
Published as a conference paper at ICLR 2024

DIFFERENTIALLY PRIVATE SGD WITHOUT CLIPPING
BIAS: AN ERROR-FEEDBACK APPROACH

Xinwei Zhang
University of Minnesota
zhan6234@umn.edu

Zhiqi Bu
Amazon AI.
woodyx218@gmail.com

Zhiwei Steven Wu
Carnegie Mellon University
zstevenwu@cmu.edu

Mingyi Hong
University of Minnesota
mhong@umn.edu

ABSTRACT

Differentially Private Stochastic Gradient Descent with Gradient Clipping (DPSGD-
GC) is a powerful tool for training deep learning models using sensitive data,
providing both a solid theoretical privacy guarantee and high efficiency. However,
using DPSGD-GC to ensure Differential Privacy (DP) comes at the cost of model
performance degradation due to DP noise injection and gradient clipping. Existing
research has extensively analyzed the theoretical convergence of DPSGD-GC, and
has shown that it only converges when using large clipping thresholds that are
dependent on problem-specific parameters. Unfortunately, these parameters are
often unknown in practice, making it hard to choose the optimal clipping threshold.
Therefore, in practice, DPSGD-GC suffers from degraded performance due to
the constant bias introduced by the clipping. In our work, we propose a new
error-feedback (EF) DP algorithm as an alternative to DPSGD-GC, which not only
offers a diminishing utility bound without inducing a constant clipping bias, but
more importantly, it allows for an arbitrary choice of clipping threshold that is
independent of the problem. We establish an algorithm-specific DP analysis for our
proposed algorithm, providing privacy guarantees based on Rényi DP. Additionally,
we demonstrate that under mild conditions, our algorithm can achieve nearly the
same utility bound as DPSGD without gradient clipping. Our empirical results on
standard datasets show that the proposed algorithm achieves higher accuracies than
DPSGD while maintaining the same level of DP guarantee.

1 INTRODUCTION

Background. Deep learning models have demonstrated exceptional promise in understanding various
types of data, including images, texts, speech, and others. The exploding data volume has significantly
accelerated the development of deep learning and has led to remarkable success in various tasks,
including computer vision (Dosovitskiy et al., 2020), natural language processing (Vaswani et al.,
2017), and speech recognition (Gulati et al., 2020). However, recent research (Nasr et al., 2018; Zhu
et al., 2019) has shown that the training and inference processes of deep learning models may leak
sensitive information in the training data, such as typing history, financial records, medical records,
and social network data. To address this concern, the concept of differential privacy (DP) introduced
by Dwork (2006) has become a widely accepted privacy requirement for releasing datasets (Dwork,
2008; Wang et al., 2016) and training machine learning models (Bassily et al., 2014; Abadi et al.,
2016; Wang et al., 2020; Chen et al., 2020). The DP notion provides a quantitative measurement
that reflects the abstract privacy requirement in a general setting. Intuitively, DP prevents adversarial
third parties from identifying whether any piece of data has appeared in the dataset or has been
used for training the model, with access to all released information. The notion of DP has also been
integrated into the procedure of training deep learning models, such as DPSGD (Abadi et al., 2016)
in centralized training and DP-FedAvg (Andrew et al., 2021; McMahan et al., 2018b) in distributed
optimization.
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The DP guarantee of DPSGD relies on injecting DP noises into the released updates at each iteration,
and the variance of the injected noise depends crucially on the sensitivity of the algorithm. In
the practical implementation of DP-SGD, the gradient clipping operation is used for bounding
the algorithm sensitivity of each update in DPSGD (Abadi et al., 2016). Although enjoying a
promising theoretical privacy guarantee and simple implementation, the DPSGD algorithm with
gradient clipping (DPSGD-GC) still faces critical challenges in theoretical analysis and practical
implementation.

Challenges. In terms of theory, although the inclusion of clipping operation in DPSGD-GC ensures a
strong DP guarantee, it considerably complicates the convergence analysis compared to the vanilla
SGD algorithm. This is because the expected update direction, which is the expected clipped per-
sample gradient in DPSGD-GC, may change dramatically, and additional effort is required to analyze
its alignment with the true gradient. Therefore, the early works on DPSGD with convergence analysis
assume that the clipping threshold is chosen to be larger than the magnitude of each per-sample
gradient, essentially making the clipping operation ineffective during training (Bassily et al., 2014;
Wang et al., 2016; Feldman et al., 2020; Iyengar et al., 2019; Xu et al., 2021; Zhang et al., 2022; Li
et al., 2022). Recent works use alternative assumptions and improve the convergence analysis for
DPSGD-GC, but the convergence results still rely on an assumption-dependent choice of the clipping
threshold (Fang et al., 2022; Chen et al., 2020; Yang et al., 2022; Qian et al., 2021; Zhang et al.,
2020; Koloskova et al., 2023). However, the bounds in the assumptions of real-world problems are
hard to estimate, and such a choice of clipping threshold is impossible to be satisfied in practice.
Recent work Koloskova et al. (2023) has shown a negative result that, under the general assumptions
for SGD, regardless of the choice of clipping threshold and stepsize, DPSGD-GC converges with a
constant bias term, meaning in the limit the DPSGD-GC algorithm only converges to a neighborhood
of the optimal or stationary solution. References Chen et al. (2020); Song et al. (2013) also provide
a justification that the gradient clipping shifts the stationary solution of the original problem, thus
causing an unavoidable constant bias (see our fixed-point analysis in Section 2.2).

In terms of practical implementation, empirical studies have shown that DPSGD-GC suffers from a
severe accuracy drop compared with its non-private counterparts (Abadi et al., 2016; Bagdasaryan
et al., 2019; Zhang et al., 2022). The additional terms consist of the bias caused by gradient clipping
(as mentioned in the previous paragraph), as well as the term caused by the injected DP noise. It
follows that when implementing DPSGD-GC in practice, one often has to carefully tune the clipping
threshold so to balance between these two terms. If a small clipping threshold is chosen, DPSGD-GC
injects small DP noise into the system, leading to a small DP error term, but at the cost of increased
clipping bias. On the other hand, choosing a large clipping threshold reduces the clipping bias,
but to ensure the desired DP guarantees, a large DP-noise has to be injected, leading to a large
performance drop. Therefore, how to properly choose the clipping threshold in practice is more
of an art than a science. Recently, more advanced clipping operations have been used to improve
the empirical performance of DPSGD-GC, including adaptive clipping threshold (Andrew et al.,
2021), group clipping (McMahan et al., 2018a), micro-batch clipping (Lee et al., 2021), and gradient
normalization (Yang et al., 2022; Das et al., 2021). However, the theoretical properties of these
approaches are less understood. Additionally, these approaches either entail a trade-off in terms of a
weaker DP guarantee or necessitate a substantial amount of parameter tuning.

In summary, extensive research has shown that DPSGD-GC only converges when the clipping
thresholds are tuned based on constants appear in various assumptions (such as the magnitude of the
gradients (Bassily et al., 2014; Wang et al., 2016; Feldman et al., 2020; Iyengar et al., 2019; Xu et al.,
2021; Zhang et al., 2022; Li et al., 2022), the coefficient of the gradient symmetricity (Chen et al.,
2020), or per-sample gradient alignment angles (Qian et al., 2021)). Unfortunately, the thresholds are
difficult to choose in practice because the aforementioned assumptions are hard to verify, thus the
coefficients are typically unknown. Therefore, DPSGD-GC often suffers from degraded performance
due to the constant bias introduced by the clipping. This fact strongly motivates a new class of DP
algorithms that enjoys both DP guarantee without performance degradation, while being free of
clipping threshold tuning.

Our Contributions. In this work, we propose DiceSGD algorithm for DP training with both utility
and privacy guarantees using a problem-independent clipping threshold. DiceSGD is motivated by the
error-feedback (EF) mechanism – a classical procedure in signal processing (Howze & Bhattacharyya,
1997; Laakso & Hartimo, 1992) for cancelling quantization bias. Specifically, we propose a novel
clipped EF mechanism which accumulates the error between the clipped update to the unclipped
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one at each iteration, and feeds the clipped error back to the next update. The proposed clipped EF
mechanism satisfies the DP guarantee, while still preserving the ability to compensate for the per-
sample gradient clipping bias and eventually eliminating the convergence bias caused by clipping. In
contrast to existing works, the proposed DiceSGD provides DP guarantee and convergence guarantee
without constant bias, while allowing a flexible choice of the clipping threshold. More importantly,
we have observed that when the algorithm is applied to a number of applications, including image
classification and natural language processing tasks, it does not suffer from performance degradation;
nor does it require careful clipping threshold tuning.

We emphasize that the theoretical analysis for the proposed DiceSGD is challenging in the follow-
ing sense: the clipping operation does not satisfy the firmly contracting assumption used in the
typical analysis of EF algorithms; additionally, directly applying the conventional DP analysis to
DiceSGD leads to an extremely loose bound. Therefore, a new convergence and privacy analysis for
the designed algorithm is required. We summarize our major contribution as follows:

• We propose a novel DiceSGD algorithm, where a new clipped EF mechanism is designed to
eliminate the clipping bias, while still providing the algorithm with standard DP guarantee.

• We provide the convergence proof for DiceSGD under general non-convex and Lipschitz-smooth
assumption, and show that DiceSGD eliminates the constant clipping bias compared with DPSGD-
GC with an arbitrary constant clipping threshold.

• We develop an algorithm-specific Rényi-DP analysis for the proposed method, where the update
consists of a privatized state and a non-privatized hidden state. We show that DiceSGD satisfies
(ϵ, δ)-DP by injecting a slightly (i.e., a constant depending on the clipping threshold of the feedback
error signal) larger DP noise compared with DPSGD-GC.

• Finally, we perform rigorous empirical comparisons of our method to DPSGD-GC on a number of
publicly available datasets to demonstrate the ability of our method to train models with a high
privacy guarantee and good performance. Further, we conduct ablation studies on DiceSGD to
show its stability in the choice of hyper-parameters.

2 PRELIMINARIES

2.1 NOTATIONS AND ASSUMPTIONS

Problem formulation Throughout the paper, we consider the following empirical risk minimization
(ERM) problem on a dataset D := {ξi, i ∈ [1, . . . , N ]} consisting of N samples of ξi:

min
x∈Rd

f(x) :=
1

N

∑
ξ∈D

f(x; ξ), (1)

where x ∈ Rd denotes the model parameter of dimension d. Further, we denote the per-sample
gradient evaluated at xt and sample ξi as gt

i = ∇f(xt, ξi). The clipping operation applied to vector
v is defined as:

clip (v, C) = min

{
1,

C

∥v∥

}
· v. (2)

Throughout the paper, we use superscript (·)t to denote the variables in iteration t, and B to denote
the index set of the sampled minibatch from dataset D. The formal definition of differential privacy
(DP) is stated below:
Definition 2.1 (ϵ, δ-DP (Dwork, 2006)). A randomized mechanism M is said to guarantee (ϵ, δ)-
differentially private, if for any two neighboring datasets D,D′ (D,D′ differ by one sample instance)
and for any output measurement S, it holds that Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ.

To protect DP, we consider the commonly used Gaussian mechanism (Dwork, 2006; Abadi et al.,
2016), which injects additive noise into the output of the algorithm.
Definition 2.2 (Gaussian Mechanism (Dwork, 2006)). Suppose an algorithm f : D → Rd has ℓ2
sensitivity ∆f

max
D,D′

∥f(D)− f(D′)∥ ≤ ∆f .

Then for any ϵ > 0, δ ≤ 1, by adding a random Gaussian noise to the output of the algorithm

M(x) = f(x)+w,withw ∼ N (0, σ2Id), where σ =
∆f

√
2 ln(1.25/δ)

ϵ , the algorithm f is (ϵ, δ)-DP.
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Algorithm 1 DPSGD Algorithm with Gradient Clipping
1: Input: x0,D, C, η
2: for t = 0, . . . , T − 1 do
3: Uniformly draw minibatch Bt from D
4: g̃t

i = clip (∇f(xt; ξi), C)

5: xt+1 = xt − ηt

B

(∑
i∈Bt g̃t

i +wt
)
,

6: where wt ∼ N (0, σ2
1 · I)

7: end for

2.2 DPSGD-GC ALGORITHM

The update of DPSGD-GC algorithm (Abadi et al., 2016) is given in Algorithm 1. The algorithm
first samples a mini-batch Bt of size B and computes the per-sample gradient at each step. Then, it
applies the Gaussian mechanism by clipping the per-sample gradient with (2) and injecting the DP
noise. Finally, the algorithm updates the model parameter with the averaged privatized mini-batch
gradient. It has been shown that DPSGD-GC guarantees (ϵ, δ)-DP with sufficiently large injected
noise (Abadi et al., 2016).
Theorem 2.3 (Theorem 1 Abadi et al. (2016)). Given N,B, T and C, there exist positive constants
u, v, such that for any ϵ < uB2T

N2 , δ > 0, by choosing σ2
1 ≥ v

C2T ln( 1
δ )

N2ϵ2 , Algorithm 1 is guaranteed to
be (ϵ, δ)-DP.

Although providing a strong DP guarantee, the convergence property of DGSGD-GC is less satisfac-
tory. Recent work Koloskova et al. (2023) has shown that without any extra assumption, DPSGD-GC
with an arbitrary clipping threshold converges with a constant clipping bias, regardless of the convex-
ity of the problem. Prior works that show the convergence of DPSGD-GC rely on extra assumptions
on the problem and clipping thresholds that depend on these assumptions. Specifically, Chen et al.
(2020) proves the convergence of DPSGD-GC under the assumption that the per-sample gradients
have a symmetric distribution; Jin et al. (2022) gives a high probability convergence result assuming
that the per-sample gradients have a bounded domain and sufficiently large clipping threshold; Yang
et al. (2022) establishes the convergence of DPSGD-GC by assuming that the deviation of per-sample
gradient from the true gradient is bounded, and using a clipping threshold larger than the per-sample
gradient deviation to ensure that clipped gradient “aligns” with the true gradient; light-tailed gradient
variance assumption and a large clipping threshold has been used by Fang et al. (2022) to provide a
high probability bound without constant bias.

Fixed-point analysis To intuitively understand why DPSGD-GC requires additional assumptions on
the per-sample gradients and large clipping threshold, let us consider the fixed-point of DPSGD-GC.
From the algorithm’s update in Algorithm 1, at the fixed point of DPSGD-GC, we have:

E[x] = E

[
x− η

B

(∑
i∈B

clip (∇f(x; ξi), C) +w

)]
= E[x]− η

N

N∑
i=1

clip (∇f(x; ξi), C) .

It indicates that 1
N

∑N
i=1 clip (∇f(x; ξi), C) = 0 is the fixed-point of DPSGD-GC, but it is clear

that such an equality does not imply ∇f(x) = 0 in general. Thus DPSGD-GC is not guaran-
teed to converge to the solution of the problem (1) where ∇f(x) = 0. Additionally, from the
fixed-point of DPSGD-GC, we can also understand how the extra assumptions and clipping thresh-
olds guarantee convergence. For example, by using a clipping threshold larger than the deviation
of per-sample gradient (Yang et al., 2022), it guarantees that when ∇f(x) = 0, it holds that
∥∇f(x; ξi)−∇f(x)∥ = ∥∇f(x; ξi)∥ ≤ C, and

1

N

N∑
i=1

clip (∇f(x; ξi), C) =
1

N

N∑
i=1

∇f(x; ξi) = ∇f(x) = 0,

becomes the fixed-point of DPSGD-GC.

Although providing theoretically sound convergence analyses, the theoretical results in Chen et al.
(2020); Jin et al. (2022); Yang et al. (2022); Fang et al. (2022) do not provide practical guidance on
choosing the clipping threshold in real-world applications. In these works, the choices of clipping
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thresholds depend on the problem parameters, which are hard or impossible to estimate. Therefore,
these analyses cannot guarantee that clipping thresholds used in real-world training satisfy the
requirements. Thus, DPSGD-GC still suffers from a constant clipping bias, and there is a strong need
to design a new DP algorithm that does not suffer from clipping bias.

2.3 ERROR-FEEDBACK (EF) SGD

The EF mechanism has been used to debias the quantization error in signal processing (Laakso &
Hartimo, 1992) and has been introduced to optimization algorithms for bias compensation when
transmitting biased compressed gradients (Karimireddy et al., 2019; Stich & Karimireddy, 2020; Li
et al., 2022). The EF mechanism for compressed SGD (EFSGD) writes (Karimireddy et al., 2019)

xt+1 = xt − ηvt,

et+1 = et + gt − vt, (3)

where v := Compress(et + gt) is a biased compressor and gt is the (estimated) gradient. By
using the EF mechanism, the bias caused by compression can be controlled by the stepsize η and
fully eliminated, thus providing better convergence performance than the original compressed SGD
algorithm. In the recent works Richtárik et al. (2021), a Markov EF mechanism is proposed for
simpler implementation and is used for both compression and clipping. However, this EF mechanism
fails to deal with stochastic noise in the gradient estimation. EF has also been used in distributed
DP algorithm with compression (Li et al., 2022), where the proposed SoteriaFL framework adopts a
“shifted compression” mechanism to eliminate the compression bias when transmitting the privatized
local updates. Although showing promising potential in dealing with biased updates caused by
compression, the existing EF mechanism has not been directly applied to debias the gradient clipping
operation; nor has it been used as a component in DP algorithms.

3 DIFFERENTIALLY PRIVATE CLIPPING ERROR-FEEDBACK SGD

In this section, we present the proposed Differentially Private Clipping Error-Feedback SGD
(DiceSGD) algorithm inspired by the EF mechanism, which has both convergence and DP guarantee
under an arbitrary choice of clipping threshold. We show that under mild assumptions, DiceSGD can
fully eliminate the clipping bias in DPSGD-GC even when a small and problem-independent clipping
threshold is used.

3.1 ALGORITHM DESCRIPTION

Our DiceSGD algorithm is described in Algorithm 2 and Figure 1. At round t, the algorithm first
computes the update direction vt by adding the clipped stochastic gradient with the clipped feedback
error. Then, the algorithm updates the model parameters xt with vt and injects the DP noise wt.
Finally, it computes the clipping error et+1 for the next iteration. The algorithm only releases xt at
iteration t and does not release et nor vt.

+

+ +

Clipped EF

DP Noise:

+

+ +

+

+

Iteration

Iteration

Figure 1: The flow diagram of DiceSGD.
The clipped EF components are high-
lighted in red, and DP components are
marked in yellow. z−1 denotes the unit
delay.

In the proposed algorithm, we introduce an extra variable
et that records the clipping error. We keep it unclipped
and privatize it when computing the update direction in the
next iteration. As an important algorithm design considera-
tion for DP requirement, unlike the original EF mechanism,
we do not feed et back directly to each per-sample gra-
dient clipping operation (Line 5), because it would break
the sensitivity of the algorithm. Rather, we first clip et

and add it to the averaged clipped gradient. Using such
a clipped EF mechanism for privacy guarantee, we can
balance the functionality of EF and the DP requirement of
the algorithm.

To see why the proposed algorithm has the potential of
eliminating the clipping bias, let us again study the fixed-
point of the DiceSGD algorithm. At the fixed-point, we
have the following relation, where the expectation E[·] is
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Algorithm 2 DiceSGD Algorithm
1: Input: x0,D, C1, C2, η
2: Initialize: e0 = 0
3: for t = 0, . . . , T − 1 do
4: Randomly draw minibatch Bt from D
5: vt = 1

B

∑
i∈Bt clip (∇f(xt; ξi), C1) + clip (et, C2)

6: xt+1 = xt − ηt(vt +wt), where wt ∼ N (0, σ2
1 · I)

7: et+1 = et + 1
B

∑
i∈Bt ∇f(xt; ξi)− vt.

8: end for

taken on the randomness of the samples at the current iteration.

E[x] = E[x]− η E[v +w] = x− η E[v],

E[e] = E[e] + E[
1

B

∑
i∈B

∇f(x; ξi)− v] = E[e] +
1

N

N∑
i=1

∇f(x; ξi)− E[v].

Therefore, from the above two equations, we can derive that

E[v] =
1

N

N∑
i=1

clip (∇f(x; ξi), C1) + clip (e, C2) = 0,

1

N

N∑
i=1

clip (∇f(x; ξi), C1) + clip (e, C2) =
1

N

N∑
i=1

∇f(x; ξi),

which indicates that the fixed-point of DiceSGD is given by

1

N

N∑
i=1

clip (∇f(x; ξi), C1) = −clip (e, C2) , and
1

N

N∑
i=1

∇f(x; ξi) = ∇f(x) = 0.

We can show that when C2 ≥ C1, there exists x, e such that the fixed point is achieved. Specifically,
by choosing x satisfies ∇f(x) = 0; and e is chosen as e = − 1

N

∑N
i=1 clip (∇f(x; ξi), C1) . Note

that

∥e∥ =

∥∥∥∥∥ 1

N

N∑
i=1

clip (∇f(x; ξi), C1)

∥∥∥∥∥ ≤ 1

N

N∑
i=1

∥clip (∇f(x; ξi), C1)∥ ≤ C1,

we have clip (e, C2) = e as long as C2 ≥ C1, and the first equation is satisfied. These choices
guarantee that the two equations are satisfied and the fixed point is achieved. The fixed-point analysis
indicates that, unlike DPSGD-GC, as long as C2 ≥ C1, a condition that is problem independent,
clipped EF can potentially fully compensate the shift of the stationary solution caused by gradient
clipping independent of any problem assumptions, and ∇f(x) = 0 is the fixed point of DiceSGD.

3.2 THEORETICAL ANALYSIS

In this section, we provide analysis for the proposed DiceSGD algorithm. We emphasize again that
the challenge here is two-fold: 1) it is difficult to analyze convergence due to the combination of
the EF mechanism and the clipping operation; 2) the DP analysis is non-trivial due to the presence
of the non-privatized update of et as a hidden state. To see the first challenge, more specifically,
the analyses of the convergence of the existing EF algorithms (Karimireddy et al., 2019; Li et al.,
2022) relies on the assumption that the feedback error et+1 in (3) is a firmly contractive mapping on
et + gt:

E
∥∥et+1

∥∥2 = E
∥∥et + gt − Compress(et + gt)

∥∥2 ≤ α
∥∥et + gt

∥∥2 ,
where α ∈ (0, 1) is a constant strictly less than 1. However, in DiceSGD, the clipping error does not
satisfy this property. To see this, note the following:

∥∥et+1
∥∥2

=

∥∥∥∥∥∥et +
1

B

∑
i∈Bt

∇f(xt; ξi)−

clip
(
et)+ 1

B

∑
i∈Bt

clip
(
∇f(xt; ξi)

)∥∥∥∥∥∥
2
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≤ α

∥∥∥∥∥∥et +
1

B

∑
i∈Bt

∇f(xt; ξi)

∥∥∥∥∥∥
2

, α ∈ (0, 1],

which is non-expansive, i.e., α → 1 when
∥∥et + 1

B

∑
i∈Bt ∇f(xt; ξi)

∥∥ → ∞. Therefore, the
existing convergence analyses for the EF algorithms cannot be directly applied to our case. On the
other hand, privacy analysis for DPSGD is provided in Abadi et al. (2016), where the sequential
updates are released, and recent works studying the privacy amplification by iteration provide last-
iterate DP analyses for DP algorithms where only the final state is released to public (Feldman
et al., 2018; Ye & Shokri, 2022). However, the update of DiceSGD is more complicated than the
above two cases, as the sequential update of xt is released and privatized, while et, the hidden-
state with non-privatized updates, is not released to the public. It is insufficient to directly use
the existing DP analyses for DiceSGD, because when applying the privacy analysis for DPSGD to
the sequence {(xt, et)} in DiceSGD, the composition theorem does work as et is not privatized.
To tackle the above difficulties, we conduct novel analyses for DiceSGD, which consists of the
convergence analysis for clipped EF and DP analysis for algorithms with a privatized public state and
a non-privatized hidden state.

Assumptions We briefly discuss the assumptions used in the analyses of DiceSGD algorithm:
Assumption 3.1 (Lower Bounded). The loss function f(·) is bounded from below by some finite
constant f⋆:

f(x) ≥ f⋆ > −∞, ∀ x ∈ Rd.

Assumption 3.2 (Smoothness). The loss function f(·) is L-Lipschitz smooth, i.e., it satisfies:

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ ,∀ x,y ∈ Rd.

Assumption 3.3 (Strong Convexity). The loss function f(·) is µ-strongly convex:

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥x− y∥2 ,∀ x,y ∈ Rd.

Assumptions 3.1 and 3.2 are standard assumptions used for analyzing the convergence of first-order
optimization algorithms. The strong convexity assumption has also been widely used in analyzing
SGD-type algorithms in both private (Wang et al., 2020; Song et al., 2020; Kamath et al., 2022;
Koloskova et al., 2023) and non-private (Rakhlin et al., 2011) settings.
Assumption 3.4 (Bounded Variance). The stochastic gradient estimation is unbiased, i.e., E[g] =
∇f(x), and its variance satisfies that there exists a constant σ, such that E ∥∇f(x)− gi∥2 ≤
σ2

N ,∀ x ∈ Rd.

Assumption 3.5 (Bounded Gradient). The gradient of the function is bounded in the sense that there
exists a positive constant G = supx∈Rd ∥∇f(x)∥ < ∞.

Assumptions 3.4 and 3.5 are commonly used for analyzing clipping operation (Zhang et al., 2020;
Qian et al., 2021; Song et al., 2020), the convergence of DP algorithms (Yang et al., 2022), and dis-
tributed optimization (Li et al., 2022; Zhang et al., 2022). Assumption 3.4 assumes a smaller
variance compared with the typical assumption (i.e., E ∥∇f(x)− gi∥2 ≤ σ2), it implies that
∥∇f(x)− gi∥2 ≤ σ2,∀ i, and it is necessary for bounding the clipping bias in the existing works
(e.g.,in Yang et al. (2022)). Although these assumptions are also used in our analysis, contrasting
with existing works, the clipping thresholds C1, C2 in DiceSGD do not depend on G or σ.

We now present the convergence theorem of the proposed DiceSGD algorithm under the non-convex
smooth setting Assumption 3.2:
Theorem 3.6. Assume the problem satisfies Assumption 3.1, 3.2, 3.4, and 3.5. Given any constant
DP noise multiplier σ1, by running DiceSGD (Algorithm 2) for T iterations, choosing stepsize

η =
√

2(f(x0)−f⋆)
TL(2C2

1+3C2
2+dσ2

1)
, clipping thresholds C2 ≥ 3C1 +

σ
B > 0. It satisfies

Et

[∥∥∇f(xt)
∥∥2] ≤ 2

√
2L(f(x0)− f⋆)(2C2

1 + 3C2
2 + dσ2

1)

T
, (4)

where the expectation Et is taken over t ∈ {0, . . . , T − 1}, following distribution At∑T−1
t=0 At

, with

{At} ∈ (0, 1] being a strictly positive sequence defined in (12), Appendix A.
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Table 1: The comparison between DPSGD, DPSGD-GC, and DiceSGDin terms of convergence,
privacy noise, and clipping thresholds. (G̃ = 2C2 + C2

1 )

Algorithm Convergence Rate Privacy Noise Variance Assumptions Clipping

DPSGD O
(

G
√

log(1/δ)

Nϵ

)
O(

G
√

T log( 1
δ
)

Nϵ
) 3.4, 3.5 C ≥ G+ σ

DPSGD-GC O
(

C
√

log(1/δ)

Nϵ

)
+O(1) O(

C
√

T log( 1
δ
)

Nϵ
) 3.4, 3.5 C < G+ σ

DiceSGD O
(√

G̃ log(1/δ)

Nϵ

)
O(

√
G̃T log( 1

δ
)

Nϵ
) 3.4, 3.5 Independent of G

Proof sketch of Theorem 3.6:

1. We first apply the convergence analysis of biased SGD for non-convex problems with update
direction E[vt]. Due to the EF mechanism, the convergence result for DiceSGD directly depends
on the recursion of et, which corrects the bias at iteration t− 1.

2. With the update of et, we can derive a recursive bound on the key term ⟨∇f(xt),E[et]⟩. Unlike
EF for contracting error, which depends on the gradients with a constant factor independent of T ,
the error et caused by clipping operation requires a much tighter recursion directly on the inner
product between et and ∇f(xt) for analysis. And the coefficients before the gradient heavily
depend on the clipping factor.

3. By substituting the bound of ⟨∇f(xt),E[et]⟩ into the convergence result in step 1, and choosing
sufficiently small stepsize and adequate clipping factor ratio that compensates for the stochastic
noise and the clipping bias, we are able to derive a non-trivial convergence result for DiceSGD.

Theorem 3.6 indicates that the overall convergence rate for DiceSGD is O
(

1√
T

)
for the general

non-convex setting, which matches the O( 1√
T
) lower bound convergence rate of DPSGD without

gradient clipping under non-convexity (Bassily et al., 2014; Rakhlin et al., 2011). However, compared
with DPSGD-GC (Koloskova et al., 2023), DiceSGD fully eliminates the constant bias and improves
the convergence rate from O(1) to O( 1√

T
). The comparison is shown in Table 1.

Privacy guarantee Let us proceed with the privacy analysis of DiceSGD. We start with the notion
of Rényi Differential Privacy (Mironov, 2017). By accounting for the distribution divergence of the
stochastic gradient at iteration t and the accumulated difference of et starting from e0, we are able to
bound the Rényi divergence of xt+1 given two adjacent datasets D,D′ and start with the same xt.
Then by using the composition theorem of Rényi divergence, we provide the privacy guarantee for
DiceSGD in the next result.

Theorem 3.7. Assume the problem satisfies Assumptions 3.4, and 3.5, given constant C, by fixing the
clipping thresholds 0 < C1 ≤ C2 ≤ C/B, independent of G, σ, and assume B

N ≤ 1
5 . Choose DP

noise standard deviation σ1 as

σ2
1 ≥ 32TG̃ log(1/δ)

N2ϵ2
,

where G̃ := C2
1 + 2min{C2, G′2}, and G′ defined in Theorem 3.6. Running DiceSGD for T

iteration, the algorithm guarantees (ϵ, δ)-differentially private.

Note that although Assumptions 3.4, and 3.5 are used in the proof, the result does not rely on the
specific values of the bounds, which can be arbitrarily large. Due to the accumulated influence of the
update of et, the DiceSGD requires larger DP-noise than the DPSGD algorithm (larger by a constant
multiplicative factor). The detailed proof is given in Appendix A.2. By optimizing T we have the
following utility-privacy trade-off for DiceSGD.

Corollary 3.8. Under the same assumptions of Theorem 3.6, choose the stepsize η = O( 1√
T
), and

clipping thresholds 0 < 3C1 < C2 ≤ C/B, and choose noise multiplier σ2
1 as Theorem 3.7. By

running DiceSGD for T = O
(

N2ϵ2

G̃ log(1/δ)

)
iterations, the algorithm guarantees (ϵ, δ)-DP, while
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Table 2: Test accuracy of DPSGD-GC and DiceSGD on Cifar-10 and Cifar-100 datasets with different
clipping thresholds and (2, 10−5)-DP.

Dataset Clipping. DPSGD-GC DiceSGD SGD
Cifar-10 C = 1.0 95.2% 97.4% 99.0%
Cifar-10 C = 0.1 94.5% 97.5% 99.0%
Cifar-100 C = 1.0 79.0% 86.3% 92.0%
Cifar-100 C = 0.1 78.9% 86.5% 92.0%

converging to a solution where the loss function satisfies:

E[
∥∥∇f(xt)

∥∥2] = O


√

G̃ log(1/δ)

Nϵ

 .

The corollary indicates that when N → ∞, the expected loss converges with rate O( log(N)
N2 ) with

arbitrary clipping thresholds C2 ≥ C1 > 0 and eliminates the constant clipping bias in DPSGD-GC.

4 NUMERICAL EXPERIMENTS

In the experiment, we use the similar Adam variant of DPSGD-GC developed following Bu et al.
(2021) to implement both DPSGD-GC and DiceSGD (see Appendix C.3 for details). We perform
extensive evaluations of DiceSGD on image classification, and natural language processing (NLP)
tasks to demonstrate its advantage over DPSGD-GC. The experiments were run on an Intel Xeon
W-2102 CPU with an NVIDIA TITAN X GPU for image classification, and on an NVIDIA A100
GPU for NLP tasks. We conduct extra ablation studies on the choice of the clipping threshold C1, C2

and learning rate η on Cifar-10 and Cifar-100 datasets, which show that DiceSGD benefits from using
a smaller clipping threshold and choosing C2 = C1 gives the best result in most cases. More results
and discussions are given in Appendix C.1 due to the space limitation.

Image classification. We use both Cifar-10 and Cifar-100 datasets for experiments and use ViT-
small (Dosovitskiy et al., 2020) as the training model, which is pre-trained on Imagenet. We fine-tune
the model for 3 epochs with batch size B = 1000. The stepsize for DPSGD-GC and DiceSGD are
selected through grid search from η ∈ {10−2, 10−3, 10−4}. The experiment results are shown in
Table 2.

Natural language processing. To validate the ability of DiceSGD for training larger models on
different tasks, we further conduct experiments on the NLP task. Specifically, we fine-tune the GPT-2
model (Radford et al., 2018) on the E2E NLG Challenge for 10 epochs with batch size B = 1000,
and report the standard metrics such as BLUE, ROUGE-L, etc., used in Hu et al. (2021) for evaluation.
The results in Table 3 show that DiceSGD has better performance than DPSGD-GC.

To summarize the results of our experiments, we see that in both image classification and the NLP
tasks, DiceSGD outperforms DPSGD-GC, and sometimes by a significant margin.

5 CONCLUSION

In this paper, we propose the DiceSGD algorithm for DP training. The algorithm uses a clipped
error-feedback mechanism to eliminate the bias in gradient clipping. We provide novel convergence
analysis in the strongly convex setting or under PL condition for DiceSGDwith a problem-independent
clipping threshold and provide the DP guarantee independent of the problem type. Numerical results
show superior performances of DiceSGD compared with DPSGD-GC on image classification and
NLP tasks and the robustness of DiceSGD to the clipping threshold.

Table 3: Scores of fine-tuning GPT-2 on E2E NLG Challenge, with C = 1.0 and (8, 8× 10−6)-DP.

Algorithm BLEU NIST METEOR ROUGE-L CIDEr
DPSGD-GC 56.8 4.83 36.2 65.2 1.43
DiceSGD 62.6 7.05 38.5 66.6 1.83
SGD (Hu et al., 2021) 70.4 8.85 46.8 71.8 2.53
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Symbol Meaning
x,w, e model variable, privacy noise, feedback error
f(·) objective function

D,B, ξ dataset, minibatch, data sample
N,B, i Dataset size, minibatch size, data index

gi,∇f(x; ξi) gradient evaluated on ξi
ϵ, δ parameters of (ϵ, δ)-DP
T, t total iteration, iteration index

µ,L, σ strong convexity (PL condition), Lipschitz, variance constants
C,C1, C2 clipping thresholds
αt
i, α

t
e clipping factors of gt

i , e
t, i.e., min{1, C1

∥gt
i∥
},min{1, C2

∥et∥}
At

1,At
2 update of xt+1 and et+1, i.e. lines 4,5,6 and 4,5,7 of Algorithm 2

Ht sequence of {x0,x1, . . . ,xt}
∆t

g difference of gt with D,D′, i.e., 1
B

∑
i∈Bt clip (gt

i , C1)− 1
B

∑
i∈B′t clip (gt

i , C1)
∆t

e update difference of et with neighboring datasets, i.e., et − e′t.

Table 4: Symbols used in the paper.

A PROOF OF RESULTS IN SECTION 3

In this section, we provide detailed proofs of the theorems in Section 3. We find the following
relations useful:

∥a+ b∥2 ≤ (1 + β) ∥a∥2 +
(
1 +

1

β

)
∥b∥2 ,∀ β > 0 (5)

⟨a, b⟩ = 1

2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
(6)

Lemma A.1. Given a random variable X ∈ Rd. If c(·) : Rd → Rd is a non-expansive mapping,
such that ∥c(a)− c(b)∥ ≤ ∥a− b∥ , then Var(c(X)) ≤ Var(X). Additionally, function c(x) =
x− clip (x,C) is a non-expansive mapping for any positive constant clipping threshold C > 0.

The proof is given in Appendix A.4.

Theorem A.2. Assume the problem satisfies Assumption 3.1, 3.2, 3.4, and 3.5. Given any constant
DP noise multiplier σ1, by running DiceSGD (Algorithm 2) for T iterations, choosing stepsize

η =
√

2(f(x0)−f⋆)
TL(2C2

1+3C2
2+dσ2

1)
, clipping thresholds C2 ≥ 3C1 +

σ
B > 0. It satisfies

Et

[∥∥∇f(xt)
∥∥2] ≤ 2

√
2L(f(x0)− f⋆)(2C2

1 + 3C2
2 + dσ2

1)

T
, (7)

where the expectation Et is taken over t ∈ {0, . . . , T − 1}, with probability At/
∑T−1

t=0 At, with
{At} ∈ (0, 1] being a positive sequence defined in (12).

Theorem A.3. Under Assumptions 3.4 and 3.5, given constant C, choose the clipping thresholds
0 < C1 ≤ C2 ≤ C/B. Choosing DP noise multiplier σ1 as

σ2
1 ≥ 32T (C2

1 + 2min{C2, G′2}) log(1/δ)
N2ϵ2

.

Running DiceSGD for T iteration, the algorithm guarantees (ϵ, δ)-DP.

Let us denote the clipping factors as αt
i := min

{
1, C1

∥gt
i∥

}
, αt

e := min
{
1, C2

∥et∥

}
, so that

clip
(
et, C2

)
= αt

ee
t, clip

(
gt
i , C1

)
= αt

ig
t
i , and et+1 = (1− αt

e)e
t +

1

B

∑
i∈Bt

(1− αt
i)g

t
i .

(8)
Note that we have the following bound on αt

e: Let us consider two cases: 1) ∥et∥ ≤ C2 and
∥et∥ > C2. For case 1), it is clear that αt

e = 1. For case 2), we have αt
e = C2

∥et∥ . We can further
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bound ∥et∥ recursively as∥∥et∥∥ (8)
=

∥∥∥∥∥(1− αt−1
e )et−1 +

1

B

∑
i∈Bt−1

(1− αt−1
i )gt−1

i

∥∥∥∥∥
≤ (1− αt−1

e )
∥∥et−1

∥∥+ ∥∥∥∥∥ 1

B

∑
i∈Bt−1

(1− αt−1
i )gt−1

i

∥∥∥∥∥
(a)

≤ (1− αt−1
e )

∥∥et−1
∥∥+ 1

B

∑
i∈Bt−1

∥∥∥∥∥
(
1−min{1, C1∥∥gt−1

i

∥∥}
)
gt−1
i

∥∥∥∥∥
(b)

≤ (1− αt−1
e )

∥∥et−1
∥∥+ 1

B

∑
i∈Bt−1

max{0,
∥∥gt−1

i

∥∥− C1}

(c)

≤
∥∥et−1

∥∥− C2 +max{0,
∥∥∇f(xt−1)

∥∥+ σ − C1}
(d)

≤
∥∥e1∥∥+ t−1∑

τ=1

(max{0, ∥∇f(xτ )∥+ σ − C1} − C2)

(e)

≤ tmax{0, G+ σ − C1} − (t− 1)C2 = tG′ − (t− 1)C2.

where (a) substitutes the definition of αt
e; (b) expands the last term; (c) applies Assumption 3.4;

in (d) we recursively expand
∥∥et−1

∥∥ to
∥∥e1∥∥ and notice that

∥∥e1∥∥ =
∥∥ 1
B

∑
i∈B1(1− α1

i )g
1
i

∥∥ ≤
max{0,

∥∥∇f(x1)
∥∥+σ−C1}; in (e) we apply Assumption 3.5 and define G′ := max{0, G+σ−C1}.

Therefore, we have

αt
e =

C2

∥et∥
≥ C2

tG′ − (t− 1)C2
=

C2

C2 + t(G′ − C2)
. (9)

A.1 PROOF OF THEOREM 3.6

With smoothness Assumption 3.2, we have the following descent property, where the expectation
Et[·] is taken on the randomness over iteration t conditioned on all past histories from 0 to t:

Et[f(x
t+1)] ≤ f(xt) +

〈
∇f(xt),Et[x

t+1 − xt]
〉
+ Et

[
L

2

∥∥xt+1 − xt
∥∥2]

(a)

≤ f(xt)− η
〈
∇f(xt),Et[v

t]
〉
+

Lη2

2
Et

[∥∥vt
∥∥2]+ Ldη2

2
σ2
1

= f(xt)− η
〈
∇f(xt),Et[v

t]
〉
+

Lη2

2
Et

∥∥∥∥∥ 1

B

∑
i∈Bt

clip
(
gt
i , C1

)
+ clip

(
et, C2

)∥∥∥∥∥
2
+

Ldη2

2
σ2
1

(b)

≤ f(xt)− η
〈
∇f(xt),Et[v

t]
〉
+

Lη2

2
(C1 + C2)

2 +
Ldη2

2
σ2
1 , (10)

where (a) applies the update rule of xt and uses the fact that wt follows zero-mean Gaussian and is
independent of vt, and (b) bounds ∥vt∥ by C1 + C2 with clipping operation. Next, we bound the
inner-product between ∇f(xt) and E[vt] as:

−
〈
∇f(xt),E[vt]

〉 (8)
= −

〈
∇f(xt),Et

1

B

∑
i∈Bt

αt
ig

t
i + Et α

t
ee

t

〉
=

= −
〈
∇f(xt),Eαt

ig
t
i + Eαt

ee
t
〉

= −
〈
∇f(xt),Eαt

ig
t
i

〉
−
〈
∇f(xt)−∇f(xt−1),Eαt

ee
t
〉
−
〈
∇f(xt−1),Eαt

ee
t
〉

(a)

≤ −
〈
∇f(xt),Eαt

ig
t
i

〉
+

1

2

(
1

ηL
E
∥∥∇f(xt)−∇f(xt−1)

∥∥2 + ηL
∥∥αt

ee
t
∥∥2)

−

〈
∇f(xt−1),Eαt

e

(
(1− αt−1

e )et−1 +∇f(xt−1)− 1

N

N∑
i=1

αt−1
i gt−1

i

)〉

14
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(b)

≤ −
〈
∇f(xt),Eαt

ig
t
i

〉
+

ηL

2

(
E
∥∥vt−1 +wt−1

∥∥2 + E
∥∥αt

ee
t
∥∥2)

− αt
e(1− αt−1

e )

αt−1
e

〈
∇f(xt−1),Eαt−1

e et−1
〉
− αt

e

∥∥∇f(xt−1)
∥∥2 + αt

e

〈
∇f(xt−1),Eαt−1

i gt−1
i

〉
(c)

≤ −
〈
∇f(xt),Eαt

ig
t
i

〉
+

ηL

2

(
(C1 + C2)

2 + dσ2
1 + C2

2

)
− αt

e

∥∥∇f(xt−1)
∥∥2

− αt
e(1− αt−1

e )

αt−1
e

〈
∇f(xt−1),Eαt−1

e et−1
〉
+ αt

e

〈
∇f(xt−1),Eαt−1

i gt−1
i

〉
,

where (a) applies (6) to the second term and expand et with (8); (b) applies the smoothness Assump-
tion 3.2 to the second term; (c)uses the fact that wt−1 follows zero-mean Gaussian and is independent
of vt−1 and that vt−1 = clip

(
et−1, C2

)
+ 1

B

∑
i∈Bt−1 clip

(
gt−1
i , C1

)
has magnitude less or equal

to C1 + C2.

By recursively expanding the term −⟨∇f(xτ ),Eατ
ee

τ ⟩ above as

− ⟨∇f(xτ ),Eατ
ee

τ ⟩ ≤ ηL

2

(
(C1 + C2)

2 + dσ2
1 + C2

2

)
− ατ

e

∥∥∇f(xτ−1)
∥∥2

− αt
e(1− ατ−1

e )

ατ−1
e

〈
∇f(xτ−1),Eατ−1

e eτ−1
〉
+ ατ

e

〈
∇f(xτ−1),Eτ−1 α

τ−1
i gτ−1

i

〉
,

and note that e0 = 0, α0
e = 1, we have:

−
〈
∇f(xt),E[vt]

〉
= −

〈
∇f(xt),Eαt

ig
t
i

〉
−
〈
∇f(xt),Eαt

ee
t
〉

≤ −
〈
∇f(xt),Eαt

ig
t
i

〉
+

ηL

2

(
(C1 + C2)

2 + dσ2
1 + C2

2

)
− αt

e

∥∥∇f(xt−1)
∥∥2

− αt
e(1− αt−1

e )

αt−1
e

〈
∇f(xt−1),Eαt−1

e et−1
〉
+ αt

e

〈
∇f(xt−1),Eαt−1

i gt−1
i

〉
≤ −

t−1∑
τ=0

αt
e

(
t−1∏

τ1=τ+1

(1− ατ1
e )

)
∥∇f(xτ )∥2 −

〈
∇f(xt),Eαt

ig
t
i

〉
+

t∑
τ=1

αt
e

(
t−1∏
τ1=τ

(1− ατ1
e )

)(
Lη

2

(
2C2

1 + 3C2
2 + dσ2

1

)
+ ⟨∇f(xτ ),Eατ

i g
τ
i ⟩
)
. (11)

Substitute (11) back to (10) and sum over iterations, we have:

E[f(xT )] ≤ f(x0)− η

T−1∑
t=0

t−1∑
τ=0

αt
e

(
t−1∏

τ1=τ+1

(1− ατ1
e )

)
∥∇f(xτ )∥2

+
Lη2

2

T−1∑
t=0

(
t∑

τ=1

αt
e

(
t−1∏
τ1=τ

(1− ατ1
e )

)(
2C2

1 + 3C2
2 + dσ2

1

)
+ 2C2

1 + 2C2
2 + dσ2

1

)

− η

T−1∑
t=0

(〈
∇f(xt),Eαt

ig
t
i

〉
−

t∑
τ=1

αt
e

(
t−1∏
τ1=τ

(1− ατ1
e )

)
⟨∇f(xτ ),Eατ

i g
τ
i ⟩

)
(a)
= f(x0)− η

T−1∑
t=0

T−1∑
τ=t+1

ατ
e

(
τ−1∏

τ1=t+1

(1− ατ1
e )

)∥∥∇f(xt)
∥∥2

+
Lη2

2

T−1∑
t=0

(
t∑

τ=1

αt
e

(
t−1∏
τ1=τ

(1− ατ1
e )

)(
2C2

1 + 3C2
2 + dσ2

1

)
+ 2C2

1 + 2C2
2 + dσ2

1

)

− η

T−1∑
t=0

(
1−

T−1∑
τ=t+1

ατ
e

(
τ−1∏

τ1=t+1

(1− ατ1
e )

))〈
∇f(xt),Eαt

ig
t
i

〉
(b)

≤ f(x0)− η

T−1∑
t=0

At

∥∥∇f(xt)
∥∥2 + Lη2

2
BT (2C

2
1 + 3C2

2 + dσ2
1) + η

T−1∑
t=0

CtC1

∥∥∇f(xt)
∥∥ ,
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where in (a) we rearrange the terms; in (b) we apply Cauchy-Schwarz inequality to the last term and
define At, BT , Ct accordingly. Specifically, we have

At :=

T−1∑
τ=t+1

ατ
e

(
τ−1∏

τ1=t+1

(1− ατ1
e )

)
, (12)

BT := T +

T−1∑
t=0

t∑
τ=1

αt
e

(
t−1∏
τ1=τ

(1− ατ1
e )

)
= T +

T−1∑
t=0

At, (13)

Ct :=

∣∣∣∣∣1−
T−1∑

τ=t+1

ατ
e

(
τ−1∏

τ1=t+1

(1− ατ1
e )

)∣∣∣∣∣ = |1−At| . (14)

Next, we bound At, BT , Ct, respectively. To begin with, we provide the upper and lower bounds
on At. First, note that by definition of αt

e in (8), we have αt
e ∈ (0, 1], therefore the product∏τ−1

τ1=t+1(1 − ατ1
e ) is strictly less than 1. Let T ′ ∈ {0, . . . T − 1} denote the iteration where

αt
e < 1,∀t > T ′ and αT ′

e = 1. Then At can be expressed as:

At =

T−1∑
τ=t+1

ατ
e

(
τ−1∏

τ1=t+1

(1− ατ1
e )

)

= 1− 1 + αt+1
e + αt+2

e (1− αt+1
e ) + · · ·+ αT−1

e

T−2∏
τ=t+1

(1− ατ
e)

= 1− (1− αt+1
e ) + αt+2

e (1− αt+1
e ) + · · ·+ αT−1

e

T−2∏
τ=t+1

(1− ατ
e)

= 1−
T−1∏

τ=t+1

(1− ατ
e) =

{
1, t < T ′,

1−
∏T−1

τ=t+1(1− ατ
e), t ≥ T ′.

Therefore, BT ≤ 2T . Ct = 1−At ∈ [0, 1). Next, we show that the following relation holds: Case I:
t < T ′, At = 1, it is clear that

At

∥∥∇f(xt)
∥∥2 ≥ (1−At)C1

∥∥∇f(xt)
∥∥ = 0.

Case II: t ≥ T ′, then At < 1, we want to show the following relation holds:

αt+1
e

t∑
τ=T ′

t∏
τ1=τ+1

(1− ατ1
e ) ∥∇f(xτ )∥2 > (1−At)C1

∥∥∇f(xt)
∥∥ .

Let us consider the worst case where t = T ′, i.e., when the left-hand-side only has one term
αt+1
e ∥∇f(xt)∥2, then, we have

αt+1
e =

C2

∥et+1∥
< 1

C2∥∥et − αt
ee

t + 1
B

∑
i∈Bt(gt

i − αt
ig

t
i)
∥∥ (8)
< 1

C2

(a)
<

∥∥∥∥∥et − 1 · et + 1

B

∑
i∈Bt

(gt
i − αt

ig
t
i)

∥∥∥∥∥
C2

(b)
<

∥∥∥∥∥∇f(xt) +
1

B

∑
i∈Bt

(gt
i −∇f(xt)− αt

ig
t
i)

∥∥∥∥∥
C2

(c)
<
∥∥∇f(xt)

∥∥+ σ

B
+

1

B

∑
i∈Bt

∥∥αt
ig

t
i

∥∥
C2 −

σ

B
− C1

(d)
<
∥∥∇f(xt)

∥∥ , (15)

16



Published as a conference paper at ICLR 2024

where (a) uses the fact that αt
e = 1 at t = T ′; (b) we add and subtract ∇f(xt); (c) applies triangle

inequality and Assumption 3.4; and (d) we arrange the terms and use the fact that ∥αt
ig

t
i∥ ≤ C1. By

setting C2 ≥ 3C1 +
σ
B , we have ∥∇f(xt)∥ ≥ 2C1. Further, from (15), we also have that

αt+1
e =

C2∥∥et − αt
ee

t + 1
B

∑
i∈Bt(gt

i − αt
ig

t
i)
∥∥

≥ C2

∥∇f(xt)∥+ σ
B + C1

, (16)

where we apply triangle inequality to the denominator in the second inequality. Therefore, we have
for the worst case:

αt+1
e

∥∥∇f(xt)
∥∥2 (16)

≥ C2

∥∇f(xt)∥+ C1 +
σ
B

∥∥∇f(xt)
∥∥ · ∥∥∇f(xt)

∥∥
(a)

≥
(3C1 +

σ
B )2C1

3C1 +
σ
B

∥∥∇f(xt)
∥∥ ≥ 2C1

∥∥∇f(xt)
∥∥ > 2(1−At)C1

∥∥∇f(xt)
∥∥ ,

where (a) uses the fact that C2

∥∇f(xt)∥+C1+
σ
B
∥∇f(xt)∥ is monotonically increasing w.r.t. ∥∇f(xt)∥.

When t > T ′, a similar proof can be applied to show that αt+1
e

∑t
τ=T ′

∏t
τ1=τ+1(1 −

ατ1
e ) ∥∇f(xτ )∥ ≥ 2C1. Putting the above results together, we have:

E[f(xT )] ≤ f(x0)− η

2

T−1∑
t=0

At

∥∥∇f(xt)
∥∥2 + TLη2

2
(2C2

1 + 3C2
2 + dσ2

1),

Et[
∥∥∇f(xt)

∥∥2] ≤ 2(f(x0)− f⋆)

ηT
+ ηL(2C2

1 + 3C2
2 + dσ2

1),

(17)

where C2 ≥ 3C1 + σ
B , and the expectation is taken over t ∈ {0, . . . , T − 1}, with probability

At/
∑T−1

t=0 At. The theorem is proved.

A.2 PROOF OF THEOREM 3.7

In this section, we provide the privacy analysis for DiceSGD algorithm and the proof of Theorem 3.7.
Specifically, we adopt the Rényi differential privacy (RDP) notion for our analysis. The definition of
Rényi-DP is given as follows:
Definition A.4 (Rényi-DP Mironov (2017)). A randomized mechanism M is said to guarantee
(α, ϵ)-RDP with order α > 1, if for any two neighboring datasets D,D′ (D,D′ differ by one sample
instance), it holds that

Dα(M(D)∥M(D′)) =
1

α− 1
logEθ∼M(D′)

[(
M(D)(θ)

M(D′)(θ)

)α]
≤ ϵ.

Rényi-DP can be translated into the more popular (ϵ, δ)-DP Def. 2.1 with the following lemma:
Lemma A.5 (Proposition 3 Mironov (2017) ). A randomized mechanism M guarantees (α, ϵ)-RDP,
then it guarantees (ϵ+ log(1/δ)/(α− 1), δ)-DP for all δ ∈ (0, 1).

To derive a privacy guarantee for the proposed DiceSGD algorithm, we first reformulate the algorithm
as the following procedures. In specific, we define

At
1 :X × Et ×D → X as the evolution of xt, i.e., lines 4,5,6 of Algorithm 2

At
2 :X × Et ×D → Et+1 as the evolution of et, i.e., lines 4,5,7 of Algorithm 2

Ht :D →
t∏

τ=1

X as the sequential observation of xt, i.e., {x0,x1, . . . ,xt}.

In addition, we define p = B
N and D,D′ be the two neighboring datasets where D′ contains a unique

sample ξ′, i.e., D′ = D∪{ξ′}. Then we recursively bound the RDP guarantee of Ht for t = 1, . . . , T
with three steps.

We first provide the sketch of the proof as follows:

17
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1. We show that the output sequence at the first iteration H1 satisfies (α, ϵ1)-RDP by using the RDP
of the sub-sampled Gaussian mechanism.

2. We assume that the output of At
1 conditioned on the past output sequence Ht satisfies (α, ϵ′)-

RDP. Then we can derive the RDP guarantee for the output sequence at iteration t + 1, i.e.,
Ht+1 = {Ht,At

1|Ht} by the composition theorem of RDP.

3. We provide the RDP bound for At
1 conditioned on Ht, which consists of the sub-sampled gradients

at iteration t and the update of et with Aτ
2 from iteration τ = 1, . . . , t − 1 combined with the

Gaussian noise. Therefore, we bound the sensitivity and Rényi divergence of At
1 by accounting

for the impact of the neighboring datasets on both the sub-sampled gradients at iteration t and
the updates of et conditioned on Ht. Using the update of et, we can recursively derive the Rényi
divergence of et from et−1, . . . , e0.

The above three steps enable us to bound the (α, ϵt)-RDP for Ht, the output of DiceSGD algorithm.
Finally, by applying Lemma A.5, we obtain the (ϵ, δ)-DP guarantee for DiceSGD algorithm.

Step I: First, when t = 1, H1 = A1
1. Apply Lemma A.10, and we obtain that H1 satisfies (α, ϵ(σ))-

RDP where ϵ(σ) ≤ 8C2
1α

N2σ2
1

is a function depending on the size of the injected noise σ, and we assume

p ≤ 1
5 .

Step II: Claim: Suppose Ht satisfies (α, ϵ)-RDP, At
1 conditioned on Ht satisfies (α, ϵ′)-RDP, then

Ht+1 satisfies (α, ϵ+ ϵ′)-RDP.

Proof. Let us define Xt+1(x
t+1|Ht) and X ′

t+1(x
t+1|Ht) be the conditional probability-density-

function (PDF) of the output of At
1 with neighboring datasets D and D′ conditioned on the past

outputs, respectively; similarly, define Ht(Ht), H ′
t(Ht) be the PDF of the output of Ht with datasets

D and D′. Then Ht+1(Ht+1) = Ht+1(Ht),xt+1) = Ht(Ht)Xt+1(x
t+1|Ht), and we have

exp[(α− 1)Dα(Ht+1(D)∥Ht+1(D′))]

=

∫
∏t

0 X

∫
X
Ht(Ht)αH ′

t(Ht)1−αXt+1(x
t+1|Ht)αX ′

t+1(x
t+1|Ht)1−αdHdxt+1

=

∫
∏t

0 X
Ht(Ht)αH ′

t(Ht)1−α

∫
X
Xt+1(x

t+1|Ht)αX ′
t+1(x

t+1|Ht)1−αdxt+1dHt

(a)

≤ exp((α− 1)ϵ) exp((α− 1)ϵ′)

= exp((α− 1)(ϵ+ ϵ′)),

(18)

where (a) applies the assumptions that Ht satisfies (α, ϵ)-RDP and X t satisfies (α, ϵ′)-RDP to the
first and the second integration, respectively. Thus Ht+1 satisfies (α, ϵ+ ϵ′)-RDP.

Step III: In the above step, we use the assumption that conditioning on Ht, X t satisfies (α, ϵ′)-RDP.
In this step, we explicitly bound ϵ′ in the (α, ϵ′)-RDP of At

1 conditioning on Ht. We first expand the
Rényi divergence of A1(x

t,D) and A1(x
t,D′) as

Dα(A1(x
t,D)∥A1(x

t,D′)|Ht) = Dα(N (xt − ηvt, η2σ2
1 · I)∥N (xt − ηv′t, η2σ2

1 · I)|Ht)

(a)
= Dα(N (vt − v′t, σ2

1 · I)∥N (0, σ2
1 · I)|Ht), (19)

where in (a) we first shift the mean of the Gaussian distributions by −xt + ηv′t and rescale them by
a factor of − 1

η . Let µ0 be the PDF of N (0, σ2
1 · I) and Nσ(·) denote N (·, σ2

1 · I). Define

∆t
g :=

1

B

∑
i∈Bt

clip
(
gt
i , C1

)
− 1

B

∑
i∈B′t

clip
(
gt
i , C1

)
∆t

e := et − e′t.

Then v − v′ can be expressed as

vt − v′t = clip
(
et, C2

)
− clip

(
e′t, C2

)
+∆t

g.

18
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Substitute the above relation of v − v′ to (19), we have

Dα(Nσ(v
t − v′t)∥µ0|Ht) = Dα(Nσ(clip

(
et, C2

)
− clip

(
e′t, C2

)
+∆t

g)∥µ0|Ht)

(a)

≤ 2Dα(Nσ(clip
(
et, C2

)
− clip

(
e′t, C2

)
)∥µ0|Ht)

+ 2Dα(Nσ(clip
(
et, C2

)
− clip

(
e′t, C2

)
+∆t

g)∥Nσ(clip
(
et, C2

)
− clip

(
e′t, C2

)
)|Ht)

(b)
= 2Dα(Nσ(clip

(
et, C2

)
− clip

(
e′t, C2

)
)∥µ0|Ht) + 2Dα(Nσ(∆

t
g)∥µ0|Ht), (20)

where (a) applies Lemma A.8 with a = clip (et, C2)−clip (e′t, C2)+∆t
g, b = 0, c = clip (et, C2)−

clip (e′t, C2); (b) shifts the mean of the Gaussian distributions in the second term by −clip (et, C2)−
clip (e′t, C2). Next, we bound the two terms in (20) separately.

Bounding the first term in (20): To bound Dα(Nσ(clip (e
t, C2) − clip (e′t, C2))∥µ0|Ht). First

notice that clipping operation is non-expansive with factor αt
e, so we have

Dα(Nσ(clip
(
et, C2

)
− clip

(
e′t, C2

)
)∥µ0|Ht)

≤ (αt
e)

2Dα(Nσ(e
t − e′t)∥µ0|Ht) = (αt

e)
2Dα(Nσ(∆

t
e)∥µ0|Ht)

Then, we start with bounding the update of e with the following lemma:
Lemma A.6. Let xt, et, e′t be the input of A2. Then the Rényi divergence Dα(Nσ(∆

t+1
e )∥µ0) can

be bounded by

Dα(Nσ(∆
t+1
e )∥µ0) ≤ Dα((1− p)Nσ((1− αt

e)∆
t
e|Ht) + pNσ((1− αt

e)∆
t
e +

2G′

B
)∥µ0|Ht),

(21)
where p = B

N be the sub-sampling rate of the minibatch, G′ = max{0, G+ σ −C1} and αt
e defined

in (9).

The proof is given in Appendix A.3.1. By applying the recursion of et given in Lemma A.6 to
Dα(Nσ(∆

t
e)∥µ0|Ht), we have:

Dα(Nσ(∆
t+1
e )∥µ0|Ht+1)

(a)

≤ Dα((1− p)Nσ((1− αt
e)∆

t
e) + pNσ((1− αt

e)∆
t
e +

2G′

B
)∥µ0|Ht+1)

(b)

≤ (1 + αt
e)Dα(Nσ((1− αt

e)∆
t
e)∥µ0|Ht+1)

+ (1 +
1

αt
e

)Dα((1− p)Nσ((1− αt
e)∆

t
e) + pNσ((1− αt

e)∆
t
e +

2G′

B
)∥Nσ((1− αt

e)∆
t
e)|Ht+1)

(c)
= (1 + αt

e)Dα(Nσ((1− αt
e)∆

t
e)∥µ0|Ht+1)

+ (1 +
1

αt
e

)Dα((1− p)µ0 + pNσ(
2G′

B
)∥µ0)

(d)

≤ (1− αt
e)Dα(Nσ(∆

t
e)∥µ0|Ht+1) + (1 +

1

αt
e

)Dα(pNσ(
2G′

B
) + (1− p)µ0∥µ0)

(e)

≤ (1− αt
e)Dα(Nσ(∆

t
e)∥µ0|Ht+1) + (1 +

1

αt
e

)
8p2αG′2

σ2
1B

2
(22)

where (a) applies Lemma A.6; (b) applies Lemma A.8 and choose β = αt
e; (c) shifts the mean of

the Gaussian distributions by (1− αt
e)∆

t
e in the second term; (d) applies Corollary A.9 to move the

factor (1− αt
e) in the first term outside the Rényi divergence, and notice

(1− αt
e)

2(1 + αt
e) = (1− (αt

e)
2)(1− αt

e) ≤ (1− αt
e);

(e) applies Lemma A.10 to the second term. Towards this end, we have already derived the change of
Rényi divergence for the one-step update of ∆t

e. Then, we further recursively expand ∆t
e to ∆0

e and
notice ∆0

e = 0 and we have:

8(αt+1
e )2Dα(Nσ(∆

t+1
e )∥µ0)

(a)

≤ (αt+1
e )2

8p2αG′2

σ2
1B

2

t∑
τ=0

(1 +
1

ατ
e

)

t∏
τ1=τ+1

(1− ατ1
e )
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(b)

≤ 8p2αG′2

σ2
1B

2

t∑
τ=0

(αt+1
e )2(

1 + ατ
e

ατ
e

)

t∏
τ1=τ+1

τ1 max{0, G′ − C2}
C2 + τ1 max{0, G′ − C2}

(c)

≤ 8p2α

σ2
1

t∑
τ=0

(
G′2C2(2C2 + τ max{0, G′ − C2)}

B2(C2 +max{0, (t− 1)(G′ − C2)})2
)

t∏
τ1=τ+1

τ1 max{0, G′ − C2}
C2 + τ1 max{0, G′ − C2}

(d)

≤ 8p2α

σ2
1

t∑
τ=0

(
G′2C2(2C2 + τ max{0, G′ − C2})

B2(C2 +max{0, (t− 1)(G′ − C2)})2
)

(
tmax{0, G′ − C2}

C2 + tmax{0, G′ − C2}

)t−τ

(e)

≤ 8p2αmin{C2
2 , G

′2/B2}
σ2
1

2C2 + (t+ 1)max{0, G′ − C2}
C2 +max{0, (t− 1)(G′ − C2)}

=
8p2αmin{C2

2B
2, G′2}

σ2
1B

2

2 + (t+ 1)max{G′−C2,0}
C2

1 + max{(t−1)(G′−C2),0}
C2

(t− 1) (23)

where (a) expand ∆t
e to ∆0

e; (b), (c) substitute the bound of αt
e in (9); (d) relaxes

τ1 max{0,G′−C2}
C2+τ1 max{0,G′−C2} ≤ tmax{0,G′−C2}

C2+tmax{0,G′−C2} ,∀ τ1 ≤ t; (e) sums over τ and bound
t∑

τ=0

τ

(
tmax{0, G′ − C2}

C2 + tmax{0, G′ − C2}

)t−τ

≤ 1 + t

1−
(

tmax{0,G′−C2}
C2+tmax{0,G′−C2}

)
and

t∑
τ=0

(
tmax{0, G′ − C2}

C2 + tmax{0, G′ − C2}

)t−τ

≤ 1

1−
(

tmax{0,G′−C2}
C2+tmax{0,G′−C2}

) .
Bounding the second term in (20): Next, let us bound the second term in (20) by directly applying
Lemma A.10. More specifically,

Dα(Nσ(∆
t
g)∥µ0|Ht) = Dα(Nσ(

1

B

∑
i∈Bt

clip
(
gt
i , C1

)
)∥Nσ(

1

B

∑
i∈B′

clip
(
gt
i , C1

)
)|Ht)

which is the difference between the sub-sampled Gaussian mechanism denoted as M(D) =
1
B

∑
i∈Bt clip (gt

i , C1) + wt and M(D′) = 1
B

∑
i∈B′ clip (gt

i , C1) + wt. The sensitivity of the
subsampled Gaussian mechanism is 2C1

B . By choosing σ > 8C1

B , and p ≤ 1
5 , we directly apply

Lemma A.10 and obtain
Dα(M(D)∥M(D′)) = Dα(Nσ(∆

t
g)∥µ0)

(a)

≤ Dα((1− p)µ0 + pNσ(
2C1

B
)∥µ0)

(b)

≤ 8p2C2
1α

B2σ2
1

, (24)

where (a) and (b) directly applies (25) in Lemma A.10.

By substituting the bound of the two terms (23), (24) to (20), we obtain:
Dα(A1(x

t,D)∥A1(x
t,D′)|Ht) = Dα(Nσ(v

t − v′t)∥µ0|Ht)

≤ 2Dα(Nσ(∆
t
e)∥µ0|Ht) + 2Dα(Nσ(∆

t
g)∥µ0|Ht)

≤
(max{G′−C2,0}

C2
(t+ 1) + 2)

(max{(G′−C2)(t−1),0}
C2

+ 1)

16p2αmin{C2
2B

2, G′2}
σ2
1B

2
+

16p2C2
1α

B2σ2
1

.

Therefore, by the definition of RDP (Definition A.4), At
1 guarantees (α, ϵt)-RDP where

ϵt =
16α

σ2
1N

2
·

(
C2

1 +
(max{G′−C2,0}

C2
(t+ 1) + 2)

(max{(G′−C2)(t−1),0}
C2

+ 1)
min{C2

2 , G
′2}

)
.

Substitute the above bound to Step II, we have Ht satisfies (α,
∑t

τ=0 ϵ
τ )-RDP, where

t∑
τ=0

ϵτ =

t∑
τ=0

16α

σ2
1N

2
·

(
C2

1 +
(max{G′−C2,0}

C2
(τ + 1) + 2)

(max{(G′−C2)(τ−1),0}
C2

+ 1)
min{C2

2B
2, G′2}

)

20



Published as a conference paper at ICLR 2024

=
16αtC2

1

σ2
1N

2
+

16αmin{C2
2B

2, G′2}
σ2
1N

2

t∑
τ=0

(
1 +

2max{G′−C2,0}
C2

+ 1

(max{(G′−C2)(τ−1),0}
C2

+ 1)

)
(a)

≤ 16αtC2
1

σ2
1N

2
+

32tαmin{C2, G′2}
σ2
1N

2
,

where (a) bounds
∑t

τ=0

(
1 +

2max{G′−C2,0}
C2

+1

(
max{(G′−C2)(τ−1),0}

C2
+1)

)
by 2t and bounds C2 by C2 ≤ C/B.

Therefore, by choosing σ2
1 ≥ 32T (C2

1+2min{C2,G′2}) log(1/δ)
N2ϵ2 , DiceSGD guarantees (ϵ, δ)-DP for T

iterations. The proof of the theorem is completed. ■
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A.3 ADDITIONAL LEMMAS

Lemma A.7 (Proposition B.4.10. Gil (2011)). The Rényi divergence between two Gaussian distribu-
tions with the same variance N (a, σ2),N (b, σ2) is

Dα(N (a, σ2)∥N (b, σ2)) =
α(a− b)2

2σ2
.

Proof. By definition of Rényi divergence and Gaussian distribution, we have:

Dα(N (a, σ2)∥N (b, σ2)) =
1

α− 1
log

(
1√
2πσ2

∫
x

(
exp(−(x− a)2/2σ2)

)α (
exp(−(x− b)2/2σ2)

)1−α
dx

)
=

1

α− 1
log

(
1√
2πσ2

∫
x

exp

(
−α(x− a)2 + (1− α)(x− b)2

2σ2

)
dx

)
=

1

α− 1
log

(
1√
2πσ2

∫
x

exp

(
− (x− (αa+ (1− α)b))2 + α(1− α)(a− b)2

2σ2

)
dx

)
=

1

α− 1
log

(
exp

(
−α(1− α)(a− b)2

2σ2

)
1√
2πσ2

∫
x

exp

(
− (x− (αa+ (1− α)b))2

2σ2

)
dx

)
=

1

α− 1

(
−α(1− α)(a− b)2

2σ2
+ log

(
1√
2πσ2

∫
x

exp

(
− (x− (αa+ (1− α)b))2

2σ2

)
dx

))
(a)
=

1

α− 1

(
−α(1− α)(a− b)2

2σ2
+ log(1)

)
=

α(a− b)2

2σ2
,

where in (a), we notice the second term is the PDF of N (αa + (1 − α)b, σ2), so its integral is 1.
This completes the proof for the lemma.

Lemma A.8. Given three Gaussian distributions N (a, σ2),N (b, σ2),N (c, σ2), and constant β > 0,
we have that

Dα(N (a, σ2)∥N (b, σ2)) ≤ (1 + β)Dα(N (a, σ2)∥N (c, σ2)) + (1 +
1

β
)Dα(N (c, σ2)∥N (b, σ2)).

Proof. Directly apply Lemma A.7, we have

Dα(N (a, σ2)∥N (b, σ2)) =
α(a− b)2

2σ2

(5)
≤

α
(
(1 + β)(a− c)2 + (1 + 1

β )(c− b)2
)

2σ2

= (1 + β)Dα(N (a, σ2)∥N (c, σ2)) + (1 +
1

β
)Dα(N (c, σ2)∥N (b, σ2)).

The proof is completed.

Corollary A.9. For the Rényi divergence between N (a, σ2) and N (0, σ2), we have

Dα(N (a, σ2)∥N (0, σ2)) = a2Dα(N (1, σ2)∥N (0, σ2)).

Proof. Directly applies Lemma A.7 for the special case b = 0, the corollary is proved.

Lemma A.10 (Theorem 11 Mironov et al. (2019)). If p ≤ 1
5 , σ > 4C and α satisfies

1 ≤ α ≤ 1

2
σ2C3 − 2 lnσ, and α ≤

1
2σ

2C2
3 − ln 5− 2 lnσ

C3 + ln(pα) + 1/(2σ2)
,
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where C3 = 1 + 1
p(α−1) , then the sub-sampled Gaussian mechanism M applied to a function of

ℓ2-sensitivity C with the sub-sampling rate p satisfies

Dα(M(D)∥M(D′)) ≤ Dα((1−p)Nσ(0, C
2σ2·I)+pNσ(C,C

2σ2·I)∥Nσ(0, C
2σ2·I)) ≤ 2p2C2α

σ2
.

(25)
Therefore, it satisfies (α, ϵ)-RDP where ϵ = 2p2C2α

σ2 .

A.3.1 PROOF FOR LEMMA A.6

Proof. First note that using the update rule of et in Algorithm 2, we have

et+1 = et +
1

B

∑
i∈Bt

∇f(xt; ξi)− vt, e′t+1 = e′t +
1

B

∑
i∈B′t

∇f(xt; ξi)− v′t.

Recall D and D′ differs by a single sample, and let ξ′ denote this particular sample in D′. That is,
D′ = D ∪ {ξ′}. Recall B is a random subset of D where each element is independently selected with
probability p. Similarly, B′ is a random subset of D′, and with probability p, B′ samples ξ′; and with
probability 1− p, B′ does not sample ξ′. Then taking expectation with respect to B,B′, the mean of
et+1, e′t+1 follows

EBt [et+1] = EBt

[
et +

1

B

∑
i∈Bt

∇f(xt; ξi)− vt

]

EB′t [e′t+1] = EB′t

[
e′t +

1

B

∑
i∈B′t

∇f(xt; ξi)− v′t

]

= e′t + EB′t

[
Eξ′

[
1

B

∑
i∈B′t

∇f(xt; ξi)− v′t

]]

= EBt

(1− p)(e′t +
1

B

∑
i∈Bt

∇f(xt; ξi)− v′t) + p(e′t +
1

B

∑
i∈Bt∪{ξ′}

∇f(xt; ξi)− v′t)



(26)

Recall that ∆t+1
e = et+1 − e′t+1. Then by the quasi-convexity of Rényi divergence, we have

Dα(Nσ(∆
t+1
e )∥µ0) = Dα(Nσ(e

′t+1)∥Nσ(e
t+1))

(a)

≤ 2Dα

(
EBt

[
pNσ(e

′t +
1

B

∑
i∈Bt∪{ξ′}

∇f(xt; ξi)− v′t) + (1− p)Nσ(e
′t +

1

B

∑
i∈Bt

∇f(xt; ξi)− v′t)

]
∥∥∥∥EBt

[
Nσ(e

t +
1

B

∑
i∈Bt

∇f(xt; ξi)− vt, σ2 · I)

])
(b)

≤ sup
Bt

Dα

(
pNσ(e

′t +
1

B

∑
i∈Bt∪{ξ′}

∇f(xt; ξi)− v′t) + (1− p)Nσ(e
′t +

1

B

∑
i∈Bt

∇f(xt; ξi)− vt)

∥∥∥∥Nσ(e
t +

1

B

∑
i∈Bt

∇f(xt; ξi)− vt, σ2 · I)
)

(c)
= sup

Bt

Dα

(
pNσ((1− αt

e)∆
t
e +

1

B

∑
i∈Bt∪{ξ′}

(∇f(xt; ξi)− clip
(
∇f(xt; ξi), C1

)
)

− 1

B

∑
i∈Bt

(∇f(xt; ξi)− clip
(
∇f(xt; ξi), C1

)
))

+ (1− p)Nσ((1− αt
e)∆

t
e)

∥∥∥∥µ0

)
(d)

≤ Dα

(
pNσ((1− αt

e)∆
t
e +

1

B

(
∇f(xt; ξ′)− clip

(
∇f(xt; ξ′), C1

))
)
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+ (1− p)Nσ((1− αt
e)∆

t
e)

∥∥∥∥µ0

)
(e)

≤ Dα

(
(1− p)Nσ((1− αt

e)∆
t
e) + pNσ((1− αt

e)∆
t
e +

2G′

B
)

∥∥∥∥µ0

)
where (a), (b) uses the quasi-convexity of Rényi divergence that

Dα(Eθ[P (θ)]∥Eθ[Q(θ)]) ≤ max
θ

{Dα(P (θ)∥Q(θ))}

with θ = B;(c) shifts the mean of Gaussian distributions by (1 − αt
e)e

t + 1
B

∑
i∈Bt ∇f(xt; ξi) −

vt; (d) cancels the identical terms in B; (e) bounds 1
B (∇f(xt; ξ′)− clip (∇f(xt; ξ′), C1)) by its

sensitivity 2G′

B .

A.4 PROOF OF LEMMA A.1

For the first part of the lemma, by definition, we have:

Var(c(X)) = E ∥c(X)− E[c(X)]∥2

(a)

≤ E ∥c(X)− c(E[X])∥2

(b)

≤ E ∥X − E[X]∥2 = Var(X),

(27)

where (a) uses the fact that E(X − E[X])2 ≤ E(X − Y )2,∀ Y ; (b) applies the fact that c(·) is a
non-expansive mapping, so that ∥c(a)− c(b)∥2 ≤ ∥a− b∥2 .
For the second part of the lemma, we notice that clipping operation is a projection operation to a
convex set, so it is non-expansive (Takahashi, 1970),

clip (x,C) = argmin
∥z∥≤C

1

2
∥x− z∥2 ,

where set {x| ∥x∥ ≤ C} is convex. Therefore, c(x) = x− clip (x,C) is also non-expansive (Taka-
hashi, 1970) that

∥c(x)− c(y)∥ ≤ ∥x− y∥ ,∀ x, y.

B PROOF OF RESULTS IN SECTION 2

B.1 EXAMPLE OF CONSTANT CLIPPING BIAS

For any fixed positive clipping threshold C, let us consider the following function

f(x, ξ) =


−C ′(x− ξ + C′

2 ), x ≤ ξ − C ′

1
2 (x− ξ)2, |x− ξ| ≤ C ′

C ′(x− ξ − C′

2 ), x ≥ ξ + C ′
,

with C ′ = ⌈C⌉+ 1. The per-sample gradient of this problem is

∇f(x, ξ) =


−C ′, x ≤ ξ − C ′

x− ξ, |x− ξ| ≤ C ′

C ′, x ≥ ξ + C ′
.

By setting the dataset size as N = C ′ + 1, and the samples are ξi = −1,∀ i = 1, . . . , C ′, and
ξC′+1 = C ′, we can verify that f(x) satisfies Assumptions 3.1-3.5 with certain constants.

Next, we analyze the stationary solution to this problem with and without clipping operation, i.e.,
the expected stationary solution of SGD and Clipped SGD. The stationary solution of SGD is
∇f(x⋆) = 0, so

∑N
i=1(x

⋆ − ξi) = 0, x⋆ = 0. On the other hand, by running clipped SGD with
clipping threshold C, the stationary solution is x̃⋆ = C′

C′+C ≥ 1
2 . This indicates that with a small

enough clipping threshold C, clipped SGD converges to a neighborhood of the stationary solution of
the problem, with an O(1) clipping bias.
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(a) Cifar-10 (b) Cifar-100

Figure 2: The testing accuracy for Cifar-10 and Cifar-100 trained with DiceSGD under different
C1, C2 with fixed effective stepsize.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY

In this section, we provide the ablation study on the choices of the clipping threshold C1, C2 and
the learning rate η. The experiments are conducted on the Cifar-10 and Cifar-100 datasets, with
fixed (2, 10−5)-DP. We fine-tune the ViT-small model for 2 epochs with batch size B = 1000, i.e.,
T = 2×50000

1000 = 100.

In the experiment, we first use a re-parameterization method in De et al. (2022) to fix the product of
the step size η and the clipping threshold C1. By doing this, we normalize the update vt +wt ny the
clipping threshold C1 and fix the “effective stepsize” of the algorithm, i.e.,

xt+1 = xt − ηtC1(
vt +wt

C1
),

where vt and wt scales with C1. We study the impact of different combinations of C1 and C2.
We choose C1 = {100, 10, 1, 0.1} and C2 = {1, 3, 10, 30} × C1, and the results are shown in
Figure 2. From the figure, we see that choosing C2 = C1 gives the best performance in most cases.
Additionally, choosing larger C1 gives a worse result, and DiceSGD benefits from using a small
clipping threshold.

Next, we fix C2 = C1 and study the impact of different combinations between the clipping threshold
C1 and stepsize η. We choose C1 = {100, 10, 1, 0.1} and η = {3.0, 1.0, 0.3, 0.1, 0.03, 0.01}/C1.
The result is shown in Figure 3. From the figure, we see that DiceSGD benefits from using a small
clipping threshold, and exists a best η × C1 that gives the best performance.

C.2 TRAINING GPT-2

We train a GPT-2 model with the E2E dataset, which contains template-like information in the
restaurant domain to be mapped to natural language with end-to-end training that has 42000 training
samples. The GPT model is fine-tuned for 10 epochs, with batch size B = 1000, so T = 42000×10

1000 =
420. We use the similar AdamW variant of DPSGD and DiceSGD for training and set initial
stepsize η0 = 2× 10−3 with learning rate warm-up and linear decay. The algorithm is guaranteed
(8, 8× 10−6)-DP. We report the testing loss for each epoch in Figure 4.

Ablation study for GPT-2 In this section, we provide the ablation study on the choices of the
clipping threshold C1 and the learning rate η with GPT-2. We fine-tune the GPT-2 model for 5 epochs
with batch size B = 1000, i.e., T = 5×42000

1000 = 210. We use the AdamW variant of DiceSGD for
training with learning rate warm-up and linear decay. The algorithm is guaranteed (8, 8× 10−6)-DP.
We fix C2 = C1 and study the impact of different combinations between the clipping threshold C1
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(a) Cifar-10 (b) Cifar-100

Figure 3: The testing accuracy for Cifar-10 and Cifar-100 trained with DiceSGD under different
C1, η with fixed C2 = C1.

Figure 4: Testing loss of DPSGD and DiceSGD fine-tuning GPT-2 on E2E dataset, with clipping
thresholds C = C1 = C2 = 1 and guarantees (8, 8× 10−6)-DP.

and stepsize η. We choose C1 = {100, 10, 1, 0.1} and η = {2, 1, 0.5} × {10−2, 10−3}. We report
the testing loss for each combination of the initial stepsize η and clipping threshold C1 in Figure 5.
From the result, we see that using a smaller clipping threshold gives a better result for DiceSGD.

C.3 ADAM VARIANT OF DICESGD

In this section, we provide detailed updates of the Adam variant of DiceSGD in Algorithm 3.

Algorithm 3 Adam variant of DiceSGD Algorithm
1: Input: x0,D, C1, C2, η, β1, β2, ϵ1
2: Initialize: e0 = 0,m0

1 = 0,m0
2 = 0

3: for t = 0, . . . , T − 1 do
4: Randomly draw minibatch Bt from D
5: vt = 1

B

∑
i∈Bt clip (∇f(xt; ξi), C1) + clip (et, C2) +wt, where wt ∼ N (0, σ2

1 · I)
6: mt

1 = β1m
t−1
1 + (1− β1)v

t // Update first-order moment estimate
7: mt

2 = β2m
t−1
2 + (1− β2)(vt)2 // Update second-order moment estimate

8: xt+1 = xt − ηt mt/(1−(β1)
t)√

mt
2/(1−(β2)t)+ϵ1

,

9: et+1 = et + 1
B

∑
i∈Bt ∇f(xt; ξi)−

(
1
B

∑
i∈Bt clip (∇f(xt; ξi), C1) + clip (et, C2)

)
.

10: end for
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Figure 5: Testing loss (smaller the better) of DiceSGD on E2E dataset with different combinations of
clipping thresholds and initial stepsizes.

C.4 EFFICIENCY ANALYSIS

Hyperparameter tuning efficiency In our ablation study, we observe two patterns to achieve good
accuracy: (1) C2 needs to be close to C1. (2) C1 needs to be small. Therefore we can write C1 =
C2 = C and derive an automatic version of DiceSGD: in 2, vt = 1

B

∑
i∈Bt clip (∇f(xt; ξi), C) +

clip (et, C) where clip (x,C) = C
∥x∥ , known as the automatic clipping in Bu et al. (2024). Setting

the injected noise σ1 =
√

32T ·3C2 log(1/δ)
N2ϵ2 =

√
96T log(1/δ)C

Nϵ satisfies DP. Let the learning rate ηt

absorbs C:
Algorithm 4 Automatic DiceSGD Algorithm (without C1, C2)

1: Input: x0,D, η
2: Initialize: e0 = 0
3: for t = 0, . . . , T − 1 do
4: Randomly draw minibatch Bt from D
5: vt = 1

B

∑
i∈Bt clip (∇f(xt; ξi), 1) + clip (et, 1)

6: xt+1 = xt − ηt(vt +wt), where wt ∼
√

96T log(1/δ)

Nϵ N (0, I)

7: et+1 = et + 1
B

∑
i∈Bt ∇f(xt; ξi)− vt.

8: end for

Computational efficiency In this part, let us briefly discuss the complexity of DiceSGD.

Memory: DiceSGD requires 3 times the memory of DPSGD-GC (which has similar time/space
efficiency to the standard SGD), i.e., besides the summed clipped per-sample gradient, DiceSGD
requires extra memory for both summed unclipped gradient and the feedback signal et. Computation:
The computation overhead of DiceSGD is minor compared with the cost of the per-sample clipped
gradient computation. Specifically, the total computation of DiceSGD consists of B×per-sample
(clipped) gradient computation +2(B − 1)×gradient summation + SGD update +et update, where
DiceSGD requires extra (B−1)× gradient summation and one et update compared with DPSGD-GC.
Additionally, in the distributed learning regime that is necessary to train large models, we expect that
the gap in computational efficiency is insignificant, given that the communication cost acts as a dead
weight (e.g. DP computation cost+communication cost

non-DP computation cost+communication cost ≈ 1.0 if communication cost ≫ computation cost).
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