝθ) = σmin

σmin
= 1, i.e. we have

eliminated the possibility of uneven learning of different tasks. Fig. 2c shows a sketch of the geometric
intuition of the aligned gradients after the alignment step.

At this stage we aim to verify that standard gradient descent with θ-aligned gradients corresponds to
a sensible optimization procedure. We provide the following analysis, which states the convergence
for general non-convex loss functions with standard assumptions on regularity. For a proof and more
theoretical results, see App. B.

Theorem 1. Assume L1(θ), . . . ,LT (θ) are lower bounded continuously differentiable functions with
Lipschitz continuous gradients with Λ > 0. Assume that the total loss function L(θ) is a weighted
sum of these functions with a pre-selected vector of preferences w. Gradient descent with step size
α ≤ 1

Λ and θ-aligned gradient converges if the initial rate of dominance is finite, D(Gθ) < C, and
task preferences vector w is consistent with the gradient system, ‖V w‖ ≥ ε.

4.2 EFFICIENT ALIGNMENT FOR ENCODER–DECODER NETWORKS

The main limitation of the θ-aligned approach is the requirement of multiple backward passes through
the shared part of the model to calculate the gradient matrix. The backward passes are computationally
demanding, which results in linear scaling of the training time with respect to the number of tasks.
Therefore, it is challenging to apply the method to large-scale learning problems when the number
of tasks is high. To address this limitation, we propose an efficient approximation to the θ-aligned
approach, obtained under stronger assumptions on the model architecture.

Suppose that the class of hypotheses consists of factorizable functions, i.e.

f(x;θsh,θ1, . . . ,θT ) =
(
f(g(x,θsh),θ1), . . . , f(g(x,θsh),θT )

)
(5)

4



Under review as a conference paper at ICLR 2022

0 25 50 75 100 125 150 175

0
25

50
75

10
0

12
5

15
0

17
5

0

Figure 3: Sketch of J>J ≈ λI . The
Jacobian matrix J was computed for the
first 50 channels from the output of layer
4 of ResNet-18.

where g(·,θsh) is a representation function common to all
tasks and f(·,θi) is a function that implements model
functions for a specific task. This assumption corre-
sponds to encoder–decoder type neural network architec-
tures which are widely used in computer vision applica-
tions (e.g., Kendall et al., 2018; Sener & Koltun, 2018;
Zamir et al., 2018).

We consider the original Procrustes problem (Def. 2) with
new assumptions. We denote the encoded representation
as Z = g(x, θsh) := g(x, θ). Suppose the Jacobian J =
∂Z
∂θ affects equally all task gradients, i.e. J>J = λI .
This assumption is strong, but it is supported by empirical
evidence (as also sketched out in Fig. 3) and holds with
some accuracy for a wide class of networks.

Following these assumptions, the original problem is for-
mulated as follows:

‖Gθ−Q‖2F = ‖J>Gθ−J>Q‖2F = λ2‖GZ−P ‖2F ,
s.t. P>P = I. (6)

In practice, computing the matrixGZ requires only gradi-
ents over the latent representation, which can be computed
in one backward pass. Therefore, we define an efficient method of gradient alignment for encoder–
decoder networks as follows.
Definition 3 (Z-aligned). We define a Z-aligned gradient as ∇Zaθ L(θ) := σmin(GZ)∂Z∂θ ĜZw,
where w denotes a pre-selected task preference and ĜZ is the solution to the Procrustes problem:

ĜZ = arg min
P
‖GZ − P ‖F , s.t. P>P = I. (7)

The value of the rate of dominance in this case will strongly depend on the condition for the Jacobian.
The value of the growth rate λ does not affect the value of the dominance coefficient:

D(σmin(GZ)JĜZ) ≈ λσmin(GZ)

λσmin(GZ)
= 1. (8)

Algorithm 1 Gradient descent with alignment both for the θ-aligned and Z-aligned variants.

1: for i = 1 to T do
2: θit+1 = θit − η∇θiL̂i(θsh,θi) . Gradient descent on task-specific parameters
3: end for
4: if θ-alignment then
5: ComputeGθ =

(
∇θshL1(θ), . . . ,∇θshLT (θ)

)
6: Ĝθ, σ = PROCRUSTESSOLVER(Gθ) . Solve problem in Def. 2
7: ∇θL(θ) = σĜθw . Compute θ-aligned gradient
8: else if Z-alignment then
9: ComputeGZ =

(
∇ZL1(θ), . . . ,∇ZLT (θ)

)
10: ĜZ , σ = PROCRUSTESSOLVER(GZ) . Solve problem in Def. 3
11: ∇θL(θ) = σJĜZw . Compute Z-aligned gradient
12: end if
13: θsh

t+1 = θsh
t − η∇θL(θ) . Gradient descent on the shared parameters

14: procedure PROCRUSTESSOLVER(G)
15: FactorizeG,G = UΣV > . Compute SVD decomposition
16: Ĝ = UV > . Analytical solution of Procrustes problem
17: Compute σ = mini Σii . Find a minimal learning rate
18: return Ĝ, σ
19: end procedure
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0 5 o’clock shadow
1 Arched eyebrows
2 Attractive
3 Bags under eyes
4 Bald
5 Bangs
6 Big lips
7 Big nose

8 Black hair
9 Blond hair
10 Blurry
11 Brown hair
12 Bushy eyebrows
13 Chubby
14 Double chin
15 Eyeglasses

16 Goatee
17 Gray hair
18 Heavy makeup
19 High cheekbones
20 Male
21 Mouth slightly open
22 Mustache
23 Narrow eyes

24 No beard
25 Oval face
26 Pale skin
27 Pointy nose
28 Receding hairline
29 Rosy cheeks
30 Sideburns
31 Smiling

32 Straight hair
33 Wavy hair
34 Wearing earrings
35 Wearing hat
36 Wearing lipstick
37 Wearing necklace
38 Wearing necktie
39 Young

Figure 4: Performance of MTL methods on CELEBA. The percentage error per attribute on the
CELEBA data set presented as a radar chart, where tighter is better. Following Sener & Koltun (2018),
we divide the attributes into two categories: easy (left) and hard (right). See Sec. 5.2 for more details.
We present here the methods with comparable time complexity for clear comparison.

Even though our observations confirm that the Jacobian often satisfies our assumptions (see also
Sec. 5), we prove (proof of the theorem below in App. B) that gradient descent with Z-aligned
gradients will converge in a milder setup even if our requirements are not met. Our formulation
increases the stability of the proposed approach because in worst case it behaves similarly to gradient
descent without alignment.

Theorem 2. Assume L1(θ), . . . ,LT (θ) are lower bounded continuously differentiable functions with
Lipschitz continuous gradients with Λ > 0. Assume that the total loss function L(θ) is a weighted
sum of these functions with a pre-selected vector of preferencesw. The gradient descent with step
size α ≤ 1

Λ and a Z-aligned gradient converges if the Jacobian J = ∂Z
∂θ is full rank, the initial

rate of dominance is finite, i.e. D(GZ) < Cσ and D(J) < Cλ, and task preferences vector w is
consistent with the gradient system, ‖V w‖ ≥ ε.

Alg. 1 summarizes the approaches for the θ-aligned and the Z-aligned multi-task learning methods.

5 EXPERIMENTS

We empirically demonstrate the effectiveness of the proposed approach on a number of different
multi-task learning benchmarks. Specifically, we tackle the problems of scene understanding, multi-
digit, and multi-label classification by evaluating our method on the CITYSCAPES (Cordts et al.,
2016), MULTIMNIST (Sabour et al., 2017), and CELEBA (Liu et al., 2015) data sets, respectively.
Furthermore, we experiment with image-based localization by jointly predicting camera orientation
and translation on the 7SCENES data set (Shotton et al., 2013).

Baselines. In this work, we consider the following MTL baseline methods: (1) uniform scal-
ing: optimizing a uniformly weighted sum of individual task objectives, i.e. 1

T

∑
t Lt; (2) Un-

certainty (Kendall et al., 2018): using uncertainty to find weighting coefficients for each task;
(3) MGDA (Désidéri, 2012): using the gradients of each task to solve an optimization problem
for an update; (4) MGDA-UB (Sener & Koltun, 2018): optimizing an upper bound for the MGDA
optimization objective; (5) GradNorm (Chen et al., 2018): normalizing the gradients to balance the
learning of multiple tasks, and (6) PCGrad (Yu et al., 2020): performing gradient projection to avoid

6



Under review as a conference paper at ICLR 2022

Table 2: MULTIMNIST multi-task results. For each task, we highlight the best performing method
in bold. We also report the coefficient of dominance for each MTL approach.

Dominance rate D (Def. 1) Accuracy
Method Mean Std Max Min Task-L [%] Task-R [%]

MGDA 1.63 1.45 38.03 1.004 96.83 95.06
MGDA-UB 1.41 0.36 4.00 1.004 96.76 94.96
PCGrad 1.45 0.37 3.76 1.005 97.04 95.29
GradNorm 3.12 0.83 8.91 1.704 96.51 95.31
Uncertainty 1.47 0.44 5.17 1.007 97.03 95.06

θ-aligned (ours) 1.00 0.0 1.00 1.000 97.10 95.45
Z-aligned (ours) 1.36 0.29 3.17 1.005 96.98 95.45

the negative interactions between tasks gradients. The proposed approach and the baseline methods
are implemented using the PyTorch framework (Paszke et al., 2019).

Table 1: Computational cost per step for
T tasks and K steps.

Method Cost

MGDA O(T +K)
MGDA-UB O(K)
PCGrad O(T )
GradNorm O(T )
Uncertainty O(1)

θ-aligned (ours) O(T )
Z-aligned (ours) O(1)

Analysis of computational complexity. The main com-
putational cost of all algorithms depends on the number
of backward passes over the shared parameters for each
task and for each iteration of the gradient descent. We
denote the number of tasks as T and the number of iter-
ations in the Frank–Wolfe solver (Jaggi, 2013; Sener &
Koltun, 2018) as K. By Def. 2, the θ-aligned gradient
requires only the precomputed matrix Gθ and therefore,
it performs T backward passes on one step. In contrast,
the Z-aligned gradient can be computed in a single pass,
which is the best possible case. The computational cost
for each MTL method is provided in Table 1. We consider
the time complexity of the SVD decomposition constant.

5.1 SYNTHETIC MULTI-TASK PROBLEM

To illustrate the proposed method on a simple problem, we consider a multi-task optimization
objective consisting of two tasks presented in Fig. 1 which was originally proposed by Yu et al.
(2020). Specifically, the multi-task gradient of the objective is dominated by the gradient of one of
the tasks leading to suboptimal training dynamics. As a result, the standard optimizers (e.g., Adam)
improve only the dominating task (the magenta trajectory in Fig. 1c) and struggle to optimize the
whole objective. In contrast, the proposed approach is more stable and outperforms MGDA (Désidéri,
2012) and PCGrad (Yu et al., 2020). Moreover, it demonstrates favourable convergence rate compared
to the baselines: 5k and 500k iterations are required for our method and PCGrad, respectively.

5.2 MULTI-TASK CLASSIFICATION

We tackle the problem of multi-task classification and evaluate the proposed method on MUL-
TIMNIST digit classification and celebrity face image data in CELEBA.

MULTIMNIST. Following the same procedure proposed by Sener & Koltun (2018), we convert
digit classification into a multi-digit classification problem. Specifically, for each image of the
original MNIST data set, we randomly sample a different image from a uniform distribution. The
two images are then overlaid in such a way that one of the images is put at the top-left and the other
one at the bottom-right. Similarly to Sener & Koltun (2018); Yu et al. (2020), we generate 60k
such images and directly evaluate the proposed approach and the baselines. The resulting task in
the multi-task classification problem is to classify the digit on the top left (task-L) and bottom right
(task-R), respectively. The results are summarized in Table 2. The proposed MTL approach θ-aligned
surpasses all baselines by a noticeable margin: up to +0.06% for Task-L and +0.16% for Task-R
compared to the best performing contender. To emphasize the significance of the gradient dominance
problem and its influence on the results, we report the coefficient of dominance (Def. 1) for each
method, which shows large variability for the baselines.
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Table 3: Scene understanding and multi-label classification performance. The best score is in bold
and the second best score is in italic. For CELEBA, we report the mean±std over 10 random seeds.

Scene understanding (CITYSCAPES) CELEBA
Segmentation Instance error Disparity error
mIoU [%] ↑ L1 [px] ↓ MSE (up to scale) ↓ mAcc [%] ↑

MGDA 66.72 17.02 0.3294 90.49± 0.05
MGDA-UB 66.37 18.63 0.3212 90.91± 0.02
GradNorm 57.24 10.29 0.3536 91.18± 0.04
PCGrad 54.06 9.91 0.3837 91.53 ± 0.05
Uncertainty 60.12 9.87 0.3314 91.33± 0.03

θ-aligned (ours) 66.98 10.81 0.3266 91.32± 0.04
Z-aligned (ours) 66.07 10.54 0.3213 91.36± 0.05

CELEBA. We try our method on a multi-label classification problem by using the CELEBA data
set (Liu et al., 2015), which consists of 200k face images annotated with 40 attributes. Each
attribute can be obtained by solving a binary classification problem and thus we convert it to 40-
way MTL following (Sener & Koltun, 2018; Yu et al., 2020). For all of the methods we use the
same CNN architecture based on ResNet-18 as proposed by Sener & Koltun (2018). The binary
classification error averaged over all 40 attributes is used for evaluating performance and is reported
in Table 3 (mean ± std over 10 random seeds). Our approach achieves 91.36% classification
accuracy, which outperforms other strong methods such as MGDA-UB (Sener & Koltun, 2018) and
Uncertainty (Kendall et al., 2018), indicating the effectiveness of the proposed method when the
number of tasks is large. The percentage of error per attribute is illustrated in Fig. 4.

5.3 SCENE UNDERSTANDING

We also apply the proposed MTL approach to scene understanding. Specifically, we aim to jointly
solve the problem of semantic segmentation, instance segmentation, and depth estimation. We
follow Sener & Koltun (2018) and use the CITYSCAPES data sets (Cordts et al., 2016) consisting of
video frames captured in the streets of urban cities and labelled with instance, semantic segmentations,
and depth maps. Similarly to Kendall et al. (2018), we use a CNN model with a UNet architecture
comprising a shared encoder based on ResNet-50 and three independent task-specific decoders. In
our experiments, we resize all training and validation images to 256×512 and use standard pixel-wise
loss functions for each task: negative log likelihood loss for semantic segmentation and L1 loss for
instance segmentation and depth estimation. In Table 3, we benchmark our approach in all three tasks
and show that the proposed method performs favourably compared to other state-of-the-art MTL
methods.

5.4 CAMERA RELOCALIZATION

Finally, we evaluate the performance of the proposed MTL approach on the task of image-based
localization. Image-based localization, or camera relocalization refers to the problem of estimating the
6 degree-of-freedom (DoF) camera pose from visual data with respect to a known environment. It has
been shown that camera relocalization can be solved by casting it as a regression problem (Kendall
et al., 2018; Laskar et al., 2017; Melekhov et al., 2017; Walch et al., 2017; Noha et al., 2018),
where a 7-dimensional camera pose vector p = [t, r] is directly estimated by a CNN. The camera
pose vector p consists of a translation component t = [t1, t2, t3] and an orientation component
r = [q1, q2, q3, q4], represented by a quaternion. Following Kendall et al. (2018), we utilize the
Microsoft 7SCENES (Shotton et al., 2013) data set which is a common benchmark for indoor pose
regression methods. The data set comprises RGB-D image sequences of seven different indoor
scenes from a handheld Kinect camera, and each scene provides training and testing image sequences
consisting of 1000–7000 frames at 640×480 resolution. Similar to Walch et al. (2017); Laskar et al.
(2017), we use ResNet-34 as a backbone network in all our experiments to make the comparison
between the MTL methods fair. For each method, we compute the median error of camera translation,
t, and orientation, r, per scene. We also report the growth rate,R, as a measure of improvement of
multi-task learning methods over the uniform scaling approach. It is defined asR = 1− Pi

P where Pi
is the mean translation (orientation) error of a MTL method; P is the mean translation (orientation)

8
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Table 4: Camera relocalization performance of the proposed method and existing MTL approaches
for the 7SCENES data set. We report median translation t, orientation r errors and the growth rate,R
for each scene. For each scene, we highlight the best performing method in terms of translation and
orientation error in italic and bold, respectively.

Scenes
CHESS FIRE HEADS OFFICE PUMPKIN KITCHEN STAIRS Mean R, %

uniform t, m 0.48 1.78 0.46 0.70 0.72 0.90 0.47 0.79 –
r, ° 5.83 11.57 13.04 8.43 6.79 8.88 11.22 9.39 –

MGDA t, m 0.29 0.73 0.81 0.33 0.47 0.33 0.46 0.49 +37.98
r, ° 5.90 11.84 12.59 8.67 6.37 9.08 11.46 9.42 −0.32

MGDA-UB t, m 0.30 0.73 0.66 0.59 0.46 0.57 0.55 0.55 +30.38
r, ° 5.92 11.74 12.42 9.09 6.30 8.69 11.76 9.42 −0.32

GradNorm t, m 0.17 0.33 0.25 0.24 0.25 0.26 0.37 0.27 +65.82
r, ° 7.08 13.54 14.70 9.65 8.35 9.08 14.07 10.92 −16.29

PCGrad t, m 0.17 0.30 0.23 0.23 0.26 0.25 0.37 0.26 +67.09
r, ° 9.10 13.17 16.19 10.57 9.00 10.35 13.71 11.73 −24.92

Uncertainty t, m 0.19 0.33 0.30 0.25 0.25 0.28 0.48 0.30 +62.03
r, ° 9.32 16.15 17.86 10.83 11.22 10.20 14.60 12.88 −37.17

θ-aligned t, m 0.18 0.46 0.69 0.27 0.34 0.29 0.61 0.41 +48.10
r, ° 5.82 12.07 18.15 9.38 8.99 10.27 12.84 11.07 −17.89

Z-aligned t, m 0.18 0.48 0.43 0.28 0.27 0.32 0.42 0.34 +56.96
r, ° 5.40 11.18 12.14 9.57 6.37 8.91 11.54 9.30 +0.96

error of the uniform scaling method. The results are provided in Table 4. In terms of camera
orientation error, the proposed Z-aligned approach is superior to other MTL methods for the majority
of scenes. Regarding camera translation accuracy, Z-aligned can outperform MGDA-UB (Sener &
Koltun, 2018) and improve the averaged translation error by 0.21 m showing comparable performance
to PCGrad (Yu et al., 2020). See App. D.2 for details on the evaluation pipeline and additional results.

6 DISCUSSIONS AND CONCLUSIONS

We have presented a new approach to gradient-based multi-task learning (MTL) that balances training
in multi-task systems by aligning the independent components of the gradient of the training objective.
In Sec. 4.1, we derived the ‘θ-aligned’ approach and the conditions for it to converge (details in
App. B). To ensure practicality, we extended our approach to incorporate heuristics motivated by
common encode–decoder networks, which was formulated into the ‘Z-aligned’ approach in Sec. 4.2.
Additionally, we formulate a new metric, the dominance rate (Def. 1) that provides an interpretable
way of establishing the maximum dominance in a gradient system and gives insights to pre-existing
MTL approaches.

We also performed an extensive set of experiments for analyzing the practical benefits of our
approach. To gain insights, we provided results for a toy benchmark problem and compared our
approach to other recent gradient-based MTL approaches on MULTIMNIST to study the effect of
the rate of dominance. As for more pure benchmarking, we provided results for MTL problems
in image classification (CELEBA), scene understanding (CITYSCAPES), and camera relocalization
(7SCENES), each being large-scale and well-known benchmarks in their respective domains. We show
state-of-the-art performance on MULTIMNIST, CITYSCAPES, and 7SCENES, while the differences
between methods remains small for CELEBA. The results are particularly interesting given the smaller
computational requirements in the Z-aligned method (see Table 1).

A reference implementation of the methods presented in this paper is currently available as supple-
mentary material to this submission.
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REPRODUCIBILITY STATEMENT

This paper proposes a new method for multi-task learning, and the contributions of the paper are
technical of nature. To back up the statements in the main paper, we have provided proofs for the
given theorems in the appendix (included after the references). Additionally, we have also provided
further theorems and proofs that help the reader assess the applicability of the proposes methodology
to other optimization setups.

We also include a code package as a supplementary zip file to this double-blind submission. This
reference implementation helps understand technical details, and the included scripts can be used for
reproducing the numerical experiments in the paper. Upon acceptance, the codes will be available as
a GitHub repository under the MIT license.
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Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2790–2799. PMLR, 2019. 1

10



Under review as a conference paper at ICLR 2022

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of
the 30th International Conference on Machine Learning (ICML), volume 28 of Proceedings of
Machine Learning Research, pp. 427–435. PMLR, 2013. 7

Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network for real-
time 6-dof camera relocalization. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 2938–2946, 2015. 1, 2, 18

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7482–7491, 2018. 1, 2, 5, 6, 8

Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6129–6138, 2017. 1, 2

Harold W. Kuhn and Albert W. Tucker. Nonlinear programming. In Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability. University of California Press,
1951. 3

Zakaria Laskar, Iaroslav Melekhov, Surya Kalia, and Juho Kannala. Camera relocalization by
computing pairwise relative poses using convolutional neural network. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV) Workshops, pp. 920–929, 2017. 2, 8

Hae Beom Lee, Eunho Yang, and Sung Ju Hwang. Deep asymmetric multi-task feature learning. In
Proceedings of the 35th International Conference on Machine Learning (ICML), volume 80 of
Proceedings of Machine Learning Research, pp. 2956–2964. PMLR, 2018. 2

Sungjae Lee and Youngdoo Son. Multitask learning with single gradient step update for task balancing.
arXiv preprint arXiv:2005.09910, 2020. 1

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 1:1334–1373, 2016. 2

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task learning.
In Advances in Neural Information Processing Systems (NeurIPS), volume 32, pp. 12060–12070.
Curran Associates, Inc., 2019. 1

Shengchao Liu, Liang Yingyu, and Anthony Gitter. Loss-balanced task weighting to reduce negative
transfer in multi-task learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 9977–9978, 2019a. 1

Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1871–1880, 2019b. 1

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks
for natural language understanding. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, volume 57. Association for Computational Linguistics, 2019c. 1

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp.
3730–3738, 2015. 6, 8

David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems (NIPS), volume 30, pp. 6467–6476. Curran
Associates, Inc., 2017. 1, 2

Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi Parikh, and Stefan Lee. 12-in-1: Multi-task
vision and language representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 1

Minh-Thang Luong, Quoc Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-task sequence
to sequence learning. International Conference on Learning Representations (ICLR), 2015. 2

11



Under review as a conference paper at ICLR 2022

Iaroslav Melekhov, Juha Ylioinas, Juho Kannala, and Esa Rahtu. Image-based localization using
hourglass networks. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV) Workshops, pp. 870–877, 2017. 8

Vladimir Nekrasov, Thanuja Dharmasiri, Andrew Spek, Tom Drummond, Chunhua Shen, and Ian
Reid. Real-time joint semantic segmentation and depth estimation using asymmetric annotations.
In International Conference on Robotics and Automation (ICRA), pp. 7101–7107. IEEE, 2019. 2

Radwan Noha, Valada Abhinav, and Burgard Wolfram. VLocNet++: Deep multitask learning for
semantic visual localization and odometry. 3(4):4407–4414, 2018. 8

Emilio Parisotto, Lei Jimmy Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. In International Conference on Learning Representations (ICLR),
2016. 1

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. 7, 18

Sebastian Peitz and Michael Dellnitz. Gradient-Based Multiobjective Optimization with Uncertainties,
pp. 159–182. Springer International Publishing, 2018. 3

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
Fusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association for Computational Linguistics, pp. 487–503.
Association for Computational Linguistics, 2021. 1

Fabrice Poirion, Quentin Mercier, and Jean-Antoine Désidéri. Descent algorithm for nonsmooth
stochastic multiobjective optimization. Computational Optimization and Applications, (2):317–331,
2017. 3

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017. 2

Sara Sabour, Nicholas Frosst, and Geoffrey Hinton. Dynamic routing between capsules. In Advances
in Neural Information Processing Systems (NIPS), volume 30, pp. 3856–3866. Curran Associates,
Inc., 2017. 6

Stefan Schäffler, Richard R. Schultz, and Konstanze Weinzierl. Stochastic Method for the Solution of
Unconstrained Vector Optimization Problems. Journal of Optimization Theory and Applications,
114:209–222, 2002. 2

Peter Schönemann. A generalized solution of the orthogonal procrustes problem. Psychometrika, 31
(1):1–10, 1966. 4

Michael L. Seltzer and Jasha Droppo. Multi-task learning in deep neural networks for improved
phoneme recognition. In IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 6965–6969. IEEE, 2013. 2

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Advances in
Neural Information Processing Systems (NeurIPS), volume 31, pp. 527–538. Curran Associates,
Inc., 2018. 1, 3, 5, 6, 7, 8, 9, 18, 19

Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and Andrew
Fitzgibbon. Scene coordinate regression forests for camera relocalization in RGB-D images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2930–2937, 2013. 6, 8, 18

Yuekai Sun. Notes on first-order methods for minimizing smooth functions, 2015. URL https:
//web.stanford.edu/class/msande318/notes/notes-first-order-smooth.pdf. 17, 18

12

https://web.stanford.edu/class/msande318/notes/notes-first-order-smooth.pdf
https://web.stanford.edu/class/msande318/notes/notes-first-order-smooth.pdf


Under review as a conference paper at ICLR 2022

Yee Teh, Victor Bapst, Wojciech M. Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Advances in
Neural Information Processing Systems (NIPS), volume 30, pp. 4499–4509. Curran Associates,
Inc., 2017. 1

Florian Walch, Caner Hazirbas, Laura Leal-Taixé, Torsten Sattler, Sebastian Hilsenbeck, and Daniel
Cremers. Image-based localization using LSTMs for structured feature correlation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 627–637, 2017. 8

Weiyao Wang, Du Tran, and Matt Feiszli. What makes training multi-modal classification networks
hard? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12692–12702, 2020. 3

Markus Wulfmeier, Abbas Abdolmaleki, Roland Hafner, Jost Tobias Springenberg, Michael Neunert,
Noah Siegel, Tim Hertweck, Thomas Lampe, Nicolas Heess, and Martin Riedmiller. Compositional
transfer in hierarchical reinforcement learning. In Proceedings of Robotics: Science and Systems,
2020. 2

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pp. 5824–5836. Curran Associates, Inc., 2020. 1, 2, 6, 7, 8, 9

Amir R. Zamir, Alexander Sax, William Shen, Leonidas J. Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling Task Transfer Learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3712–3722, 2018. 2, 3, 5

Amir R. Zamir, Alexander Sax, Nikhil Cheerla, Rohan Suri, Zhangjie Cao, Jitendra Malik, and
Leonidas J. Guibas. Robust learning through cross-task consistency. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11194–11203,
2020. 3

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6230–6239, 2017. 20

13



Under review as a conference paper at ICLR 2022

APPENDIX

A NOTATION

Li(θ) ith loss function
θ set of a shared parameters
Z shared representation

∇θLi(θ) = ∇Li(θ) the gradient of loss function over the shared parameters
∇ZLi(θ) the gradient of loss function over the shared representation

Gθ = (∇θL1(θ), · · · ,∇θLT (θ)) matrix of gradients over the shared parameters
GZ = (∇ZL1(θ), · · · ,∇ZLT (θ)) matrix of gradients over the shared representation

∇θaθ L(θ) θ-aligned gradient
∇Zaθ L(θ) Z-aligned gradient
∇∗aθ L(θ) common notation for both aligned gradients
J = ∂Z

∂θ Jacobian of shared representation over shared parameters
w a manual weight vector for cumulative loss function

〈 ·, · 〉 a dot product of vectors
HV = span(V ) linear hull spanned on the column vectors of V

‖ · ‖F Frobenius norm

B PROOFS OF THEOREMS

Synopsis. In this theorem we prove that the worst case performance of the Z-aligned gradient is no
worse than in standard gradient descent. The constraints mentioned in the theorem always hold in
practice.

Lemma 1. Assume L(θ) to be continuously differentiable and ∇L(θ) to be Lipschitz continuous
with Λ > 0. Then, the following restriction is valid for any descent with the step αr:

L(θt)− L(θt+1) ≥ α〈∇L(θt), r 〉 −
α2Λ

2
‖r‖2. (9)

Proof. First, we substitute δ = −αr. Then, according to the fundamental theorem of calculus we
receive the equality:

L(θt+1)− L(θt) = L(θt + δ)− L(θt) =

∫ 1

0

〈∇L(θt + sδ), δ 〉ds. (10)

Adding and substracting the value 〈∇L(θt), δ 〉 =
∫ 1

0
〈∇L(θt), δ 〉ds leads to:

L(θt+1)− L(θt) = 〈∇L(θt), δ 〉+

∫ 1

0

〈∇L(θt + sδ)−∇L(θt), δ 〉ds. (11)

Since the gradient satisfies the Lipschitz condition: ‖∇L(θt + sδ)−∇L(θt)‖ ≤ Λ‖θt + sδ − θt‖
and due to inequality 〈x, y 〉 ≤ ‖x‖‖y‖, we can transform the integral, make the reverse substitution
and get the final result:

L(θt+1)− L(θt) ≤ −α〈∇L(θt), r 〉+ α2Λ‖r‖2
∫ 1

0

sds. (12)

Theorem 1. Assume L1(θ), . . . ,LT (θ) are lower bounded continuously differentiable functions with
Lipschitz continuous gradients with Λ > 0. Assume that the total loss function L(θ) is a weighted
sum of these functions with a pre-selected vector of preferences w. Gradient descent with step size
α ≤ 1

Λ and θ-aligned gradient converges if:

1. Gθ = UΣV > (given by a SVD) and Σ = diag{σ1, . . . , σR}, where σ1

σR
< C.
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2. ‖ projHV w‖ ≥ ε, whereHV = span(V ).

Proof. Following the assumptions we find that the cumulative loss function is continuously differen-
tiable and has a Lipschitz continuous gradient (denote this constant as Λ) and therefore it satisfies
Lemma 1:

L(θt)− L(θt+1) ≥ α〈∇θL(θt),∇θaθ L(θt) 〉 −
α2Λ

2

∥∥∥∇θaθ L(θt)
∥∥∥2

. (13)

By definition of θ-aligned gradient we get:

〈∇θL(θt),∇θaθ L(θt) 〉 =

R∑
r,r′=1

σrσRw
>(vru>r )(ur′v>r′)w = σR

R∑
r=1

σr(w
>vr)

2, (14)

〈∇θaθ L(θi),∇θaθ L(θi) 〉 =

R∑
r,r′=1

σ2
Rw
>(vru>r )(ur′v>r′)w = σ2

R

R∑
r=1

(w>vr)
2. (15)

Since α ≤ 1
Λ and ∀r : σr

σR
> 1, we can rewrite Eq. (13):

L(θt)− L(θt+1) ≥ σ2
R

α

2

R∑
r=1

(
2
σr
σR
− 1

)
︸ ︷︷ ︸

>1

(
w>vr

)2

︸ ︷︷ ︸
=‖w‖2 cos2(w,vr)

>
ασ2

R

2

ε2

σ2
1

σ2
1 . (16)

Following the assumption σR
σ1

> C. Moreover σ1 = maxx 6=0
‖Gθx‖
‖x‖ , therefore σ1 ≥ ‖∇θL(θt)‖

‖w‖ .
Then:

L(θt)− L(θt+1) >
αε2C2

2‖w‖2
‖∇θL(θt)‖2. (17)

The sequence of L(θt) is monotonically decreasing and bounded (under assumption) and therefore
converges. Then L(θt) − L(θt+1) → 0 if t → ∞. Therefore, we have a local convergence of
gradient descent:

‖∇θL(θt)‖2 <
2‖w‖2

αC2ε2

(
L(θt)− L(θt+1)

)
→ 0 as t→∞. (18)

The same estimate appears in case of gradient descent. Therefore, the convergence of the proposed
method is similar to that of gradient descent.

Theorem 2. Assume L1(θ), . . . ,LT (θ) are lower bounded continuously differentiable functions with
Lipschitz continuous gradients with Λ > 0. Assume that the total loss function L(θ) is a weighted
sum of these functions with a pre-selected vector of preferencesw. The gradient descent with step
size α ≤ 1

Λ and a Z-aligned gradient converges if:

1. GZ = UΣV > (given by a SVD) and Σ = diag{σ1, . . . , σR}, where σ1

σR
< Cσ .

2. ‖ projHV w‖ ≥ ε, whereHV = span(V ).

3. J = ∂Z
∂θ is full rank.

4. J = PSQ> (given by a SVD) and S = diag{λ1, . . . , λK}, where λ1

λK
< Cλ.

Proof. Following the assumptions we find that the cumulative loss function is continuously differ-
entiable and has a Lipschitz continuous gradient (with constant Λ > 0) and therefore it satisfies
Lemma 1:

L(θt)− L(θt+1) ≥ α〈∇θL(θt),∇Zaθ L(θ) 〉 − α2Λ

2
‖∇Zaθ L(θ)‖2. (19)

Since α ≤ 1
Λ , we can rewrite this inequality:

L(θt)− L(θt+1) ≥ α

2
〈2∇θL(θt)−∇Zaθ L(θt),∇Zaθ L(θt) 〉. (20)
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Consider the left vector of a dot product in the right part of Eq. (20). By definition of Z-aligned
gradient we get:

∇Zaθ L(θt) =

R∑
r=1

σR(w>vr)Jur, (21)

2∇θL(θt)−∇Zaθ L(θt) =

R∑
r=1

(2σr − σR)(w>vr)Jur. (22)

Following the assumption J>J is positive definite. Any positive definite matrix is congruent to a
diagonal with positive and ordered eigenvalues on the main diagonal. Thus replacing all eigenvalues
λ2
i with the smallest one λ2

K does not increase the right side of Eq. (19) resulting in the inequality:

〈2∇θL(θt)−∇Zaθ L(θt),∇Zaθ L(θt) 〉 ≥ σ2
Rλ

2
K

R∑
r=1

(
2
σr
σR
− 1

)
︸ ︷︷ ︸

>1

(
w>vr

)2

︸ ︷︷ ︸
=‖w‖2 cos2(w,vr)

. (23)

Therefore:

L(θt)− L(θt+1) ≥ αε2σ2
Rλ

2
K

2σ2
1λ

2
1

σ2
1λ

2
1. (24)

Following the assumption σR
σ1

> Cσ and λK
λ1

> Cλ. Moreover σ1 = maxx 6=0
‖GZx‖
‖x‖ ≥ ‖∇ZL(θ)‖

‖w‖
and λ1 = ‖J‖. Therefore, we get the final bound:

L(θt)− L(θt+1) ≥ αε2C2
σC

2
λ

2‖w‖2
‖GZw‖2‖J‖2 ≥

αε2C2
σC

2
λ

2‖w‖2
‖∇θL(θt)‖2. (25)

The sequence of L(θt) is monotonically decreasing and bounded (under assumption) and therefore
converges. Then L(θt)− L(θt+1)→ 0 if t→∞. Therefore, we have local convergence of gradient
descent:

‖∇θL(θt)‖2 <
2‖w‖2

αC2
σC

2
λε

2

(
L(θt)− L(θt+1)

)
→ 0 as t→∞. (26)

C METHODS WITH MOMENTUM

Definition 4. A function L(x) : X → R is µ-strongly convex if for any x, y ∈ X

L(y) ≥ L(x) + 〈∇L(x), x− y 〉+
µ

2
‖x− y‖2. (27)

Definition 5. A continuously differentiable function L(x) : X → R is Λ-smooth if for any x, y ∈ X :

‖∇L(x)−∇L(y)‖ ≤ Λ‖x− y‖. (28)

Lemma 2. A θ-aligned and Z-aligned gradient can be expressed as:

∇∗aθ L(θt) =

T∑
i=1

( T∑
k=1

wk

[ R∑
r=1

σR
σr
virv

k
r

])
∇θLi(θt). (29)

Proof. We consider only the Z-aligned case. The θ-aligned case may be proved using analogous
logic. According to SVD theorem, U = GZV Σ−1 in matrix form that in vector form turns into
ur = 1

σr
GZvr. Then, by definition of a Z-aligned gradient:

σRĜZt = σR

R∑
r=1

urv
>
r = GZt

R∑
r=1

σR
σr
vrv

>
r . (30)
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If we rewrite this dot product, then we get:

σRĜZt =

( T∑
i=1

[ R∑
r=1

σR
σr
virv

1
r

]
︸ ︷︷ ︸

ai1

∇ZLi(θt), . . . ,
T∑
i=1

[ R∑
r=1

σR
σr
virv

T
r

]
︸ ︷︷ ︸

aiT

∇ZLi(θt)
)
. (31)

Since σRJĜZt =
(
. . . ,

∑
aikJ∇ZLi(θt), . . .

)
=
(
. . . ,

∑
aik∇θLi(θt), . . .

)
, then the final

statement follows from the definition of the Z-aligned gradient:

∇Zaθ L(θt) = σRJĜZtw =

T∑
k=1

T∑
i=1

wkaik∇θLi(θt) =

T∑
i=1

( T∑
k=1

wkaik

)
∇θLi(θt). (32)

Similarly, this equation can be derived for θ-aligned case:

∇θaθ L(θt) = σRĜθtw =
T∑
k=1

T∑
i=1

wkâik∇θLi(θt) =
T∑
i=1

( T∑
k=1

wkâik

)
∇θLi(θt). (33)

Theorem 3. Assume L1(θ), . . . ,LT (θ) are strongly convex with constant µi > 0 and smooth with
constant Λi > 0. Assume µ̂t =

∑T
i=1

( ∑T
k=1 wkaik

)
µi and Λ̂t =

∑T
i=1

( ∑T
k=1 wkaik

)
Λi. The

heavy ball method with αt = 4

(
√

Λ̂t+
√
µ̂t)2

and βt = max{|1 −
√
αtµ̂t|, |1 −

√
αtΛ̂t|} and the

θ-aligned or Z-aligned gradient will converge linearly to an optimal value L(θ∗) if:

1. (θ-aligned)Gθ = UΣV > (given by a SVD) and Σ = diag{σ1, . . . , σR}, where σR
σ1

> Cσ .

2. (Z-aligned) GZ = UΣV > (given by a SVD) and Σ = diag{σ1, . . . , σR}, where σR
σ1

>
Cσ .

3. (Z-aligned) J is full rank.

4. (both) ‖projHV w‖ ≥ ε, whereHV = span(V ).

Proof. The conditions of the theorem ensure the existence of finite and non-zero θ and Z-aligned
gradients. Due to existence Lemma 2 is valid. We will not separate θ-alignment and Z-alignment in
this theorem due to similarity of the proving procedure. Instead we denote ∇∗aθ L(θt) as a general
aligned gradient.

Consider the convergence of a heavy ball method using matrix notation following Sun (2015). The
next point is computed by definition, i.e. θt+1 = θt − αt∇∗aθ L(θt) + βt(θt − θt−1). Then we can
estimate the squared discrepancy between the current solution and the optimal point using the explicit
expression for aligned gradient from Lemma 2:∥∥∥∥θt+1 − θ∗

θt − θ∗
∥∥∥∥

2

=

∥∥∥∥[θt + βt(θt − θt−1)− θ∗
θt − θ∗

]
− αt

[
∇∗aθ L(θt)

0

]∥∥∥∥
2

=

∥∥∥∥[θt + βt(θt − θt−1)− θ∗
θt − θ∗

]
− αt

[∑T
k=1 w

′
k∇θLk(θt)
0

]∥∥∥∥
2

, (34)

Note that for all gradients for some point Θk
t on the line segment between θt and θ∗ the following

expression is true: ∇θLk(θt) = ∇2
θLk(Θk

t )(θt − θ∗), where ∇2
θLk(Θk

t ) is a Hessian of a function
Lk. DenoteHt =

∑T
k=1 w

′
k∇2

θLk(Θk
t ). Hence,Ht is a Hessian of a total loss function. Then we
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get: ∥∥∥∥θt+1 − θ∗
θt − θ∗

∥∥∥∥
2

=

∥∥∥∥[θt + βt(θt − θt−1)− θ∗
θt − θ∗

]
− αt

[
Ht(θt − θ∗)

0

]∥∥∥∥
2

=

∥∥∥∥[(1 + βt)I − αtHt −βtI
I 0

] [
θt − θ∗
θt−1 − θ∗

]∥∥∥∥
2

≤
∥∥∥∥[(1 + βt)I − αtHt −βtI

I 0

]∥∥∥∥
2

∥∥∥∥[ θt − θ∗θt−1 − θ∗
]∥∥∥∥

2

. (35)

By strong convexity and smoothness of Lk(θ) the eigenvalues of ∇2
θLk(Θk

t ) are in the interval
[µk,Λk]. Hence eigenvalues of Ht are between µ̂t and Λ̂t. Therefore, following Lemma 3.1
introduced in Sun (2015), the L2 norm of a matrix in the right side of Eq. (35) is bounded:∥∥∥∥[(1 + βt)I − αtHt −βtI

I 0

]∥∥∥∥
2

≤ max
{
|1−

√
αtµ̂t|, |1−

√
αtΛ̂t|

}
. (36)

Now, we can plug in step size αt = 4

(
√

Λ̂t+
√
µ̂t)2

and Eq. (36) into Eq. (35):∥∥∥∥θt+1 − θ∗
θt − θ∗

∥∥∥∥
2

≤
√
γt − 1
√
γt + 1

∥∥∥∥[ θt − θ∗θt−1 − θ∗
]∥∥∥∥

2

≤
∥∥∥∥[ θt − θ∗θt−1 − θ∗

]∥∥∥∥
2

, (37)

where γt = Λ̂t
µ̂t

. Hence the heavy ball method with this gradient will converge linearly to an optimal
value L(θ∗).

D IMPLEMENTATION DETAILS

In this section, we provide additional experimental results and more details on the training pipelines.
The proposed approach and all baseline methods are implemented in PyTorch (Paszke et al., 2019).

D.1 MULTI-LABEL CLASSIFICATION

In addition to the radar chart presented in the main text, we present more detailed results on the
CELEBA data set here. Specifically, we report the binary classification accuracy of each attribute for
the proposed methods and the baselines on the validation split. The results are summarized in Table 5.
Following Sener & Koltun (2018) we use ResNet-18 with 40 separate fully-connected (FC) layers as
task-specific functions. Table 7 shows the architecture used in the experiments in more detail. The
images of the data set are resized to 64×64×3 as proposed in Sener & Koltun (2018). We empirically
found that learning rate 10−3 gives better results. The learning rate is gradually decreased during
training. All models are optimized using Adam solver and trained for 20 epochs with batch size 256.

D.2 CAMERA RELOCALIZATION

For image-based localization, we follow Kendall et al. (2015) and adapt ResNet-34 architecture by
removing the last FC layer but keep the convolutional and pooling layers intact. As a decoder, we use
two separate FC layers with 3 and 4 outputs to regress camera orientation and translation, respectively.
The network architecture is presented in Table 7. The 7SCENES (Shotton et al., 2013) data set is
used for training and evaluation. The data set consists of 640× 480 RGB-D images captured by a
Kinect device and cover 7 different indoor scenes. As a preprocessing step, the images are re-scaled
in such a way that the smaller image side is 256 pixels. All models were trained on random crops of
224×224 pixels and evaluated on central crops. We use batch size 128 and train for 120 epochs. The
learning rate is initialized to 10−3 and decreased by 10 every 40 epochs. The Adam solver is used
for optimization. Each method is trained 10 times with different random seeds for every scene and
average performance is provided in Table 6.
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Table 5: CELEBA performance. Following Sener & Koltun (2018), we report accuracy on the
validation split. The best score is in bold and the second best score is underlined.

MTL methods

MGDA MGDA-UB GradNorm PCGrad Uncertainty θ-aligned Z-aligned
(ours) (ours)

Easy attributes

Attr. 0 92.39 93.05 93.09 94.02 93.96 93.51 93.69
Attr. 4 98.79 98.74 98.69 98.80 98.77 98.77 98.84
Attr. 5 94.51 95.47 95.30 95.72 95.42 95.52 95.36
Attr. 9 93.77 94.93 95.22 95.45 95.16 95.39 95.38
Attr. 10 96.12 96.12 96.20 96.40 96.07 95.77 96.04
Attr. 13 95.14 95.05 95.33 95.36 95.17 95.36 95.28
Attr. 14 96.03 96.22 96.09 96.43 96.24 96.42 96.23
Attr. 16 95.88 96.18 96.18 96.40 96.39 96.13 96.41
Attr. 17 97.27 97.67 97.19 97.91 97.76 97.70 97.78
Attr. 20 97.25 98.01 98.13 98.53 98.52 98.02 98.41
Attr. 21 89.83 92.60 93.01 93.72 93.57 93.54 93.32
Attr. 22 96.13 95.91 95.60 96.20 95.99 96.11 96.05
Attr. 24 94.62 95.00 95.15 95.75 95.64 95.65 95.46
Attr. 26 96.54 96.67 96.44 96.79 96.71 96.74 96.71
Attr. 28 94.18 94.42 94.40 94.60 94.47 94.50 94.43
Attr. 29 94.60 94.73 94.63 95.14 95.11 95.17 95.02
Attr. 30 96.00 96.56 95.91 96.79 96.86 97.02 96.94
Attr. 35 98.70 98.92 98.69 98.90 98.73 98.84 98.87
Attr. 38 96.19 96.13 95.71 96.51 96.33 96.00 96.34

Hard attributes

Attr. 1 82.09 82.67 82.08 84.91 84.27 84.91 84.79
Attr. 2 79.94 80.14 81.26 81.36 80.50 80.61 81.30
Attr. 3 82.89 82.86 83.87 84.06 83.45 83.74 83.75
Attr. 6 85.73 85.66 86.09 83.43 85.92 82.22 84.06
Attr. 7 81.76 81.84 82.68 82.70 82.48 82.84 82.56
Attr. 8 89.48 90.67 91.35 91.42 90.45 89.45 91.28
Attr. 11 81.95 84.32 84.89 85.58 85.11 83.73 85.31
Attr. 12 91.83 92.19 92.06 92.54 92.32 92.19 92.46
Attr. 18 90.64 91.02 91.77 92.14 90.82 91.21 91.67
Attr. 19 86.60 87.48 87.94 88.58 87.65 88.28 87.96
Attr. 23 93.39 92.87 92.29 92.75 92.89 93.41 92.36
Attr. 25 75.60 75.14 75.57 76.14 75.87 76.04 75.84
Attr. 27 75.82 75.72 77.26 77.62 76.43 77.25 77.24
Attr. 31 91.17 92.15 92.65 93.04 92.99 92.85 92.68
Attr. 32 80.66 81.54 82.99 83.44 83.11 82.97 83.34
Attr. 33 81.42 83.27 85.95 85.53 85.66 84.56 85.63
Attr. 34 86.37 87.29 89.55 90.48 89.17 90.31 90.32
Attr. 36 91.30 91.56 92.71 92.61 92.69 92.14 92.86
Attr. 37 88.35 88.15 88.25 88.90 87.68 88.82 88.38
Attr. 39 85.67 86.03 86.93 88.13 86.94 87.07 87.58
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Table 6: Camera relocalization performance of the proposed method and existing MTL approaches
for the 7SCENES data set. We report translation and orientation accuracy in terms of meters and
degrees, respectively. The reported results are mean±std over 10 random seeds.

(a) Translation performance (meters).

Scenes
CHESS FIRE HEADS OFFICE PUMPKIN KITCHEN STAIRS Mean

uniform 0.49±0.01 0.91±0.21 1.03±0.44 0.68±0.02 0.70±0.01 0.90±0.02 0.55±0.06 0.75±0.07
MGDA 0.32±0.01 0.65±0.07 0.75±0.19 0.31±0.01 0.44±0.02 0.34±0.01 0.50±0.02 0.47±0.03
MGDA-UB 0.33±0.01 0.73±0.13 0.72±0.16 0.58±0.03 0.48±0.03 0.64±0.03 0.52±0.02 0.57±0.03
GradNorm 0.18±0.01 0.33±0.01 0.25±0.01 0.25±0.00 0.25±0.00 0.27±0.01 0.43±0.02 0.28±0.00
PCGrad 0.17±0.00 0.33±0.01 0.24±0.01 0.24±0.01 0.25±0.01 0.26±0.01 0.40±0.03 0.27±0.01
Uncertainty 0.19±0.01 0.37±0.02 0.29±0.02 0.26±0.00 0.26±0.01 0.29±0.01 0.46±0.02 0.30±0.00

θ-aligned 0.26±0.02 0.53±0.03 0.63±0.03 0.26±0.00 0.35±0.02 0.29±0.00 0.59±0.03 0.42±0.01
Z-aligned 0.20±0.03 0.48±0.04 0.50±0.06 0.29±0.01 0.31±0.02 0.32±0.00 0.58±0.07 0.38±0.02

(b) Orientation performance (degrees).

Scenes
CHESS FIRE HEADS OFFICE PUMPKIN KITCHEN STAIRS Mean

uniform 6.26±0.20 11.75±0.24 13.08±0.13 8.26±0.16 6.68±0.15 8.72±0.21 11.81±0.24 9.51±0.07
MGDA 6.02±0.10 11.59±0.29 12.99±0.17 8.55±0.15 6.59±0.09 8.84±0.11 11.61±0.18 9.46±0.06
MGDA-UB 5.95±0.09 11.76±0.29 12.96±0.18 8.44±0.2 6.42±0.10 8.73±0.18 11.58±0.31 9.40±0.07
GradNorm 7.41±0.14 12.77±0.28 14.35±0.48 9.76±0.2 8.75±0.34 9.74±0.24 13.94±0.30 10.96±0.10
PCGrad 8.29±0.21 13.56±0.34 14.96±0.59 10.81±0.18 9.86±0.36 10.43±0.19 14.42±0.34 11.76±0.15
Uncertainty 9.04±0.35 15.44±0.77 18.69±1.08 10.60±0.32 10.19±0.48 10.35±0.13 15.69±0.97 12.86±0.29

θ-aligned 7.47±0.49 14.40±1.36 18.95±1.30 9.14±0.25 7.72±0.67 9.58±0.21 14.08±0.57 11.62±0.31
Z-aligned 5.81±0.19 12.18±0.68 13.58±0.68 9.03±0.17 6.31±0.16 9.38±0.15 12.26±0.32 9.79±0.17

Table 7: The network architectures used in our experiments for (1) Multi-label classification
(CELEBA), (2) camera relocalization (7SCENES), (3) Scene understanding (CITYSCAPES), and
(4) Mulati-task classification (MULTIMNIST). Notation: PPM stands for Pyramid Pooling Mod-
ule (Zhao et al., 2017); DE is depth estimation; IS and SS are instance and semantic segmentation
respectively.

CELEBA 7SCENES CITYSCAPES MULTIMNIST
ResNet-18 ResNet-34 ResNet-50 LeNet

encoder

Conv, 3×3, 64, s=1 Conv, 7×7, 64, s=2
MaxPool, 3×3, s=2

Conv, 5×5, 10
MaxPool, 2×2
Conv, 5×5, 20
MaxPool, 2×2

FC, 50

[
3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3

 1×1, 64
3×3, 64
1×1, 256

×3

[
3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4

 1×1, 128
3×3, 128
1×1, 512

×4

[
3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6

 1×1, 256
3×3, 256

1×1, 1024

×6

[
3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3

 1×1, 512
3×3, 512

1×1, 2048

×3

decoder (FC, 2)×40
FC, 3 (Translation)
FC, 4 (Orientation)

PPM(1) (DE)
FC, 10 (Left)

FC, 10 (Right)
PPM(2) (IS)

PPM(19) (SS)
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