Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting

Heitor R. Medeiros ' 2 Hossein Sharifi-Noghabi' Gabriel L. Oliveira! Saghar Irandoust '

Abstract

Real-world time series often exhibit a non-
stationary nature, degrading the performance of
pre-trained forecasting models. Test-Time Adap-
tation (TTA) addresses this by adjusting models
during inference, but existing methods typically
update the full model, increasing memory and
compute costs. We propose PETSA, a parameter-
efficient method that adapts forecasters at test
time by only updating small calibration modules
on the input and output. PETSA uses low-rank
adapters and dynamic gating to adjust representa-
tions without retraining. To maintain accuracy de-
spite limited adaptation capacity, we introduce a
specialized loss combining three components: (1)
a robust term, (2) a frequency-domain term to pre-
serve periodicity, and (3) a patch-wise structural
term for structural alignment. PETSA improves
the adaptability of various forecasting backbones
while requiring fewer parameters than baselines.
Experimental results on benchmark datasets show
that PETSA achieves competitive or better perfor-
mance across all horizons. Our code is available
at: https://github.com/BorealisAI/
PETSA.

1. Introduction

Time series forecasting (TSF) plays a critical role in ap-
plications such as weather prediction, traffic monitoring,
and financial modeling (Wu et al., 2021; Zhou et al., 2021;
Kudrat et al., 2025). While deep learning models like Trans-
formers and MLPs have significantly improved TSF per-
formance (Shabani et al., 2022; Wang et al., 2025), they
often assume stationarity and struggle when the data distri-
bution shifts over time (Kim et al., 2025). In practice, such
shifts, which are normally caused by seasonality, structural

“Work done during an internship at Borealis Al

"Borealis AI, Montreal, Canada *Dept. of Systems Engineering,
ETS Montreal, Canada. Correspondence to: Heitor R. Medeiros
<heitor.rapela-medeiros.1 @ens.etsmtl.ca>.

Second Workshop on Test-Time Adaptation: Putting Updates to
the Test! at ICML 2025, Vancouver, Canada. 2025. Copyright
2025 by the author(s).

Full GT (1)

Figure 1. Illustration of the test-time adaptation setup in
PETSA. The model observes a look-back window and makes
predictions over the forecast window. A partial portion of the
ground truth (PT) becomes available shortly after prediction (light
yellow), which is used to adapt the model online. Full ground truth
(T) may also be observed after the forecast window completes
(shaded yellow). PETSA uses both partial and delayed T to update
lightweight calibration modules during inference. The X is the
time-series input, and Y is the same time-series with a lag, which
can be partially used as ground truth. The X~ is the input at time
t* and the partial batch goes until t* 4 p;+ timestep.

breaks, or domain shifts, lead to a significant degradation in
accuracy (Kim et al., 2024; 2025).

Test-Time Adaptation (TTA) has emerged as a promising
strategy to mitigate these shifts by updating models dur-
ing inference (Wang et al., 2020; Kim et al., 2025). How-
ever, most TTA methods either rely on access to source
data (Wang et al., 2020) or update the entire model (Hu
et al., 2022), resulting in high computational overhead. Fur-
thermore, limited information at test time makes reliable
adaptation challenging (Kim et al., 2024; Kudrat et al., 2025)
In this paper, we introduce Parameter-Efficient Time-Series
Adaptation (PETSA) framework (Figure 2), tailored for
test-time adaptation of time-series forecasters.

Our main contributions can be summarized as follows.

(1) We propose PETSA, a test-time adaptation framework
that calibrates input and output features using lightweight
low-rank adapters and dynamic gating.

(2) We design a unified PETSA loss combining Huber,
frequency, and patch-wise structural terms for robust and
structure-aware adaptation.

(3) We benchmark PETSA across six datasets and show
that it improves multiple forecasters while maintaining high
efficiency.

https://github.com/BorealisAI/PETSA
https://github.com/BorealisAI/PETSA

Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting.

| Parameter-Efficient Time Series Adaptation (PETSA)

Dynamic Calibrating

Dynamic Calibrating

I I
I I
i By Trainable parameters | ("% Frozen model ~ " Jy Trainable parameters l .]
‘ cali scalt
X B=0 X Yt* B=0 Yt*
| [Source = 1]
: ‘)“Wﬁﬂ“‘ — A*Jtanh(aX,;)H lW\J —> Forecaster — Mw - Aﬂ;‘"a”h(ayl')}_’ JWM :
: Test-time N, 0-2) Calibrated Test-time N, 0.2) Calibrated :
: Input Input Output Output :
I I
I I

Gating Output

Gating Output

Figure 2. PETSA. At test time, the input X is first passed through a dynamic input calibration module that applies a gated low-rank

transformation. The calibrated input X!
cali

calibration module to produce the final prediction v

is then processed by a frozen pre-trained forecaster. Its output Y;« is refined by a similar output
. Only the calibration modules are updated during test-time adaptation using the

PETSA loss with partially and fully observed ground truth available with a delay. Modules with trainable parameters have a fire icon,

while frozen ones have an ice icon.

2. Related Works

Time-Series Forecasting (TSF). Recent TSF models span
Transformers, linear projections, and MLP-based forecast-
ers. Transformer-based models like iTransformer (Liu
et al., 2024b) and PatchTST (Nie et al., 2023) capture
long-range dependencies through self-attention, while lin-
ear approaches such as DLinear (Zeng et al., 2023) and
OLS (Toner & Darlow, 2024) offer competitive performance
with lower complexity. MLP-based methods like FreTS (Yi
et al., 2023) and MICN (Wang et al., 2023) balance expres-
siveness and efficiency using global/local mixing. These
models highlight the trade-off between accuracy and com-
putational cost in TSF.

Parameter-Efficient Fine-Tuning (PEFT). PEFT tech-
niques adapt large models using a small number of tunable
parameters. Popular strategies include LoRA (Hu et al.,
2022), DoRA (Liu et al., 2024a), and visual adapters like
VPT (Jia et al., 2022) or AdaptFormer (Chen et al., 2022).
While PEFT has seen wide use in vision and NLP, recent
efforts extend to TSF (Gupta et al., 2024; Ruan et al., 2024;
Nie et al., 2024). However, existing methods mainly focus
on fine-tuning and do not address test-time adaptation.

Test-Time Adaptation (TTA). TTA enables models to
adapt to distribution shifts during inference using unlabeled
data (Zhao et al., 2023; Liang et al., 2025). Techniques
like TENT (Wang et al., 2020), LAME (Boudiaf et al.,
2022), and entropy minimization update model statistics
or outputs. In TSF, TAFAS (Kim et al., 2025) introduces
a batch-level adaptation scheme using delayed partial la-
bels. PETSA builds on this line by introducing a parameter-
efficient, gating-based architecture with specialized losses
for robust and structured test-time adaptation.

3. Proposed Method

3.1. Preliminary Definitions

TSEF. TSF involves predicting future values of a sequence
based on historical observations. Formally, given a historical
multivariate time series X = {&¢—1,%t—14+1,...,Tt—1}
consisting of L consecutive observations, the goal of TSF
is to learn a forecasting model fy(-) that generates accurate
predictions of the next T' future steps, denoted as: ¥ =

{xt7$t+1; e 7$t+T71} = fe(X)-

TTA in TSF. In TSF, TTA mitigates distribution shifts by
updating the model using only test inputs. Methods like
TAFAS assume that partial ground truth becomes available
shortly after prediction, enabling online updates. The adapta-
tion window is defined using the dominant period, estimated
via Fast Fourier Transform (FFT). PETSA adopts this setup,
using both partial and full labels to update its lightweight
gating modules during inference, same as in TAFAS (Kim
et al., 2025).

3.2. PETSA

We propose Parameter-Efficient Time-Series Adaptation
(PETSA), a lightweight framework, designed to adapt time-
series forecasting models at inference without modifying
the core model parameters. It introduces input and output
calibration modules that leverage low-rank adapters and
dynamic gating mechanisms to correct for distribution shifts.
Dynamic Calibration Mechanism. At test time, PETSA
calibrates both the input and output of a frozen forecaster
using lightweight low-rank adapters and dynamic gating,
inspired by Dynamic Tanh (DyT) (Zhu et al., 2025) and
TAFAS. The calibrated input (Xff“) and calibrated output
(Y,ﬁ*‘“) are computed as follows:

Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting.

Table 1. MSE across datasets and window sizes. The input training sequence length is set to 96 for all baselines. Results for X-
checkpoint, TF - TAFAS, and PETSA - PT. The lower MSE is marked in bold. Additionally, we provided a row-counter (RW), which
counts the winner for each row, meaning the best for the window length on the dataset among all models, and a column-counter (CW),

with the winner per model, and the total sum of column winners.

Transformer-based Linear-based MLP-based Counter
Models iTransformer PatchTST DLinear OLS FreTS MICN RW
Wind. X TF PT X TF PT X TF PT X TF PT X TF PT X TF PT TF

96 0.449 0435 0432 0433 0426 0426 0470 0.462
192 0510 0.503 0.501 0491 0482 0481 0.521 0512

=
wm
=
=
(=)
W
(=)
w
=
-
I
N
e
-
I
N
=)
o
(=3
)
<o
=
o
S
=
=
N
N
(=)
wn
=)
=
(=)
°d
[=))
(=)
)
wm
a
o
D= =N

PT
6
_ 6
= 336 0.564 0.562 0.561 0.555 0.546 0.543 0.566 0.560 0.555 0.551 0.542 0.538 0.554 0.548 0.547 0.665 0.632 0.643 5
E 720 0.702 0.663 0.659 0.706 0.680 0.680 0.712 0.682 0.679 0.700 0.666 0.650 0.718 0.687 0.688 0.904 0.792 0.785 5
Avg 0.557 0.541 0.538 0.546 0.533 0.532 0.567 0.554 0.551 0.552 0.535 0.530 0.555 0542 0.541 0.670 0.619 0.620 1 5
96 0.439 0416 0413 0451 0437 0436 0444 0417 0414 0444 0416 0415 0433 0421 0416 0487 0458 0456 0 6
— 192 0.508 0476 0.473 0.504 0486 0489 0518 0480 0474 0518 0479 0475 0501 0482 0475 0554 0511 0510 1 5
E 336 0.613 0.556 0.552 0.558 0.539 0542 0593 0.549 0.545 0.593 0.548 0.543 0.570 0.547 0.543 0.612 0579 0573 1 5
5 720 0.485 0453 0450 0479 0463 0465 0482 0449 0.446 0481 0449 0.446 0468 0452 0448 0525 0486 0484 | 5
Avg 0257 0255 0254 0236 0.235 0235 0232 0230 0230 0.231 0228 0.228 0239 0236 0236 0256 0252 0252 5 6
96 0.344 0.330 0.328 0317 0.308 0.309 0325 0.319 0318 0326 0319 0318 0332 0321 0321 0359 0339 0342 3 4
~ 192 0.424 0.396 0.397 0433 0.402 0402 0409 0387 0.385 0416 0391 0.388 0412 0.383 0.383 0437 0439 0434 3 5
= 336 0.332 0320 0.319 0.318 0.305 0.305 0.313 0305 0.305 0.314 0305 0.304 0317 0306 0.306 0345 0334 0335 4 5
E 720 0.168 0.167 0.166 0.160 0.160 0.160 0.160 0.158 0.158 0.160 0.159 0.159 0.158 0.157 0.157 0.175 0.175 0.176 5 5
Avg 0.220 0.217 0215 0207 0.204 0.204 0.193 0.191 0.191 0.194 0.192 0.192 0.192 0.191 0.191 0.213 0.209 0.203 4 6
96 0.339 0330 0322 0334 0327 0328 0306 0297 0.296 0307 0.298 0.298 0301 0292 0293 0332 0322 0320 3 4
~ 192 0.250 0244 0.241 0.237 0235 0.235 0.223 0219 0.219 0.223 0220 0.220 0.221 0217 0.218 0.243 0238 0.236 4 5
E 336 0.087 0.085 0.086 0.086 0.082 0.083 0.091 0.089 0.088 0.081 0.080 0.078 0.083 0.079 0.079 0.115 0.115 0.109 3 4
E 720 0.181 0.174 0.175 0.188 0.174 0.179 0.183 0.176 0.173 0.173 0.164 0.165 0.173 0.164 0.163 0216 0.198 0.198 4 3
Avg 0.343 0.313 0335 0.338 0.281 0.332 0328 0.294 0.292 0.323 0.285 0.281 0.324 0.295 0.298 0.398 0.304 0.280 3 3
96 0.366 0.345 0341 0372 0353 0367 0372 0.359 0357 0353 0.294 0.286 0.354 0.335 0.327 0.558 0.307 0357 2 4
1Y 192 0.173 0.166 0.166 0.173 0.170 0.171 0.195 0.180 0.176 0.196 0.181 0.178 0.186 0.175 0.174 0.176 0.175 0174 2 5
5 336 0.223 0.211 0212 0.220 0.214 0216 0.240 0224 0.223 0.241 0.222 0.223 0.231 0215 0.218 0.224 0217 0220 5 1
2 720 0.281 0.261 0.265 0.276 0.265 0.268 0.292 0.271 0.271 0.292 0.271 0.273 0.284 0.264 0.266 0.281 0269 0.268 5 2
o
Avg 0.355 0.339 0.341 0.355 0337 0336 0364 0350 0.345 0364 0.344 0346 0360 0.340 0.344 0353 0347 0345 3 3
96 0.173 0.166 0.166 0.173 0.170 0.171 0.195 0.180 0.176 0.196 0.181 0.178 0.186 0.175 0.174 0.176 0.175 0.174 2 5
5 192 0.223 0.211 0212 0.220 0.214 0.216 0.240 0.224 0.223 0.241 0.222 0223 0.231 0.215 0.218 0224 0217 0220 5 1
g 336 0.281 0.261 0265 0.276 0.265 0.268 0.292 0.271 0.271 0.292 0.271 0.273 0.284 0.264 0.266 0.281 0.269 0.268 5 2
§ 720 0.355 0.339 0341 0.355 0337 0336 0364 0.350 0345 0364 0344 0346 0360 0340 0.344 0353 0347 0345 3 3
Avg 0.258 0.244 0246 0.256 0.247 0.248 0.273 0.256 0.254 0.273 0.255 0.255 0.265 0.248 0.251 0258 0.252 0252 5 3
X TF PT X TF PT X TF PT X TF PT X TF PT X TF PT
Counter Ccw 13 19 24 14 7 30 14 23 18 19 12 22
Sum Col. TF:88 PT: 127
follows:

X = X,. 4 (tanh(a ® X;-) - W 4 b)

vel — v, + (tanh(a O Y)W+ b) , M
where X € RBXLXV and Yy € RBXLXV are the test-
time input and output respectively, o € R" is a learnable
gating parameter per variable (we control the initialization
with a hyperparameter), applied element-wise, W = A - B,
with A € RL*X" B ¢ RrxLxV forming the low-rank
weight tensor, b € R*Vis a learnable bias term (A is ini-
tialized with Xavier Norm. and B with zeros). This enables
PETSA to efficiently calibrate time-series representations
by updating only a small number of parameters at test time.

PETSA Optimization. PETSA uses a combination of
different losses, while TAFAS only uses MSE loss. Our
PETSA loss combines total and partial losses (Lprprsa =
Ly + L) , where L is computed using delayed full
ground-truth labels and £,; uses partially observed la-
bels (Kim et al., 2025). Each loss term incorporates three
components: (1) a Huber loss (Lyy) (Huber, 1992) for
robustness to outliers (Shabani et al., 2022), described as

0.5(Vgalt — ;.)2, if |Y,50 — Y.
8- (Yt = Y

<4
—0.5-0), otherwise.

L =)

where ¢ is a hyperparameter to control the sensitivity to
outliers and smoothness of the predictions (in this work,
¢ is fixed at 0.5), (2) a frequency-domain loss (Lsrq) that
aligns the FFT spectra of predictions and ground truth to
preserve periodic patterns, while reducing estimation bias,
as described in FreDF (Wang et al., 2025), described as
follows:

Lyreq = || FOE) = F(¥er)

Lo

where F(.) = FFT, and (3) a patch-wise structural loss
(ﬁpw) that captures local correlations, means, and variances
to enhance structural alignment (Kudrat et al., 2025), de-
scribed as follows:

Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting.

Lip(YE™,Yy-). 4)

Lpw = >

k& {corr,mean,var}

Finally, the partial (PT) and delayed GT (T) loss are de-
scribed as follows:

»Cpt = »C'Hubpt + »prpt + B'Cfreqpt (5)
L1 = EHubT + Epr + /BﬁfreqT- (6)

To the best of our knowledge, this is the first work to do
parameter-efficient TTA for TSF. By updating only a small
set of calibration parameters at test time, PETSA enables
fast, stable, and memory-efficient adaptation across a wide
range of forecasting models and datasets.

Best-Value Count by Window Length: TF vs PT

0 I I I
96 192

336
Window Length

TAFAS
== PETSA

720 Avg

Figure 3. Total number of best-value wins grouped by window
length for TAFAS and PETSA approaches. PETSA consistently
outperforms TAFAS across all horizons.

Total Best Count
3 @ S > 8

o

4. Experiments
4.1. Experimental Protocol

(a) Datasets: We demonstrate the effectiveness of our
method, PETSA, using widely used multivariate TSF bench-
mark datasets: ETTh1, ETTm1, ETTh2, ETTm2, Exchange,
and Weather (Wu et al., 2021; Zhou et al., 2021).

(b) Implementation Details: Our framework is built on top
of TAFAS (Kim et al., 2025). We used PyTorch for PETSA
implementation, and training/adapt the models using one
NVIDIA A100.

(c) Baselines: We evaluate our proposed method against a
diverse set of baseline models, grouped into three main cate-
gories: (1) Transformer-based approaches, including iTrans-
former (Liu et al., 2024b), PatchTST (Nie et al., 2023);
(2) Linear-based models, comprising DLinear (Zeng et al.,
2023), OLS (Toner & Darlow, 2024), and (3) MLP-based
influential architectures, such as FreTS (Yi et al., 2023),
MICN (Wang et al., 2023). Additionally, we provide the
methods without and with adaptation using TAFAS (Kim
et al., 2025) and PETSA. We provide additional details in
the Appendix.

MSE vs. Window Size (ETTh1)

070 iTransformer
TAFAS
065, —* PETSA (R=16)

MSE

T
1e6 Parameters vs. Window Size (ETTh1)

TAFAS Parameters
—e— PETSA Parameters (R=16)

Number of Paramters

10 3.00MB

125MB
057 gsome 14.8x
0.

015M8
001 HiovE e T
% 192 336 720
Window Size

im 0,42MB

Figure 4. Comparison of PETSA and TAFAS on ETTh1 for
iTransformer. Top: MSE across different window sizes with no
adaptation, TAFAS, and PETSA. Bottom: Number of trainable
parameters used for adaptation. PETSA achieves similar or better
accuracy while using up to 33.6 x fewer parameters at window
size 720. Memory usage is annotated in MB.

4.2. Results

In Table 1, across all datasets and model categories, PETSA
achieves the highest number of best-MSE scores (127 wins),
outperforming TAFAS (88 wins). Its consistent advantage
across transformer-, linear-, and MLP-based architectures
demonstrates strong adaptability, where all PETSA mod-
els had fewer parameters than TAFAS. Figure 3 shows that
PETSA achieves more best-value scores than TAFAS across
different window lengths. Even as the forecast window
increases, PETSA maintains a strong lead, demonstrating
robustness to longer-term uncertainty. In Figure 4, PETSA
achieves consistently lower MSE across all window sizes,
and for window size 720, it has 33x fewer parameters than
TAFAS, highlighting its efficiency due to the low-rank adap-
tation with dynamic gating, which is input conditioned and
more robust to outliers in long-range forecasting as a result
of its loss optimization.

5. Conclusion

In this work, we introduced PETSA, a lightweight,
parameter-efficient test-time adaptation framework for time-
series forecasting that dynamically corrects both inputs and
outputs via gated calibration modules. PETSA test-time
calibration loss combines a robust component, a frequency-
domain term to preserve dominant periodic patterns, and a
patch-wise structural term to enforce structural alignment,
which are essential to adapt the forecaster during test-time.
Across diverse benchmarks, PETSA consistently improves
forecasting performance while updating fewer parameters
against baselines.

Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting.

References

Boudiaf, M., Mueller, R., Ben Ayed, 1., and Bertinetto, L.
Parameter-free online test-time adaptation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8344-8353, 2022.

Chen, S., Ge, C., Tong, Z., Wang, J., Song, Y., Wang, J.,
and Luo, P. Adaptformer: Adapting vision transform-
ers for scalable visual recognition. Advances in Neural
Information Processing Systems, 35:16664—16678, 2022.

Gupta, D., Bhatti, A., Parmar, S., Dan, C., Liu, Y., Shen,
B., and Lee, S. Low-rank adaptation of time series foun-
dational models for out-of-domain modality forecasting.
In Proceedings of the 26th International Conference on
Multimodal Interaction, pp. 382-386, 2024.

Hu, E. J,, Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation
of large language models. /CLR, 1(2):3, 2022.

Huber, P. J. Robust estimation of a location parameter. In
Breakthroughs in statistics: Methodology and distribu-
tion, pp. 492-518. Springer, 1992.

Jia, M., Tang, L., Chen, B.-C., Cardie, C., Belongie, S.,
Hariharan, B., and Lim, S.-N. Visual prompt tuning. In
European conference on computer vision, pp. 709-727.
Springer, 2022.

Kim, D., Park, S., and Choo, J. When model meets new nor-
mals: test-time adaptation for unsupervised time-series
anomaly detection. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 38, pp. 13113—
13121, 2024.

Kim, H., Kim, S., Mok, J., and Yoon, S. Battling the
non-stationarity in time series forecasting via test-time
adaptation. arXiv preprint arXiv:2501.04970, 2025.

Kudrat, D., Xie, Z., Sun, Y., Jia, T., and Hu, Q. Patch-wise
structural loss for time series forecasting. arXiv preprint
arXiv:2503.00877, 2025.

Liang, J., He, R., and Tan, T. A comprehensive survey on
test-time adaptation under distribution shifts. Interna-
tional Journal of Computer Vision, 133(1):31-64, 2025.

Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang,
Y.-C. F, Cheng, K.-T., and Chen, M.-H. Dora: Weight-
decomposed low-rank adaptation. In Forty-first Interna-
tional Conference on Machine Learning, 2024a.

Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L., and
Long, M. itransformer: Inverted transformers are effec-
tive for time series forecasting. In The Twelfth Interna-
tional Conference on Learning Representations, 2024b.

Nie, T., Mei, Y., Qin, G., Sun, J., and Ma, W. Channel-
aware low-rank adaptation in time series forecasting. In
Proceedings of the 33rd ACM International Conference
on Information and Knowledge Management, pp. 3959—
3963, 2024.

Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J. A
time series is worth 64 words: Long-term forecasting with
transformers. In The Eleventh International Conference
on Learning Representations, 2023.

Ruan, W., Chen, W., Dang, X., Zhou, J., Li, W., Liu, X.,
and Liang, Y. Low-rank adaptation for spatio-temporal
forecasting. arXiv preprint arXiv:2404.07919, 2024.

Shabani, A., Abdi, A., Meng, L., and Sylvain, T. Scale-
former: Iterative multi-scale refining transformers for
time series forecasting. arXiv preprint arXiv:2206.04038,
2022.

Toner, W. and Darlow, L. N. An analysis of linear time
series forecasting models. In International Conference
on Machine Learning, pp. 48404-48427. PMLR, 2024.

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., and Darrell,
T. Tent: Fully test-time adaptation by entropy minimiza-
tion. arXiv preprint arXiv:2006.10726, 2020.

Wang, H., Peng, J., Huang, F., Wang, J., Chen, J., and Xiao,
Y. Micn: Multi-scale local and global context modeling
for long-term series forecasting. In The eleventh interna-
tional conference on learning representations, 2023.

Wang, H., Pan, L., Chen, Z., Yang, D., Zhang, S., Yang, Y.,
Liu, X., Li, H., and Tao, D. Fredf: Learning to forecast
in the frequency domain. In ICLR, 2025.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decom-
position transformers with auto-correlation for long-term
series forecasting. Advances in neural information pro-
cessing systems, 34:22419-22430, 2021.

Yi, K., Zhang, Q., Fan, W., Wang, S., Wang, P., He, H.,
An, N, Lian, D., Cao, L., and Niu, Z. Frequency-domain
mlps are more effective learners in time series forecasting.

Advances in Neural Information Processing Systems, 36:
76656-76679, 2023.

Zeng, A., Chen, M., Zhang, L., and Xu, Q. Are transformers
effective for time series forecasting? In Proceedings of
the AAAI conference on artificial intelligence, volume 37,
pp. 11121-11128, 2023.

Zhao, H., Liu, Y., Alahi, A., and Lin, T. On pitfalls of
test-time adaptation. In Proceedings of the 40th Inter-
national Conference on Machine Learning, pp. 42058—
42080, 2023.

Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer for
long sequence time-series forecasting. In Proceedings of

the AAAI conference on artificial intelligence, volume 35,
pp. 11106-11115, 2021.

Zhu, J., Chen, X., He, K., LeCun, Y., and Liu, Z.
Transformers without normalization. arXiv preprint
arXiv:2503.10622, 2025.

Appendix

Here we provide additional information and results for our
paper.
Reproducing the results

Our codebase is built on top of TAFAS (Kim et al., 2025),
where we followed their experimental setup and hyperpa-
rameters for generating the baseline checkpoint models and
adapted models. Additionally, for our method, we have
hyperparameters to control the frequency loss, the number
of low-rank parameters, and the gating initialization, where
we provide additional ablations in the next session.

Additional results on Parameter-Efficiency

In Figure 5, PETSA and TAFAS show very similar MSE
results across all window sizes on the ETTh1 dataset using
the OLS model. Both methods follow the same trend, with
PETSA slightly outperforming TAFAS at larger windows.
In terms of parameters, PETSA remains highly efficient,
using only 0.21 MB at window size 720, while TAFAS
requires 3.70 MB. Across all window sizes, PETSA keeps
memory usage consistently low while achieving comparable
or better performance, highlighting its parameter efficiency.

In Figure 6, PETSA achieves similar MSE to TAFAS across
all window sizes on ETTm1 with OLS, with slightly better
results at short horizons. For a window of 720, we kept
the memory low at 0.11MB, while TAFAS required 3.70.
As this dataset is easier than the other one, we had a good
trade-off between performance and memory.

We had similar trends for Figures 7 and Figures 8, we are
comparable with TAFAS in terms of MSE, and the memory
is also lower. However, we can see that ETTh1/ETTh2 re-
quires a bit more memory than ETTm1/ETTm?2 to achieve
competitive results. This trade-off happens due to the
fact that ETTh1/ETTh2 datasets are more challenging than
ETTm1/ETTm2; thus, more memory is required to remain
performing well in terms of MSE and still being parameter
efficient compared to TAFAS.

In Figure 9, PETSA and TAFAS show similar MSE trends
across window sizes, with both methods degrading as the
horizon increases. However, PETSA requires over 4x less
memory than TAFAS at window size 720, making it a much
more efficient alternative. Finally, in Figure 10, despite
similar performance, PETSA significantly reduces the adap-
tation cost, using less than half of the memory compared to
TAFAS at window size 720.

Ablation on Low-Rank (R) parameter

In this ablation, Figure 11, we conduct a study about the low-
rank hyperparameter, which directly impacts the number
of additional trainable parameters for the dynamic gating
mechanism.

Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting.

MSE vs. Window Size (ETTh1 - OLS)

TAFAS

0.65 « —e— PETSA

0.60

@
2 055

0.50

0.45

96 192 336 720
Window Size

Parameters vs. Window Size (ETTh1 - OLS)

TAFAS Parameters 3.70 MB

35 —e— PETSA Parameters

3.0
@ 25
=3
o
220
[
1S
o
&5
G
[
g 10 0.86 MB
E}
z

0.32 MB
057 013MB
0.0 0.03 MB 0.22 MB 0.21MB
g 0.03 MB
96 192 336 720
Window Size

Figure 5. Comparison of PETSA and TAFAS on ETTh1 for OLS. Left: MSE across different window sizes with TAFAS, and PETSA.
Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.

MSE vs. Window Size (ETTm1 - OLS)

0550 TAFAS

—e— PETSA
0.525

0.500
0.475

0.450

MSE

0.425

0.400

0.375

0.350

96 192 336 720
Window Size

Parameters vs. Window Size (ETTm?1 - OLS)

TAFAS Parameters 3.70 MB
35 _e— PETSA Parameters

3.0

@

g 25

>

o}

T 20

£

©

©

s

o

I}

o

£ 10 0.86 MB

z

05 0.32 MB
013 MB 011MB
00T VE 0.04 MB 0.06 MB
00 e
96 192 336 720
Window Size

Figure 6. Comparison of PETSA and TAFAS on ETTm1 for OLS. Left: MSE across different window sizes with TAFAS, and PETSA.
Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.

Ablation on Dynamic Gating parameter

In this ablation, Figure 12, we study the initial value for the
dynamic gating. This hyperparameter impacts the weights
of the low-rank adaptation, providing a learnable way condi-
tioned on the input to adjust its values; higher values make
the weights positive due to the tanh; otherwise, lower values
make the adapted weight negative, decreasing the value of
the final calibrated input.

Ablation on Loss Components

In this ablation, we study the impact of the loss compo-
nents for PETSA during TTA. In Figure 13, we see that
the MSE loss is not sufficient for reaching the best perfor-
mance values in terms of test MSE, similar to what occurs
with only Huber loss. However, the total loss got the best
results for ETTh1 OLS with 3 equal to 0.0, which means

that the frequency component harmed the performance for
this dataset, and § = 0.0 means that only the Huber loss
and structural patch components are being used. Depending
on the model, the frequency loss helps the performance; for
instance, the best performance for the FreTS model was
when the /3 was equal to 0.1 (for the majority of the datasets
and windows). For some datasets, a higher value can be the
best result, so we recommend hyperparameter tuning for
optimal performance.

Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting.

MSE vs. Window Size (ETTh2 - OLS) Parameters vs. Window Size (ETTh2 - OLS)
TAFAS TAFAS Parameters 370 M8
038 —®— PETSA 3.5 —e— PETSA Parameters
0.36 3.0
0.34 =
25
4
0.32 5
W © 2.0
2 g
=030 g
15
o
0.28 K]
E10 0.86 MB
0.26 z
0.5 0.32 MB
0.24 013 MB 0.22 MB
0.04 MB 0.11 MB
0.0
96 192 336 720 96 192 336 720
Window Size Window Size

Figure 7. Comparison of PETSA and TAFAS on ETTh2 for OLS. Left: MSE across different window sizes with TAFAS, and PETSA.
Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.

MSE vs. Window Size (ETTm2 - OLS) Parameters vs. Window Size (ETTm2 - OLS)
030 TAFAS TAFAS Parameters 3.70 MB
—o— PETSA 35 —— PETSA Parameters
0.28
3.0
0.26 &
s 25
0.24 5
I © 2.0
8 5
0.22 s
215
o
0.20 E
’ E 10 0.86 MB
4
018
0.5 0.32 MB 0.22 MB
013 MB 011 MB
0.04 MB ,
016 0.0 03 M
96 192 336 720 96 192 336 720
Window Size Window Size

Figure 8. Comparison of PETSA and TAFAS on ETTm2 for OLS. Left: MSE across different window sizes with TAFAS, and PETSA.
Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.

MSE vs. Window Size (exchange_rate - OLS) Parameters vs. Window Size (exchange_rate - OLS)
TAFAS TAFAS Parameters 423 MB
06 —® PETSA 4 —e— PETSA Parameters
0.5
@ 3
2
o
0.4 o
w £
[%2)
= g 2
[=8
0.3 5
9]
£ 0.98 MB
o § : : 0.95MB
01
0
96 192 336 720 96 192 336 720
Window Size Window Size

Figure 9. Comparison of PETSA and TAFAS on Exchange Rate for OLS. Left: MSE across different window sizes with TAFAS, and
PETSA. Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.

Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting.

MSE vs. Window Size (weather - OLS) Parameters vs. Window Size (weather - OLS)
0.350
TAFAS TAFAS Parameters 1110 MB
—e— PETSA 10 —o— PETSA Parameters
0.325
0.300 — 8
o
2
@
0.275 9]
T 6
3 £
2 s 461 MB
0.250 &
!
5
0.225 £ 2.57 MB
z
2
0.200 0.97 MB
0.39 MB
0.07MB 0.21 MB .31 MB
04175 0 -—
96 192 336 720 96 192 336 720
Window Size Window Size

Figure 10. Comparison of PETSA and TAFAS on Weather for OLS. Left: MSE across different window sizes with TAFAS, and
PETSA. Right: Number of trainable parameters used for adaptation. Memory usage is annotated in MB.

-=-- OLS =--- TAFAS PETSA
ETThl (Window=96) - OLS ETThl (Window=192) - OLS
0.504 -
0.450
0.502 -
0.448
0 0.446 - 1 0500
s =
o ? 0.498 -
2 0.444 1 s
0.496 -
0.442 4= == = = e e
0.494 -
0.440
0.492 === === === —mmmmmmmmm—mmm—mm——mm—mmmm—m e
8 16 32 64 128 8 16 32 64 128
Rank Rank
ETTh1l (Window=336) - OLS ETTh1l (Window=720) - OLS
-- £+ T
0.550
0.548 - 0.69 1
0.546
w uw 0.68
Z 0.544 =
3 3]
0,542t o e e e ~ 0.67 1
0.540 0.66 -
0.538 A
0.65
0.536 +— T T T T T T T T T
8 16 32 64 128 8 16 32 64 128
Rank Rank

Figure 11. Comparison of the original model, TAFAS, and PETSA on ETTh1 for OLS. MSE across different ranks for windows 96,
196, 336, and 720.

Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting.

ETTh1 (Window=96) - OLS ETTh1l (Window=192) - OLS
0.450 0.5041
0.502
0.448
0.500 A
ﬁo44e --- oLs] --- oLs
= ——- TAFAS | = 0.498 —-—- TAFAS
@] B
A PETSA A PETSA
0.444
0.496
0,442 = m = e e e e T ——— 0.494 4
0.440 4 0.492 === == === mmmm oD -—-
T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Gating Init Value Gating Init Value
ETTh1l (Window=336) - OLS ETTh1 (Window=720) - OLS
.552
g 27m8m————//m/m/m/m 0.70 F—@——————mm e e e e ———
0.5501
0.69 -
0.548 4
W 0.546 - w 0.68
= =
@ @
@ 0-344 0.67 |
[T e T e [722
0.66 -
0.5401 ~~° OLS - OLS
--- TAFAS --- TAFAS
0.538 PETSA 0.65 PETSA
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Gating Init Value Gating Init Value

Figure 12. Comparison of the original model, TAFAS, and PETSA on ETTh1 for OLS. MSE across different gating initial values for
windows 96, 196, 336, and 720.

10

Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting.

ETTh1 (Window=96) - OLS

ETTh1 (Window=192) - OLS

[=== PETSA-MSELOSs ~~~ ===~ =======—=-=-=-=-=-—————-———-—-e —-- PETSA - MSE Loss
0.4420 4 0.4945 4
——- PETSA - Huber Loss - PETSA - Huber Loss
044174 PETSA - Huber + Pw === PETSA - Huber + Pw
PETSA - Total Loss 0.4940 4 PETSA - Total Loss
0.4415 4
I N
= 044134 _ e = 0.4935 -
] %
& 0.4410 s
0.4407 049307
0.44051 0.4925 |
O L SO OO
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Beta (B in Loss) Beta (B in Loss)
ETTh1l (Window=336) - OLS ETThl (Window=720) - OLS
-- 0662 7T TTTTTTTTTTTTTTTTTTToTTTTooTTooTo—- PETSA - MSE Loss
0.543 4 —=- PETSA - Huber Loss
! 06604 PETSA - Huber + Pw
: PETSA - Total Loss
0.542 1 0.658
w ——- PETSA - MSE Loss w '
E 0.541 4 ——- PETSA - Huber Loss E 0.656 -
[s PETSA - Huber + Pw B)
= PETSA - Total Loss =
0.540 0,654 == == e e
0.539 4 06521
0.650 q
0538 7 B T e -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 13. Comparison of different loss terms in PETSA on ETTh1 for OLS. MSE across different beta values for windows 96, 196,

336, and 720.

Beta (B in Loss)

11

Beta (B in Loss)

