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ABSTRACT

The Strong Lottery Ticket Hypothesis (SLTH) asserts that sufficiently overparam-
eterized, randomly initialized neural networks contain sparse subnetworks that,
even without any training, can match the performance of a small trained network
on a given dataset. A key mathematical tool in the theoretical study of SLTH has
been the Random Subset Sum Problem (RSSP). The SLTH has recently been ex-
tended to the quantized setting, where the network weights are sampled from a
discrete set rather than from a continuous interval. These new results are however
far from those in arbitrary-precision setting in several ways. In this work, we pro-
vide an analysis of the RSSP in the discrete setting, and use it to derive tight SLTH
guarantees in the quantized case. Our analysis obtain tight bounds on the failure
probability of finding a strong lottery ticket in the quantized regime, providing an
exponential improvement over previous results. Most importantly, it unifies the
literature by showing that both approximate representations in the continuous set-
ting and exact representations in quantized settings naturally emerge as limiting
cases of our results. This perspective not only sharpens existing bounds but also
provides a cohesive framework that simultaneously handles approximation and
rounding errors.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success across a wide range of machine
learning tasks. However, their rapidly increasing size and complexity introduce significant chal-
lenges for both training and deployment. This has motivated extensive research on neural net-
work pruning as a means to reduce model size and computational cost while preserving perfor-
mance. One prominent theoretical framework in this direction is the Strong Lottery Ticket Hypoth-
esis (SLTH), which posits that sufficiently overparameterized, randomly initialized neural networks
contain sparse subnetworks—so-called strong lottery tickets—that can match the performance of a
smaller trained network on a given task, without any training. We refer the reader to Section 2 for
details on the SLTH literature. The emergence of SLTH has motivated numerous results demon-
strating that a sufficiently overparameterized network can be pruned to simulate a given smaller
“target” network! (Zhou et al., 2019; Orseau et al., 2020; Malach et al., 2020; Pensia et al., 2020;
Burkholz, 2022a; Diffenderfer & Kailkhura, 2021; Sreenivasan et al., 2022; Kumar & Natale, 2025).
A central combinatorial problem underlying the SLTH theory is the Random Subset Sum Problem
(RSSP) (Lueker, 1998), which has been used to quantify the overparameterization required for a
large random network to contain such performant subnetworks.

Most prior analyses in SLTH assume arbitrary precision for network weights, this is largely be-
cause the classical theory of RSSP has been developed in a continuous setting. Nevertheless, several
works have addressed the finite-precision regime. In particular, Diffenderfer & Kailkhura (2021);
Sreenivasan et al. (2022) consider versions of the problem where networks are restricted to finite-
precision weights. Diffenderfer & Kailkhura (2021) demonstrates—both theoretically and em-
pirically—that sufficiently overparameterized networks with binary weights can approximate any
network of a given size. Building on this, Sreenivasan et al. (2022) further strengthened the theoret-
ical results (see Section 2). However, these works remain limited in scope, since the target networks

I'The target network is merely a proof artifact and is not known in practice; in fact, identifying such a
network is NP-hard.
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still use continuous weights while the approximating networks are constrained to binary ones. Sub-
sequently, by leveraging elegant results by Borgs et al. (2001) on the Number Partitioning Problem
(NPP), Kumar & Natale (2025) has managed to overcome such restriction, obtaining a partial ex-
tension of the RSSP theory to the quantized regime, where both the initial and target networks have
weights drawn from discrete sets. Specifically, Kumar & Natale (2025) leveraged a formal connec-
tion between the RSSP and the Number Partitioning Problem (NPP), obtaining bounds for the exact
representation of a quantized target network. A key limitation of such analysis is that it yields only
an inverse-polynomial decay of the failure probability. This should be contrasted with the inverse-
exponential decay of previous SLTH results in the continuous setting (Pensia et al., 2020; Orseau
et al., 2020). Moreover, previous SLTH literature quantified the success probability in terms of the
admissible approximation error € of the subnetwork, whereas Kumar & Natale (2025) only provided
an estimate of the probability of finding an exact subnetwork, leaving open the question of how these
guarantees extend to approximate representations. Our goal is to provide stronger theoretical guar-
antees that support the existing empirical observations in this direction, and to unify the continuous
and quantized lines of research.

. Exact Exponential
Paper Quantized  Approx. Representation Prgbability
Malach et al. (2020)

Pensia et al. (2020)

Orseau et al. (2020)
Diffenderfer & Kailkhura (2021)
Kumar & Natale (2025)

Ours

NN N X X X
AR NN NN
NN X X X X%
N X X N\ X%

Table 1: A qualitative comparison to prior work: Our results simultaneously cover approximate
representations in the continuous setting and exact representations in the quantized setting, with
previous results arising as special cases of our framework. In addition, we establish an exponentially
decaying failure probability in the quantized regime. There are certain caveats to this taxonomy; a
detailed justification for the classification is provided in Appendix C.

Our contributions. We close the aforementioned gaps by proving new, sharp bounds for the dis-
crete RSSP that are tailored to the quantized SLTH setting. Specifically, we generalize the results of
Cunha et al. (2023) on the continuous RSSP to the discrete setting, allowing us to establish quan-
tized SLTH results with exponentially small failure probability in the number of precision bits—an
exponential improvement over the earlier inverse-polynomial bound. Furthermore, our analysis uni-
fies previous results by simultaneously handling both rounding and approximation errors, making a
fundamental step towards broadening the practical relevance of the SLTH theory. More importantly,
both approximate representations in the continuous setting, as in Malach et al. (2020); Pensia et al.
(2020); Orseau et al. (2020), and exact representations in a quantized setting, as in Diffenderfer &
Kailkhura (2021); Sreenivasan et al. (2022); Kumar & Natale (2025), arise as special cases in the
limit of our results. Our results can be summarized by the following simplified, informal theorem
(refer to the formal statements for full generality).

Theorem (Informal version of Theorem 3). With high probability, a depth-2¢ randomly-initialized
network Ni, of width O(dlog(1/6)) whose weights are represented using log 1/8 bits of precision
can be pruned to € approximate any target network Ny with { layers of width at most d.

Table | presents a comparison of our results with previous works. These results advance the theo-
retical understanding of quantized strong lottery tickets in several ways:

1. they extend the scope of SLTH theory to include both quantized and e-approximate repre-
sentations,

2. they strengthen previous probabilistic guarantees from inverse-polynomial to exponential
decay, and

3. both approximate representations in the continuous setting, and exact representations in a
quantized setting, can be obtained as special cases in the limit of our results.
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Paper organization. In Section 2, we review prior work on SLTH and the role of the RSSP in its
theoretical foundations. In Section 3, we extend the analysis of Cunha et al. (2023) to the quantized
RSSP and prove our main probabilistic bounds. In Section 4, we use these results to establish
new SLTH guarantees in the quantized setting, including both exact and e-approximate cases. We
conclude in Section 5 with a discussion of implications, open problems, and future directions.

2 RELATED WORK

The Lottery Ticket Hypothesis (LTH) was first proposed by Frankle & Carbin (2019), who showed
that every dense neural network contains a sparse subnetwork that can be trained from scratch to
achieve the same accuracy as the original dense model. Soon after, a series of surprising empirical
results (Zhou et al., 2019; Ramanujan et al., 2020; Wang et al., 2019) demonstrated that one can
find subnetworks within large randomly initialized neural networks that already perform well on
a given task, without any weight updates. This line of work led to the Strong Lottery Ticket Hy-
pothesis (SLTH), which posits that sufficiently overparameterized random networks contain sparse
subnetworks that approximate small trained networks without training.

Theoretical progress on the SLTH began with Malach et al. (2020), who proved that any feed-
forward network of depth ¢ and width d can be approximated by pruning a random network of depth
2¢ and width O(d®¢?). Subsequent works (Orseau et al., 2020; Pensia et al., 2020) improved this
to O(dlog(dl)), while Burkholz (2022a) established a different construction showing that a depth-
(£+ 1) network suffices to approximate a depth-£ target, with certain trade-offs in the width. Further
extensions broadened the scope of the SLTH to convolutional architectures (Burkholz, 2022b) and
equivariant networks (Ferbach et al., 2022).

A complementary direction of research investigates quantization, the process of reducing weight
precision. Empirical studies (Han et al., 2015) demonstrated that trained networks can often be
quantized significantly without loss of accuracy, and Diffenderfer & Kailkhura (2021) provided
both empirical and theoretical evidence for a quantized SLTH, introducing binary subnetworks that
approximate real-valued networks. They showed that a network of width d and depth ¢ can be
approximated within error e by a binary network of width O(¢d>/? /e + ¢dlog(¢d/€)) and depth
2¢. Later, Sreenivasan et al. (2022) exponentially improved these bounds, showing that binary net-
works of depth ©(£log(dl/e)) and width ©(d log?(dl/e)) suffice. Recent work has also connected
quantized subnetworks to universal approximation guarantees (Hwang et al., 2024), while practical
advances such as mixed-precision quantization (Carilli, 2020; Younes Belkada, 2022) explore more
hardware-efficient designs.

Most recently, Kumar & Natale (2025) established the first sharp theoretical guarantees for the quan-
tized SLTH by leveraging connections between the RSSP and the Random Number Partitioning
Problem (RNPP). They showed that pruning can yield exact quantized subnetworks, and charac-
terized the optimal trade-off between overparameterization and weight precision. However, their
failure probability bounds decay only inverse-polynomially, and their analysis was limited to exact
representations—gaps that motivate the present work.

Subset Sum Problem (SSP). The SSP is a classical NP-complete problem in computational com-
plexity (Garey & Johnson, 1979), where the task is to decide whether a given target value z can be
expressed as the sum of a subset of a given set of numbers. Its random variant, the Random Subset
Sum Problem (RSSP), has been extensively investigated in the context of combinatorial optimiza-
tion (Lueker, 1982; 1998; Borst et al., 2023). More recently, Cunha et al. (2023) provided a simpler
and more elementary proof of these classical results, while Kumar & Natale (2025) extended the
analysis to the discrete setting, building on the seminal work of Borgs et al. (2001) on the Number
Partitioning Problem. The relevance of the RSSP to the theory of the Strong Lottery Ticket Hypoth-
esis has since been highlighted in several works (Pensia et al., 2020; Burkholz, 2022a; Kumar &
Natale, 2025).

3 DISCRETE RANDOM SUBSET SUM

The Subset Sum Problem is a fundamental problem in computational complexity theory. It is a
well-known NP-complete problem Garey & Johnson (1979). Its randomized variant, the Random
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Subset Sum Problem (RSSP), has recently attracted attention in the machine learning community,
due to its application in the theory of SLTH (Pensia et al., 2020; Burkholz, 2022a; Kumar & Natale,
2025). A key result in the theory of the RSSP was established by Lueker (1998), stated as Theorem
1.

Theorem 1 (Lueker (1998)). Consider the set of random variables X1, X, ..., X,, sampled uni-
formly from U[—1,1]. If n > C'log (%), then with probability at least 1 — €, for any z € [—%7 %],
there exists S C [n] such that

X

i€S

<e.

This result has played a central role in all the SLTH results discussed in Section 2. An elementary
proof of Theorem 1 was provided by Cunha et al. (2023). In this section, we present a discrete
variant of their proof, which will be particularly important for our analysis of quantization in the
context of the SLTH in Section 4. We start by defining RSSP in the discrete setting.

Definition 1. Consider the set of random variables X1, Xo, ..., X, sampled uniformly from
{—M,—M+1,..., M—1, M} for some positive integer M and target z € {—M,—M+1,..., M—
1,M}. Let A € NU {0} be given. The RSSP is the problem of finding a subset S C [n] such that

ZXi_Z

i€S

<A.

Let f; : Z — {0, 1} be the indicator for the event “z is A approximated” at time ¢ € N, i.e.,
fe(2) =lascpy | 5,0 Xi—2l<A)

with f;(0) = 1 by definition. One of the fundamental properties of f;, first observed by Lueker
(1998), is that it satisfies the following recurrence relation

fer1(2) = fi(2) + (1 = fu(2)) fe(2 — Xiy1)- (1

Define the volume v; as

M
vV = Z ft (Z)
i=—M
The objective of our analysis is to understand the growth of v; as a function of ¢. In particular, we
are interested in the time at which v; reaches 2M + 1 — A, since this marks the point where the
entire set {—M, ..., M} can be A-approximated. We denote by 7 the first time that the process v,
reaches at least 2M + 1 — A.

Theorem 2. Let A € {0,...,M}. There exist constants C > 0 and x > 0 such that for every
t > Clog XL it holds that

AFT’
1 M+1\°
P(r<t)>1-2 ——(t—-C1
(r<t)= eXP[ mt( OgA+1>
Theorem 2 asserts that if ¢ > C'log ]‘A/'[—Ill, then the entire set can be d-approximated with high

probability. To establish this result, we discretize the analysis in Cunha et al. (2023). Below, we
provide a sketch of the proof; full details are deferred to Appendix A.

Proof Sketch. The recurrence relation (Equation 1) encapsulates the structure of the RSSP and
serves as a powerful tool. Using this relation, we first establish that

(0 (%7
E(vp1| X1, X, .. Xp) > 7(1_7). 2
(V1] X1, X t) > v+ 1 i (2
This is explicitly shown in Lemma 2, Appendix A. Equation 2 plays a central role in the proof, as
the argument essentially reduces to analyzing the growth of the stochastic process v;. Note that, for
the RSSP to be solvable for any target, it is essential to estimate the number of samples required for
vy to approach 2M + 1, thereby ensuring that the entire set can be well approximated. The analysis
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in Appendix A shows that v; grows quickly to M + 1 and then slowly rises to 2/ + 1. We analyze
these two phases of growth of v; separately. For the first phase, define 7; as

71 =min{t >0:v > M + 1}.
Lemma 3, Appendix A characterizes how v, grows in the first phase by proving that

T
8(1—p)°

for any 5 € (0,1/8). Using this, we estimate the time required for v; to grow to M + 1 with high
probability. In particular Lemma 4, Appendix A shows that

2 2 s 2 1 10 M+1
P(ri<1) > 1—exp | - =2 (t—l> it t> - S2A+L |

We then similarly analyze the growth of v; in the second phase, i.e., where the volume grows from
M +1to2M — A + 1. Consider the process w; = (2M + 1) — v, +¢. Lemma 5, Appendix A

shows that
t+1 Iy At4r) = Wt | M 1 .

Let 7o the first time that w, gets smaller than or equal to 2M — A + 1, that is

Pvipr > ve(14+8) | X, Xt <) > 1~

To =min{t > 0: w; <2M — A+ 1}.

Lemma 6, Appendix A shows that

P( <t)>l—; A
YV N A

We then tie the two parts to estimate P(7 < t). In particular we show that

P(r <t)=P(n + 12 <t)

M 2
>1—exp 1 t—30 M I S it 2
- 152t log ¢ 2M +1—A \8

M+1\?
A+1

b

1
>1—2exp [t (tC”log
K

which proves the statement of Theorem 2. See Appendix A for details. [

Having established a robust probabilistic guarantee for the discrete Random Subset Sum Problem,
we now shift our focus to its application in the context of the Strong Lottery Ticket Hypothesis. The
preceding analysis provides the core mathematical tool required to rigorously analyze the existence
of strong lottery tickets within a quantized framework. In this next section, we will build upon the
foundation of Theorem 2 to demonstrate how an overparameterized neural network with discrete
weights can be effectively pruned to approximate a target network, thereby connecting the abstract
combinatorial results to tangible implications for quantized neural networks.

4 QUANTIZATION AND SLTH

In this section, we use the results from Section 3 to prove quantized SLTH results. Our strategy is
to follow Pensia et al. (2020); Kumar & Natale (2025), while leveraging our new Theorem 2 for
quantizing the use of RSSP. We begin by defining some notation. Scalars are denoted by lowercase
letters such as w, y, etc. Vectors are represented by bold lowercase letters, e.g., v, and the it
component of a vector v is denoted by v;. Matrices are denoted by bold uppercase letters such as
M. If a matrix W has dimensions d; x do, we writt W € R%*42_ For a vector v, we use ||v| to
denote it’s £ norm. We define the finite set S5 := {—1,—1+9, —1+26,...,1}, where § = 2~ for
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some k£ € N. A real number b is said to have precision ¢ if b € S5. We denote the d-fold Cartesian
product of Ss by S¢; that is,

SgZ:S(SXH-XS(;.
N————’
d times

We use C, C’ etc., to denote positive absolute constants. A notation table (Table B) is provided in
Appendix B for the reader’s convenience.

Definition 2. For any integers dy, ...,dg > 0 let Fy, .. q, be the class of {-layer neural networks
f: R — R defined as
f(x) = Wyo (Wi 0(Wix)), 3)

dixdi_ . ; . L .
where W; € S Xl fori=1,...,0,x € R%, and o : R — R is a nonlinear activation function.
For a vector x, the expression v = o(x) denotes component-wise application: v; = o(x;).

For a network as defined in Equation 3, we shall denote d = max{dy,...d,;}. The entries of the
matrices W are referred to as the weights or parameters of the network. In this work, we assume all
activation functions are ReLU, i.e., 0(z) = max(0, z). This assumption is made for simplicity; the
results can be extended to a broader class of activation functions as discussed in Burkholz (2022a).

We will say a neural network is d-quantized if each of its weight is sampled from S5. Our objective
is to approximate a farget d-quantized ¢-layer neural network f by suitably pruning an overparame-
terized 2¢-layer d-quantized network g. For a neural network

9(x) = Moo (Mag—1 - - 0(Mix)).
The pruned network g is defined as:
(%) = (S2e © Mag)o((Sae—1 © Mag1) -+ ((S1 © My)x)),

where each S; is a binary pruning mask with the same dimensions as M;, and ® denotes element-
wise multiplication. Hence, the goal is to find masks S1,So, ..., So such that f can be € approx-
imated by §g. As will be shown, the problem reduces to solving a collection of RSSPs, which,
throughout this section, we assume are to be solved with tolerance A (See Section 3). We now state
our main result.

Theorem 3. Let dy, ..., d; be any integers greater than 0, ¢ be any real number in (0,1) and § =

€¢/2ANy where Ny = Zf:l di_1d; and A € Z*. Consider a randomly initialized 2{-layered
neural network
9(x) = Mago(Mar_; ... o(Mix)),

1
where every weight is drawn uniformly from Ss. Let n > log gﬁ Assume Mo, has dimension
dq; X Cdi_l’/l,

and Mo, _1 has dimension
Cdi,ln X difl.

Then, with probability at least
1 — 4d*lexp(—C'n),

forevery f € Fy,. ... 4, it holds

min sup || f(x) — (S2¢ © May)o((S2e @ Myy) ... o((S1 © My)x))|| < e.
Si€{0,1} 4% di-1 5| <1

3+1
AF1
Remark 1. The assumptions made in our analysis can be further relaxed. In particular, the require-
ment of uniformly distributed weights can be removed via a standard rejection sampling argument
Lueker (1998). Moreover, the restriction to ReLU activations can also be relaxed, as shown in
Burkholz (2022a).

For convenience, we define log as the overparameterization factor.

We follow the strategy introduced in Pensia et al. (2020) to prove Theorem 3. We first show the
result for a single weight.
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Lemma 1 (Approximating a weight). Ler € be any real number in (0,1) and § = €/2A, where

A € Z*. Let g : R — R be a randomly initialized network of the form g(z) = v a(ux), where

1
v,u € S withn > Cloggij:,
probability at least

2
1 ;41
1-4 ——(n—C"log 2
exp( nn(n ogA+1>>,
we have for any w € S

Js,8' €{0,1}*": sup |wz — (vos)o((ues)(z)| <e
z:|z| <1

and all v;,u;’s are drawn i.i.d. uniformly from Ss. Then with

Proof. We decompose wx as wr = o(wz) — o(—wx) and w.l.o.g.> assume w > 0 (the reasoning
for w < 0 is analogous). Let

ol 1 Rl S R K
where a,b,c,d € S§,s1,s2 € {0,1}™. One can thus verify that
(vos)lo(ues)z)=bos)oads'z)+ (dosz) o(c®sy'z).
Step 1: Pre-processing a. Let
a®t = max{0,a}

be the vector obtained by pruning all negative entries of a. Then a™ contains 7 i.i.d. random vari-
ables uniformly distributed over non negative entries of Ss. Since we assumed w > 0, for x < 0 we
have o(wx) = 0 and b o(atz) = 0. We thus focus on x > 0:

o(wz) =wz, blo(atz)= Zbiaj'x.

We simply choose s;’ such thata™ = a ® s;’.

Step 2: Pruning a via SUBSETSUM. Consider the random variables Z; = b;a; . Note that solving
the Subset Sum Problem in an integer setting where numbers are sampled from {—M, ..., M} and
solving it when numbers are sampled from {—1,...4,24,...,1} is equivalent: the only difference
is a scaling factor. Note that the numbers {Z;}, are of precision 42, and they are not uniformly
distributed (See Kumar & Natale (2025)). The problem of these non uniform distribution can be
handled thanks to a standard rejection sampling argument, as shown e.g. in Lueker (1998). This
is a standard technique in the field (Pensia et al., 2020; Kumar & Natale, 2025; Burkholz, 2022a).
Hence by Theorem 2, as long as

141

5+

A+1’

2
1 141
1-2 ——(n—=Clog 2
exp< nn(n OgAJrl))’

we can choose a subset of {Z;} such that

Yw € S5, lw—b"(s1 ®at)| < AS.

n > C'log

with probability at least

Hence, it holds
Yw € S5, sup lo(wx) —blo((s; ® a+):z:)‘ < AJ.
ze[—1,1]

Step 3: Pre-processing c. Let
¢~ = min{0,c}

Without loss of generality.
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be the vector obtained by pruning all positive entries of c. Then ¢~ contains n i.i.d. random variables
uniformly distributed over non positive entries of S5. We simply choose s’ such that c™ = c ®s5’.

Step 4: Pruning c via SUBSETSUM. For z > 0, o(—wx) = 0 and d¥o(c™2) = 0. Moreover,
pruning ¢~ further does not affect the equality. Thus, we only consider the case x < 0.
For x < 0, one has —o(—wz) = wz and o(c”z) = ¢~ x, sO

dTo(c7z) = (d¥c)z.

+1
AFT

2
1 $+1
1—2exp <_/m (n—ClogA+l> >,

there exists sy € {0, 1} such that

Vwe S5, sup |—o(—wz) —dTo((s2 ¢ )z)| < A6
z€[—1,1]

Applying Theorem 2 again, with n > C'log with probability at least

Step 5: Tying it all together. Recall that we assumed, w.l.0.g., w > 0. By the above reasoning and
a union bound, both events hold with probability at least

2
1 e
1 4exp< m(n CIOgA—i—l .

inf  sup jwz — (vos) o(ues)z)|
s€{0,1}2" |51<1

We thus get that

= inf sup |wz —(b©® s1)To(atz) — (do sz)TU(c*xﬂ

5182 Jz|<1

= inf sup |o(wz) — o(—wz) — (b®s1) o(atz) — (d©sz) o(c )|
5192 |z|<1

< inf sup |o(wz) — (b ®s1)" o(atz)| + inf sup |—o(—wz) — (d © s2)" o(c™z)|

ST jz|<1 2 |z|<1
< 2A\6.
Since 0 = €/2A, the result follows. O

Having proved Lemma 1, we now give a sketch of the proof of Theorem 3. For the detailed proof,
see Appendix D.

Sketch of proof of Theorem 3. The idea is to follow the argument of Pensia et al. (2020), which ex-
tends the approximation from a single weight to the entire network. The extension from a single
weight to an entire network proceeds in successive stages. Lemma 1 shows that a single quantized
weight can be simulated with high probability using a sufficiently wide two-layer construction, with
approximation error at most e. First, this guarantee is then lifted to the level of a neuron in Lemma 7,
Appendix D: since a neuron applies several weights to its inputs, each weight is handled separately
via Lemma 1, and a union bound ensures that all incoming weights are simultaneously approximated
with exponentially high probability, so that the entire neuron behaves as desired up to error €. Next,
Lemma 8, Appendix D extends this argument to a full layer. The weight sharing trick introduced by
Pensia et al. (2020) is used (See Appendix D for details) and another union bound guarantees that the
layer as a whole is approximated uniformly over the input space, with only an additive accumulation
of error. Finally, the approximation is propagated across all ¢ layers of the network. Starting from
the first layer, one iteratively applies the layer-level result to approximate each subsequent layer,
carefully tracking the errors through the nonlinearities. The error propagation analysis shows that
the total deviation remains within the prescribed tolerance e, while the failure probability across all
layers is still exponentially small due to the bounds established at the weight, neuron, and layer lev-
els. This yields Theorem 3, which asserts that with high probability, a randomly initialized 2¢-layer
quantized network can be pruned to e-approximate any target ¢-layer quantized network. Further
details are provided in Appendix D. O
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4.1 PREVIOUS RESULTS AS SPECIAL CASES

A striking feature of our results is that both approximate representations in the continuous setting
(Malach et al., 2020; Pensia et al., 2020; Orseau et al., 2020), and exact representations in a quantized
setting (Diffenderfer & Kailkhura, 2021; Kumar & Natale, 2025), can be obtained as special cases
in the limit of our results. To see this, consider the over overparameterization factor

1
g+1
A41

Notice that an error € in the continuous setting corresponds to an error A - § in the quantized setting.
Substituting this into Equation 4, we obtain

log 4

1 1
141 :10g3+1
A+1 €+1

146
=log ——.
€

log

In the limit § — 0, which corresponds to the continuous setting, the overparameterization factor
reduces to log %, matching the expression in Pensia et al. (2020); Orseau et al. (2020). Conversely,

setting A = 0, corresponding to exact representation in the quantized setting, yields log (% + 1),
which aligns with the overparameterization in Kumar & Natale (2025).

4.2 QUANTIZED NEURON ACTIVATIONS

Our results apply to standard neural networks whose weights are sampled from a discrete set. How-
ever, the activations in these networks are assumed to have arbitrary precision, which does not fully
reflect the behavior of real-world neural networks, since computers always operate with finite pre-
cision. In contrast, Kumar & Natale (2025) established their results under mixed-precision assump-
tions, where neuron activations are also discretized. Interestingly, our results remain valid under
these assumptions as well. In particular, consider a mixed-precision network as in Kumar & Na-
tale (2025), where activations in even-numbered layers have precision ¢ and those in odd-numbered
layers have precision §2. Under this setup, Lemmas 1, 7, and 8 remain valid. Using Lemma 8, the
error propagation can then be done while accounting for this mixed-precision assumption, leading
to a version of Theorem 3 adapted to the mixed-precision setting.

5 CONCLUSION

In this work, we established sharp bounds for the discrete Random Subset Sum Problem (RSSP) and
applied them to the quantized Strong Lottery Ticket Hypothesis (SLTH). Our main contribution is to
show that both approximate representations and exact representations in quantized settings naturally
arise as limiting cases of our analysis. This unifying perspective brings together previously separate
lines of work under a single framework. In addition, our results demonstrate that the failure prob-
ability of finding a sparse subnetwork in a randomly initialized, quantized neural network decays
exponentially with overparameterization—a substantial improvement over the inverse-polynomial
guarantees in prior work. By simultaneously addressing approximation and rounding errors, our
framework broadens the scope of SLTH theory to more realistic finite-precision regimes, while re-
covering and strengthening earlier results. Overall, this work highlights the deep interplay between
combinatorial problems such as RSSP and foundational questions in deep learning, and marks an
important step toward a cohesive theory of strong lottery tickets across both continuous and quan-
tized settings.
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A RSSP RESULTS

Let’s start by recalling the setup from Section 3. Consider the set of random variables
X1, Xo, ..., X, sampled uniformly from {—-M,—M + 1,...,M — 1, M} for some positive in-
teger M and target z € {—M,—M +1,...,M — 1, M}. Let A € NU{0}. The Random Subset
Sum Problem (RSSP) is the problem of finding a subset .S C [n] such that

i€S
Let f; : Z — {0, 1} be the indicator for the event z is A approximated at time ¢ € N, i.e.,
fe(2) =lascp | 5,0s Xi—2l<A-
It is clear that f; follows the following recurrence relation

fr1(2) = fi(2) + (1 = fi(2) fi(z — Xig1)-

11


http://dx.doi.org/10.1002/(SICI)1098-2418(199801)12:1<51::AID-RSA3>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1098-2418(199801)12:1<51::AID-RSA3>3.0.CO;2-S
https://proceedings.mlr.press/v119/malach20a.html
https://proceedings.mlr.press/v119/malach20a.html
https://proceedings.neurips.cc/paper/2020/file/1e9491470749d5b0e361ce4f0b24d037-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1e9491470749d5b0e361ce4f0b24d037-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1b742ae215adf18b75449c6e272fd92d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1b742ae215adf18b75449c6e272fd92d-Paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Ramanujan_Whats_Hidden_in_a_Randomly_Weighted_Neural_Network_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Ramanujan_Whats_Hidden_in_a_Randomly_Weighted_Neural_Network_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Ramanujan_Whats_Hidden_in_a_Randomly_Weighted_Neural_Network_CVPR_2020_paper.pdf
https://proceedings.mlr.press/v151/sreenivasan22a.html
https://proceedings.mlr.press/v151/sreenivasan22a.html
https://arxiv.org/abs/1909.12579
https://huggingface.co/blog/hf-bitsandbytes-integration
https://huggingface.co/blog/hf-bitsandbytes-integration
https://arxiv.org/abs/1905.01067

Under review as a conference paper at ICLR 2026

Define v; as

with f;(0) = 1 by definition.
Lemma 2. Forall 0 <t < n, it holds that

v v
E(Ut+1|X17X2, - 7Xt) > v+ Zt (]_ _ ﬁ)

Proof. Consider

]E(Ut+1|X17X27"'7 < t+1 |X17X2,"'aX>

i M§ T Mg

| |
A

ft 1—ft(i))ft(i—Xt+1))|X1,X2,...,Xt>

= M Z Z S + (L= fu(@) ol — )

j=—Mi=—M
M
= (1— _
i; fo(@) 2M+1 ZMz;W fe(0) fe(i — )
1 M
ZUt-Fm_Z (1= fi(d) thZ—J
i=—M j=—M
1 M i+ M
= P — 1— fi( k
vy + 2M+1i;M( ft(l))k;Mft( )
where k = ¢ — j. Hence we have
1 i:%—i—,u k:%—&-/t
E(vi1 X1, Xoy oo, X)) 2o+ oo > (A= f) D> fulk)
2M+ 1 . 1\/I+ k Z\l+
== TH =T TH

for some u € {—M/2,...,M/2} (by range restriction). Now 3 p* € {—M/2,..., M/2} such
that

k=— 2+M "
Z Ji(k Z§~
k=—2 4y
Choose p = p*. Hence we get
Z:%er,*
1 V¢ .
E X1, X5,....X4) > —_—— 1-—
(Ve41| X1, Xo, .o t)_Ut+2M2 ZM: (1= fi(3))
i=—5 +pu*
(o Ut
>+ 2 1——)
vty ( oM

O

The main results depend on the analysis of how v, grows with ¢. It turns out that v, grows quickly
to M + 1 and then slowly rises to 2M + 1. Define 7; as

=min{t > 0:v > M + 1}.

Lemma 3. Given 5 € (0,1/8), letpg =1 — For all integers 0 < t < T it holds that

7
8(1-p)"
P(oryr > 0(1 4 8) [ Xu,.o o, Xet < 11) > pg.
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Proof. Define the process

M
0= (fil) + (1= fi@)fili = Xew)—nr,..ary)
i=—M

Clearly v < vy1 and © < 2v4. The bound in Lemma 2 also holds for ©. Hence we have
Poryr > 0t(148) [ X1yoo o, Xt < 11) 2 P(0 2 0(1+ B) [ Xu, .00, Xyt < 1),

Now recall the reverse Markov’s inequality: for any random variable X such that 0 < X < b and
0 < a < E[X], we have
E[X]—a
P(X >a)> ———.
(Xza)z b—a
Using reverse Markov’s inequality, we have

E[Ut|X1, . ,Xt,t < 7—1} - Ut(]- B 6)
21),5 — Ut(l — B)

IP’(T)ZUt(l+[3) |X1,...,Xt7t§7'1) 2

>
- 2Ut — 'Ut(l + 5)
_5-(1+8)
1-p
7
S [P S—
8(1 -5
O
N ] log M+1)
Lemma 4. Let t be an integer and given 3 € (0,1/8), letpg =1 — sy and it = log(ii%l) .

Ift > i*/pg, then

Proof. Divide the domain {0, ..., M} into intervals
Ip={1,....2A + 1},
L={|A+1)1+8)""],....[2A+1)(1+8)]},
I ={|ea+na+p |, Mt}
where ¢* is the smallest integer for which
{(m +1)(1+ ﬂ)“J >M+1
log(1+ B)

We are interested in the number of steps required for v, to exit the interval I; after entering it. By
Theorem 3, this amount is majorised by a geometric random variable Y; ~ Geom(pg). Therefore,
we can conclude that 7 is stochastically dominated by the sum of such variables, that is, for ¢ € N,

we have that
o
]P(let)SP<ZYiZt>- )

i=1

Let B, ~ Binomial(t, pg) be a binomial random variable. For the sum of geometric random vari-
ables, it holds that P (22;1 Y, < t) = P(B; > i*). Since E(B;) = tpg, the Hoeffding’s bound
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for binomial random variables implies that, for all A > 0, we have that P(B; < tpg — \) <
exp(—2A?%/t). Setting ¢ such that tpg — A = i*, we obtain that

P (Z}g >t> < P(B; <i*)
i=1

2 .
< exp (—t(tpﬁ — i )2)

2 2 N 2
cen (- (1))

M
51 log 355+ '
~ pp |log(l+ )

The result follows by applying this to Equation 5 and considering the complementary events. O

which holds as long as

Now we study the second half of the process: from the moment the volume reaches M + 1 up to the
time it gets to 2M — A + 1. Consider the process wy = (2M + 1) — vy, 4+.

Lemma 5. Forallt > 0, it holds that

1 Wt
) < - - - — .
E(wiy1] X1, Xegry) < wy (1 1 (1 2M+1)>

Proof. Consider

E[wt+1\X1, e 7Xt+‘r1] = E[(?M + 1) - ’Ut+7-1+1|X1, ce ,Xt+.,-1]
= (2M + 1) - E(Ut+71+1|X1, ‘e 7Xt+7'1)

1 V4t
< 2M+1)—vppr, [1+-(1— L
<(2M+1) vt+1<+4( 2M+1>>

=@M +1)— (2M + 1 —w,) (1+1<1_2M+1wt)>

4 2M +1

1 Wt
OM +1)— |(2M +1 — OM + 1 —wy)=
(2M +1) [( +1—w)+ (2M + wt)42M+1:|

1
= wi— (2M +1-w); wt

1
wt4wt< 2M+1)

wt(“i( e ))

O
Let 75 the first time that w, gets smaller than or equal to 2M — A + 1, that is
To =min{t > 0:w; <2M — A+ 1}.
Lemma 6. Forallt > 0, it holds that
1 7\'
P <t)y>1l——— (=] .
(2=t 21-5y A <8>
Proof. Using 2M 4+ 1 — wy = V44, > M + 1 to Lemma 5, we get
7
E(wt+1‘Xl7"'aXt+T1) < swy. (6)

8
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Moreover, from the conditional expectation theory, for any two random variables X and Y , we have
E[E[X|Y]] = E[X]. Form this and Eq. 6 we get

E[wt} = E[E(wt+1|X1, e 7Xt+7'1)] S

which, by recursion, yields that

Finally, by Markov’s inequality,

E[wt] 1 7 !
> 1) < > —-A) < < 3
P(ry > t) <P(wy 2 2M +1 A)—2M+1_A_2M+1—A(>’

and the result follows from considering the complementary event. O

Define 7 = 7 + 79, the first time at which the process v, reaches at least 2M + 1 — d.

Theorem 4. Let A € {0,...,M}. There exist constants C' > 0 and > 0 such that for every
t > C'log MEL it holds that

A1’
1 M+1\?
Pr<t)>1-2 —— t—=-C"1
(r<t)=z eXp[ mf( OgA+1>
Proof. Let 8 = 6 and pg =1 — (1 7 = —. Now we use Lemma 4 and 6. Of course for Lemma

log ﬁ
4, we assume t > — s lrlog(lJrﬁ) . We have

P(T < t) ZP(Tl + 79 < t)
(7'1 St/Q,TQSt/Q)
(11 <t/2) +P(rp < t/2) — 1

M+1 2
ol —exp | PE (¢ 2| JoeaatT (
- t ps | log(1+ B) C2M+1-A +1—

>P
>P

)"
s()

2
1 log 5574

R BT ( { log 12 2M+ - @

where the second inequality holds by the union bound. Now take ¢ > Tog 17 log é‘ifl, it follows

that

2
1 log 2454 1 60 M+1\°
—— [ t—30| =254 <Sexp =g (t— —rlog o) .
P 15%( { log 12 ST U g T P AT

Now, consider the second exponential term in Eq. 7. It holds that

1 7\'/? | 1 t oy 8
b (YT o oL 8
oM +1-A\38 FPIB o 1A 2 %7
[ M1t
< exp [log o — =
R N | 15}
1 ! (t 151 M+1)2
= eX —_—— — (0}
P | 715t 1510g 2L EA+1
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Moreover, for t > 15log 3,
1 1 M+1\? 1 M+1\?
. S— A ]3| < ——(t—-151
eXp[ 15t—1510g%ﬂ< OgA+1) —GXP[ 15t< OgA+1>

oo | L (60 M+l 2
=PI\ T e I B ANT) |

Altogether, we have that

M41 2 2 2
exp —p—% t— z 7105; QATH —&—71 Z Y <2exp |— L t— 60 log M+l
t pg | log(1+ B) 2M +1—-A \8 - 152t log 11 A+1

The required result now follows by putting £ = 152 and C’ = 60/ log(17/16). O

B NOTATION TABLE

Notation Description
w,y Scalars (lowercase letters)
v Vectors (bold lowercase letters)
v; i component of vector v
M Matrices (bold uppercase letters)
W € Ré1xdz Matrix with dimensions d; X ds
[Iv]| £5 norm of vector v
S5 :={-1,-1+6,...,1} Finite grid set, with 6 =27% k€ N
beSs Real number b has precision §
Sd d-fold Cartesian product of S;
c,c Positive absolute constants
f:Rdo — R {-layer neural network
W, € Rdixdi-1 Weight matrix of i-th layer
o(z) = max(0, z) ReLU activation function
o(x) Component-wise application: v; = o(z;)

Table 2: Summary of notation.

C TAXONOMY OF PREVIOUS WORK

Table | presents a qualitative comparison with prior work, highlighting the strengths of our ap-
proach. It should be noted, however, that the results in Table | are subject to varying assumptions,
so a direct comparison can be tricky. We now offer a more detailed account of the comparison. First,
it should be noted that in Diffenderfer & Kailkhura (2021); Sreenivasan et al. (2022), only the larger
network is quantized, and only to the binary case rather than arbitrary precision. Furthermore, in
the last column of Table 1, we compare whether the failure probability decays to zero exponentially
with respect to overparameterization. Works in which the required overparameterization is already
polynomial (as opposed to logarithmic) such as Malach et al. (2020) and Diffenderfer & Kailkhura
(2021) are therefore marked with a cross in the last column.

D SLTH-QUANTIZATION RESULTS

In this section, we provide the details of the proof of Theorem 3.
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Lemma 7 (Approximating a univariate linear function). Let d be some positive integer; € be any real
number in (0,1) and 6 = €¢/2Ad where A € 7. Consider a randomly initialized neural network
144 1
C'log ng >><d C1 i
g(x) = vI'o(Mx) with x € R? such that M € S; < o and v € Ss Og<A“>, where
each weight is initialized independently from the uniform distribution over Ss.

Let §(x) = (s© V)T o ((T ®@M)x) be the pruned network for a choice of binary vector s and matrix
1
T. If fw(x) = wix,w € S§ is the linear function, n > Clog g—ii, then with probability at least

2
1 L4
1—4d —— (n—=C"log 2
exp( nn(n ogA+1)>,

Is,T: sup |fw(x)—j(x)| <e.

lIxfl oo <1

we have for any w € S¢

Proof. We will approximate w” x coordinate-wise.

Step 1: Pre-processing M. We first begin by pruning M to create a block-diagonal matrix M’.
Specifically, we create M’ by only keeping the following non-zero entries:

w 0 - 0
1
0 u --- 0 Clog( 345
M= . |, whereu; €R g<“1>,
0 0 - uy

We choose the binary matrix T to be such that M’ = T ® M. We also decompose v and s as

S1 Vi
1
So V2 Clog< §+1)
A+1
s=1.1, v=1|.1, where s;, v; € R .
Sd Vd

Using this notation, we can express our network as the following:

d
(sOv)To(M'x)=> (s;i @ vi) o(u;).

=1

1
Step 2: Pruning u. Let n = C'log (ZE) and define the event F; . be the following event from
Lemma 2:
E; = { sup inf  sup ’wac - (v; ® si)TJ(uim)‘ < A(S}.
weS; si€{0,1}™ |z|<1
Define the event £ := ﬂi FE;, the intersection of all the events. For each 7, Lemma 1 shows that

event F; holds with probability at least

2
1 141
1-4 ——(n—C"log 2
exp( mn(n ogA+1>>,

3+l
A1

because the dimension of v; and u; is at least C'log ( ) Taking a union bound we get that the

event I holds with probability at least

2
1 Ly
1—4d —— (n—=C'log 2 )
eXp( m(n OgA+1)>

On the event F, we obtain the following series of inequalities:
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sup inf sup |wa —(sov)To((To M)x)|
wegd ST x|l <1

< sup inf sup ’wa —(s® V)TU(M/X>‘ (Pruning M according to Step 1.)
wesd S0 x| S <1
d d
= sup inf sup Z wxT; — Z(Sl ® Vi)Ta(ui:vi) (Using decomposition above)
wesg SteSa€ {0 x| <1 {3 i=1
d
< sup inf sup Z |w1xl — (s, ® Vi)TU(uiZ‘i)|

wesd st +84€{0,1}" x|l 00 <1 P
d
= Z sup inf  sup |wiz; — (s; @ vi) o(wa)|
7 lwil<1 si€{0,1}7 |gy)<1
d
< Z 2A0 (By definition of the event E)
i=1
< 2dAJ.

Since 0 = €/2dA, the result follows. O

Lemma 8 (Approximating a layer). Let dy,ds be some positive integers, € be any real number in
(0,1) and § = €/2Adydy where A € 7. Consider a randomly initialized two-layer neural network
g(z) = N o(Mx) with x € R% such that N has dimension

s+1
dy x Cdy log (gil)

and M has dimension

1
141
Cdllog<g+1> x dy,

where each weight is initialized independently from the uniform distribution over Ss.
Let §(z) = (S©N) o ((T © M)z) be the pruned network for a choice of pruning matrices S and

T. If fw(x) = Wz is the linear (single-layered) network, where W € Sngdz, n > C'log ij:,
then with probability at least

2
1 41
1 — 4dyds exp (_m <n—C’logg+1> >,

d1><d2
SS

we have for any W €

3S,T: sup sup  ||fw(z) —g(x)| <e.
wegi 2 @iflz)lo<1

Proof. Our proof strategy is similar to the proof in Lemma 7.

Step 1: Pre-processing M. Similar to Lemma 2, we begin by pruning M to get a block-diagonal
matrix M':

up 0 0
1
wo |0 | o)
0 0 Uq,
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Thus T is chosen so that M’ = T ® M. We also decompose N and S as follows:
T T T T

S11 .-+ Sia, Viig - Vi,
T T T T
$21 .-+ Sy, Vo1 o--- Vo,
S = . . . 9 N = 9
T T T T
Siy1 -+ Siyd Vi,1 o Vi,

where v; ;, u; € IRC log(AL>.
Using this notation we obtain:
Yiti(s15 ©vig)” o(wja;)
(SON)o(M'z) =

d
251 (85,5 O Vi 5) T 0 (ujz)

Step 2: Pruning N. Note that v; ; and u; contain i.i.d. random variables from the uniform distri-

bution. Let n = C'log ( "y ﬁ) and define the event E; ; (from Lemma 1) by

E,; = { sup inf sup |wz — (vi; © si,j)TJ(uix)‘ < 2A6} .

weSs Si, i €10,1}m z:|z|<1

Let B == (cica, MNi< j<a, Fi,; be the intersection of all individual events. By Lemma 1 each
event E; ; holds with probability

2
1 !
1 4exp< m(n CIOgA—i—l ,

since u; and v, ; have dimension at least C'log ( et ) . By a union bound, E holds with probability

2
1 L3+l
1 4d1d2exp< m(n C’logA_|_1 .

On the event £ we have the following inequalities:

sup inf sup HW$ —(SoN)"¢((T© M)z) I
wesii<i2 ST |lz)o

at least

< sup inf sup HWx - (So N)TU(M’x)H (Pruning M as in Step 1)
wesit iz 8 w1

(ig 1 dl

< sup inf DY D wigrs— Y (si; ©vig) o(uga;)

Weghixdz si; €{0,1}" || ||oo<1l P =t e

do dy
< sup inf sup Z Z |w1 i — (8i; © Vi,j)TU(uixj”

Jw;, ;<1 84,5 €{0,1}™ |;pJ|<1 =1 =1
dz dy
ZZ T
< sup . El?(fl}" sup ‘wZng SLj@vi;j) O'(U.Z‘.’L‘j)‘
|wg, ;| <185 i=1 j—1 lz;|<1
do di
= E E sup inf  sup |wz — (s® vy ;) o(u)|

=1z T lw|<18€{0,1}" z]<1

< 2Addqds.

Since 0 = €/2d;ds A, the result follows. O
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We now use Lemma 8 to prove Theorem 3.
Proof of Theorem 3. Let x; be the input to the i-th layer of frw, . w,)(x). Thus,

1. x1 =x,
2. for1 <i</{t—1,%41 = c(W;x;).

Thus fow,,... w,)(X) = Wix;.

For the i-th layer weights W, let So; and So;_; be the binary matrices that achieve the guarantee
in Lemma 8. Lemma 8 states that with probability

2
1 :+1
1 — 4d1ds exp (m <nC'logg:1> > ,

the d is chosen such that the following event holds:

sup 389i,82i-1:  sup ||[Wix — (Mg; ® S2;) 0((S2: @ Mai—1)x)|| < —.  (8)
WES;Hl Xdj x:||x||<1 20

As ReLU is 1-Lipschitz, the above event implies the following:

€
sup 38,821 : sup [|o(Wix) — o (M © Sg) 0((Mai—1 @ Sgi—1)x)) || < -
WESdi+1 xXd; x:||x||<1 20
8

©))

Taking a union bound, we get that with probability

/—1 1 2
1 , s+1

1—;4didi+1exp <_m (n—C logA+1) ), (10)

the above inequalities hold for every layer simultaneously. For the remainder of the proof, we will
assume that this event holds. For any fixed function f, let gy = g(w, ..., w,) be the pruned network
constructed layer-wise, by pruning with binary matrices satisfying the above conditions, and let
these pruned matrices be M. Let x; be the input to the (2¢ — 1)-th layer of g;. We note that x;
satisfies the following recurrent relations:

!
1. x] =x,

2. for1<i</l-1,xj ;= U(Mlma(Méiqxg))-

i

Because the input x has ||x|| < 1, Equation 9 also states that ||x}[| < (1+ ) ~!. To see this, note

that we use Equation 9to getfor 1 <i¢ <[ —1:
€
lo(Wixi) = x| < lIxill 55
which implies
!/ !/ € ! ! € !/ !/ € !/
%541l < HXzHﬁ + lo(Wix3)[| < sz||27 + [Waixi]| < ||X2H27 + [Ixl-

Applying this inequality recursively yields the claim that for 1 < ¢ <1 —1,

i—1
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Using this, we can bound the error between x; and xg. For1l <i <[ —1, we have

HU(WiXi) - U(M/zia(MéiAX;))H
|o(Wix;) — o(Wix))|| + ||o(Wix}) — o(Mb;0(Mj,_,x;))||
\

<
< lxi — X;H + HWZX; - M/Zio-(Méiflxg)H
i—1 g
, — X 1 i) =
< |Ix xZ||+( +2€ 20

where we use Equation 8. Unrolling this we get

-1 ‘

1—16

X < (1 3) £
ol <3 (14 5)

Finally using the inequality above, we get that with probability at least 1 — ¢,

Hf(wfa ce ’Wl)(x) - g(wfv <o ?Wl)(X)H = HWZX@ - MIQZO(M/QZ—IXE)H

< Woexp — Wixg|| + [Wxy — Mo (Mg, x5) ||
< |x x’H—i—(l—&—E)é_lE
= %= % 20 2

IN

— eNile e¢tle
(2(”%) 2£>+(1+2f) ]

1=

¢ .
e\i-le
< 1 7) £
—;(*y 20
E Z
~ (1 —) 1
(1+ 3
<e/? -1
<e. (sincee <1)

Now simply using the definition of n in Equation 10 gives the required result. O

E LLM USAGE

We emphasize that Large Language Models (LLMs) were used solely to improve the clarity and
readability of the manuscript. Specifically, we employed LLM assistance to refine sentence struc-
ture, grammar, and presentation of ideas without altering the technical content, analysis, or conclu-
sions. All conceptual contributions, theoretical developments, and experimental results presented in
this work are entirely original and conducted by the authors.
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