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Abstract

Real-world time series often exhibit a non-
stationary nature, degrading the performance of
pre-trained forecasting models. Test-Time Adap-
tation (TTA) addresses this by adjusting models
during inference, but existing methods typically
update the full model, increasing memory and
compute costs. We propose PETSA, a parameter-
efficient method that adapts forecasters at test
time by only updating small calibration modules
on the input and output. PETSA uses low-rank
adapters and dynamic gating to adjust representa-
tions without retraining. To maintain accuracy de-
spite limited adaptation capacity, we introduce a
specialized loss combining three components: (1)
a robust term, (2) a frequency-domain term to pre-
serve periodicity, and (3) a patch-wise structural
term for structural alignment. PETSA improves
the adaptability of various forecasting backbones
while requiring fewer parameters than baselines.
Experimental results on benchmark datasets show
that PETSA achieves competitive or better perfor-
mance across all horizons. Our code is available
at: https://github.com/BorealisAI/
PETSA.

1. Introduction

Time series forecasting (TSF) plays a critical role in ap-
plications such as weather prediction, traffic monitoring,
and financial modeling (Wu et al., 2021; Zhou et al., 2021;
Kudrat et al., 2025). While deep learning models like Trans-
formers and MLPs have significantly improved TSF per-
formance (Shabani et al., 2022; Wang et al., 2025), they
often assume stationarity and struggle when the data distri-
bution shifts over time (Kim et al., 2025). In practice, such
shifts, which are normally caused by seasonality, structural
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Figure 1. Illustration of the test-time adaptation setup in
PETSA. The model observes a look-back window and makes
predictions over the forecast window. A partial portion of the
ground truth (PT) becomes available shortly after prediction (light
yellow), which is used to adapt the model online. Full ground truth
(T) may also be observed after the forecast window completes
(shaded yellow). PETSA uses both partial and delayed T to update
lightweight calibration modules during inference. The X is the
time-series input, and Y is the same time-series with a lag, which
can be partially used as ground truth. The X~ is the input at time
t* and the partial batch goes until t* 4 p;+ timestep.

breaks, or domain shifts, lead to a significant degradation in
accuracy (Kim et al., 2024; 2025).

Test-Time Adaptation (TTA) has emerged as a promising
strategy to mitigate these shifts by updating models dur-
ing inference (Wang et al., 2020; Kim et al., 2025). How-
ever, most TTA methods either rely on access to source
data (Wang et al., 2020) or update the entire model (Hu
et al., 2022), resulting in high computational overhead. Fur-
thermore, limited information at test time makes reliable
adaptation challenging (Kim et al., 2024; Kudrat et al., 2025)
In this paper, we introduce Parameter-Efficient Time-Series
Adaptation (PETSA) framework (Figure 2), tailored for
test-time adaptation of time-series forecasters.

Our main contributions can be summarized as follows.

(1) We propose PETSA, a test-time adaptation framework
that calibrates input and output features using lightweight
low-rank adapters and dynamic gating.

(2) We design a unified PETSA loss combining Huber,
frequency, and patch-wise structural terms for robust and
structure-aware adaptation.

(3) We benchmark PETSA across six datasets and show
that it improves multiple forecasters while maintaining high
efficiency.
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Figure 2. PETSA. At test time, the input X is first passed through a dynamic input calibration module that applies a gated low-rank

transformation. The calibrated input X!
cali

calibration module to produce the final prediction v

is then processed by a frozen pre-trained forecaster. Its output Y;« is refined by a similar output
. Only the calibration modules are updated during test-time adaptation using the

PETSA loss with partially and fully observed ground truth available with a delay. Modules with trainable parameters have a fire icon,

while frozen ones have an ice icon.

2. Related Works

Time-Series Forecasting (TSF). Recent TSF models span
Transformers, linear projections, and MLP-based forecast-
ers. Transformer-based models like iTransformer (Liu
et al., 2024b) and PatchTST (Nie et al., 2023) capture
long-range dependencies through self-attention, while lin-
ear approaches such as DLinear (Zeng et al., 2023) and
OLS (Toner & Darlow, 2024) offer competitive performance
with lower complexity. MLP-based methods like FreTS (Yi
et al., 2023) and MICN (Wang et al., 2023) balance expres-
siveness and efficiency using global/local mixing. These
models highlight the trade-off between accuracy and com-
putational cost in TSF.

Parameter-Efficient Fine-Tuning (PEFT). PEFT tech-
niques adapt large models using a small number of tunable
parameters. Popular strategies include LoRA (Hu et al.,
2022), DoRA (Liu et al., 2024a), and visual adapters like
VPT (Jia et al., 2022) or AdaptFormer (Chen et al., 2022).
While PEFT has seen wide use in vision and NLP, recent
efforts extend to TSF (Gupta et al., 2024; Ruan et al., 2024;
Nie et al., 2024). However, existing methods mainly focus
on fine-tuning and do not address test-time adaptation.

Test-Time Adaptation (TTA). TTA enables models to
adapt to distribution shifts during inference using unlabeled
data (Zhao et al., 2023; Liang et al., 2025). Techniques
like TENT (Wang et al., 2020), LAME (Boudiaf et al.,
2022), and entropy minimization update model statistics
or outputs. In TSF, TAFAS (Kim et al., 2025) introduces
a batch-level adaptation scheme using delayed partial la-
bels. PETSA builds on this line by introducing a parameter-
efficient, gating-based architecture with specialized losses
for robust and structured test-time adaptation.

3. Proposed Method

3.1. Preliminary Definitions

TSEF. TSF involves predicting future values of a sequence
based on historical observations. Formally, given a historical
multivariate time series X = {&¢—1,%t—14+1,...,Tt—1}
consisting of L consecutive observations, the goal of TSF
is to learn a forecasting model fy(-) that generates accurate
predictions of the next T' future steps, denoted as: ¥ =

{xt7$t+1; e 7$t+T71} = fe(X)-

TTA in TSF. In TSF, TTA mitigates distribution shifts by
updating the model using only test inputs. Methods like
TAFAS assume that partial ground truth becomes available
shortly after prediction, enabling online updates. The adapta-
tion window is defined using the dominant period, estimated
via Fast Fourier Transform (FFT). PETSA adopts this setup,
using both partial and full labels to update its lightweight
gating modules during inference, same as in TAFAS (Kim
et al., 2025).

3.2. PETSA

We propose Parameter-Efficient Time-Series Adaptation
(PETSA), a lightweight framework, designed to adapt time-
series forecasting models at inference without modifying
the core model parameters. It introduces input and output
calibration modules that leverage low-rank adapters and
dynamic gating mechanisms to correct for distribution shifts.
Dynamic Calibration Mechanism. At test time, PETSA
calibrates both the input and output of a frozen forecaster
using lightweight low-rank adapters and dynamic gating,
inspired by Dynamic Tanh (DyT) (Zhu et al., 2025) and
TAFAS. The calibrated input (Xff“) and calibrated output
(Y,ﬁ*‘“) are computed as follows:
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Table 1. MSE across datasets and window sizes. The input training sequence length is set to 96 for all baselines. Results for X-
checkpoint, TF - TAFAS, and PETSA - PT. The lower MSE is marked in bold. Additionally, we provided a row-counter (RW), which
counts the winner for each row, meaning the best for the window length on the dataset among all models, and a column-counter (CW),

with the winner per model, and the total sum of column winners.
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follows:

X = X,. 4 (tanh(a ® X;-) - W 4 b)

vel — v, + (tanh(a O Y)W+ b) , M
where X € RBXLXV and Yy € RBXLXV are the test-
time input and output respectively, o € R" is a learnable
gating parameter per variable (we control the initialization
with a hyperparameter), applied element-wise, W = A - B,
with A € RL*X" B ¢ RrxLxV forming the low-rank
weight tensor, b € R*Vis a learnable bias term (A is ini-
tialized with Xavier Norm. and B with zeros). This enables
PETSA to efficiently calibrate time-series representations
by updating only a small number of parameters at test time.

PETSA Optimization. PETSA uses a combination of
different losses, while TAFAS only uses MSE loss. Our
PETSA loss combines total and partial losses (Lprprsa =
Ly + L) , where L is computed using delayed full
ground-truth labels and £,; uses partially observed la-
bels (Kim et al., 2025). Each loss term incorporates three
components: (1) a Huber loss (Lyy) (Huber, 1992) for
robustness to outliers (Shabani et al., 2022), described as

0.5(Vgalt — ;. )2, if |Y,50 — Y.
8- (Yt = Y

<4
—0.5-0), otherwise.

L = )

where ¢ is a hyperparameter to control the sensitivity to
outliers and smoothness of the predictions (in this work,
¢ is fixed at 0.5), (2) a frequency-domain loss (Lsrq) that
aligns the FFT spectra of predictions and ground truth to
preserve periodic patterns, while reducing estimation bias,
as described in FreDF (Wang et al., 2025), described as
follows:

Lyreq = || FOE) = F(¥er)

Lo

where F(.) = FFT, and (3) a patch-wise structural loss
(ﬁpw) that captures local correlations, means, and variances
to enhance structural alignment (Kudrat et al., 2025), de-
scribed as follows:
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Lip(YE™,Yy-). 4)

Lpw = >

k& {corr,mean,var}

Finally, the partial (PT) and delayed GT (T) loss are de-
scribed as follows:

»Cpt = »C'Hubpt + »prpt + B'Cfreqpt (5)
L1 = EHubT + Epr + /BﬁfreqT- (6)

To the best of our knowledge, this is the first work to do
parameter-efficient TTA for TSF. By updating only a small
set of calibration parameters at test time, PETSA enables
fast, stable, and memory-efficient adaptation across a wide
range of forecasting models and datasets.
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Figure 3. Total number of best-value wins grouped by window
length for TAFAS and PETSA approaches. PETSA consistently
outperforms TAFAS across all horizons.
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4. Experiments
4.1. Experimental Protocol

(a) Datasets: We demonstrate the effectiveness of our
method, PETSA, using widely used multivariate TSF bench-
mark datasets: ETTh1, ETTm1, ETTh2, ETTm2, Exchange,
and Weather (Wu et al., 2021; Zhou et al., 2021).

(b) Implementation Details: Our framework is built on top
of TAFAS (Kim et al., 2025). We used PyTorch for PETSA
implementation, and training/adapt the models using one
NVIDIA A100.

(c) Baselines: We evaluate our proposed method against a
diverse set of baseline models, grouped into three main cate-
gories: (1) Transformer-based approaches, including iTrans-
former (Liu et al., 2024b), PatchTST (Nie et al., 2023);
(2) Linear-based models, comprising DLinear (Zeng et al.,
2023), OLS (Toner & Darlow, 2024), and (3) MLP-based
influential architectures, such as FreTS (Yi et al., 2023),
MICN (Wang et al., 2023). Additionally, we provide the
methods without and with adaptation using TAFAS (Kim
et al., 2025) and PETSA. We provide additional details in
the Appendix.

MSE vs. Window Size (ETTh1)
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Figure 4. Comparison of PETSA and TAFAS on ETTh1 for
iTransformer. Top: MSE across different window sizes with no
adaptation, TAFAS, and PETSA. Bottom: Number of trainable
parameters used for adaptation. PETSA achieves similar or better
accuracy while using up to 33.6 x fewer parameters at window
size 720. Memory usage is annotated in MB.

4.2. Results

In Table 1, across all datasets and model categories, PETSA
achieves the highest number of best-MSE scores (127 wins),
outperforming TAFAS (88 wins). Its consistent advantage
across transformer-, linear-, and MLP-based architectures
demonstrates strong adaptability, where all PETSA mod-
els had fewer parameters than TAFAS. Figure 3 shows that
PETSA achieves more best-value scores than TAFAS across
different window lengths. Even as the forecast window
increases, PETSA maintains a strong lead, demonstrating
robustness to longer-term uncertainty. In Figure 4, PETSA
achieves consistently lower MSE across all window sizes,
and for window size 720, it has 33x fewer parameters than
TAFAS, highlighting its efficiency due to the low-rank adap-
tation with dynamic gating, which is input conditioned and
more robust to outliers in long-range forecasting as a result
of its loss optimization.

5. Conclusion

In this work, we introduced PETSA, a lightweight,
parameter-efficient test-time adaptation framework for time-
series forecasting that dynamically corrects both inputs and
outputs via gated calibration modules. PETSA test-time
calibration loss combines a robust component, a frequency-
domain term to preserve dominant periodic patterns, and a
patch-wise structural term to enforce structural alignment,
which are essential to adapt the forecaster during test-time.
Across diverse benchmarks, PETSA consistently improves
forecasting performance while updating fewer parameters
against baselines.
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Appendix

Here we provide additional information and results for our
paper.
Reproducing the results

Our codebase is built on top of TAFAS (Kim et al., 2025),
where we followed their experimental setup and hyperpa-
rameters for generating the baseline checkpoint models and
adapted models. Additionally, for our method, we have
hyperparameters to control the frequency loss, the number
of low-rank parameters, and the gating initialization, where
we provide additional ablations in the next session.

Additional results on Parameter-Efficiency

In Figure 5, PETSA and TAFAS show very similar MSE
results across all window sizes on the ETTh1 dataset using
the OLS model. Both methods follow the same trend, with
PETSA slightly outperforming TAFAS at larger windows.
In terms of parameters, PETSA remains highly efficient,
using only 0.21 MB at window size 720, while TAFAS
requires 3.70 MB. Across all window sizes, PETSA keeps
memory usage consistently low while achieving comparable
or better performance, highlighting its parameter efficiency.

In Figure 6, PETSA achieves similar MSE to TAFAS across
all window sizes on ETTm1 with OLS, with slightly better
results at short horizons. For a window of 720, we kept
the memory low at 0.11MB, while TAFAS required 3.70.
As this dataset is easier than the other one, we had a good
trade-off between performance and memory.

We had similar trends for Figures 7 and Figures 8, we are
comparable with TAFAS in terms of MSE, and the memory
is also lower. However, we can see that ETTh1/ETTh2 re-
quires a bit more memory than ETTm1/ETTm?2 to achieve
competitive results. This trade-off happens due to the
fact that ETTh1/ETTh2 datasets are more challenging than
ETTm1/ETTm2; thus, more memory is required to remain
performing well in terms of MSE and still being parameter
efficient compared to TAFAS.

In Figure 9, PETSA and TAFAS show similar MSE trends
across window sizes, with both methods degrading as the
horizon increases. However, PETSA requires over 4x less
memory than TAFAS at window size 720, making it a much
more efficient alternative. Finally, in Figure 10, despite
similar performance, PETSA significantly reduces the adap-
tation cost, using less than half of the memory compared to
TAFAS at window size 720.

Ablation on Low-Rank (R) parameter

In this ablation, Figure 11, we conduct a study about the low-
rank hyperparameter, which directly impacts the number
of additional trainable parameters for the dynamic gating
mechanism.
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Figure 5. Comparison of PETSA and TAFAS on ETTh1 for OLS. Left: MSE across different window sizes with TAFAS, and PETSA.
Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.
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Figure 6. Comparison of PETSA and TAFAS on ETTm1 for OLS. Left: MSE across different window sizes with TAFAS, and PETSA.
Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.

Ablation on Dynamic Gating parameter

In this ablation, Figure 12, we study the initial value for the
dynamic gating. This hyperparameter impacts the weights
of the low-rank adaptation, providing a learnable way condi-
tioned on the input to adjust its values; higher values make
the weights positive due to the tanh; otherwise, lower values
make the adapted weight negative, decreasing the value of
the final calibrated input.

Ablation on Loss Components

In this ablation, we study the impact of the loss compo-
nents for PETSA during TTA. In Figure 13, we see that
the MSE loss is not sufficient for reaching the best perfor-
mance values in terms of test MSE, similar to what occurs
with only Huber loss. However, the total loss got the best
results for ETTh1 OLS with 3 equal to 0.0, which means

that the frequency component harmed the performance for
this dataset, and § = 0.0 means that only the Huber loss
and structural patch components are being used. Depending
on the model, the frequency loss helps the performance; for
instance, the best performance for the FreTS model was
when the /3 was equal to 0.1 (for the majority of the datasets
and windows). For some datasets, a higher value can be the
best result, so we recommend hyperparameter tuning for
optimal performance.
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Figure 7. Comparison of PETSA and TAFAS on ETTh2 for OLS. Left: MSE across different window sizes with TAFAS, and PETSA.
Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.
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Figure 8. Comparison of PETSA and TAFAS on ETTm2 for OLS. Left: MSE across different window sizes with TAFAS, and PETSA.
Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.
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Figure 9. Comparison of PETSA and TAFAS on Exchange Rate for OLS. Left: MSE across different window sizes with TAFAS, and
PETSA. Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.
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Figure 10. Comparison of PETSA and TAFAS on Weather for OLS. Left: MSE across different window sizes with TAFAS, and
PETSA. Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.
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Figure 11. Comparison of the original model, TAFAS, and PETSA on ETTh1 for OLS. MSE across different ranks for windows 96,
196, 336, and 720.
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Figure 12. Comparison of the original model, TAFAS, and PETSA on ETTh1 for OLS. MSE across different gating initial values for
windows 96, 196, 336, and 720.
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Figure 13. Comparison of different loss terms in PETSA on ETTh1 for OLS. MSE across different beta values for windows 96, 196,

336, and 720.
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