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ABSTRACT

Partial observability remains a major challenge for reinforcement learning (RL).
In fully observable environments it is sufficient for RL agents to learn memoryless
policies. However, some form of memory is necessary when RL agents are faced
with partial observability. In this paper we study a lightweight approach: we aug-
ment the environment with an external memory and additional actions to control
what, if anything, is written to the memory. At every step, the current memory
state is part of the agent’s observation, and the agent selects a tuple of actions:
one action that modifies the environment and another that modifies the memory.
When the external memory is sufficiently expressive, optimal memoryless policies
yield globally optimal solutions. We develop the theory for memory-augmented
environments and formalize the RL problem. Previous attempts to use external
memory in the form of binary memory have produced poor results in practice. We
propose and experimentally evaluate alternative forms of k-size buffer memory
where the agent can decide to remember observations by pushing (or not) them
into the buffer. Our memories are simple to implement and outperform binary and
LSTM-based memories in well-established partially observable domains.

1 INTRODUCTION

Reinforcement Learning (RL) agents learn policies (i.e., mappings from observations to actions) by
interacting with an environment. RL agents usually learn memoryless policies, which are policies
that only consider the last observation when selecting the next action. In fully observable environ-
ments, learning memoryless policies is an effective strategy. However, RL methods often struggle
when the environment is partially observable. Indeed, partial observability is one of the main chal-
lenges to applying RL in real-world settings (Dulac-Arnold et al., 2019).

When faced with partially observable environments, RL agents require some form of memory to
learn optimal behaviours. This is usually accomplished using k-order memories (Mnih et al., 2015),
recurrent networks (Hausknecht & Stone, 2015), or memory-augmented networks (Oh et al., 2016).

In this paper, we study a lightweight alternative approach to tackle partially observability in RL.
The approach consists of providing the agent with an external memory and extra actions to control
it (as shown in Figure 1). The resulting RL problem is still partially observable, but if the external
memory is sufficiently expressive, then optimal memoryless policies will also yield globally optimal
solutions. Previous works that explored this idea using external binary or continuous memories
produced poor results with standard RL methods (Peshkin et al., 1999; Zhang et al., 2016). Our
work shows that the main issue is with the type of memory they were using, and that RL agents are
capable of learning effective strategies to utilize external memories when structured appropriately.

In what follows, we

• formalize the RL problem in the context of memory-augmented environments and study the
theory behind memoryless policies that jointly decide what to do and what to remember;

• propose two novel forms of external memory called Ok and OAk. These k-size buffer memories
generalize k-order memories by letting the agent (learn to) decide whether to push the current
observation into the memory buffer or not;

• empirically evaluate Ok and OAk relative to previously proposed binary (Bk), k-order (Kk), and
LSTM memories (the most widely used approach for partially observable RL).
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Figure 1: A diagram of a Memory-Augmented Environment.

Results show that Ok and OAk memories are usually more sample efficient than LSTM memories,
while being faster to train and trivial to integrate with off-the-shelf RL methods. We therefore
advocate for the adoption of Ok and OAk memories for partially observable RL problems. We end
with a discussion of limitations of Ok and OAk and interesting avenues for future work.

2 PRELIMINARIES

RL agents learn how to act by interacting with an environment. Often these environments are mod-
elled as a Markov Decision Process (MDP). An MDP is a tupleM = 〈S,A,R, p, γ, µ〉, where S is
a finite set of states, A is a finite set of actions, R is the finite set of possible rewards, p(s′, r|s, a)
defines the dynamics of the MDP, γ is the discount factor, and µ is the initial state distribution.
The interaction is usually divided into episodes. At the beginning of an episode, the environment is
set to an initial state s0, sampled from µ. Then, at time step t, the agent observes the current state
st ∈ S and executes an action at ∈ A. In response, the environment returns the next state st+1 and
immediate reward rt sampled from p(st+1, rt|st, at). The process then repeats until the end of the
episode (when a new episode will begin) or potentially keep going for ever in non-episodic MDPs.

Agents select actions according to a policy π(a|s)—which is a probability distribution from states
to actions. The prediction task is to estimate how “good” a policy is, where the policy is evalu-
ated according to the expected discounted return in any state. This can be done by estimating the
action-value function qπ of policy π, where qπ(s, a) represents the expected discounted return when
executing action a in state s and following π thereafter. Formally,

qπ(s, a) = Eπ

[ ∞∑
k=0

γkrt+k

∣∣∣∣∣St = s,At = a

]
,

where Eπ[·] denotes the expected value of a random variable given that the agent follows policy π,
and t is any time step. qπ is usually estimated using Monte Carlo samples (Barto & Duff, 1994)
or TD methods (Sutton, 1988). The control task involves finding the optimal policy π∗. This is the
policy that maximizes the expected discounted return in every state. To do so, most RL methods
rely on the policy improvement theorem, which we discuss in Section 5.

We use a Partially Observable Markov Decision Process (POMDP) formulation to model partial
observability. A POMDP is a tuple P = 〈S,O,A,R, p, ω, γ, µ〉, where S, A, R, p, γ, and µ
are as in the MDP above, O is a finite set of observations, and ω(o|s) is the observation probability
distribution. Interacting with a POMDP is similar to an MDP. The environment starts from a sampled
initial state s0 ∼ µ. At time step t, the agent is in state st ∈ S, executes an action at ∈ A, receives
an immediate reward rt, and moves to st+1 according to p(st+1, rt|st, at). However, the agent does
not observe st directly. Instead, the agent observes ot ∈ O, which is linked to st via ω(ot|st).

3 RELATED WORK

Early attempts to perform RL in partially observable domains focused on learning memoryless poli-
cies. Jaakkola et al. (1995) identified an RL algorithm that was guaranteed to converge to locally
optimal memoryless policies, and similar guarantees have been given in the POMDP literature (Li
et al., 2011). Unfortunately, Singh et al. (1994) showed that an optimal memoryless policy π∗(at|ot)
can be arbitrarily worse than the optimal history-based policy π∗(at|o0, a0, . . . , ot) for POMDPs.

Different approaches have been proposed to learn history-based policies using some form of state-
approximation technique. For example, model-based RL methods learn a state representation of
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histories that enables Markovian prediction of future observations, rewards, or expected returns, and
then learns policies over that representation (McCallum, 1996; Littman et al., 2002; Poupart & Vlas-
sis, 2008; Doshi-Velez et al., 2013; Ghavamzadeh et al., 2015; Zhang et al., 2019; Toro Icarte et al.,
2019). The focus of our work is on model-free methods, which are the state of the art for solving par-
tially observable problems from low-level inputs (such as images). In model-free RL, history-based
policies are approximated using recurrent neural networks (Hausknecht & Stone, 2015; Mnih et al.,
2016; Wang et al., 2016; Jaderberg et al., 2016), or some form of memory-augmented neural net-
work (Oh et al., 2016; Parisotto & Salakhutdinov, 2017; Khan et al., 2017; Hung et al., 2018). They
are usually trained using policy gradient methods. These approaches are computationally expensive
because they require the backpropagation of gradients through the history of observations and ac-
tions for learning history-based policies. In comparison, our approach is much more lightweight –
being faster to train than LSTMs and generally having better sample complexity.

We note that it is possible to learn memoryless policies that optimally solve POMDPs. The trick
is to give the agent a (large enough) memory and extra actions to write to it. From the agent’s
perspective, it learns a standard memoryless policy from observations to actions, but the observations
now include the state of the memory, and the actions include options for how to alter the memory.
The main purpose of our work is to resurrect this simple idea by understanding why previous work
were unable to make it work. We also proposed a unified framework to study agents with external
memories and two novel memories that outperform existing forms of external memories.

Concretely, the idea of providing some form of external memory to an agent and actions to modify
it goes back to Littman (1993), who discussed a hypothetical agent that could learn to control an ex-
ternal binary memory in support of solving partially observable tasks. Peshkin et al. (1999) reported
the first empirical results using tabular RL to learn memoryless policies over such binary memories.
While the results were promising in some small environments that required only one bit of external
memory to be solved, they did not scale to more complex domains. After Peshkin et al. (1999),
there was not much work trying to push this line of research forward. We believe that the reason is
that RL agents cannot reliably learn to control binary memories (as shown in our results). That said,
there is one recent work that has further explored the idea of modifying external memories using
actions. Zhang et al. (2016) proposed to use continuous memories, where each element in the array
was a floating point number, instead of binary memories. However, they learned the memoryless
policies using imitation learning and pointed out that standard RL methods did not work because the
reward signal was insufficient supervision for the agent to understand how to appropriately control
the memory. One contribution of our work is to advance our understanding of methods that provide
external memory to standard RL agents, and to show that they can work well in practice.

Our work is also related to neural Turing machines (NTM). The idea behind NTM is to provide an
external memory to neural networks which they can write to and read from (Graves et al., 2014). All
their components are differentiable and, hence, they can be trained end-to-end using gradient descent
and a training set of input and output examples (i.e., they solve a supervised learning problem).
Zaremba & Sutskever (2015) proposed a variation of NTMs where they used the Reinforce algorithm
to control how to move the head that reads and write over a memory tape – which can be seen as
a case where an RL agent learns to (partially) control an external memory. That said, their overall
system still solves a supervised learning problem as it requires the supervision coming from input
and output examples to train the rest of the components in the NTM.

4 AGENTS WITH EXTERNAL MEMORY

In this section, we formally define what it means to provide external memory to an agent, and
describe several forms of external memory. We will use the following problem to aid explanation:
Example 4.1 (the gravity domain (Toro Icarte et al., 2019)). The gravity domain, shown in Figure 2,
consists of an agent (purple triangle), a cookie, and a button. The agent can move in the four
cardinal directions and receives a reward of 1 when it eats the cookie. Doing so ends the episode.
There is an external force pulling the agent down—i.e., the outcome of the “move-up” action is
a downward movement with probability 0.9—which can be turned off (or back on) by pressing the
button. Every episode begins with the agent in the bottom left corner and the external force on.

The optimal policy for this problem is to first press the button and then to go to the cookie. Since
the agent cannot observe the force, optimal behaviour requires memory of the state of the button,

3



Under review as a conference paper at ICLR 2021

gravity domain q-learning

0.2 0.4 0.6 0.8 1

0

2

4

6

8

Training steps (in millions)

A
v
g
.
re
w
a
rd

5-step actor-critic

2 4 6 8 101214161820

0

2

4

6

8

Training steps (in millions)

A
v
g
.
re
w
a
rd

Memories:
K1
B1
O1
OA1
None

Figure 2: Experiments in the gravity domain. We reported the avg. reward per 100 steps.

meaning that no memoryless policies can solve this problem optimally. However, suppose that the
agent was given a single bit that they could write to on every step using the special actions write-1
and write-0. This memory can then be used to record the state of the button, and so an optimal
memoryless policy for this augmented problem will optimally solve the gravity domain.

Figure 1 shows a generalization of this idea. From the agent’s perspective, they are, as usual, per-
forming actions in an environment and receiving observations and rewards in return. However, they
are now interacting with a memory-augmented environment—which consists of a sub-environment
(i.e., the original POMDP environment) and a memory. The memory receives an action w (selected
by the agent) and local information coming from the sub-environment (o, a, r, o′) to update its in-
ternal state to m′. We formalize these external memory modules as follows:

Definition 4.1 (external memories). Let P = 〈S,O,A,R, p, ω, γ, µ〉 be a POMDP. An external
memory for P is a tuple MP = 〈M,W,Γ, η〉, where M is a finite set of memory-states, W is a
finite set of memory-writing actions, Γ(m′|m,w, o, a, r, o′) is the memory-writing distribution, and
η is the initial memory-state distribution.

An external memory module defines the set of possible memory configurations (M ) and how the
agent can manipulate that memory (W and Γ). In the one-bit example for the gravity domain, M
consists of the two possible values of the bit (0 or 1), W consists of the two possible write options of
the bit (0 or 1), and the memory-writing distribution Γ updates the bit of memory to 0 or 1 depending
on which action was selected. We now define a memory-augmented environment as follows:

Definition 4.2 (memory-augmented environments). A memory-augmented environment is a tuple
E = 〈P,MP〉 where P is a POMDP andMP is an external memory for P .

The interaction between an agent and a memory-augmented environment E = 〈P,MP〉 is the same
as with the original environment, just with an augmented observation and action space. At the
beginning of each episode, an initial state s0, observation o0, and memory state m0, are sampled
according to s0 ∼ µ, o0 ∼ ω(o0|s0), and m0 ∼ η, respectively. At time step t, the agent observes
ōt = 〈ot,mt〉 and executes an action āt = 〈at, wt〉 ∈ A × W in E . Consequently, the sub-
environment samples an immediate reward rt and the next state st+1 according to p(st+1, rt|st, at).
The sub-environment also samples the next observation ot+1 ∼ ω(ot+1|st+1). The memory state is
then updated to mt+1 according to Γ(mt+1|mt, wt, ot, at, rt, ot+1). Finally, the agent receives the
immediate reward rt and the next observation ōt+1 = 〈ot+1,mt+1〉, and the process repeats.

Any standard RL algorithm can be used to find a memoryless policy for a given memory-augmented
environment E = 〈P,MP〉. We note that the optimal memoryless policy for E must be at least as
good as the optimal memoryless policy for the original POMDP P . This is because E and P share
a reward function, and the agent can always choose to ignore the memory. That said, if the external
memory moduleMP is “expressive enough,” then optimal memoryless policies for 〈P,MP〉 will
be just as good as the optimal policy for P . This is shown formally in Appendix A.2.

4.1 EXTERNAL MEMORY MODULES

Let us now consider several examples of external memory modules. We begin by showing how
binary memories (Littman, 1993; 1994; Peshkin et al., 1999) can be expressed using this formalism.
We use the notation Bk to refer to a binary memory of k bits:

4



Under review as a conference paper at ICLR 2021

Definition 4.3 (Bk memories). Let P = 〈S,O,A,R, p, ω, γ, µ〉 be a POMDP. A Bk memory for P
is a k-bit external memoryMP = 〈M,W,Γ, η〉, where M = {0, 1}k, W = {0, 1}k, η(0k) = 1
(zero otherwise), and Γ(m′|m,w, o, a, r, o′) = 1 if and only if m′ = w (zero otherwise).

Bk memories are especially attractive given how flexible and expressive they are. Unfortunately,
learning to control Bk memories is difficult. Figure 2 shows the performance of tabular q-learning
(Watkins & Dayan, 1992) and 5-step actor-critic (Grondman et al., 2012) in the gravity domain
using different types of external memories. In the figure, None represents not using any external
memory, and K1, O1, and OA1 are explained below. Notice that the agent using q-learning or 5-step
actor-critic was unable to learn how to use the B1 memory to consistently solve the gravity domain.

There are two main problems with Bk memories. First, the action space grows exponentially with
k. Second, Bk memories can be too flexible in that the agent can modify the memory arbitrarily
and irrespective of what has actually happened, and thereby completely alter what the agent believes
about its current situation. For example, recall that in the gravity domain, the agent should use the
memory to record whether gravity is on (0) or off (1). However, if the agent incorrectly decides
to record that the gravity is off prematurely (i.e., before touching the button), it will believe it has
transitioned from a state with low expected reward (where it first has to go to the button) to a state
with high expected reward (where the agent wrongly believes that it can go directly to the cookie
without any opposition from gravity). This can lead to an unstable learning process, as shown below.

The main motivation behind our proposed Ok memories is to alleviate these issues. Ok memories
are a generalization of k-order memories, which are buffers of a fixed size that contain the last k
observations. We refer to k-order memories as Kk memories, where the second ‘k’ indicates the
size of the buffer. We formally describe them as external memories in Appendix A.3. Note that K1
represents a 2-order memory since actions are taken over 〈o,m〉. The main disadvantage of k-order
memories is that they do not allow the agent to remember events that occurred more than k steps
in the past. Ok memories solve this issue by letting the agent decide whether to push the current
observation into the k-order buffer or not. Since the agent can only push into the buffer observations
that did occur, Ok memories are unable to imagine events that have not yet happened.
Definition 4.4 (Ok memories). Let P = 〈S,O,A,R, p, ω, γ, µ〉 be a POMDP. An Ok memory for
P is a memory buffer (of size k) MP = 〈M,W,Γ, η〉, where M = (O ∪ {∅})k, W = {>,⊥},
η(∅k) = 1 (zero otherwise), and Γ(m′|m,w, o, a, r, o′) = 1 if w = ⊥ and m′ = m, or w = >,
m = 〈o1, o2, · · · , ok〉, and m′ = 〈o2, · · · , ok, o〉 (zero otherwise).

Ok memories have strong empirical performance in the gravity domain (see Figure 2), outperform-
ing B1 and K1. That said, Ok memories are insufficient in domains where the history of actions
matters. For such domains, we propose OAk memories. An OAk memory is similar to an Ok mem-
ory but when the agent chooses to push to its buffer, the information includes the current observation
and the action that is executed in the sub-environment. OAk memories are defined in Appendix A.3.

We note that optimal memoryless policies over Bk, OAk, Ok, and Kk will optimally solve the
original POMDP for some value of k, under some assumptions. This is shown in Appendix A.4.

5 LEARNING POLICIES IN MEMORY-AUGMENTED ENVIRONMENTS

The objective of this section is to understand the theory behind learning memoryless policies over
memory-augmented environments and to provide insights into why Ok and OAk memories tend to
perform better than Bk memories. We begin with the following example.
Example 5.1 (a recall task). The recall task is a partially observable environment with only one
possible observation, o (i.e., all states appear the same), and three actions, a1, a2, and a3. The
episode ends after performing three actions. If the agent executes actions a1, a2, and a3 (in that
order), it gets a reward of 1; otherwise it gets a reward of 0.

The purpose of the recall task is to show that even if a memoryless policy for a memory-augmented
environment is globally optimal, the memory-augmented environment itself might not be an MDP.
Figure 3 shows a transition diagram for the recall task using an OA1 memory. Since the observa-
tion is always the same, the different states that the agent encounters only differ by the state in the
memory. In the diagram, nodes represent the memory states and the transitions show how the mem-
ory is updated by the agent’s actions. Note that node i represents that the memory buffer contains
〈o, ai〉 and that the buffer starts empty (∅). For the action labels, the first number indicates the action
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Figure 3: Performance of a greedy policy every 10, 000 training steps in the recall task.

number in the sub-environment (1, 2, or 3). The second character represents the memory action.
For instance, 2> represents that the agent executed a2 in the sub-environment and saved that action
into the memory buffer. The label o/w stands for otherwise. The blue arrows show a deterministic
memoryless policy that optimally solves this problem. That is, execute 1>, then 2>, and finally 3>.

Notice that this memory-augmented environment has a memoryless policy that is optimal for the
original POMDP, but it is not an MDP. The reason is that the reward given by the bottom transition
3> will be 0 or 1 depending on the history. If the agent follows the blue path, it gets a reward of one.
If the agent follows the red arrow, it gets a reward of zero. Something similar occurs when using
B2 memory, which is the smallest Bk memory that can encode an optimal policy for this task. This
“non-Markovianess” impacts the performance of RL agents that explicitly exploit the Markovian
assumption. For example, if we run q-learning and evaluate the performance of the greedy policy
(i.e., without exploration) every 10, 000 steps, we see that q-learning does not converge. Instead,
q-learning jumps between an optimal policy and a zero reward policy, as shown in Figure 3.

Now that we know that memory-augmented environments are not MDPs, we focus on proving that
they are POMDPs. Such a proof can be found in Appendix A.1 and has important repercussions. In
particular, all the theory for learning memoryless policies for POMDPs (Littman, 1994; Singh et al.,
1994; Jaakkola et al., 1995; Li et al., 2011; Azizzadenesheli et al., 2018) also applies to memory-
augmented environments. We explore this further in two parts: the prediction problem and the
control problem. We then discuss the practical implications that follow from the theory.

5.1 HOW TO EVALUATE POLICIES IN MEMORY-AUGMENTED ENVIRONMENTS

For a given POMDP P and a memoryless policy π(a|o), the policy prediction problem consists of
estimating qπ(o, a). Here, qπ(o, a) is defined over observations and represents the expected dis-
counted return when executing action a given observation o (at any time step t) and following π
thereafter: qπ(o, a) = Eπ

[∑∞
k=0 γ

krt+k
∣∣Ot = o,At = a

]
. It is known that Monte-Carlo estimates

are guaranteed to converge to the real values of qπ(o, a), though they do have high variance. In
contrast, TD estimates have lower variance but might not converge to qπ(o, a) (Singh et al., 1994).

Failing to correctly estimate qπ(o, a) is the reason behind q-learning’s instability in the recall task
(Figure 3). For instance, let π be the optimal policy represented by blue arrows in OA1, then the
real q-value for the red arrow qπ(∅, 2>) is zero (the agent gets no reward if it executes a2 in the first
action). However, a one-step TD estimate would converge to qπ(∅, 2>) = 0 + γqπ(2, 3>) = γ.
This is a problem since now qπ(∅, 2>) > qπ(∅, 1>) = γ2 (for γ ∈ (0, 1)), and so q-learning will
move from the current optimal policy π to the zero reward policy that executes 2> in ∅. We refer to
these types of transitions as non-Markovian shortcuts. Note that, as Figure 3 shows, the B2 memory
has more non-Markovian shortcuts than OA1. This is why q-learning over B2 is more unstable
than q-learning over OA1 in this domain. More generally, we would expect that Bk memories
introduce more non-Markovian shortcuts than OAk memories since they are more flexible, which
could partially explain the better empirical performance of OAk and Ok memories.

There are two approaches that can mitigate this problem. The first is to use n-step TD estimates,
with a large enough value of n. As Figure 4 shows, the performance of 20-step actor-critic in the
gravity domain is far superior to 5-step actor-critic. The second is to increase the size of the memory,
since doing so tends to remove non-Markovian shortcuts. This is also shown in Figure 4, as 5-step
actor-critic performs better when using O2 or OA2, than when using O1 or OA1.
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Figure 4: Experiments in the gravity domain. We reported the avg. reward per 100 steps.

5.2 HOW TO IMPROVE POLICIES IN MEMORY-AUGMENTED ENVIRONMENTS

We now focus our attention on the second part of the problem: how to use q-value estimates to find
better policies. To do so, most RL algorithms exploit the policy improvement theorem. For MDPs,
this theorem guarantees that updating the current policy π by any amount towards the greedy policy
τ(s) = arg maxa∈A qπ(s, a) will lead to better policies (Watkins, 1989; Sutton & Barto, 2018).

When learning memoryless policies for POMDPs, it is known that the policy improvement theorem
only works locally (Jaakkola et al., 1995). To see why, note that the q-values over observations can
be written in terms of q-values over states: qπ(o, a) =

∑
s∈S Pπ(s|o)qπ(s, a), for all o ∈ O, a ∈ A

(Singh et al., 1994). Here, Pπ(s|o) is the probability of being in state s given that the observation
is o (at any time step), when following policy π. Intuitively, the policy improvement theorem does
not work generally here because moving π(o) towards τ(o) = arg maxa∈A qπ(o, a) increases the
expectation over qπ(s, a) without considering how Pπ(s|o) might change. Conversely, the policy
improvement theorem works locally because updating π by a small amount will also only have a
small effect on Pπ(s|o), making such a difference insignificant. Therefore, a policy learning method
that takes small update steps is guaranteed to converge to locally optimal memoryless policies—
explaining why actor-critic converges smoothly in the gravity domain (Figure 2). Unfortunately,
convergence to optimal memoryless policies is not guaranteed for general POMDPs.

Since memory-augmented environments are a form of POMDP, this local convergence guarantee
also applies to them. As such, if the memory can represent the optimal policy, then that solution
will be stable given accurate q-value estimations. This raises the question of what conditions for
memory would guarantee convergence to a globally optimal memoryless policy. To investigate this
topic, we considered an idealized version of Jaakkola et al. (1995)’s approach. This agent starts from
a random policy π and uses an oracle to compute qπ(o, a) for all o ∈ O and a ∈ A. Then, it moves
π(o) towards arg maxa∈A qπ(o, a) a small step δ for all o ∈ O, and repeats.

Figure 5 shows the behaviour of this algorithm on a variant of the recall task. The rewards were se-
lected to encourage convergence to suboptimal solutions (more details in Appendix B). In this envi-
ronment, OA1 and B1 are enough to encode a memoryless policy that is globally optimal. However,
note that OA1 converges to a suboptimal solution. Therefore, memory-augmented environments
might converge to suboptimal solutions even if the memory is expressive enough to encode globally
optimal policies. We do note that this problem vanishes as we increase the size of the memory in
this domain. Unfortunately, convergence to an optimal memoryless policy cannot be guaranteed,
even for memories that can model the belief states, as we prove for Bk in Appendix C.

5.3 SUMMARY: FROM THEORY TO PRACTICE

The theory suggests that the best approaches for learning effective memoryless policies in memory-
augmented environments are methods that exploit the policy improvement theorem locally and eval-
uate policies using Monte-Carlo estimates (or n-step TD methods), such as n-step actor-critic, A3C
(Mnih et al., 2016), or PPO (Schulman et al., 2017). Our empirical evidence also suggests the use of
Ok or OAk memories over Bk memories. While the core of our experimental analysis uses PPO, we
also tested pure TD methods, including Sarsa(λ) (Seijen & Sutton, 2014) and DDQN (Van Hasselt
et al., 2016). Those results, which are shown in Appendix D.6, also favor Ok memories. Finally,
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Figure 5: Tabular experiments in a variation of the recall task (details in Appendix B).

note that integrating external memories into existing RL toolkits is trivial. For instance, it takes less
than 40 lines of code to integrate each external memory into OpenAI gym (Brockman et al., 2016).

6 EXPERIMENTAL EVALUATION

We ran experiments on a variety of environments with different types of external memory, including
our new Ok and OAk memories, as well as the existing k-order memories (Kk) (Mnih et al., 2015)
and binary memories (Bk) (Littman, 1993). Below, we present results when using PPO (Schulman
et al., 2017) and these memories. We also experimented with using no memory (None) and when
using an LSTM. Figure 6 shows the results. Each line is the average reward per episode over 30 runs
and the shadow area represents half a standard deviation. Details of the domains, hyperparameters,
and network architectures can be found in Appendix D. We will release our code upon publication.

The left column shows results in the Hallway environments. These environments have been shown
to be difficult for PPO with LSTM-based memory in previous work (Toro Icarte et al., 2019) and,
indeed, we were also unable to get PPO with LSTMs to perform any better than a random policy. In
contrast, PPO with OA6 and O6 memories is able to solve these tasks.

The middle column shows results in the MiniGrid environment (Chevalier-Boisvert & Willems,
2018). We experimented with the RedBlueDoors and MemoryS7 environments because they were
specifically designed to test the agent’s memory capabilities. We also decreased the agent’s field of
view from 8x8 to 3x3 cells to make these problems more challenging. In both cases, O3 and OA3
perform best, as they consistently converge to good solutions on all runs. In contrast, the LSTM
performance was unreliable: we note that around half of the LSTM runs converged to poor policies.

The previous results used feed-forward networks for function approximation in grid-like domains.
To test our approach in visually complex domains using convolutional networks, we also experi-
mented with two Atari games: Pong and Seaquest. For these domains, we only gave the agent one
frame of the game at a time (aside from the current memory state) and followed Machado et al.
(2018)’s recommendations for making the environment stochastic. These domains are almost fully-
observable, so it is unreasonable to expect Ok, Bk, or OAk to outperform a k-order memory. Still,
O3 has comparable performance to K3 in Pong and outperformed LSTMs in Seaquest. This shows
that Ok memories can work well in visually complex domains. Note that OA3 performs well in
Atari when trained by DDQN (see Appendix D.6) but it does not when using PPO.

Finally, we note that learning memoryless policies is usually faster than learning history-based poli-
cies. In fact, training PPO with an Ok memory was between 1.06 to 9.85 times faster than training
PPO with an LSTM when using CPUs and between 1.71 to 2.94 times faster when using GPUs. The
complete list of speedups can be found in Appendix D.5.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORKS

Partial observability is a major challenge when applying RL in the real world. The most popular
approaches for tackling partial observability are k-order memories and recurrent neural networks.
These approaches are simple to implement, have strong empirical performance, and can be used
off-the-shelf, without extra coding effort. The idea of allowing an agent to modify an external mem-
ory using primitive actions is similarly attractive since it can be easily implemented and combined
with any RL method. Unfortunately, historically, such techniques have not worked well in practice
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Figure 6: Results over partially observable benchmarks using PPO and different memories.

(Peshkin et al., 1999; Zhang et al., 2016). We revisited this idea and contributed a theoretical frame-
work and new types of external memories. Notably, these memories outperformed k-order memories
(Mnih et al., 2015), binary memories (Peshkin et al., 1999), and LSTM memories (Hausknecht &
Stone, 2015) in most of our experiments – and were faster to train than LSTMs.

We view Ok and OAk memories as the first step towards studying more expressive forms of mem-
ories. Ok and OAk are limited by the size of their buffers and that the agent can only push obser-
vations into the buffer. This restricts the problems that can be solved. For instance, Ok memories
cannot keep track of whether the current time step is odd or even (which a B1 memory could do). We
believe that many of the limitations of Ok memories can be overcome by letting the agent determine
a position in the buffer in which to save (or remove) an observation or alternatively by training an
LSTM policy to control an Ok memory. It will also be interesting to study existing forms of memo-
ries in the context of memory-augmented environments. For instance, McCallum (1996) showed the
effectiveness of tree-based memories in model-based RL and tape-like memories and stacks have
worked well in supervised learning (Joulin & Mikolov, 2015; Zaremba & Sutskever, 2015).

Another avenue for future work is to further study the theory behind memory-augmented environ-
ments. We focused our analysis on the POMDP literature, but it is known that all theoretical guar-
antees given for function approximation in RL also apply to partial observability (Sutton & Barto,
2018, Chapter 17.3). Although the main conclusions that can be drawn from that body of work are
similar to those described in Section 5.3, some recent works provide some interesting guarantees.
For instance, the non-delusional q-learning algorithm, while impractical, is guaranteed to converge
to globally optimal memoryless policies in memory-augmented environments (Lu et al., 2018).

8 CONCLUDING REMARKS

This work presented a lightweight approach to tackling partially observable RL. We provided the
agent with an external memory and extra actions to write to it, and then used RL to learn a memo-
ryless policy that jointly decides what to do and what to remember. This idea has been around since
the 90s, but this is the first work to show how to make it work well in practice. The key step was to
study the theory behind memory-augmented environments and to use that theory to propose novel
forms of memories that support learning. Using the same RL agent, our external memories outper-
formed LSTM memories while being faster to train and trivial to implement. Our results suggests a
broad array of topics for future exploration in the theory and practice of partially observable RL.
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A FORMAL ANALYSIS

A.1 MEMORY-AUGMENTED ENVIRONMENTS AS POMDPS

In this section, we show how to define memory-augmented environments as POMDPs. Given a
memory-augmented environment E = 〈P,MP〉, where P = 〈S,O,A,R, p, ω, γ, µ〉 is a POMDP
and MP = 〈M,W,Γ, η〉 is an external memory module for P , we define the POMDP P ′ =
〈S′, O′, A′, R′, p′, ω′, γ′, µ′〉 that corresponds to memory-augmented environment E = 〈P,MP〉
as follows:

• S′ = S ×M ×O
• O′ = M ×O
• A′ = A×W
• p′(〈s′,m′, o′〉, r|〈s,m, o〉, 〈a,w〉) = p(s′, r|s, a)Γ(m′|m,w, o, a, r, o′)ω(o′|s′)

• ω′(〈m′, o′〉|〈s,m, o〉) =

{
1 if m′ = m and o′ = o

0 otherwise

• R′ = R

• µ′(s,m, o) = µ(s)η(m)ω(o|s)

Note that O has been included in S′ to ensure the consistency of p′ and ω′ in the case that the next
observation is stored in memory. Note also that, by construction, P ′ is equivalent to E because both
environments generate rewards and observations following the same probability distributions from
the agent’s perspective.
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A.2 THE EXPRESSIVENESS OF AN EXTERNAL MEMORY MODULE

In this section, we show that if an external memory module is expressive enough, then the optimal
memoryless policy for the memory-augmented environment corresponds to an optimal history-based
solution to the original POMDP. We begin with the following definition:

Definition A.1 (memory-update function). Given memory-augmented environment, E = 〈P,MP〉,
where POMDP P = 〈S,O,A,R, p, ω, γ, µ〉 and external memory moduleMP = 〈M,W,Γ, η〉, a
memory-update function for E is defined as f : M ×O ×A→W .

The memory-update function is akin to a deterministic policy for manipulating the memory (and
only the memory). It does not determine how we select environment actions, it only dictates what
memory-writing action to take once an environment action has been selected, given the current
memory state, observation, and the action to be executed. Below, we define a criteria for an external
memory module to be able to represent the optimal history-based policy for a POMDP, through
the existence of a memory-updating function (i.e., a way for manipulating the memory) that can
sufficiently summarize the interaction’s history.

Let H = o0, a0, . . . , at−1, ot be the observation-action history for the original POMDP P . We can
use the memory-update function f to construct a corresponding observation-action history H′ in
the memory-augmented environment, where each oi is replaced by a tuple 〈mi, oi〉 and each ai is
replaced by a tuple 〈ai, wi〉. In particular, we can sample an initial memory state m0 according to
η, set the initial observation in the memory-augmented environment as 〈m0, o0〉, set the first action
as 〈a0, f(m0, o0, a0)〉, and set the next observation as 〈o1,m1〉 where m1 is sampled from Γ. This
process can then be continued until the end of H to create a history H′ for the memory-augmented
environment.

In the analysis below, we will need to refer to the last memory state mt of such a history H′.
However, since η and Γ can be non-deterministic, there may be multiple valid memory-augmented
histories H′ that can be generated in this way for any H. Thus, this generation process may result
in any one of a set of last memory states. For any given history H, we will refer to this set as
Ωf (H) ∈ 2M .

Recall that the optimal policy for a POMDP P = 〈S,O,A,R, p, ω, γ, µ〉 is a function of the history
of an interaction: π∗(at|o0, a0, . . . , at−1, ot). When the POMDP model is available, it can also
be expressed in terms of belief states. A belief state at step t is a probability distribution over
(being in) each of the states in S, defined as bt : S → [0, 1]. The initial belief state is computed
using the initial observation o0: b0(s) ∝ ω(o0|s) for all s ∈ S. The belief state bt+1 is then
determined from the previous belief state bt, the executed action at, and the resulting observation
ot+1 as bt+1(s′) ∝ ω(ot+1|s′)

∑
s∈S p(s, at, s

′)bt(s) for all s′ ∈ S. In this way, the belief state
correctly summarizes the history of an interaction, meaning that the optimal policy for P can then
be written as a policy of the belief states π∗(at|bt). For convenience, we will let b(H) be the belief
state bt for historyH = o0, a0, . . . , at−1, ot.

We can now use the notion of a belief state to define the following:

Definition A.2 (sufficiently expressive). Given a memory-augmented environment E = 〈P,MP〉,
an external memory module MP is sufficiently expressive for P if there exists a memory-
update function f for E such that for any two histories H1 = o10, a

1
0, . . . , a

1
t−1, o

1
t and H2 =

o20, a
2
0, . . . , a

2
i−1, o

2
i where o1t = o2i , the following holds:

if b(H1) 6= b(H2), then Ωf (H1) ∩ Ωf (H2) = ∅

Intuitively, given a memory augmented environment, E = 〈P,MP〉 the external memory module
MP is sufficiently expressive, if there is a way to use it to distinguish between belief states in the
POMDP P . If this holds, then there is a memoryless policy for the memory-augmented environ-
ment that can act differently (as needed) for each individual belief state. Thus, the following holds
immediately:

Proposition A.1. If an external memory moduleMP is sufficiently expressive for P , then the opti-
mal memoryless policy for the memory-augmented environment E = 〈P,MP〉 is equivalent to the
optimal history-based policy for P .
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A.3 FORMAL DEFINITIONS FOR Kk AND OAk MEMORIES

In this section, we formally define k-order memories and OAk memories as external memory mod-
ules. We begin with k-order memories:
Definition A.3 (Kk memories). For POMDP P = 〈S,O,A,R, p, ω, γ, µ〉, a Kk external memory
module for P of size k is defined as MP = 〈M,W,Γ, η〉, where M = (O ∪ {∅})k, W = {>},
η(∅k) = 1 (zero otherwise), and Γ(m′|m,w, o, a, r, o′) = 1 if m = 〈o1, o2, · · · , ok〉 and m′ =
〈o2, · · · , ok, o〉 (zero otherwise).

We now define OAk memories as follows:
Definition A.4 (OAk memories). For POMDP P = 〈S,O,A,R, p, ω, γ, µ〉, an OAk memory for P
is defined asMP = 〈M,W,Γ, η〉, where M = ((O × A) ∪ {∅})k, W = {>,⊥}, η(∅k) = 1 (zero
otherwise), and Γ(m′|m,w, o, a, r, o′) = 1 ifw = ⊥ andm′ = m, orw = >,m = 〈e1, e2, · · · , ek〉,
and m′ = 〈e2, · · · , ek, (o, a)〉 where ei = (oi, ai) or ei = ∅ (zero otherwise).

A.4 SUFFICIENCY OF Kk, Bk, Ok, AND OAk

In this section, we formally show that the external memory modules described in this work are
sufficiently expressive if the buffer size is large enough:
Proposition A.2. For any POMDP P , the following holds:

1. Bk is sufficiently expressive for P if k ≥ dlog2 |O|e+ dlog2 |A|e+ dlog2 ue, where u is the
maximum number of possible belief states in the set of all histories that end in any given
observation o. That is, u is defined as

u = max
o∈O
|{b(H) | H is a history that ends in o}| (1)

2. OAk is sufficiently expressive for P if the belief state of any history is dependent on only
the last k observation-action pairs.

3. Ok and Kk are sufficiently expressive if the belief state of any history only depends on the
last k observations.

Proof. For the case of Bk, recall that to make a belief state update, we use the last belief state b, the
last observation o, the last action a, and the current observation o′. Thus, we define the memory-
update function to use the binary memory to store the first three of these components. Specifically,
we can assign a unique integer to each of the possible observations, and use the first dlog2 |O|e bits
to store the integer corresponding to o. We will do the same for the actions, and store the integer
corresponding to the last action in the next dlog2 |A|e bits. Finally, we can uniquely assign an integer
to each of the belief states that we could have been in when at o, and we will store that integer in
the next dlog2 ue bits. Given the last belief state, last observation, and last action, the agent will
therefore be able to distinguish between the belief state that they are in currently with observation
o′. Thus, the memory-update function that correctly uses the bits in this way satisfies the conditions
in definition A.2, and so Bk is sufficiently expressive for P . Therefore, the statement holds for Bk.

For the case of OAk, if the belief state only depends on the last k observation-action pairs, then the
memory-saving function that always saves will be able to distinguish between belief states. Thus
OAk is sufficiently expressive for P in this case. An analogous argument then applies for Ok and
Kk in the conditions outlined above.

B VARIATION OF THE RECALL TASK

We proposed a variation of the recall task to study whether OAk memories can converge to subopti-
mal memoryless policies by locally improving its policy, as discussed in Section 5.2. This problem
has only one observation o, two actions A = {0, 1}, and the discount factor is 1. The episode ends
after executing 3 actions. The agent always receives no reward except when executing the last ac-
tion. The final reward depends on the three actions executed during the episode according to the
following table (where ai represents the i-th action):
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(a1, a2) R (a1, a2) R
(0, 0) −5 (2, 0) 0
(0, 1) 0.5 (2, 1) 0.5
(0, 2) 1 (2, 2) −5
(0, 3) 0.5 (2, 3) 0.5
(1, 0) 0 ( 3, 0) 0
(1, 1) 0.5 (3, 1) 0.5
(1, 2) −0.5 (3, 2) −5
(1, 3) 0.75 (3, 3) 0.5
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Figure 7: Variation of the recall task where Bk always converges to a suboptimal policy.

(a1, a2, a3) R (a1, a2, a3) R
(0, 0, 0) 0 (1, 0, 0) -100
(0, 0, 1) 2 (1, 0, 1) -100
(0, 1, 0) 3 (1, 1, 0) -10
(0, 1, 1) 1 (1, 1, 1) -10

While this problem can be optimally solved using an OA1 memory, the ideal agent from Section 5.2
converges to a suboptimal policy. The reason is that an optimal policy would execute action 〈0,>〉
when the memory buffer is ∅, action 〈1,>〉 when the buffer contains 〈o, 0〉, and action 〈0,>〉 when
the buffer contains 〈o, 1〉. However, if the agent, while exploring, executes action 〈1,>〉 in the first
action, then executing 〈0,>〉 from 〈o, 1〉 will give a expected return of -100. As this large penalty
will be considered when estimating qπ(〈o, 1〉, 〈0,>〉), the agent will prefer action 〈1,>〉 over the
optimal action 〈0,>〉 in 〈o, 1〉 – causing the convergence to a suboptimal policy.

C CONVERGENCE TO SUBOPTIMAL SOLUTIONS

In this section, we show that having a sufficiently expressive external memory module is not enough
to guarantee that a policy-improvement based algorithm will find a memoryless policy that is optimal
for the original POMDP. We do so by showing that the Jaakkola et al. (1995) algorithm will get
stuck in a local minimum when using Bk memory, for any value of k, on a variant of the recall
task described in Section 5. We refer to this problem as the 4-action recall task. In this case, an
episode consists of 2 steps, and there are four possible actions that can be taken. We denote these
actions as A = {0, 1, 2, 3}. The rewards received at the end of the episode is shown in the table in
Figure 7. That figure also shows (empirically) that a B5 memory converges to a suboptimal policy
in this problem. We also note that the optimal policy is given by selecting action 0 and then action
2. If any other action is taken as the first action, then the optimal action is to take action 3.

We now show that B2 is sufficiently expressive for the 4-action recall task, by identifying a policy
for the task. The memory state will start with a value 00. When the memory is 00, action 0 should
be taken along with the write action 01. Then action 2 should be taken for maximal reward. The
memory write action can be arbitrary at this point since the episode is over. If, however, any action
other than 0 is taken in the initial state when the memory is 00, then the write action should be 11.
In the resulting state, action 3 will be taken along with any arbitrary memory writing action.

We will see that the q-values for the policy that always takes (1, 3) is a local optimum to this problem.
This is shown for B1 in Lemma C.2, and generalized later. As a result, algorithms that follow
a policy improvement scheme can get stuck at this optimum. We show that this can happen when
using an idealized version of the Jaakkola et al. (1995) algorithm, even when starting from a uniform
policy over all actions. This algorithm alternates between policy evaluation and policy improvement.
During policy improvement, the current policy π is moved a step closer to the policy πg that is greedy
on the current q-values of π. That is, for any observation o and action a, the new policy π′ is given
by π′(a | o) = (1−ε)π(a | o)+επg(a | o), where ε is an input parameter where 0 ≤ ε ≤ 1. For our
analysis, we assume that before every policy improvement update, we computed the actual q-values
of the current policy. We refer to this algorithm as the Jaakkola et al. (1995) algorithm with perfect
q-value estimates. For simplicity, we assume the algorithm breaks ties between write actions in
favour of the higher valued binary number (i.e. 1 over 0 or 11 over 10). Under this scenario, we will
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see that a sufficiently expressive external memory module is not enough to guarantee convergence
to a policy that is as good as the optimal history-based policy. This is shown in Theorem C.6

We first prove that this algorithm fails to converge to the optimal policy from the starting state in the
case of B1, and then show how the argument can be extended to any Bk. Let us now introduce some
notation for the case of k = 1. We will use pmaw as short for π(〈a,w〉 | 〈o,m〉) and Qmaw as short for
Eπ[R0 +γR1 + ... | m, a, o, w]. Note that we omit the environment observation o since there is only
one observation in this problem and use a discount factor of 1. We also define pma as the probability
given memory state m of action a marginalized over memory-write actions (i.e. pma0 + pma1).

Lemma C.1. Let bi =
p0i0

1+
∑

j p
0
j0

and ti =
p0i1∑
j p

0
j1

. The q-values for a given policy π for the 4-action
recall task with B1 memory are given by:

Q0
aw =

∑
0≤i≤3

riabi +

1−
∑

0≤i≤3
bi

 ∑
0≤i≤3

pwi rai

Q1
aw =

∑
0≤i≤3

tiria

Proof. We consider the cases of m = 0 and m = 1 separately. Let s∗ denote the initial state of the
POMDP, and s0, s1, s2, s3 as the states reached after performing actions 0, 1, 2, 3 respectively, in the
initial state.

Case m = 0:

Q0
aw =

∑
0≤i≤3

riaPπ[S = si|M = 0] + Pπ[S = s∗|M = 0]Eπ[R0 + γR1 + ...|M = w, S = sa]

=
∑

0≤i≤3
riaPπ[S = si|M = 0] + Pπ[S = s∗|M = 0]

∑
0≤i≤3

pwi rai

Now, let us turn to Pπ[S = si|M = 0]:

Pπ[S = s∗|M = 0] = 1−
∑

0≤i≤3
Pπ[S = si|M = 0]

For each Pπ[S = si|M = 0], we now get the following:

Pπ[S = si|M = 0] =
Pπ[S = si,M = 0]

Pπ[M = 0]
=

p0i0
2

1
2 + 1

2

∑
j∈{0,1,2,3} p

0
j0

= bi

We note that the 1/2 factors come from the fact that if we ran an infinite number of episodes of this
task, half the encountered states would be s∗ (since every episode starts there), and half would be
the result of taking an action in s∗.

By substituting this into the expression above, we see the statement holds in this case.

Case m = 1:

Eπ[R0 + γR1 + ...|M = 1, A = a,W = w] =
∑

0≤i≤3
riaPπ[S = si|M = 1]

Again, when we compute Pπ[S = si|M = 1], we get the following:

Pπ[S = si|M = 1] =
Pπ[M = 1, S = si]

Pπ[M = 1]
=

1
2p

0
i1

1
2

∑
0≤j≤3 p

0
j1

= ti

The 1/2 factors emerge for the same reason as discussed above. Again, with substitution, this
recovers the desired q-value expression.
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Let us now show that the suboptimal policy that selects action 1 when the memory state is 0 and
action 3 when the memory state is 1 is a local optimum:

Lemma C.2. Let πl be the policy for the 4-action recall task with B1 memory with p011 = 1 and
p131 = 1. Then the policy that is greedy on the q-values of πl is π1 itself.

Proof. Consider the q-values of πl given in Lemma C.1. Since bi = 0, Q0
aw simplifies to∑

0≤i≤3 p
w
i rai. Since p13 = 1 and p1i = 0 for i 6= 3, this means that Q0

11 = 1 · r13 = 3/4,
and Q0

a1 = 1 · ra3 = 1/2. Since p01 = 1 and p0i = 0 for i 6= 1, we also have that Q0
a0 = 1/2 for all

a.

Now notice that t1 = 1, and ti = 0 for i 6= 1. As such Q1
aw simplifies to r1a.

Let us now consider the greedy policy πg on these q-values. In the case that the memory state is 0,
the greedy action over Q0

11 = 3/4 and Q0
aw = 1/2 for any a and w where a 6= 1 or w 6= 1 is clearly

to set p011 = 1. In the case that the memory state is 1, the greedy action is the one that maximizes
r1a which is a = 3 as that gives 3/4. Therefore, πg will set p131 = 1 since it tiebreaks in favour of a
higher memory write actions. Since πg is clearly the same policy as πl, the statement is true.

We will now show that the Jaakkola et al. (1995) algorithm with perfect q-value estimation will con-
verge to this local optimum. We begin with the following lemma, which will used for the inductive
step in the full result.

Lemma C.3. Let ε be a constant such that 0 ≤ ε ≤ 1. Suppose that π is a policy for the 4-action
recall task with B1 memory, such that the policy that is greedy on the q-values of π is πl. Let π̃ be
defined such that for any π̃ = (1− ε)π + επl. Then the policy that is greedy on the q-values of π̃ is
also πl.

Proof. In this proof, we will use Q̃maw for the q-values for π̃. We will similarly define p̃maw, b̃i, and
t̃i as pmaw, bi, and ti were defined above. Notice that p̃011 = (1 − ε)p011 + ε, p̃131 = (1 − ε)p131 + ε,
and p̃maw = (1 − ε)pmaw, otherwise. We will also express p̃w11 = (1 − ε)pw11 + εIw=0 where I is the
indicator function. We now consider the q-values in the two cases of m = 0 and m = 1.

Case m = 0:

We begin by expressing b̃i in terms of bi.

b̃i =
p̃0i0

1 +
∑
j p̃

0
j0

=
(1− ε)p0i0

1 + (1− ε)∑j p
0
j0

1 +
∑
j p

0
j0

1 +
∑
j p

0
j0

=
(1− ε)(1 +

∑
j p

0
j0)

1 + (1− ε)∑j p
0
j0

bi = (1− ε)αbi
(2)

where α = (1 +
∑
j p

0
j0)/(1 + (1− ε)∑j p

0
j0). In addition, we have the following expression:

1−
∑

0≤i≤3
bi =

1 +
∑

0≤j≤3 p
0
j0

1 +
∑

0≤j≤3 p
0
j0

−
∑

0≤i≤3

p0i0
1 +

∑
0≤j≤3 p

0
j0

=
1

1 +
∑

0≤j≤3 p
0
j0

(3)

Clearly, a similar expression exists for 1−∑i b̃i. We will now use these expressions in the following
derivation, which begins with the q-vale expression from Lemma C.1:

Q̃0
aw =

∑
0≤i≤3

riab̃i +

1−
∑

0≤i≤3
b̃i

 ∑
0≤i≤3

p̃wi rai

=
∑

0≤i≤3
riab̃i +

(
1

1 +
∑
j p̃

0
j0

) ∑
0≤i≤3

p̃wi rai

=
∑

0≤i≤3
riab̃i +

(
1

1 + (1− ε)∑j p
0
j0

) ∑
0≤i≤3

p̃wi rai
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=
∑

0≤i≤3
riab̃i + α

(
1

1 +
∑
j p

0
j0

) ∑
0≤i≤3

p̃wi rai

=
∑

0≤i≤3
ria(1− ε)αbi + α(1−

∑
0≤i≤3

bi)
∑

0≤i≤3
p̃wi rai

Recall that p̃wi = (p̃wi0 + p̃wi1). Thus, we can continue the derivation as follows:

Q̃0
aw =

∑
0≤i≤3

ria(1− ε)αbi + α(1−
∑

0≤i≤3
bi)

∑
0≤i≤3

(p̃wi0 + p̃wi1)rai

= (1− ε)α
∑

0≤i≤3
riabi

+ α(1−
∑

0≤i≤3
bi)

εIw=0ra1 + εIw=1ra3 + (1− ε)
∑

0≤i≤3
(p̃wi0 + p̃wi1)rai


= (1− ε)α

 ∑
0≤i≤3

riabi + (1−
∑

0≤i≤3
bi)

∑
0≤i≤3

pwi rai

+

+ εα(1−
∑

0≤i≤3
bi) (Iw=0ra1 + Iw=1ra3)

= α

(1− ε)Q0
aw + ε(1−

∑
0≤i≤3

bi) (Iw=0ra1 + Iw=1ra3)


Notice that the above is merely a linear combination (with non-negative coefficients) of Q0

aw and
Iw=0ra1 + Iw=1ra3. The remaining scalars do not depend on a or w. Now Q0

aw has its maximum
when a = 1 and w = 1 because this was the greedy action over the q-values of π. We also see that
Iw=0ra1 + Iw=1ra3 has its maximum when a = 1 and w = 1 by the way the reward function is set
up. Thus, the greedy policy over the q-values of π̃ in memory state 0, takes a = w = 1, which is the
same as πl.

Case m = 1:

By Lemma C.1, we have the following:

Q̃1
aw =

∑
0≤i≤3

p̃0i1∑
j p̃

0
j1

ria

=
(1− ε)

(∑
0≤i≤3 p

0
i1ria

)
+ εr1a

(1− ε)∑j p
0
j1 + ε

Recall that Q1
aw had the maximal value for a = 3 and w = 1, since these correspond to the greedy

action in πl. Since the denominator in ti is a constant, this means that the numerator,
∑

0≤i≤3 p
0
i1ria,

takes on its maximum value when a = 3 and w = 1. Further, r1a is maximized for a = 3. Thus, the
numerator in the expression above is maximized when a = 3 and w = 1. Since the denominator is
a constant, Q̃1

aw is also maximized with these values. So the greedy policy on π̃, when m = 1, also
agrees with πl.

Since these are all the possible memory states in B1, the greedy policy for π̃ must also be πl.

We can now use this lemma as the inductive step to prove that the Jaakkola et al. (1995) algorithm
with perfect q-value estimates will converge to this suboptimal policy on the 4-action recall task
when using B1 memory.
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Lemma C.4. The Jaakkola et al. (1995) algorithm with perfect q-value estimates will converge to
a suboptimal policy on the 4-action recall task with B1 external memory, when initialized with a
uniform policy.

Proof. Let ε be the fixed value that the policy is moved towards the greedy policy on every step,
where 0 ≤ ε ≤ 1. The proof is by induction. We will show that on every step of the algorithm, πl
will be the policy that is greedy on the current policy. Thus, on every step, the current policy will
get closer to πl.

Base Case: We begin at the uniform policy πu. Putting the values in to the expressions in Lemma
C.1, we see that the q-values for this policy are

(a,w) m = 0 m = 1
(0, 0) −0.916 −1.25
(0, 1) −0.916 −1.25
(1, 0) 0.2916 0.5
(1, 1) 0.2916 0.5
(2, 0) −1.4583 −2.375
(2, 1) −1.4583 −2.375
(3, 0) −0.47916 0.5625
(3, 1) −0.47916 0.5625

Given the tiebreaking rules defined, we see that the greedy actions are the same as those taken by
πl.

Inductive Step: Assume that the policy that is greedy on the q-values of the current policy π is
equivalent to πl. Thus, the next policy is π̃ = (1 − ε)π + επl. By Lemma C.3, the policy that is
greedy on the q-values of π̃ is also πl.

Thus, from initialization of πu, we see that the on every policy improvement step, the policy will
get closer to πl, which it much reach in the limit. Since this policy is not as good as the best
history-based policy, the statement holds.

One may be tempted to think that adding more memory would solve this problem, i.e., it will allow
the agent to learn a policy that is as good as the optimal history-based policy for mePOMDP P ,
since Bk is sufficiently expressive for k ≥ 2. However, the policy improvement mechanism cannot
guarantee that this is learned. We see this below.
Lemma C.5. The Jaakkola et al. (1995) algorithm with perfect q-value estimates will converge to
a suboptimal policy on the 4-action recall task with Bk external memory, when initialized with a
uniform policy, for any k ≥ 1.

Proof. We generalize the argument in Lemmas C.3 and C.4 to Bk memory. This gives 2k possible
memory states 0, . . . , 2k − 1. We note that in this case, due to tiebreak rules, the locally optimal,
globally suboptimal policy πl is given by p01(2k−1) = pm3(2k−1) = 1 (where m ≥ 1), an pmaw = 0 oth-
erwise. Notice that analogous formulas as given in Lemma C.1 for the q-values can be constructed
for an arbitrary k. In the case of Q0

aw, the expression stays as is, there are just more options for w.
For convenience, we will refer to bi from Lemma C.1 as bki .

In the case of Qnaw for n ≥ 1 (the analogue of Q1
aw in Lemma C.1), the only change is that ti is

replaced by a tni =
p0im∑
i p

0
im

. We note that the reason this has stayed so similar is because there are
only two points of decision-making in this task, and the memory state can only be non-zero in the
second one since it is always initialized to 0.

Now we will prove a similar statement as Lemma C.4: when the Jaakkola et al. (1995) algorithm is
initialized to the uniform policy, the policy improvement step will always move the policy closer to
πl, since πl is the policy that is greedy on the current q-values. The proof is by induction.

Base Case: We begin with the uniform policy. We will proceed by identifying the relation between
various quantities in the case of k = 1 and for an arbitrary k > 1. This will allow us to re-use the
computation performed in the base case of Lemma C.4.
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Notice that because there are always 4 environment actions applicable and 2k memory write actions,
there are 2k+2 possible actions in every state. Thus pmaw = 1/2k+2. Let qmaw = 1/23 be this value in
the case that k = 1. Clearly, pmaw =

qmaw

2k−1 .

Now, let us compare the value of bki relative to b1i (which was bi in Lemma C.1 for the case of k = 1):

bki =
p0i0

1 +
∑
j p

0
j0

=
1

2k−1 q
0
i0

1 + 1
2k−1

∑
j q

0
j0

=
1

2k−1
×

1 +
∑

0≤j≤3 q
0
j0

1 + 1
2k−1

∑
0≤j≤3 q

0
j0

b1i =
βk

2k−1
b1i

where βk = (1 +
∑

0≤j≤3 p
0
j0)/(1 + 1

2k−1

∑
0≤j≤3 p

0
j0).

We will now use this expression, and the fact that the marginalized probabilities pma = qma = 1/4,
to do the following derivation:

Q0
aw =

∑
0≤i≤3

riab
k
i +

1−
∑

0≤i≤3
bki

 ∑
0≤i≤3

pwi rai (4)

=
βk

2k−1
∑

0≤i≤3
riab

1
i + βk

1−
∑

0≤i≤3
b1i

 ∑
0≤i≤3

qwi rai (5)

=
βk

2k−1

 ∑
0≤i≤3

riab
1
i +

1−
∑

0≤i≤3
b1i

 ∑
0≤i≤3

qwi rai

 (6)

+

(
2k−1 − 1

2k−1

)
βk

1−
∑

0≤i≤3
b1i

 ∑
0≤i≤3

qwi rai (7)

We note that the second line follows by a similar identity to one used in expression 3.

The first term in this last expression (ie. on line 6) is just the same as the q-value in the case that
k = 1 is multiplied by a constant. It is therefore maximized by the values a = 1 and w = 1 as
shown in the base case of Lemma C.2. The second term (ie. line 7) is maximized for the average
rewards seen after any first action (since the uniform policy is in use). By inspection, we can see this
happens for a = 1 and it is equal for the different memory writing actions. Thus, by our tie-breaking
definition, the greedy action will be a = 1 and w = 2k − 1 and so the base case holds when the
memory state is 0.

Let us now consider Qmaw for m ≥ 1. Here, the tni are exactly the same as the value of ti in the case
that k = 1, when the uniform policy is in use. So applying the same tie-breaking rules means that
the greedy action is a = 3, w = 2k − 1, as predicted.

Inductive step: We now consider how Bk for k > 1 is updated. For m = 0, we can use the same

argument as used in Lemma C.3, simply replacing εIw=1ra3 with ε
∑2k−1
i=1 Iw=ira3. For m ≥ 1,

we have that Qmaw is updated in the exact same way for m = 2k − 1 as in the proof in Lemma
C.3 for m = 1, and further that 1 ≤ m < 2k − 1 have Q-values which remain unchanged, as the
conditional probability tma of having taken action a on having written m does not change since p0am
are all simply scaled by 1− ε for these values of m. As such, the greedy actions will again be those
given by πl.

Thus, every step of policy improvement during the Jaakkola et al. (1995) algorithm with perfect q-
value estimates with move closer to πl when starting from the uniform policy. Since πl is suboptimal,
the statement is true.

We can now prove our main result: that the Jaakkola et al. (1995) algorithm is not guaranteed
to converge to a policy that is as good as best history-based policy, even when using sufficiently
expressive memory and perfect q-value estimations. This follows from Lemma C.5 and the fact that
B2 is sufficiently expressive for the recall task used in this section.
Theorem C.6. There exists a POMDP P , such that even with a sufficiently expressive external
memory module M, the Jaakkola et al. (1995) algorithm with perfect q-value estimates will not
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converge to the optimal memoryless policy from an initially uniform policy πu, when used on the
memory-augmented environment 〈P,M〉.

Further, another result can be seen from this very same domain, by modifying P .

Proposition C.1. There exists a POMDP P , such that even with a sufficiently expressive external
memory moduleM, the Jaakkola et al. (1995) algorithm with perfect q-value estimates will converge
to a policy that is arbitrarily far from the optimal memoryless policy from an initially uniform policy
πu, when used on the memory-augmented environment 〈P,M〉

Proof. This proof uses the same technique given by Singh et al. (1994). To do so, we merely have
to scale the rewards used in the 4-action recall task by any constant a ≥ 1. Since the ordering of the
action values remains the same, the same arguments will apply. Thus the algorithm will converge
to a policy that receives a

4 less reward than the optimal history-based policy, which can be made
arbitrarily large by choice of a.

The above counterexample P may further give some indication as to why OA-type memory may be
empirically outperforming B-type memory in our experiments. A large part of the reason the above
counterexample fails to hold is because the states after the first action become confounded, as the
agent does not learn to discern, even with arbitrarily large memory, between the different actions to
trigger the storage of a given memory state.

For empirical confirmation of this, see Figure 7 showing B5 converging to πl and OA1 converging to
π∗ in POMDP P . Intuitively, more pre-packaged knowledge in memory, and more structure given
to the agent via the memory write/read mechanism, means the memory-augmented agent has fewer
ways that it can confound itself in learning how to use memory, which is why choosing memory that
comes with more built-in structure helps avoid local minima which are caused by this confusion.

D EXPERIMENTAL EVALUATION

This section provides further details about our experimental section.

D.1 TABULAR EXPERIMENTS IN THE GRAVITY DOMAIN AND RECALL TASK

In the experiments with tabular q-learning, all the memories were tested using the same hyper-
parameters: They explored using ε-greedy with ε = 0.01, the discount factor was 0.95, and the
learning rate was 0.1. We also used an optimistic initialization for the q-values.

In the experiment with n-step actor-critic, all the memories were also tested using the same hyper-
parameters. The discount factor was 0.95. We used a soft-max exploratory policy initialized to a
uniform distribution. The learning rate for the policy was 0.1 and the learning rate for the value
function was 0.001.

D.2 THE HALLWAY DOMAINS

Figure 8 shows an overview of the Hallway environments (Toro Icarte et al., 2019). These environ-
ments consist of three rooms connected by a hallway. The agent (shown as a purple triangle) can
move in the four cardinal directions but its actions fail with a 5% probability. These are partially
observable environments since the agent can only see what it is in the room that it currently occu-
pies, as shown in Figure 8a. What makes these tasks difficult is the hallway. The hallway forces the
agent to observe long sequences of identical observations (multiple times) to solve a task. However,
depending on previous observations, the optimal actions (and expected rewards) will be completely
different when the agent is in the hallway.

The cookie domain is shown in Figure 8b. In this domain, there is a button in the yellow room that,
when pressed, causes a cookie to randomly appear in the red or blue room. The agent receives a
reward of +1 for eating the cookie and may then go and press the button again. Pressing the button
before eating the cookie removes the existing cookie and delivers a new cookie. Each episode is
10, 000 steps long, during which the agent should attempt to eat as many cookies as possible.
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(a) Agent’s view. (b) Cookie domain.
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Figure 8: The hallway environments.

Figure 8c shows another hallway environment, called the keys domain. Here, the agent receives a
reward of +1 when it reaches the coffee. To do so, it must open the two doors (shown in brown).
Each door requires a different key to open it, and the agent can only carry one key at a time. Initially,
the two keys are randomly located in either the blue room, the red room, or split between them.
When the coffee is reached, the agent is relocated in the middle of the hallway, the doors are locked,
and the two keys are randomly placed in the blue and red rooms. Each episode is 10, 000 steps long,
during which the agent should attempt to reach the coffee as many times as possible.

While interacting with the environment, the agent is given a “top-down” view of the world repre-
sented as a set of binary matrices. The first matrix has a 1 in the current location of the agent, the
second has a 1 in only those locations that are currently observable, and the remaining matrices each
correspond to an object in the environment. These remaining matrices only have a 1 at those loca-
tions that were both currently observable and contained that object (i.e., locations in other rooms are
“blacked out”).

We ran experiments using the OpenAI baseline implementation of PPO (Hesse et al., 2017). For O6,
OA6, K6, and B6, the neural network used had 4 fully connected layers with 512 neurons per layer
with tanh activation functions. The LSTM baseline used the same network with an extra LSTM
layer of 512 neurons. All approaches were trained using the Adam optimizer (Kingma & Ba, 2014).

The approaches O6, OA6, K6, and B6 used a learning rate of 1e-5, a clipping range of 0.1, 16
training minibatches per update, and one training epoch per update. The value of n used for the
n-step TD updates was 2048. The rest of the hyperparameters were set to their default values (Hesse
et al., 2017). The LSTM baseline used the same hyperparameters, but with a learning rate of 1e-3
and value of n of 128 for the n-step TD updates. We found these values worked marginally better
than other configurations for the LSTM.

D.3 THE MINIGRID DOMAINS

The MiniGrid domains (Chevalier-Boisvert & Willems, 2018) consist of an agent (red triangle) in a
grid environment. The agent can only see what is near to it, as shown in Figure 9. The environment
contains many objects that the agent can interact with. The agent has 7 actions: turn left, turn right,
move forward, pick up an object, drop the object being carried, toggle (open doors, interact with
objects), and done (to complete a task). We ran experiments on the two environments that were
designed to test the agent’s memory capabilities: RedBlueDoors and MemoryS7.

Figure 9a shows the RedBlueDoors domain. In this environment, the agent is randomly located in a
room with a red and a blue door. The agent is rewarded by opening the red door and then the blue
door (in that order). Concretely, the agent receives a reward of 1 minus a small discount, which is
proportional to the length of the episode, for solving this problem (and zero otherwise). The episode
ends after opening the blue door or after reaching a time limit of 1280 steps.

Figure 9b shows the MemoryS7 domain. In this environment, the agent starts in a small room where
it sees an object and then it has to navigate to the matching object at the other side of the room.
Going to the right object results in a reward of 1. Going to the wrong object results in zero reward.
The episode ends when the agent reaches any of the candidate objects or after reaching a time limit
of 245 steps.
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(a) RedBlueDoors domain. (b) MemoryS7 domain.

Figure 9: The minigrid environments.

(a) Pong domain. (b) Seaquest domain.

Figure 10: Atari environments.

The observations are encoded using one-hot representations. This encoding is a binary tensor that
contains the objects in each tile that the agent can see. The objects are represented by three one-hot
vectors that describe the object’s type, color, and status (e.g., a closed red door).

We ran experiments using the OpenAI baseline implementation of PPO (Hesse et al., 2017). For O3,
OA3, K3, and B3, the neural network used had 5 fully connected layers with 128 neurons per layer
with tanh activation functions. The LSTM baseline used the same network with an extra LSTM
layer of 128 neurons. All approaches were trained using the Adam optimizer (Kingma & Ba, 2014).

The approaches O3, OA3, K3, and B3 used a learning rate of 1e-5, a value of 128 for n in the
n-step TD updates, 8 training minibatches per update, and 4 training epochs per update. The rest
of the hyperparameters were set to their default values (Hesse et al., 2017). The LSTM baseline
used the same hyperparameters, but a learning rate of 1e-3 in the MemoryS7 and 1e-5 in the Red-
BlueDoors. Those learning rates improved the LSTM performance considerably. Note that these
are the hyperparameters recommended by Willems (2019) to train PPO with LSTMs over MiniGrid
environments. The only exception is the learning rate, which we fine-tuned.

D.4 THE ATARI DOMAINS

Figure 10 shows snapshots of two atari games: Pong and Seaquest. The objective of Pong is to
control the green paddle to hit the white ball and beat the opponent (red paddle) by getting the
ball passed the opponent’s paddle. The objective of Seaquest is to control a submarine to shoot
at enemies and rescue divers. We ran experiments using the OpenAI’s interface (Brockman et al.,
2016) of the arcade learning environment (Bellemare et al., 2013). To incorporate some partial
observability, we gave the agent only one frame as input. Hence, the agent cannot know the direction
where objects are moving. Following Machado et al. (2018)’s recommendations, we made these
environments stochastic by including sticky actions with 0.25 probability and forcing the agent to
randomly execute up to 30 no-op actions at the beginning of each episode. We also used three
standard practices introduced by DeepMind (Mnih et al., 2015) for training agents in atari domains.
These are to reduce the input image to a grayscale image of 84x84 pixels, to clip the rewards, and
to end the episode when the agent loses a life. In these domains, we used the same (convolutional)
neural network and hyperparameters proposed by Hesse et al. (2017).
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Table 1: Speedups using PPO. Each value shows the speedup relative to training an LSTM policy.

Domain Memory CPU GPU Domain Memory CPU GPU
Cookie None 10.87 2.32 Keys None 7.40 3.45

K6 8.63 2.43 K6 5.13 2.97
B6 10.13 2.56 B6 5.86 3.09
O6 9.85 2.03 O6 5.37 2.93
OA6 8.24 1.92 OA6 4.32 2.75
LSTM 1.00 1.00 LSTM 1.00 1.00

RBDoors None 2.99 3.15 MemoryS7 None 2.91 2.24
K3 2.26 2.89 K3 2.73 2.78
B3 2.90 2.92 B3 3.01 2.13
O3 2.18 2.94 O3 2.80 2.07
OA3 2.48 2.34 OA3 2.40 2.76
LSTM 1.00 1.00 LSTM 1.00 1.00

Pong None 1.51 2.18 Seaquest None 1.40 2.72
K3 1.31 1.21 K3 1.26 2.11
B3 1.33 1.76 B3 1.19 1.63
O3 1.51 1.71 O3 1.06 2.11
OA3 0.57 0.67 OA3 0.21 0.40
LSTM 1.00 1.00 LSTM 1.00 1.00

D.5 SPEEDUP COMPARISON

Learning memoryless policies for memory-augmented environments is usually faster than learning
history-based policies. To show this, Table 1 reports the relative speedups of PPO using different
forms of external memories with respect to PPO using an LSTM. To compute these values, we ran
each agent for 200, 000 steps. In the CPU experiments, we used 16 logical cores from a AMD Ryzen
Threadripper 2990WX processor. In the GPU experiments, we used one NVIDIA Tesla P100 GPU
and 8 CPUs. In all these cases, learning a memoryless policy for a memory-augmented environment
was faster than learning a history-based policy using an LSTM (sometimes over 10 times faster).
The only exception was OA3 in Atari games – which was surprisingly slow.

D.6 EXPERIMENTS USING TEMPORAL DIFFERENCE METHODS

As discussed in the paper, the POMDP theory suggests that policy learning methods should be pre-
ferred when facing memory-augmented environments. However, we have found that pure temporal
difference methods can still take advantage of Ok and OAk memories. Here we show a few results
using Sarsa(λ) (Seijen & Sutton, 2014) and DDQN (Van Hasselt et al., 2016).

D.6.1 EXPERIMENTS USING SARSA(λ)

This section discusses results using Sarsa(λ) in the gravity domain. Sarsa(λ) is a strong candidate
to learn policies over memory-augmented environments because the value of λ ∈ [0, 1] controls
the degree in which this algorithm behaves as a pure TD method (λ = 0) or a pure Monte Carlo
method (λ = 1). This is an important feature for memory-augmented environments because pure
TD methods might be unable to accurately evaluate policies (see Section 5.1). In fact, Peshkin et al.
(1999) recommended to use Sarsa(λ) with a λ close to 1 to learn policies over Bk memories.

In these experiments, we used ε-greedy exploration (with ε = 0.01), a discount factor of 0.95, and a
learning rate of 0.1. We used an optimistic initialization for the q-values. Figure 11 shows the results
for λ equal 0, 0.5, and 1. Note that Sarsa(λ) learns to control O1 and OA1 memories regardless of
the value of λ. However, the most stable performance was obtained when using Sarsa(0.5) with O1.
Note that Sarsa(1.0) was able to properly control the B1 memory, but its performance was unstable.

D.6.2 EXPERIMENTS USING DDQN

We also ran experiments using the OpenAI baseline implementation (Hesse et al., 2017) of DDQN
(Van Hasselt et al., 2016). Figure 12 shows the results. Each line is the average reward per episode
over 3 runs and the shadowed area represents half a standard deviation. In general, Ok memories
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Figure 11: Tabular experiments in the gravity domain. We reported the avg. reward per 100 steps.
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Figure 12: Results over partially observable benchmarks using DDQN and different memories.

outperform the other forms of memories, except for Pong where K3 performs the best (as expected).
Note that OA3 performs well in Pong, while it did not when trained using PPO.

In the Cookie domain, the neural network used had 6 fully connected layers with 128 neurons
per layer with tanh activation functions. On every step, we trained the network using 64 sampled
experiences from a replay buffer of size 100, 000 using the Adam optimizer (Kingma & Ba, 2014),
a discount factor of 0.99, and a learning rate of 1e-5. The exploratory policy was ε-greedy with
ε = 0.1. The target network was updated every 100 steps.

In the RedBlueDoors domain, the neural network used had 4 fully connected layers with 128 neurons
per layer with tanh activation functions. On every step, we trained the network using 32 sampled
experiences from a replay buffer of size 100, 000 using the Adam optimizer (Kingma & Ba, 2014), a
discount factor of 0.9, and a learning rate of 1e-5. The exploratory policy was ε-greedy with ε = 0.1.
The target network was updated every 100 steps.

In Pong, we used the same (convolutional) neural network and hyperparameters proposed by Hesse
et al. (2017) for DDQN.
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