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ABSTRACT

Simulating human reasoning in open-ended tasks has long been a central aspira-
tion in AI and cognitive science. While large language models now approximate
human responses at scale, they remain tuned to population-level consensus, often
erasing the individuality of reasoning styles and belief trajectories. To advance
the vision of more human-like reasoning in machines, we introduce HugAgent
(HUman-Grounded AGENT Benchmark), which rethinks human reasoning simula-
tion along three dimensions: (i) from averaged to individualized reasoning, (ii)
from behavioral mimicry to cognitive alignment, and (iii) from vignette-based
to open-ended1 data. The benchmark evaluates whether a model can predict a
specific person’s behavioral responses and the underlying reasoning dynamics in
out-of-distribution scenarios, given partial evidence of their prior views. HugAgent
adopts a dual-track design: a human track that automates and scales the think-aloud
method to collect ecologically valid human reasoning data and a synthetic track for
further scalability and systematic stress testing. This architecture enables low-cost,
extensible expansion to new tasks and populations. Experiments with state-of-
the-art LLMs reveal persistent adaptation gaps, positioning HugAgent as the first
extensible benchmark for aligning machine reasoning with the individuality of
human thought. The benchmark, along with its complete data collection pipeline
and companion chatbot, is open-sourced as HugAgent and TraceYourThinking.

Figure 1: Illustration of HugAgent operationalizing “average-to-individual” reasoning adaptation: a
gray robot repeats population consensus, then observes an individual’s nuanced reasoning, gradually
aligns with that individual (turning colorful), and finally adapts under counterfactual updates (e.g.,
with eco-lamps). This illustrates the shift from consensus mimicry to individualized reasoning.

1 INTRODUCTION

Background. Large language models (LLMs) are increasingly used as social simulators—to role-
play individuals, build digital twins, and generate synthetic (‘silicon’) samples for testing social
and policy ideas(Park et al., 2024; Argyle et al., 2023; Xie et al., 2024a; Jiang et al., 2022). These
systems promise scalability and accessibility: instead of recruiting thousands of people, researchers
and practitioners can use LLMs to approximate human perspectives at scale. Yet because LLMs
are pretrained on population-level corpora, they tend to collapse into an “average voice,” capturing
consensus patterns while erasing the individuality of personal histories, beliefs, and reasoning
styles(Wang et al., 2025; Santurkar et al., 2023; Durmus et al., 2023).

This paper asks a core question: can LLMs move from simulating the average to
simulating the individual?

In other words, can they predict how a specific person would think, believe, and reason in new
scenarios, given evidence of their past views? We formalize this broad challenge as average-to-

1Here, “open-ended” refers to the unconstrained nature of the human reasoning protocols (think-aloud
traces) from which our data is derived (Ericsson & Simon, 1993), as opposed to artificial, researcher-authored
vignettes (Martinez, 1999). While our evaluation uses structured formats (e.g., MCQ) for rigor and scalability,
the content anchors in rich, generative human cognition (Guilford, 1967).
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individual reasoning adaptation, a measurable task that targets intra-individual fidelity in human
simulation(formally defined in Section 2).
Motivation. Current benchmarks fail to capture this ability, across three key dimensions. 1 Intra-
agent vs. inter-agent fidelity. Existing pluralistic alignment benchmarks probe group dynamics and
social influence(Sorensen et al., 2024), but neglect whether models can faithfully reproduce reasoning
within a single agent, which is crucial for identity-consistent modeling. 2 Reasoning traces vs.
behavioral outcomes. Large-scale “digital twin” datasets such as Agent Bank (Park et al., 2024) and
Twin-2K-500 (Toubia et al., 2025) primarily assess static behavioral outcomes, but not the evolving
reasoning trajectories of a single individual, which are essential for credible social simulation (Li
et al., 2025). 3 Open-ended vs. vignettes. Commonsense and social reasoning benchmarks (e.g.,
SocialIQA, ATOMIC) often reduce diverse answers to a single ground truth (Sap et al., 2019a;b).
Opinion-oriented datasets likewise emphasize aggregate patterns over individual variation (Argyle
et al., 2023; Santurkar et al., 2023). Theory-of-Mind style tests typically rely on short vignettes with
designer labels (Wimmer & Perner, 1983; Chen et al., 2024), which limits ecological validity and
overlooks first-person reasoning traces that could serve as a richer gold standard (Ying et al., 2025).
Methodology. Motivated by these gaps, we introduce HugAgent, a benchmark that targets intra-
agent fidelity by operationalizing average-to-individual reasoning adaptation as a measurable task.
For Dimension 1 , HugAgent shifts the granularity from inter-agent to intra-agent fidelity: given a
person’s profile and reasoning history, a model must predict both their current belief state and how
it would evolve when presented with new counterfactual evidence. In Dimension 2 , HugAgent
advances beyond static outcomes toward reasoning trajectories. It collects first-person, out-loud
self-reports as gold-standard reasoning traces. These traces offer a deeper target for prediction than
the choice outcomes or survey responses typically captured in lab experiments. To address Dimension
3 , instead of relying on vignette-style benchmarks, HugAgent builds evaluation around open-

ended contexts. We curated real-world topics, beginning with socially and politically controversial
issues that introduce inherent conflicts. Through sustained follow-up questions, the benchmark
probes participants’ deliberate, System 2 style reasoning(Kahneman, 2011; Evans & Stanovich,
2013), transforming the dataset from toy settings into complex, open-ended domains. For a broader
discussion of prior work on personalization, social reasoning, and user modeling in LLMs, we refer
readers to Appendix A.
To build such a benchmark at scale while retaining ecological validity(i.e., the extent to which findings
reflect reasoning as it occurs in real-world contexts), HugAgent combines two complementary tracks.
A synthetic track provides large, controlled datasets where belief shifts and reasoning paths can
be systematically manipulated(Yukhymenko et al., 2024; Xie et al., 2024b). A human-grounded
track applies the same protocol to real human participants, yielding data anchored in individual
variation(Srivastava et al., 2023).
Contributions. Our contributions are fourfold:

• What does it mean to adapt from the average to the individual? We formalize average-
to-individual reasoning adaptation as a measurable task: predicting an individual’s beliefs
and reasoning trajectory from partial self-reported data, rather than collapsing variation into
an “average” label.

• How well do today’s models perform? We introduce HugAgent, a dual-track benchmark
(synthetic + human) that evaluates both Belief State Inference and Belief Dynamics Update.
Initial experiments with state-of-the-art LLMs provide baseline results and reveal adaptation
gaps. https://anonymous.4open.science/r/HugAgent

• Where do they fail, and what can improve? Building on these evaluations, we conduct
detailed error analyses across synthetic agents, human participants, and state-of-the-art
LLMs. This uncovers recurring failure modes and points to concrete avenues for alignment.

• How can such evaluation scale and persist? We release the entire pipeline as open source,
including a semi-structured interview chatbot that elicits fine-grained, “out-loud” reasoning
data on arbitrary topics. This provides the community with previously lacking resources for
capturing not only static answers but also the reasoning processes behind them, ensuring
HugAgent is reproducible, extensible, and sustainable. https://anonymous.4open.
science/r/trace-your-thinking

By making “average-to-individual” reasoning adaptation measurable, HugAgent takes a first step
toward a reproducible framework for studying human simulation at the level of individual reasoning.
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2 PROBLEM SETUP AND THEORETICAL FRAMING

We operationalize individual reasoning through belief states (snapshots) and belief dynamics (updates
under interventions). This framing allows measurable comparison while respecting the diversity of
human reasoning paths.

2.1 FORMALIZATION

We formalize average-to-individual reasoning adaptation by modeling an individual i’s belief state
as a distribution over d factors

bi ≡ Pϕi
(s | Ci), s ∈ Rd,

with context Ci (e.g., demographics, transcripts). Under an intervention It, beliefs evolve via

bt+1
i = U(bti, It), ∆bti = Ebt+1

i
[s]− Ebti

[s].

Here, U formalizes the reasoning dynamics, the mechanism by which an agent updates its internal
state when receiving new information. We use U as a broad abstraction that covers both idealized
normative updates (Section 2.2) and the heuristic transitions seen in human and LLM reasoning.
Tasks. (i) Belief State Inference: infer stance/factor polarity from Ci. (ii) Belief Dynamics Update:
predict stance shifts ∆̂si given (Ci, I). Metrics include accuracy, mean absolute error (MAE), and
rank correlation.

2.2 THEORETICAL ANCHORS: PROBABILISTIC AND CAUSAL PERSPECTIVES

We use normative models only as conceptual anchors rather than methodological assumptions.
(1) Bayesian / PLoT. Idealized revision follows Bayesian conditioning b′i(s) ∝ bi(s) p(I | s),
interpreting language as probabilistic evidence over latent stances. We also draw on the Probabilistic
Language of Thought (PLoT) framework(Goodman et al., 2015), which extends Bayesian inference
to compositional linguistic structures. (2) Structural Causal Models (SCM). Interventions can be
framed as do(I) on a causal graph of values/reasons, yielding counterfactual belief shifts E[s | do(I)].
We additionally represent a person’s value–reason structure as a signed directed graph Gi; we
hypothesize that similarity between such graphs (e.g., via graph edit distance or learned embeddings)
may predict cross-domain transfer, motivating Hypothesis H2 at a conceptual level; empirical tests
of graph similarity remain future work. Human reasoning deviates from these ideals; the anchors
provide principled baselines for analysis.

2.3 GUIDING HYPOTHESES

Grounding HugAgent in theory enables us to frame four guiding hypotheses that serve as lenses for
interpreting empirical results, rather than assumptions to be fully verified:

• H1 (Intra-individual consistency): With sufficient context (e.g., demographic features or
prior transcripts), LLMs can stably capture an individual’s belief state.

• H2 (Cross-domain transfer bound): Reasoning patterns transfer partially across domains,
and accuracy under domain transfer is significantly lower than in-domain performance.

• H3 (Population prior reliance): Without individual context, LLMs default to global
population priors rather than individual-specific cues.

• H4 (Context information gain): Prediction accuracy increases monotonically with context
length, until saturation.

These hypotheses move the benchmark beyond performance reporting: they test structural claims
about how LLMs approximate, or fail to approximate the individuality of human reasoning.
Validation roadmap. To substantiate these hypotheses, we highlight four key control experiments
that serve as evidence of individuality; later sections return to each in detail.

What counts as evidence of individuality? (control experiments)

• Population Prior Baseline – predict only from aggregate distributions (see Sec. 6.1).
• Identity Shuffle Control – shuffle person–context pairs (see Sec. 6.2).
• Per-Person Leave-One-Out – use partial history to predict held-out responses (see Sec. 4.2).
• Context-Length Ablation – vary context size to test information gain (see Sec. 5).

3
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3 HUGAGENT BENCHMARK

Grounded in the theoretical setup in Section 2, we now introduce HugAgent, which translates these
principles into concrete tasks (Sec. 3.2), a scalable data collection pipeline (Sec. 3.3), and evaluation
protocols (Sec. 3.5).

Figure 2: Two benchmark tasks. Task 1 (Belief State Inference) infers stance and reasons from
prior context; Task 2 (Belief Dynamics Update) predicts stance shifts and its reasoning under new
evidence.
3.1 DESIGN PRINCIPLES

• Open-ended but deeper. Emphasize depth over breadth: semi-structured dialogue with targeted
follow-ups surfaces individuality while avoiding over-scaffolding; ground truth comes from
self-reports (Kvale, 1996; Srivastava et al., 2023; Park et al., 2024).

• Two observable proxies. We evaluate (i) belief state inference and (ii) belief dynamics up-
date—tractable targets that avoid requiring exact trace imitation; cf. proxy-label benchmarks
(Geva et al., 2021; Ho et al., 2022; Guerdan et al., 2023).

• Dual track. Human interviews provide ecological realism; synthetic agents provide controlled
stress tests via scripted causal belief graphs—preventing circularity and enabling scale.

• Human ceiling. Test–retest reliability defines the upper bound, aligning with psychology standards
(Nunnally & Bernstein, 1994; Cronbach, 1970) and recent large-scale simulations (Toubia et al.,
2025; Park et al., 2024).

See Appendix L for extended discussion.

3.2 TASK DEFINITION

We formalize reasoning adaptation as predicting how an individual’s belief state changes under new
evidence.

Belief representation. A belief at time t is bt = (st,wt), where st ∈ {1, . . . , 10} is a stance score
and wt is a distribution over K reason weights.

Belief update. Given evidence e, an update operator U produces bt+1 = U(bt, e). In humans, bt+1

comes from self-reports; in synthetic agents, from scripted rules with known ground truth.

4
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Tasks. We instantiate two tasks: (i) Belief State Inference: predict (st,wt) from prior responses.
(ii) Belief Dynamics Update: predict (st+1,wt+1) given (bt, e). Figure 2 shows concrete examples
of both tasks in HugAgent.

Figure 3: HugAgent benchmark pipeline. Inputs (demographics, questionnaires, and transcripts) flow
through two components: a questionnaire that provides demographic anchors, stance baselines, and
counterfactual updates, and a semi-structured chatbot that elicits individualized reasoning. Together
these elements define two benchmark tasks: (i) belief state inference—recovering stance and factor
polarity from context, and (ii) belief dynamics update—predicting stance shifts and reweighting under
new evidence. (A) The chatbot maintains a causal belief network of factors, used to identify the most
critical nodes and edges for follow-up. (B) A question generator derives targeted, context-specific
probes from this network to structure the dialogue.

3.3 BUILDING HUGAGENT: SCALABLE ELICITATION OF INDIVIDUAL REASONING

HugAgent is built through a two–stage pipeline (Figure 3).
1. The questionnaire stage collects demographics, a baseline stance (st, 1–10), reason weights (wt,
1–5), and counterfactual interventions with updated stances and reasons. These structured responses
provide gold labels for Belief Dynamics Update and serve as anchors for aligning free text to factors.
2. The chatbot stage elicits 8–20 question–answer pairs through semi-strutctured interview, combin-
ing open-ended elaborations (Context QAs) with concise polarity judgments (GT QAs). This setup
captures both participants’ belief, reasoning styles and explicit preferences on each decision factor.
Each transcript thus supports both benchmark tasks: Belief State Inference (using Context and GT
QAs) and Belief Dynamics Update (using Context QAs, questionnaire responses upon interventions).
Survey-provided updates are never revealed in dialogue, preventing leakage.
Finally, we establish a human reliability ceiling through test–retest elicitation of a subset of items,
reporting intra-individual consistency with Intraclass Correlation (ICC) and quadratic-weighted
kappa (QWK) with 95% confidence intervals. Further design choices, intervention phrasing, prompt
templates, and quality-control rules are detailed in Appendix L.

3.4 DATASET STATISTICS

Applying this pipeline yields HugAgent, a dataset spanning three socially salient domains: healthcare,
surveillance, and zoning. These domains were chosen for their ecological validity, diversity of
viewpoints, and internally rich trade-offs (e.g., affordability vs. neighborhood character, privacy vs.
safety).
Human track. From over 120 participants, we retained 54 whose survey and interview data met
predefined quality-control criteria (see Appendix O). Task 1 (belief state inference) contains 356
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labeled questions, and Task 2 (belief dynamics update) contains 1,386 items, distributed as shown in
Table 1.
Synthetic track. We construct a parallel synthetic track by assigning each agent a scripted causal
belief network (CBN) that defines its reasoning structure and deterministic update rules. All syn-
thetic agents follow the same survey and interview protocol as in the human track, allowing direct
comparison under identical tasks. In total, the benchmark includes 500 synthetic agents, from which
we use a stratified subset of 50 agents for computation and analysis. Unless otherwise specified, all
experiments reported in this paper are conducted on this subset. Both the full and subset data are
included in the benchmark release. Detailed construction procedures are provided in Appendix P.

Human Track (N=54) Synthetic Track (N=500)

Task / Domain Health Surv. Zoning Total Health Surv. Zoning Total

Belief State Inference 108 122 126 356 1,303 1,297 1,302 3,902
Belief Dynamics Update 472 364 550 1,386 3,888 2,610 3,818 10,316

Total Items 580 486 676 1,742 5,191 3,907 5,120 14,218

Table 1: Dataset statistics by task and domain. Human track (N=54 participants) provides ecological
validity; synthetic track (N=500 scripted agents) scales coverage.

3.5 EVALUATION PROTOCOLS

Finally, we highlight the evaluation protocols that ensure HugAgent’s utility as a scientific benchmark.

Evaluation metrics. We evaluate belief state inference using accuracy, the proportion of exact
matches with ground-truth labels. For belief dynamics update, we report four metrics: (i) accuracy,
the proportion of predictions within a tolerance band of the true response (±1 for 5-point, ±2
for 10-point scales); (ii) mean absolute error (MAE), the average magnitude of deviation from
the ground truth, with all responses normalized to a 5-point scale for consistency; (iii) directional
accuracy measures whether the predicted belief update matches the ground truth in direction(increase,
decrease, or no change); and (iv) average to individual (ATI) score, following the GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019) scoring paradigm, we derive an overall score
via hierarchical aggregation, where normalized task-specific metrics (accuracy, MAE, directional
accuracy) are combined into belief dynamics update and averaged with belief state inference, with
human and random guess performance used as upper and lower bounds for normalization. Formal
definitions and computation details are given in Appendix S.1.
Leakage control. We masked attribution targets, drew interventions from external surveys, and
presented each item independently with minimal-overlap prompts (see Appendix K.1 for templates).
Human baselines. We re-contacted a subset of participants for a short-interval (14-day) test–retest
study. Across all sessions, 54 participants contributed data. Of these, 18 completed the retest, and 13
were retained following a demographic consistency check. Belief State Inference yielded an accuracy
of 84.84% (SD = 8.90, 95% CI: [80.00, 89.68]). Belief Dynamics Update achieved an accuracy
of 85.66% (SD = 7.66, 95% CI: [80.91, 90.40]) and a mean absolute error of 0.68 (SD = 0.20,
95% CI: [0.55, 0.80]). The directional accuracy was 88.92% (SD = 9.89, 95% CI: [82.09, 96.24]).
These scores establish a human consistency ceiling, as outlined in Section 3.1, against which model
performance can be benchmarked.

4 MAIN RESULTS

4.1 BASELINES

We compare models against clear anchors: (i) an upper bound defined by real human performance,
measured through test–retest consistency (see Section 3.1); (ii) a lower bound defined by random
guessing, reflecting chance performance; and (iii) a set of strong pretrained language models,
including GPT, Gemini, LLaMA, and Qwen, which serve as high-performing but non-agentic
baselines without explicit memory, personalization, or retrieval components.
To evaluate the role of agent-like structure in modeling belief reasoning, we further include two
agent-style LLM baselines that incorporate memory or retrieval. The first is the Generative Agents
baseline, reproduced following the setup of Park et al. (2023), using Qwen2.5-32B-instruct
as the base model. The second group includes two variants of retrieval-augmented generation
(RAG). The first, RAG, follows the standard setup (Lewis et al., 2020), replacing the original full QA
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context with the top-k retrieved QA pairs (k = 5). The second, RAG with Full Context, appends the
retrieved QA pairs to the original input, allowing the model to jointly condition on both. This variant
evaluates whether retrieval can serve as an auxiliary signal rather than a substitute for agent-specific
context. Detailed settings and full results are provided in Appendix C.

4.2 OVERALL PERFORMANCE

Tables 2 summarize performance. We evaluate using the metrics introduced in Section 3.5. For
belief state inference, best-performing LLMs approach but do not match human accuracy, trailing
by 4–6 points. Open-source LLaMA and Qwen rival GPT-4o, while smaller or less aligned models
lag significantly. For belief dynamics update, gaps are larger: models frequently mispredict the
direction of stance change or fail to adjust reason weights, yielding higher error than human baseline.

Model
Belief State Inference Belief Dynamics Update

ATI (% ↑)Acc. (% ↑) Acc. (% ↑) MAE (↓) Dir. Acc. (% ↑)
Real Synth. Real Synth. Real Synth. Real Synth. Real

Human 84.84 — 85.66 — 0.68 — 88.92 — 100.00

OpenAI Models
GPT-4o 74.66±0.24 67.93±0.32 63.11±0.14 58.61±0.28 1.29±0.00 1.44±0.00 82.27±1.02 76.83±0.46 67.29±0.74

GPT-5-mini 75.30±0.79 62.78±0.70 58.21±0.50 57.25±0.73 1.43±0.01 1.47±0.01 77.02±2.02 73.69±3.76 61.53±2.09

o3-mini 75.12±0.78 69.67±0.52 64.54±0.32 56.48±0.23 1.22±0.01 1.45±0.01 71.29±2.87 64.34±4.24 60.92±1.68

Other Closed-Source Models
Gemini 2.0 Flash 69.95±0.12 59.66±0.48 60.55±0.08 54.73±0.13 1.35±0.00 1.48±0.00 83.31±0.19 68.58±0.00 59.76±0.18

DeepSeek-R1 75.55±0.34 70.75±0.81 64.88±0.33 61.16±0.26 1.29±0.01 1.38±0.01 79.69±0.91 76.20±1.10 67.20±1.03

Qwen-plus 77.57±0.44 67.81±1.06 58.93±0.22 55.29±0.14 1.40±0.00 1.49±0.00 77.17±0.61 75.82±4.48 65.48±0.87

Qwen-max 77.40±0.27 67.74±0.81 58.86±0.25 55.20±0.24 1.40±0.00 1.49±0.01 77.17±0.48 76.54±3.28 65.21±0.49

Open-Source Models
LLaMA 3.3 70B 76.64±0.18 71.74±0.38 67.57±0.20 58.35±0.22 1.24±0.00 1.49±0.00 79.56±0.36 74.93±2.48 69.84±0.27

Qwen2.5-32B-instr. 77.17±0.32 68.21±0.30 58.96±0.05 55.37±0.24 1.40±0.00 1.49±0.01 76.88±0.29 75.32±4.62 64.71±0.23

Qwen2.5-7B-instr. 77.18±0.73 67.81±0.58 58.82±0.20 55.33±0.12 1.40±0.00 1.49±0.00 77.12±0.80 74.95±4.38 64.83±1.21

Memory-Augmented Baselines
RAG1 75.46±0.47 63.06±0.86 51.90±0.39 51.85±0.20 1.57±0.05 1.56±0.00 72.25±0.57 66.70±2.71 54.96±0.87

RAG-FC1 77.56±0.38 72.82±0.91 59.97±0.23 59.34±0.40 1.39±0.00 1.45±0.01 76.80±0.80 76.81±1.53 65.65±0.61

Generative Agents1 76.19±0.36 73.48±0.31 58.22±0.43 55.43±0.15 1.40±0.01 1.49±0.00 76.13±2.45 82.76±0.36 62.43±1.74

Non-Learning Baselines
Global Majority 65.77±0.00 64.30±0.00 58.18±0.00 54.60±0.00 2.54±0.00 2.37±0.00 17.93±0.00 21.95±0.00 4.44±0.00

Random Guess 51.89±3.96 50.62±3.16 43.12±0.78 50.36±1.16 1.88±0.05 1.62±0.03 46.74±3.28 29.78±13.18 0.00±5.80

Table 2: Average performance across all domains for Belief State Inference and Belief Dynamics
Update. Results are reported as mean±std over 5 runs. Best-performing model (below human upper
bound) per column is highlighted in bold.

5 MAIN FINDINGS

FINDING 1: PRESERVING IDENTITY ACROSS DOMAINS IS HARDER THAN EXPECTED

Task Model Health → Surv Surv → Zone Zone → Health Avg

Belief State Inference (Accuracy % ↑) Qwen2.5-32B-instr. 53.52±1.52 58.69±1.10 55.08±1.20 55.76±1.09

GPT-4o 58.52±0.77 65.41±1.58 51.75±1.03 58.56±0.82

Belief Dynamics Update (Accuracy % ↑) Qwen2.5-32B-instr. 44.41±0.98 24.84±0.60 30.15±0.35 33.13±0.48

GPT-4o 49.49±0.87 42.47±0.50 41.96±0.30 44.64±0.36

Belief Dynamics Update (MAE ↓) Qwen2.5-32B-instr. 1.69±0.01 1.94±0.01 2.05±0.01 1.89±0.01

GPT-4o 1.55±0.01 1.60±0.00 1.71±0.00 1.62±0.00

Table 3: Cross-domain swap test: models are trained with QA context from one domain and evaluated
on another domain for the same participant. We report performance for Healthcare→ Surveillance,
Surveillance→ Zoning, Zoning→ Healthcare, and their average. Reported as mean ± std over 5
runs.

To evaluate whether models can generalize a person’s contextual information across domains, we
conduct a cross-domain swap test. Each model is given QA context from one domain and evaluated
on another domain for the same participant (for example, using context from Healthcare and testing
on Surveillance). Based on Table 2, we selected GPT-4o and Qwen2.5-32B-instruct as
representative models from two categories: closed-source SOTA and strong open-source baseline.
Under cross-domain transfer, model performance degrades substantially compared to within-domain

1RAG (Lewis et al., 2020), RAG-FC = RAG with Full Context (Lewis et al., 2020), Generative Agents (Park
et al., 2023).
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evaluation. GPT-4o achieves an average of 58.56% on belief state inference, compared to its within-
domain score of 74.66%, while Qwen2.5-32B-instruct drops from 77.17% to 55.76%. In the
Belief Dynamics Update task, GPT-4o declines from 63.11% to 44.64%. The degradation is most
pronounced in belief dynamics update, where compounding errors accumulate across domains. These
findings suggest that current models depend heavily on domain-specific linguistic and contextual cues,
resulting in limited cross-domain reasoning transfer. This underscores the importance of evaluating
within-person, cross-domain consistency as a key indicator of robust generalization, and suggests
that improving transferability requires focusing on essential, domain-relevant context rather than
surface-level correlations.

FINDING 2: MORE CONTEXT DOESN’T ALWAYS HELP

Model Context Belief State Inference Belief Dynamics Update ATI (% ↑)
Acc. (% ↑) Acc. (% ↑) MAE (↓) Dir. Acc. (% ↑)

GPT-4o
5 QAs 71.68±0.47 64.19±0.22 1.23±0.00 83.22±0.40 64.46±0.81

10 QAs 70.65±0.49 64.22±0.20 1.25±0.00 80.05±0.47 60.46±0.98

20+ QAs 74.66±0.24 63.11±0.14 1.29±0.00 82.27±1.02 67.29±0.74

Gemini 2.0 Flash
5 QAs 63.87±0.13 62.56±0.18 1.31±0.00 76.54±0.28 46.87±0.35

10 QAs 65.40±0.25 62.00±0.13 1.31±0.00 75.62±0.70 48.24±0.76

20+ QAs 69.95±0.12 60.55±0.08 1.35±0.00 83.31±0.19 59.76±0.18

Qwen2.5-32B-instr.
5 QAs 68.84±0.73 61.79±0.46 1.31±0.00 78.45±0.85 55.28±1.46

10 QAs 73.02±1.66 60.73±0.46 1.35±0.00 78.20±0.70 60.58±2.58

20+ QAs 77.17±0.32 58.96±0.05 1.40±0.00 76.88±0.29 64.71±0.23

Table 4: Scaling context length for both Belief State Inference and Belief Dynamics Update. Reported
as mean ± std over 5 runs. Best results per column within each model group are highlighted in bold.

To examine how context length influences model performance across tasks, we varied the number
of Context QAs (5, 10, 20+). Based on Table 2, we selected GPT-4o, Gemini2.0Flash, and
Qwen2.5-32B-instruct as representative models from three categories: closed-source SOTA,
lightweight efficient, and strong open-source baseline.
The core result is that belief state inference accuracy rises monotonically with additional dialogue
and saturates at 20+ questions, whereas belief dynamics update accuracy peaks at 5–10 questions
before declining. Longer context provide richer cues for recovering belief states but also introduce
noise that impairs belief updating. This asymmetry suggests that context length benefits belief state
inference through scale, while belief dynamics update is sensitive to contextual interference, where
accumulated history acts as distractor noise rather than causing a general cognitive overload. We
next investigate whether these context-length effects stem from surface-level pattern matching rather
than genuine identity modeling.

6 WHY IT HAPPENS: DIAGNOSTIC ABLATIONS

Section 5 revealed a consistent failure to preserve identity across domains. Here we ask why: is it
because models never learned to use personal information, or because they use it in an associative,
non-generalizable way? To answer this, we conduct two diagnostic ablations.

6.1 POPULATION PRIOR VS. INDIVIDUAL CONTEXT

Method Belief State Inference Belief Dynamics Update ATI (% ↑)
Accuracy (% ↑) Accuracy (% ↑) MAE (↓) Dir. Acc. (% ↑)

GPT-4o (No-Context) 58.49±0.43 39.83±0.45 1.70±0.01 75.59±0.81 26.98±1.01

GPT-4o (Full-Context) 74.66±0.24 63.11±0.14 1.29±0.00 82.27±1.02 67.29±0.74

Qwen2.5-32B-instr. (No-Context) 50.92±0.55 32.12±0.24 1.88±0.01 69.00±1.07 6.88±0.81

Qwen2.5-32B-instr. (Full-Context) 77.17±0.32 58.96±0.05 1.40±0.00 76.88±0.29 64.71±0.23

Table 5: Comparison of No-Context (population prior) and Full-Context (with individual transcripts)
settings. Reported as mean ± std over 5 runs.

We first test whether providing individual context leads to better model performance than relying
solely on population-level priors. The No-Context setting provides only demographic background,
while the Full-Context setting additionally includes transcripts and survey answers. As shown in
Table 5, GPT-4o achieves substantially higher performance when provided with individual context:
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its belief-state inference accuracy increases from 58.49% with demographic priors to 74.66% with
full context, and its belief-dynamics-update accuracy from 39.83% to 63.11%. The consistent gains
in Full-Context indicate that models leverage individual cues rather than population priors, showing
that the benchmark captures identity-sensitive reasoning rather than general demographic trends.

6.2 CROSS-PERSON GENERALIZATION

Method Belief State Inference Belief Dynamics Update ATI (% ↑)
Accuracy (% ↑) Accuracy (% ↑) MAE (↓) Dir. Acc. (% ↑)

GPT-4o (Cross-Person) 54.44±2.30 39.30±0.22 1.93±0.01 63.56±0.76 10.29±3.88

GPT-4o (Same-Person) 74.66±0.24 63.11±0.14 1.29±0.00 82.27±1.02 67.29±0.74

Qwen2.5-32B-instr. (Cross-Person) 60.44±0.47 38.16±0.44 2.02±0.01 69.17±1.06 22.15±1.24

Qwen2.5-32B-instr. (Same-Person) 77.17±0.32 58.96±0.05 1.40±0.00 76.88±0.29 64.71±0.23

Table 6: Cross-person swap test: QA context from one participant is used to predict another partici-
pant’s responses (Cross-Person) versus the same participant (Same-Person). Results are reported as
mean ± std over 5 runs, averaged across domains.

We then test whether the observed gains reflect genuine identity modeling or simply the benefit
of having richer, more fine-grained context. In this Cross-Person setting, QA context from one
participant is used to predict another’s responses within the same domain. As shown in Table 6,
performance drops sharply, e.g., GPT-4o achieves only 39.30% belief-dynamics-update accuracy
with an MAE of 1.93, showing that models fail to generalize when identity cues are mismatched.
These results suggest that improvements in the Full-Context setting arise from learning identity-
specific patterns rather than simply benefiting from additional contextual detail.
Summary. Together with the findings in Section 5, these ablations reveal that current models’
failure to preserve identity across domains is not because they ignore individual context in inference,
but rather implies a reliance on associative context matching instead of identity-consistent reasoning.

7 ERROR ANALYSIS: BIAS PATTERNS AND SOURCES OF FAILURE

Domain dependence and cross-domain generalization. Performance varies systematically
across domains. Within-domain, belief state inference peaks in Surveillance for both models
(LLaMA3.3-70B 80.66%; GPT-5-mini 76.89%). For belief dynamics update, LLaMA3.3-70B
performs best on Zoning (73.09%, MAE 1.14), whereas GPT-5-mini peaks on Healthcare (59.92%,
MAE 1.37).
Cross-domain transfer yields sharp degradation in performance. Using Surveillance context to predict
Zoning, belief dynamics updates for Qwen2.5-32B-instr drop from in-domain Zoning (62.25%;
MAE 1.33) to 24.84% (MAE 1.94); GPT-4o falls from 64.04% (MAE 1.26) to 42.47% (MAE 1.60).
Implication. Models do not share structural regularities in belief updating across domains, suggesting
that LLMs’ belief dynamics rely more on corpus-specific semantic co-occurrence patterns than on
abstract causal or cognitive mechanisms. Therefore, the degradation in cross-domain performance
is not merely a domain shift issue, but rather reveals that current models lack a domain-general
inductive bias for individualized human simulation.

Directional error decomposition. We decompose directional errors into two components: (1)
change-detection error, reflecting the model’s failure to detect whether a belief change has occurred,
and (2) direction-inference error, reflecting the model’s failure to predict the direction of that change
(increase, decrease, or no change). Detailed definitions are provided in Appendix S.1.
Across systems, change-detection errors predominate. In the Healthcare domain, GPT-4o at-
tains a change-detection accuracy of 49.36%, compared to 88.89% for direction-inference (Dir.
Acc. 77.03%). Similarly, Qwen2.5-32B-Instruct records 33.19% versus 84.29% (Dir.
Acc. 68.96%). This asymmetry persists across domains, yielding consistently high accuracy in
direction-inference but notably lower accuracy in change-detection, resulting in only moderate
overall directional accuracy.
The prevalence of change-detection errors suggests that models often preserve the sign of stance
changes once detected but fail to capture when such updates should occur. Rather than inverting
polarity, they tend to remain static despite contextual cues, reflecting an over-regularization or change-
averse bias toward no change. This pattern also holds for strong models such as Qwen-Max and
GPT-4o, which achieve only moderate directional accuracy (≈77–82%), lagging behind human
performance (Dir. Acc. 88.92%) by 7–12 percentage points (Table 2). Notably, a low mean absolute
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error (e.g., o3-mini, MAE 1.22) does not necessarily imply higher directional accuracy, confirming
that magnitude alignment alone does not ensure correct update directionality.
Implication. LLMs tend to be directionally accurate yet change-averse, often preferring to preserve
prior beliefs rather than initiating updates without strong contextual evidence. This pattern reflects an
implicit bias toward stability over adaptability. It suggests that future models require mechanisms
for calibrated change detection, potentially through more continuous output representations or
confidence-aware update designs.

8 MITIGATION STRATEGIES: INSIGHTS AND GUIDING PRINCIPLES

Our error analysis revealed structured failure modes that recur across model families. Rather than
proposing ad-hoc fixes, we position these as diagnostic insights, each grounded in preceding analyses
(Sections 6–7), motivating guiding principles for future work.

(i) Identity-consistent generalization gap. Diagnosed in Section 6.2. Performance gains in
Full-Context disappear under Cross-Person settings, suggesting associative matching rather than
person-specific reasoning. Principle: Learn identity-conditioned representations and persistent
persona states (e.g., per-person latent slots/adapters) with cross-domain consistency regularization.

(ii) Change-aversion bias. Evident from directional error decomposition in Section 7. Models
often preserve prior beliefs even when contextual cues signal change, revealing weak mechanisms for
deciding when to update beliefs. Principle: Incorporate meta-cognitive gating, such as confidence-
weighted update triggers or explicit belief-state decay, to calibrate change sensitivity and mirror
human mechanisms of gradual belief revision.

(iii) Context-prioritization deficit. Observed across context-length ablations and generalization
tests (Sections 6.1). Extending context length alone does not enhance reasoning; models lack
mechanisms for context prioritization and signal compression. Principle: Future systems should
implement adaptive span selection, focusing computation on high-signal evidence regions to emulate
human selective attention and working-memory limits.

Synthesis. Viewed as a whole, these principles underscore HugAgent’s role not only as a benchmark
but also as a diagnostic tool, revealing structured biases that standard metrics (accuracy, MAE)
often obscure. Looking ahead, HugAgent also establishes a reproducible testbed for exploring and
evaluating mitigation strategies, laying the groundwork for a broader research agenda.

9 DISCUSSION AND OPEN CHALLENGES

Topic selection is not neutral. Benchmarks not only measure performance, they define what counts
as understanding. What we ask shapes who a model appears to simulate. Highly controversial
topics elicit richer value trade-offs and sharper updates; homogeneous topics compress variation and
inflate apparent accuracy. We propose treating topic choice as an explicit experimental variable:
(i) curate pairs of domains with high vs. low opinion dispersion; (ii) report results stratified by a
simple controversy index C (e.g., stance variance + polarity entropy) so scores are comparable across
corpora; (iii) add dilemma framings (e.g., fairness vs. safety) to probe value conflicts rather than
single-axis opinions. Practically, this turns “topic selection” from a hidden confound into a controlled
factor that the community can measure and replicate.
From intuition to deliberation: eliciting System 2 without over-scaffolding. Open-ended inter-
views risk collapsing into shallow System 1 reactions or over-guided narratives. Accuracy peaks
at modest context length, hinting at overload beyond that point. We propose lightweight controls
that foster deliberation while preserving individuality: (i) brief tension probes (“what would change
your mind?”), (ii) contrasting time-pressure vs. reflection, (iii) tracking simple deliberation proxies
(latency, self-corrections, counterfactual mentions). These signals do not enforce a single “correct”
trace, but provide anchors for interpreting model alignment with human update logic.
Comparative benchmarks, transfer, and ethics-by-design. Out-of-domain generalization remains
one of the most fundamental yet persistent challenges for models of human reasoning. We propose a
comparative benchmark protocol that (i) pairs controversial vs. homogeneous topics, (ii) contrasts
intuition vs. deliberation, and (iii) evaluates within-person, cross-domain transfer as a core metric.
Preregistered topic panels and per-item metadata (controversy index C, tension flags, latency) will
aid comparability. Ethically, tension induction must be consentful and minimal, with disclosed
framings, capped length, and opt-out. The challenge is designing evaluation that respects persons
while probing the hard cases where individuality matters most.
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Synthesis. Ultimately, moving reasoning from average to individual requires not only better models,
but also better questions: topics that surface trade-offs, protocols that invite careful thinking, and
benchmarks that reward cross-domain fidelity rather than single-domain fit.

10 LIMITATIONS AND CONCLUSION

Our study is constrained by a modest human sample due to the resource demands of collecting deeper,
higher-fidelity real human data, yet this is complemented by a synthetic track that provides controlled
variation and an open, end-to-end pipeline for collecting and processing human subject data. This
design enables the community to expand the dataset both in domain coverage and scale at minimal
cost.
Even so, HugAgent establishes a benchmark for average-to-individual reasoning adaptation, uniting
ecological validity with scalability. Across three key dimensions: (i) advancing from averaged to
individualized reasoning, (ii) from behavioral mimicry to cognitive alignment, and (iii) from vignette-
based to open-ended data, HugAgent redefines the methodological frontier of human behavior
simulation. To our knowledge, it is the first benchmark to explicitly define and operationalize the
anthropic question of how large language models simulate both human reasoning and behavior.
Built as a fully open and extensible agent-simulation benchmark, HugAgent sets a new standard for
evaluating how large language models simulate human-like reasoning and behavior under open-ended
conditions.
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A RELATED WORK

Social Simulation, Digital Twins, and Population Panels. A growing line of work simulates
societies with LLM agents. Early “silicon samples” use LMs to approximate human samples in
stylized tasks (Argyle et al., 2023), while Generative Agents extend to rich daily-life environments
with memory and social coordination (Park et al., 2023). This has scaled to population panels—e.g.,
simulations of 1,000 people (Park et al., 2024) and digital-twin datasets such as Twin-2K-500 (Toubia
et al., 2025)—as well as community/role-play platforms for real-time social interaction (Kaiya et al.,
2023) and personification benchmarks (Xie et al., 2024b;a). Complementing these persona-based
evaluations, PersonalLLM introduces a benchmark and dataset for modeling fine-grained individual
preferences, emphasizing heterogeneous user reward structures and personalization challenges(Zollo
et al., 2025).These approaches provide breadth and largely static outcome measures; HugAgent
adds depth via think-aloud transcripts that trace reasoning trajectories, counterfactual interventions to
test belief updates, and a human test–retest reliability ceiling to anchor claims (Wurgaft et al., 2025;
Nunnally & Bernstein, 1994; Cronbach, 1970).

Social Reasoning and Theory of Mind. Work on Theory of Mind (ToM) in AI draws from
developmental psychology tests such as the false-belief task (Wimmer & Perner, 1983), Sally-Anne
(Baron-Cohen et al., 1985), and Strange Stories (Happé, 1994), later reformulated as computational
tasks (Nematzadeh et al., 2018; Rabinowitz et al., 2018). Scaled language models brought ToM into
broad benchmarks (Le et al., 2019; Hewitt & Cohen, 2021; Srivastava et al., 2023; Chen et al., 2024)
and inspired synthetic testbeds such as BigToM (Gandhi et al., 2023), HI-TOM (He et al., 2023),
FANToM (Kim et al., 2023), and MMToM-QA (Jin et al., 2024). UniToMBench (Thiyagarajan et al.,
2025) advances synthetic ToM evaluation by integrating multi-interaction task structures and evolving
narrative scenarios, offering a unified benchmark that highlights strengths and failures of current
LLMs in belief and emotion reasoning. More recent directions ground ToM in dialogues and social
contexts (Chan et al., 2024; Sap et al., 2019b; Strachan et al., 2024), or frame it through Bayesian
belief attribution (Ying et al., 2024). Yet these benchmarks remain synthetic, vignette-based, and
decontextualized, missing ecological and demographic variability (Wang et al., 2025; Stewart et al.,
2017).
Parallel lines in AI reasoning emphasize world and agent models: causal world modeling (Wong et al.,
2023; Lake et al., 2017; Ellis et al., 2020) and the LAW framework, which coordinates world, agent,
and language models (Hu & Shu, 2023). Within this framing, HugAgent extends ToM evaluation
by asking whether models can map natural language into personalized belief states and update them
consistently under interventions, bridging synthetic ToM tasks and socially grounded reasoning.
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B AUXILIARY DATASET

Our core benchmark is designed around interview transcripts, where each data point consists of
demographic information, a context in the form of question–answer pairs, and ground-truth first-
person self-reports. This setup defines a clean belief inference language task: given demographic
cues and conversational context, models must infer individual beliefs and predict reactions.
To complement this benchmark, we also release an auxiliary demographics-only dataset (39 users,
each with survey responses and demographic attributes). While these records do not support direct
belief inference, they enable principled baselines and transfer settings. Concretely, we implemented a
demographic–linear regression model based on survey responses, and further tested Qwen-Plus on
the main belief dynamics update task with auxiliary supervision from a subset of 15 users. Results
from both the demographic-linear baseline and the augmented Qwen-Plus setting are reported in
Table 7, illustrating how population-level priors can inform personalized inference.

Table 7: Results on the auxiliary demographics-only setting. Comparison of a demographic-only
prior baseline and Qwen-Plus with auxiliary supervision across three domains. Higher accuracy and
lower MAE indicate better performance.

Domain Demographic-only prior Qwen-Plus w/ auxiliary data

Accuracy MAE Accuracy MAE

Healthcare 0.130 2.954 0.524 1.792
Zoning 0.202 2.954 0.474 1.765
Surveillance 0.081 2.797 0.589 1.819
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C HUGAGENT BENCHMARK DETAILS

We introduce the HugAgent Benchmark (HUman-Grounded Theory of Mind), a new evaluation suite
for reasoning fidelity in generative agents. HugAgent formalizes the task of causal BN reconstruction
from human interviews, and provides (1) a dataset of annotated causal belief graphs derived from
natural language Q&A, and (2) multi-level evaluation metrics (node, edge, motif) to assess structural
alignment between human and agent reasoning.
Unlike prior benchmarks focused on behavioral imitation or chain-of-thought generation, HugAgent
directly evaluates whether agents can reconstruct the latent causal structures that underlie human
judgments. This benchmark responds to recent concerns that LLM-based agents risk flattening
individual identity representations by grounding evaluation in structured, human-annotated causal
beliefs.

DATA SCHEMA AND COGNITIVE GROUNDING

Inspired by cognitive science, we use causal BNs to represent the reasoning structures underlying
human decision-making. Rather than modeling surface discourse, our schema captures latent causal
dynamics by explicitly linking belief variables, affective states, and behavioral intentions in a directed
graph. This design supports psychologically grounded and structurally coherent representations of
human reasoning.

Schema Design Each participant’s causal BN is represented as a structured JSON object composed
of three main components: nodes, edges, and qa_history. This schema is designed to encode
causal beliefs extracted from interviews, with each element indexed by a unique ID to enable motif
analysis, simulation, and evidence tracing.

NODES Each node represents a belief concept and includes a label, a model-generated
confidence score (ranging from 0.0 to 1.0), and a list of source_qa IDs that support the
node’s existence. Nodes also track their incoming_edges and outgoing_edges for efficient
graph traversal.

EDGES Edges capture directed causal links between nodes. Each edge includes a source node
ID, a target node ID, and an aggregate_confidence score reflecting the model’s overall
belief in the causal connection. A modifier (in the range [−1.0, 1.0]) represents the direction and
strength of influence: positive values indicate causal support, negative values indicate inhibition.
Each edge is backed by a list of individual QA-based evidence entries with associated confidence
scores.

QA HISTORY The qa_history component stores raw interview responses, mapping each QA
pair to its corresponding extracted causal relations. Each QA entry includes the original question
and answer texts, as well as a list of extracted_pairs, where each pair links a source node to a
target node with a confidence score.
This data structure supports fine-grained analysis of belief formation, causal reasoning, and evidence
provenance across participants.

DATASET CONSTRUCTION

We collected over 100 interviews from participants recruited through the Prolific platform. Top-
ics—such as urban upzoning, surveillance cameras, and universal healthcare—were chosen to elicit
reflective, ecologically valid reasoning.

TRANSCRIPT COLLECTION

To construct structured causal BNs from qualitative interviews, we developed a semi-structured,
cognitively grounded elicitation framework. This framework guides LLMs in extracting inter-
pretable causal structures from natural language dialogue and generating follow-up questions that
balance open-ended exploration with targeted inquiry (Chickering, 2002; Pohontsch & Meyer, 2015).

HUMAN ANNOTATION PROTOCOL

We asked annotators to label causal BNs using soft labels, capturing graded beliefs and allowing for
variation across annotators. Our human-in-the-loop annotation tool supports annotators in assigning
confidence scores to each node and edge(Zhang et al., 2023).
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Annotators were also recruited from Prolific(Stewart et al., 2017). During selection, we followed
three principles: (1) double-blind annotation, (2) matching annotators with similar backgrounds, and
(3) using shared guidelines to maintain consistency. Annotation instructions were carefully designed
to ensure reproducibility and interpretability.

EVALUATION SETTINGS

All models are evaluated under a consistent inference setup. We fix the random seed to 42 and set
the temperature to 0.1 for all experiments. Models from the GPT and Gemini series are executed in
batch inference mode, while all other models use real-time completion inference. All outputs are
constrained using function calling to ensure structured and valid responses. Prompts adopt a pure
in-context learning format without any examples or reasoning demonstrations.
For the Generative Agents setting, following (Park et al., 2023), we employ
Qwen2.5-32B-instruct to analyze the dialogue transcript and generate three high-level expert
reflections that serve as auxiliary reasoning cues during inference. For the two retrieval-augmented
variants of RAG(Lewis et al., 2020), we adopt a TF-IDF retriever to identify the top five most relevant
QA pairs.

HUMAN BASELINES

We re-contacted a subset of participants for a short-interval (14-day) test–retest study. Across all
sessions, 54 participants contributed data. Of these, 18 completed the retest, and 13 were retained
following a demographic consistency check.
Belief State Inference yielded an accuracy of 84.84% (SD = 8.90, 95% CI: [80.00, 89.68]). By topic,
accuracies were 87.50% for Surveillance (SD = 8.29, 95% CI: [82.81, 92.19]), 81.54% for Zoning
(SD = 15.11, 95% CI: [73.32, 89.75]), and 84.53% for Healthcare (SD = 13.90, 95% CI: [76.97,
92.09]).
Belief Dynamics Update achieved an accuracy of 85.66% (SD = 7.66, 95% CI: [80.91, 90.40]) and a
mean absolute error of 0.68 (SD = 0.20, 95% CI: [0.55, 0.80]). Across topics, accuracy was 85.75%
for Healthcare (SD = 10.68), 85.33% for Surveillance (SD = 12.98), and 85.86% for Zoning (SD
= 10.08). Corresponding mean absolute errors were 0.66 (SD = 0.28, 95% CI: [0.49, 0.83]) for
Healthcare, 0.72 (SD = 0.35, 95% CI: [0.50, 0.93]) for Surveillance, and 0.67 (SD = 0.28, 95% CI:
[0.49, 0.84]) for Zoning.
In the Belief Dynamics Update tasks, we decompose directional accuracy into two components:
(1) change detection—the model’s ability to detect whether a belief change has occurred, and (2)
direction inference—the model’s ability to predict the direction of that change (increase, decrease,
or no change) (detailed definitions are provided in Appendix S.1).
Overall, the directional accuracy was 88.92% (SD = 9.89, 95% CI: [82.09, 96.24]). The results
across topics are summarized as follows:

• Healthcare: change detection = 80.00% (SD = 25.82, 95% CI: [61.53, 98.47]); direction
inference = 96.67% (SD = 10.54, 95% CI: [89.13, 100.00]); directional accuracy = 91.67%
(SD = 11.06, 95% CI: [83.76, 99.58]).

• Surveillance: change detection = 90.00% (SD = 16.10, 95% CI: [78.48, 100.00]); direction
inference = 88.33% (SD = 19.33, 95% CI: [74.51, 100.00]); directional accuracy = 88.83%
(SD = 15.15, 95% CI: [77.99, 99.67]).

• Zoning: change detection = 80.00% (SD = 23.31, 95% CI: [63.33, 96.67]); direction
inference = 90.00% (SD = 21.08, 95% CI: [74.92, 100.00]); directional accuracy = 87.00%
(SD = 18.14, 95% CI: [74.03, 99.97]).
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HUMAN DEMOGRAPHIC BREAKDOWN

To provide a clearer view of the diversity represented in our human participant cohort, we report
detailed demographic distributions across age, income, education level, and occupation. As shown
below, the 54 participants span a broad range of backgrounds, supporting the use of this sample for
individualized reasoning analysis.

Figure 4: Age distribution of the 54 participants.

Figure 5: Income distribution of the 54 participants.
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Figure 6: Education level distribution of the 54 participants.

Figure 7: Occupation distribution of the 54 participants.
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Figure 8: Race distribution of the 54 participants.
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FULL RESULTS

Model Belief State Inference Belief Dynamics Update ATI (% ↑)
Acc. (% ↑) Acc. (% ↑) MAE (↓) Dir. Acc. (% ↑)

Human 84.84 85.66 0.68 88.92 100.00

OpenAI Models
GPT-4o 74.66±0.24 63.11±0.14 1.29±0.00 82.27±1.02 67.29±0.74

GPT-5-mini 75.30±0.79 58.21±0.50 1.43±0.01 77.02±2.02 61.53±2.09

GPT5.1 Rea. High 73.36±2.16 67.13±0.46 1.17±0.01 80.94±3.28 64.66±3.79

o3-mini 75.12±0.78 64.54±0.32 1.22±0.01 71.29±2.87 60.92±1.68

Other Closed-Source Models
Claude Sonnet 4.5 76.04±0.01 68.61±0.09 1.18±0.01 78.73±0.10 67.39±0.11

Gemini 2.0 Flash 69.95±0.12 60.55±0.08 1.35±0.00 83.31±0.19 59.76±0.18

Gemini 2.5 Pro 75.45±1.13 64.87±0.39 1.27±0.01 78.65±1.17 64.29±1.58

DeepSeek-R1 75.55±0.34 64.88±0.33 1.29±0.01 79.69±0.91 67.20±1.03

Qwen-plus 77.57±0.44 58.93±0.22 1.40±0.00 77.17±0.61 65.48±0.87

Qwen-max 77.40±0.27 58.86±0.25 1.40±0.00 77.17±0.48 65.21±0.49

Open-Source Models
LLaMA 3.3 70B 76.64±0.18 67.57±0.20 1.24±0.00 79.56±0.36 69.84±0.27

Qwen2.5-32B-instr. 77.17±0.32 58.96±0.05 1.40±0.00 76.88±0.29 64.71±0.23

Qwen2.5-7B-instr. 77.18±0.73 58.82±0.20 1.40±0.00 77.12±0.80 64.83±1.21

Memory-Augmented Baselines
RAG1 75.46±0.47 51.90±0.39 1.57±0.05 72.25±0.57 54.96±0.87

RAG-FC1 77.56±0.38 59.97±0.23 1.39±0.00 76.80±0.80 65.65±0.61

Generative Agents2 76.19±0.36 58.22±0.43 1.40±0.01 76.13±2.45 62.43±1.74

Non-Learning Baselines
Global Majority 65.77±0.00 58.18±0.00 2.54±0.00 17.93±0.00 4.44±0.00

Random Guess 51.89±3.96 43.12±0.78 1.88±0.05 46.74±3.28 0.00±5.80

Table 8: Average performance across all domains for Belief State Inference and Belief Dynamics
Update. Results are reported as mean±std over 5 runs. Best-performing model (below human upper
bound) per column is highlighted in bold. Real data only.

1RAG (Lewis et al., 2020), RAG-FC = RAG with Full Context (Lewis et al., 2020).
2Generative Agents (Park et al., 2023).
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Model
Human Dataset (N=54)

Belief State Inference Belief Dynamics Update
Acc. (% ↑) Acc. (% ↑) MAE (↓)

Health Surveil. Zoning Health Surveil. Zoning Health Surveil. Zoning

Human 84.53 87.50 81.54 85.75 85.33 85.86 0.66 0.72 0.67

OpenAI Models
GPT-4o 71.11±0.77 75.25±0.90 77.62±0.35 61.57±0.19 63.74±0.58 64.04±0.20 1.27±0.01 1.35±0.01 1.26±0.01

GPT5.1 Rea. High 72.22±1.01 77.54±1.91 70.32±0.46 63.43±0.39 68.19±1.13 69.78±0.65 1.22±0.02 1.16±0.02 1.12±0.01

GPT-5-mini 73.15±2.36 76.89±0.90 75.87±0.43 59.92±1.05 55.16±1.09 59.56±0.73 1.37±0.02 1.54±0.02 1.40±0.01

o3-mini 69.26±1.21 77.38±1.70 78.73±0.87 60.08±0.28 62.53±1.16 71.02±0.79 1.31±0.02 1.29±0.03 1.07±0.01

Other Closed-Source Models
Claude Sonnet 4.5 73.15±0.01 81.15±0.01 73.81±0.01 65.21±0.08 72.69±0.22 67.93±0.09 1.17±0.01 1.13±0.01 1.24±0.01

Gemini 2.0 Flash 63.89±0.00 68.20±0.37 77.78±0.01 56.23±0.12 62.25±0.37 63.16±0.10 1.39±0.01 1.33±0.01 1.33±0.01

Gemini 2.5 Pro 73.70±1.99 78.03±1.31 74.60±1.00 62.12±0.36 62.53±0.57 69.96±0.53 1.29±0.01 1.31±0.01 1.21±0.01

DeepSeek-R1-0528 76.11±0.41 75.41±1.16 74.76±0.66 61.44±0.58 68.30±0.63 64.91±0.41 1.33±0.00 1.27±0.02 1.26±0.01

Qwen-plus_2025-07-28 78.70±0.65 76.39±1.22 77.62±0.66 56.74±0.59 57.86±0.15 62.18±0.18 1.44±0.01 1.43±0.01 1.34±0.00

Qwen-max_2024-10-15 78.52±0.77 76.39±0.37 77.30±0.43 56.78±0.64 57.69±0.27 62.11±0.35 1.43±0.01 1.44±0.01 1.34±0.00

Open-Source Models
LLaMA_3.3_70B 70.74±0.51 80.66±0.45 77.78±0.00 64.28±0.38 65.33±0.23 73.09±0.31 1.31±0.01 1.29±0.01 1.14±0.01

Qwen2.5-32B-instr. 77.96±0.41 76.56±0.45 76.98±0.79 56.82±0.41 57.80±0.25 62.25±0.16 1.43±0.00 1.43±0.01 1.33±0.01

Qwen2.5-7B-instr 78.33±0.51 75.74±2.06 77.46±0.43 56.82±0.41 57.64±0.45 62.00±0.34 1.43±0.01 1.43±0.01 1.34±0.01

Memory-Augmented Baselines
RAG1 71.67±0.51 78.36±1.37 76.35±0.35 50.64±0.58 53.68±0.60 51.38±0.24 1.60±0.01 1.50±0.00 1.60±0.00

RAG-FC1 77.22±0.83 76.72±0.93 78.73±0.87 58.73±0.55 59.34±0.34 61.85±0.15 1.43±0.01 1.41±0.01 1.33±0.01

Generative Agents2 76.11±0.41 77.21±0.37 75.24±0.66 57.67±0.76 55.66±0.69 61.35±0.38 1.43±0.01 1.44±0.01 1.34±0.00

Table 9: Results on Human dataset for belief state inference and belief dynamics update tasks across
three policy topics (Health, Surveillance, Zoning). Values are mean±std over 5 runs. For belief
dynamics update, both Accuracy and MAE are reported separately. Best non-human results per
column are in bold.

Model
Synthetic Dataset (N=50)

Belief State Inference Belief Dynamics Update
Acc. (% ↑) Acc. (% ↑) MAE (↓)

Health Surveil. Zoning Health Surveil. Zoning Health Surveil. Zoning

OpenAI Models
GPT-4o 60.76±0.00 75.00±0.77 68.03±0.58 52.71±0.29 65.00±0.35 58.11±0.48 1.72±0.00 1.18±0.01 1.41±0.01

GPT-5-mini 50.38±1.88 72.39±1.24 65.79±1.34 51.09±0.91 64.44±0.46 56.23±1.63 1.74±0.01 1.21±0.02 1.46±0.02

o3-mini 58.23±1.55 78.48±1.19 72.30±1.47 46.90±0.81 58.46±0.28 64.07±0.37 1.80±0.02 1.29±0.00 1.26±0.01

Other Closed-Source Models
Gemini 2.0 Flash 51.90±0.00 63.48±1.24 63.61±0.45 45.28±0.19 62.96±0.00 55.93±0.22 1.77±0.00 1.18±0.00 1.49±0.00

DeepSeek-R1-0528 62.78±1.13 75.87±1.42 73.61±0.69 60.52±0.18 64.75±0.40 58.21±0.45 1.59±0.01 1.15±0.01 1.40±0.01

Qwen-plus_2025-07-28 63.80±1.44 67.83±1.97 71.80±0.73 45.11±0.37 64.94±0.17 55.83±0.53 1.80±0.00 1.18±0.01 1.50±0.01

Qwen-max_2024-10-15 62.78±2.12 68.48±0.00 71.97±0.37 45.20±0.44 64.57±0.14 55.83±0.46 1.80±0.00 1.18±0.01 1.50±0.01

Open-Source Models
LLaMA_3.3_70B 61.27±1.13 76.09±0.00 77.87±0.00 51.44±0.65 57.65±0.34 65.96±0.21 1.82±0.01 1.32±0.00 1.32±0.00

Qwen2.5-32B-instr. 64.30±0.56 68.70±0.49 71.64±0.93 45.24±0.39 65.00±0.17 55.88±0.54 1.80±0.00 1.18±0.00 1.50±0.01

Qwen2.5-7B-instr 63.80±1.13 68.48±1.33 71.15±0.90 45.11±0.29 64.81±0.22 56.08±0.25 1.80±0.00 1.18±0.01 1.50±0.01

Memory-Augmented Baselines
RAG1 51.39±1.44 67.61±0.90 70.16±1.37 43.49±0.28 61.98±0.40 50.07±0.32 1.85±0.00 1.22±0.01 1.61±0.00

RAG-FC1 68.10±1.65 76.09±1.09 74.26±1.10 53.41±0.45 64.26±0.46 60.35±0.59 1.70±0.01 1.20±0.01 1.44±0.01

Generative Agents2 68.61±0.57 77.39±0.91 74.43±0.37 46.24±0.68 64.26±0.26 55.78±0.21 1.79±0.01 1.17±0.00 1.52±0.01

Table 10: Results on Synthetic dataset for belief state inference and belief dynamics update tasks
across three policy topics (Health, Surveillance, Zoning). Values are mean±std over 5 runs. For belief
dynamics update, both Accuracy and MAE are reported separately. Best results per column are in
bold.

1RAG (Lewis et al., 2020), RAG-FC = RAG with Full Context (Lewis et al., 2020).
2Generative Agents (Park et al., 2023).
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RESULTS ON HUMAN DATASET

Model Belief Dynamics Update
Change Detection Acc. (%↑) Direction Inference Acc. (%↑) Dir. Acc. (%↑)

Health Surveil. Zoning Health Surveil. Zoning Health Surveil. Zoning

Human 80.00 90.00 80.00 96.67 88.33 90.00 91.67 88.83 87.00

OpenAI Models
GPT-4o 49.36±1.59 65.83±3.12 57.14±3.01 88.89±0.00 91.49±0.53 98.33±3.33 77.03±0.48 83.79±1.31 85.98±1.71

GPT5.1 Rea. High 54.47±6.67 67.50±5.53 59.05±9.80 83.06±6.60 88.26±3.57 98.00±4.00 74.48±6.22 82.03±3.37 86.31±5.11

GPT-5-mini 46.81±4.66 65.83±6.12 60.95±3.56 82.95±2.56 90.67±5.33 82.05±9.48 72.11±2.84 83.22±3.06 75.72±7.17

o3-mini 50.64±4.54 55.83±4.25 59.05±5.71 76.43±4.84 79.58±3.64 78.59±12.06 68.69±3.33 72.45±3.10 72.72±8.67

Other Closed-Source Models
Claude Sonnet 4.5 45.96±1.04 62.50±0.01 61.90±0.01 87.50±0.01 84.62±0.01 92.31±0.01 75.04±0.31 77.98±0.01 83.19±0.01

Gemini 2.0 Flash 38.30±0.00 70.83±0.00 62.86±1.90 100.00±0.00 83.33±0.00 100.00±0.00 81.49±0.00 79.58±0.00 88.86±0.57

Gemini 2.5 Pro 49.36±1.59 54.17±5.27 70.48±3.56 76.19±5.83 86.32±3.85 100.00±0.01 68.14±3.73 76.67±2.43 91.14±1.07

DeepSeek-R1-0528 54.47±2.17 64.67±5.20 52.38±3.01 83.62±2.10 84.42±3.75 100.00±0.00 74.87±1.86 78.50±1.50 85.71±0.90

Qwen-plus_2025-07-28 34.04±2.33 63.01±1.94 66.67±0.00 85.24±0.95 83.03±0.61 92.31±0.00 69.88±0.97 77.02±0.89 84.62±0.00

Qwen-max_2024-10-15 34.89±1.04 63.33±1.67 66.67±0.00 85.71±0.00 82.05±2.56 92.31±0.00 70.47±0.31 76.44±1.29 84.62±0.00

Open-Source Models
LLaMA_3.3_70B 68.09±3.01 54.17±0.00 53.33±1.90 80.00±0.00 85.71±0.00 100.00±0.00 76.43±0.90 76.25±0.00 86.00±0.57

Qwen2.5-32B-instr. 33.19±1.04 62.50±0.00 66.67±3.01 84.29±1.17 83.33±0.00 92.29±0.38 68.96±1.05 77.08±0.00 84.60±1.17

Qwen2.5-7B-instr 33.62±1.59 62.50±0.00 65.63±1.40 84.29±1.17 83.33±0.00 93.57±3.26 69.09±1.03 77.08±0.00 85.19±2.30

Memory-Augmented Baselines
RAG1 42.55±1.90 55.83±5.00 66.67±0.00 66.67±0.00 86.51±3.85 85.71±0.00 59.43±0.57 77.30±1.94 80.00±0.00

RAG-FC1 45.11±2.08 62.43±6.00 60.95±1.90 80.00±0.00 90.91±0.00 86.03±2.82 69.53±0.63 82.36±1.80 78.50±1.40

Generative Agents2 36.17±1.90 61.06±2.27 60.95±1.90 81.00±9.70 83.64±3.64 93.85±3.08 67.55±6.41 76.86±2.20 83.98±1.58

Table 11: Directional accuracy results on Human dataset for belief dynamics update task across three
policy topics (Health, Surveillance, Zoning). Values are mean±std over 5 runs. For each topic, we
report Change Detection Accuracy, Direction Inference Accuracy, and Directional Accuracy (Dir.
Acc). Best results per column are in bold.

1RAG (Lewis et al., 2020), RAG-FC = RAG with Full Context (Lewis et al., 2020).
2Generative Agents (Park et al., 2023).
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Metric Domain Transfer GPT-4o Qwen2.5-32B-instr.

Cross-Domain In-Domain Cross-Domain In-Domain

Belief State Inference (Accuracy % ↑)
Health → Surv 58.52±0.77 71.11±0.77 53.52±1.52 77.96±0.41
Surv → Zone 65.41±1.58 75.25±0.90 58.69±1.10 76.56±0.45
Zone → Health 51.75±1.03 77.62±0.35 55.08±1.20 76.98±0.79
Average 58.56±0.82 74.66±0.24 55.76±1.09 77.17±0.32

Belief Dynamics Update (Accuracy % ↑)
Health → Surv 49.49±0.87 61.57±0.19 44.41±0.98 56.82±0.41
Surv → Zone 42.47±0.50 63.74±0.58 24.84±0.60 57.80±0.25
Zone → Health 41.96±0.30 64.04±0.20 30.15±0.35 62.25±0.16
Average 44.64±0.36 63.11±0.14 33.13±0.48 58.96±0.05

Belief Dynamics Update (MAE ↓)
Health → Surv 1.55±0.01 1.27±0.01 1.69±0.01 1.43±0.00
Surv → Zone 1.60±0.00 1.35±0.01 1.94±0.01 1.43±0.01
Zone → Health 1.71±0.00 1.26±0.01 2.05±0.01 1.33±0.01
Average 1.62±0.00 1.29±0.00 1.89±0.01 1.40±0.00

ATI (% ↑)
Health → Surv 23.96±3.83 59.43±1.36 10.04±2.71 60.56±1.19
Surv → Zone -19.05±2.32 66.01±1.49 12.54±1.80 60.25±0.65
Zone → Health 24.72±1.67 78.92±1.48 21.78±2.00 75.41±0.95
Average 9.64±1.66 67.29±0.74 14.36±1.49 64.71±0.23

Table 12: Cross-domain swap test: models are trained with QA context from one domain and
evaluated on another domain for the same participant. We report performance for Healthcare→
Surveillance, Surveillance→ Zoning, Zoning→ Healthcare, and their average. Reported as mean ±
std over 5 runs.

Metric Domain GPT-4o Gemini 2.0 Flash Qwen2.5-32B-instr.

5 QAs 10 QAs 20+ QAs 5 QAs 10 QAs 20+ QAs 5 QAs 10 QAs 20+ QAs

Belief State Inference (Accuracy % ↑)

Health 68.89±0.51 67.59±1.73 71.11±0.77 61.30±0.41 60.19±0.65 63.89±0.00 68.33±1.21 75.37±4.47 77.96±0.41
Surv. 73.93±1.07 72.30±0.37 75.25±0.90 65.25±0.45 64.75±0.00 68.20±0.37 73.11±2.68 75.90±1.80 76.56±0.45
Zone 72.22±0.00 72.06±0.66 77.62±0.35 65.08±0.00 71.27±0.35 77.78±0.00 65.08±0.56 67.78±1.06 76.98±0.79
Avg 71.68±0.47 70.65±0.49 74.66±0.24 63.87±0.13 65.40±0.25 69.95±0.12 68.84±0.73 73.02±1.66 77.17±0.32

Belief Dynamics Update (Accuracy % ↑)

Health 61.48±0.35 62.29±0.33 61.57±0.19 59.70±0.09 58.22±0.28 56.23±0.12 59.45±0.55 58.52±0.74 56.82±0.41
Surv. 67.80±0.45 64.56±0.39 63.74±0.58 65.71±0.30 62.58±0.23 62.25±0.37 62.53±0.57 60.66±0.60 57.80±0.25
Zone 63.27±0.36 65.82±0.39 64.04±0.20 62.25±0.21 65.20±0.16 63.16±0.10 63.38±0.69 63.02±0.47 62.25±0.16
Avg 64.19±0.22 64.22±0.20 63.11±0.14 62.56±0.18 62.00±0.13 60.55±0.08 61.79±0.46 60.73±0.46 58.96±0.05

Belief Dynamics Update (MAE ↓)

Health 1.26±0.01 1.28±0.00 1.27±0.01 1.36±0.00 1.37±0.00 1.39±0.00 1.36±0.00 1.41±0.01 1.43±0.00
Surv. 1.19±0.01 1.26±0.01 1.35±0.01 1.23±0.00 1.30±0.01 1.33±0.00 1.31±0.01 1.36±0.01 1.43±0.01
Zone 1.24±0.00 1.21±0.01 1.26±0.01 1.34±0.00 1.26±0.00 1.33±0.00 1.27±0.01 1.27±0.01 1.33±0.01
Avg 1.23±0.00 1.25±0.00 1.29±0.00 1.31±0.00 1.31±0.00 1.35±0.00 1.31±0.00 1.35±0.00 1.40±0.00

ATI (% ↑)

Health 55.33±1.05 55.54±2.52 59.43±1.36 31.13±0.84 34.19±0.78 50.03±0.06 47.57±1.16 58.18±5.94 60.56±1.19
Surv. 69.38±1.54 60.07±0.27 66.01±1.49 50.19±0.21 46.56±1.71 52.20±0.51 57.95±5.12 59.36±2.68 60.25±0.65
Zone 70.60±0.49 67.45±1.02 78.92±1.48 62.63±0.11 67.57±0.57 80.62±0.57 62.15±0.94 65.47±2.27 75.41±0.95
Avg 64.46±0.81 60.46±0.98 67.29±0.74 46.87±0.35 48.24±0.76 59.76±0.18 55.28±1.46 60.58±2.58 64.71±0.23

Table 13: Question masking / length scaling for both Belief State Inference and Belief Dynamics
Update. Reported as mean ± std over 5 runs. Best results per row are highlighted in bold.
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Metric Domain GPT-4o Qwen2.5-32B-instr.

No-Context Full-Context No-Context Full-Context

Belief State Inference (Accuracy % ↑)

Health 55.93±1.40 71.11±0.77 45.19±1.66 77.96±0.41
Surv. 66.07±1.37 75.25±0.90 59.02±1.16 76.56±0.45
Zone 53.49±1.99 77.62±0.35 48.57±1.30 76.98±0.79
Avg 58.49±0.43 74.66±0.24 50.92±0.55 77.17±0.32

Belief Dynamics Update (Accuracy % ↑)

Health 34.62±0.68 61.57±0.19 34.58±0.55 56.82±0.41
Surv. 48.24±0.31 63.74±0.58 33.90±0.60 57.80±0.25
Zone 36.62±0.52 64.04±0.20 27.89±0.38 62.25±0.16
Avg 39.83±0.45 63.11±0.14 32.12±0.24 58.96±0.05

Belief Dynamics Update (MAE ↓)

Health 1.77±0.01 1.27±0.01 1.89±0.01 1.43±0.00
Surv. 1.51±0.01 1.35±0.01 1.75±0.01 1.43±0.01
Zone 1.84±0.01 1.26±0.01 1.99±0.01 1.33±0.01
Avg 1.70±0.01 1.29±0.00 1.88±0.01 1.40±0.00

ATI (% ↑)

Health 19.76±2.31 59.43±1.36 -7.58±2.70 60.56±1.19
Surv. 35.66±2.50 66.01±1.49 15.31±1.64 60.25±0.65
Zone 26.20±3.73 78.92±1.48 14.92±2.15 75.41±0.95
Avg 26.98±1.01 67.29±0.74 6.88±0.81 64.71±0.23

Table 14: Comparison of No-Context (population prior) and Full-Context (with individual transcripts)
settings. Reported as mean ± std over 5 runs.

Metric Domain Gemini 2.0 Flash Qwen2.5-32B-instr. GPT-4o

Belief State Inference (Accuracy % ↑)

Health 52.78±0.65 58.15±0.77 50.93±7.29
Surv. 52.79±1.49 64.75±0.00 61.31±0.37
Zone 47.46±0.66 58.41±0.90 51.11±0.71
Avg 51.01±0.52 60.44±0.47 54.45±2.30

Belief Dynamics Update (Accuracy % ↑)

Health 34.19±0.12 33.77±0.73 37.37±0.19
Surv. 40.71±0.36 40.77±0.63 43.13±0.75
Zone 39.35±0.16 39.93±0.46 37.38±0.28
Avg 38.08±0.13 38.16±0.44 39.30±0.22

Belief Dynamics Update (MAE ↓)

Health 2.13±0.01 2.19±0.01 2.02±0.01
Surv. 1.85±0.01 1.87±0.01 1.80±0.01
Zone 2.05±0.00 2.01±0.00 1.98±0.01
Avg 2.01±0.00 2.02±0.01 1.93±0.01

Table 15: Human Cross_Person test: models trained on one participant and evaluated on another.
Reported as mean ± std over 5 runs.
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RESULTS ON SYNTHETIC DATASET

Metric Domain GPT-4o Gemini 2.0 Flash Qwen2.5-32B-instr.

5 QAs 10 QAs 20+ QAs 5 QAs 10 QAs 20+ QAs 5 QAs 10 QAs 20+ QAs

Belief State Inference (Accuracy % ↑)

Health 56.96±1.27 62.28±1.06 60.76±0.00 37.97±0.00 43.04±0.00 51.90±0.00 47.34±2.12 59.24±1.39 64.30±0.57
Surv. 73.48±0.60 74.13±0.49 75.00±0.77 63.48±0.60 61.74±0.49 63.48±1.24 67.61±1.19 68.70±0.91 68.70±0.49
Zone 62.30±1.00 66.89±0.45 68.03±0.58 57.38±0.00 62.13±0.90 63.61±0.45 66.56±0.37 70.82±0.73 71.64±0.93
Avg 64.25±0.57 67.76±0.51 67.93±0.32 52.94±0.20 55.64±0.33 59.66±0.48 60.50±0.58 66.25±0.77 68.21±0.30

Belief Dynamics Update (Accuracy % ↑)

Health 53.23±0.71 52.18±0.44 52.71±0.29 42.75±0.18 41.79±0.25 45.28±0.20 45.37±0.57 44.76±0.41 45.24±0.39
Surv. 64.20±0.00 65.12±0.44 65.00±0.35 63.64±0.14 63.02±0.14 62.96±0.00 63.70±0.71 64.75±0.14 65.00±0.17
Zone 56.28±0.27 55.53±1.78 58.11±0.48 54.09±0.18 55.73±0.14 55.93±0.22 53.00±0.54 54.74±0.62 55.88±0.54
Avg 57.90±0.27 57.61±0.51 58.61±0.28 53.49±0.13 53.51±0.09 54.73±0.13 54.02±0.44 54.75±0.16 55.37±0.24

Belief Dynamics Update (MAE ↓)

Health 1.68±0.00 1.73±0.01 1.72±0.00 1.82±0.00 1.83±0.00 1.77±0.00 1.84±0.01 1.83±0.01 1.80±0.00
Surv. 1.18±0.01 1.17±0.01 1.18±0.01 1.18±0.00 1.19±0.00 1.18±0.00 1.18±0.01 1.18±0.01 1.18±0.00
Zone 1.43±0.01 1.44±0.00 1.41±0.01 1.54±0.00 1.52±0.00 1.49±0.00 1.56±0.01 1.52±0.01 1.50±0.01
Avg 1.43±0.01 1.45±0.00 1.44±0.00 1.51±0.00 1.51±0.00 1.48±0.00 1.53±0.00 1.51±0.01 1.49±0.01

Table 16: Synthetic belief state inference and belief dynamics update performance across question
lengths (5Q, 10Q, 20Q) for GPT-4o, Gemini 2.0 Flash and Qwen2.5-32B-instr.. Reported as mean ±
std over 5 runs. Best in each row (across all models and contexts) is bolded.

Task Model Health → Surv Surv → Zone Zone → Health Avg.

Belief State Inference (Accuracy (% ↑))
GPT-4o 18.99±0.90 50.22±0.49 39.67±0.73 36.29±0.51

Gemini 2.0 Flash 17.97±2.26 38.91±0.91 20.49±1.30 25.79±1.03

Qwen2.5-32B-instr. 22.78±1.55 48.26±1.97 45.57±0.73 38.87±1.06

Belief Dynamics Update (Accuracy (% ↑))
GPT-4o 43.62±0.71 55.43±0.64 35.58±0.28 44.88±0.37

Gemini 2.0 Flash 36.03±0.22 41.73±0.51 52.06±0.32 43.27±0.23

Qwen2.5-32B-instr. 34.28±0.56 23.40±0.34 26.65±0.89 28.11±0.41

Belief Dynamics Update (MAE ↓)
GPT-4o 1.64±0.01 1.45±0.01 1.73±0.00 1.61±0.00

Gemini 2.0 Flash 1.97±0.00 1.70±0.01 1.62±0.01 1.76±0.00

Qwen2.5-32B-instr. 2.16±0.01 1.88±0.01 2.12±0.01 2.05±0.00

Table 17: Synthetic Cross_Domain test: models are trained in one topic domain and evaluated on
another. Reported as mean ± std over 5 runs.
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Metric Domain GPT-4o Gemini 2.0 Flash Qwen2.5-32B-instr.

Belief State Inference (Accuracy % ↑)

Health 41.52±1.06 30.89±0.69 42.28±1.13
Surv. 54.35±0.00 47.83±0.00 55.00±0.60
Zone 33.11±0.73 33.93±0.45 34.75±0.45
Avg 42.99±0.46 37.55±0.30 44.01±0.46

Belief Dynamics Update (Accuracy % ↑)

Health 40.17±0.22 30.13±0.15 32.10±0.53
Surv. 52.90±0.35 50.93±0.00 52.78±0.22
Zone 36.72±0.50 35.53±0.11 35.04±0.32
Avg 43.27±0.19 38.86±0.06 39.97±0.04

Belief Dynamics Update (MAE ↓)

Health 2.04±0.00 2.16±0.00 2.14±0.01
Surv. 1.54±0.00 1.52±0.00 1.49±0.00
Zone 2.00±0.00 2.06±0.00 2.06±0.00
Avg 1.86±0.00 1.91±0.00 1.90±0.00

Table 18: Synthetic Cross_Person test: models trained on one participant and evaluated on another.
Reported as mean ± std over 5 runs.
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D CHATBOT DESIGN

Figure 9: Overview of the QA loop and data structures. The system integrates the Causal Belief
Network (CBN), Node Queue, and Question List to guide interaction. Stages regulate question
priorities, with an irreversible transition from Stage 1 to Stage 2 once anchor nodes ≥ 3.

CORE DATA STRUCTURES

The system is built on three key data structures: (i) the Causal Belief Network (CBN), (ii) the Node
Queue, and (iii) the Question List. Together with a staged QA loop, these structures support the
dynamic modeling of user beliefs and the generation of targeted questions.

CAUSAL BELIEF NETWORK (CBN)

The CBN is the central representation of the user’s belief system. It organizes concepts as nodes and
captures their relations as edges.

• Nodes. Nodes represent concepts in the belief system.

– Candidate Nodes: new concepts detected in user answers, under evaluation.
– Belief Nodes: stable concepts that have been upgraded from candidates (e.g., due to

repeated mentions or high user confidence).
– Anchor Nodes: a subset of belief nodes that play a special role in question generation

and stage transition.

• Edges. Edges encode causal or influence relations between nodes. They specify direction
(source → target), polarity (positive/negative), and optionally strength.

NODE QUEUE

The Node Queue maintains candidate nodes that may become belief nodes.

• Entry Condition: a new concept first appears in user responses.

• Upgrade Condition: node is promoted to belief node when thresholds are met (e.g.,
frequency of mention, confidence expressed by the user).

QUESTION LIST

The Question List stores both guiding questions and follow-up questions. It is dynamically updated
based on the current CBN and node queue, and it serves as the buffer for delivering the next question
to the user.
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QA LOOP OVERVIEW

The overall interaction loop proceeds as follows:

1. Initialization. The CBN contains only a stance node.
2. User Input. User provides a new answer.
3. Update. Update the CBN and node queue based on the answer.
4. Question Generation. Generate new questions using the CBN and queues; append them to

the question list.
5. Next Question. Select and ask the next question from the list.

TWO-STAGE DESIGN

The QA loop has two stages. The transition occurs when the number of anchor nodes ≥ 3. This
transition is one-way; Stage 2 never returns to Stage 1.

• Stage 1. Only Priority 2 questions are allowed. Rationale: with too few anchors, meaningful
relationship questions are not possible. The system must first accumulate important concepts
to avoid premature exploration.

• Stage 2. Questions are selected from a candidate list according to priority. Higher-priority
items are chosen first.

QUESTION PRIORITIES

• Priority 1 – Stance Connection.
Purpose: connect essential concepts to the user’s stance.
Condition: isolated anchor (out-degree = 0, not connected to stance).
Format: “How does {anchor} affect your support for {stance}? Positive or negative? How
strong?”
Example: “How does privacy protection affect your support for surveillance?”

• Priority 2 – Node Discovery / Upstream Exploration.
Purpose: discover new concepts or explore influencing factors of anchors.
Condition: in Stage 1 or anchor has fewest in-degrees.
Format (Stage 1): “Tell me more about {concept}.”
Format (Stage 2): “What factors influence {anchor}? Positive or negative?”
Examples: “Tell me more about public safety.”; “What factors influence government oversight?”

• Priority 3 – Relationship Strengthening.
Purpose: quantify the strength and direction of existing relationships.
Condition: edge requires parameters or graph pattern needs completion.
Format: “How strong is the relationship between {A} and {B}? Positive or negative?”
Example: “How does technological advancement affect privacy protection? Strong or weak?”

• Priority 4 – General Backup.
Purpose: fill in missing information at the end of the interview.
Condition: remaining questions ≤ 3 and candidate pool insufficient.
Format: “Anything else important we have not discussed?”
Example: “Any clarifications on your previous answers?”

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

E SEMI-STRUCTURED INTERVIEW AND CAUSAL BELIEF NETWORK
FORMALIZATION

Figure 10: Illustration of the semi-structured interview process and causal belief network construction.
The chatbot begins with open-ended questions and extracts candidate concepts from user responses
(Anchor Node Discovery). Once three or more anchors are identified, it transitions to targeted
follow-ups to expand causal relations (Anchor Expansion). Edges represent directional influences
with polarity, forming the evolving CBN.

Semi-Constructed Interview Design. We use GPT-4 (or Qwen for open-source deployments) as
the backbone of a semi-structured interviewer. The model follows a two-phase logic:

1. Anchor Node Discovery: From initial open-ended responses, the system uses noun-phrase
mining and causal phrase detection to extract candidate belief variables. Candidates that
appear in multiple QA pairs or show causal centrality are promoted to anchor nodes,
representing key ideas around which reasoning is structured.

2. Anchor Expansion: For each anchor node, the system asks targeted follow-ups (e.g., “What
causes this?” or “What does this influence?”). These responses are parsed into edges, which
represent directional causal relations with confidence scores and modifiers (positive or
negative influence).

causal BN Formalization. Each participant’s graph is a Directed Acyclic Graph (DAG), with nodes
vi labeled by semantically grounded belief variables, and edges eij denoting belief in the causal
influence from vi → vj . We capture the following metadata for each element:

• Node-level: Label, frequency across QAs, semantic role (external_state,
internal_affect, behavioral_intention), layer depth (e.g., experience →
value→ stance).

• Edge-level: Confidence (based on question phrasing), polarity (positive or negative), and
QA provenance.

Edge Probability Estimation. Each edge is assigned a probability P (vj |vi) based on linguistic
indicators in the answer and motif alignment scores:

P (vj |vi) = σ(w1 · scausal + w2 · slinguistic + w3 · smotif) (1)

where scausal captures explicit causal phrasing, slinguistic measures structural confidence from the
model, and smotif reflects alignment to previously seen cognitive motif patterns. σ is the logistic
function.

Demographic Consideration. To support downstream generalization and population modeling
(Phase III), each interview is paired with structured demographic data (age, housing status, transporta-
tion mode, etc.). These attributes allow later stages to interpolate motif distributions and simulate
representative reasoning across diverse population groups.
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Stopping Criteria. The system continues alternating between node discovery and causal expansion
until one or more termination conditions are met: (1) no new anchor nodes emerge, (2) motif-based
reasoning paths reach convergence, or (3) information gain across simulated stances falls below a
threshold.

Forward Simulation and Inference. Once an intervention is identified, the causal BN is used to
simulate the effects of this intervention. The intervention is applied to the graph as a DO-operation
which cuts all incoming edges to the intervened node and updates its distribution. This is followed by
a forward simulation to propagate the effects through the network.
Post-processing includes analyzing changes in node probabilities and identifying significant shifts,
particularly those related to policy objectives. These results help explain the agent’s behavior and
evaluate proposed interventions. This structured method empowers stakeholders to make data-driven
decisions based on causal dynamics.
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F QUESTIONNAIRE GENERAL DESIGN

The questionnaire serves as the foundational layer of HugAgent, designed to capture both baseline
beliefs and structured reasoning factors before participants engage in interactive chatbot interviews.
The survey was administered through the Prolific platform, ensuring a diverse and demographically
balanced pool of respondents. Importantly, not all participants were asked to complete the chatbot
phase; instead, all participants began with the questionnaire, and only a subset was later recruited
for semi-structured chatbot interviews. This two-stage design allows us to ground conversational
transcripts in an already standardized and validated set of structured responses.
The questionnaire is structured into three complementary components. First, participants provide
demographic information, including age, gender, education, income, housing status, neighborhood
context, and transportation habits. These variables are aligned with U.S. Census and urban planning
survey standards, enabling stratified analyses of systematic variability in beliefs across groups
(e.g., renters versus homeowners, high-income versus low-income). Second, participants answer
stance and intervention items, rating their support on a 1–10 scale and updating their stance under
hypothetical scenarios (e.g., reduced rent under upzoning, reduced household costs under universal
healthcare, reduced crime under surveillance). Third, each topic includes a standardized reason
pool, a set of common factors such as affordability, fairness, privacy, safety, and neighborhood
character. After reporting their stance, participants rate on a 1–5 scale how strongly each reason
influences their opinion. This structure provides interpretable ground-truth (GT) data for reasoning
dimensions and enables cross-participant comparability, since all individuals evaluate the same set of
reasons. By aggregating these structured ratings, we can test whether models not only predict overall
support levels but also recover the latent weighting of reasons that drive human decision-making.
These structured ratings also serve as a reference for aligning open-ended chatbot responses with
quantitative belief factors, creating a consistent bridge between free-text explanations and structured
data.

QUESTION TYPES

We define distinct question types to systematically probe both interpretive reasoning (inferring hidden
beliefs) and predictive reasoning (anticipating belief change).

Type 1.1: Stance elicitation (baseline beliefs). Participants report initial support levels on a 1–10
scale (e.g., “How much do you support allowing taller apartment buildings in your neighborhood?”).
This provides the starting point for belief state modeling.

Type 1.2: Reason evaluation. Participants rate how strongly predefined reasons (e.g., economic
benefits, fairness, neighborhood character, privacy, efficiency) influence their stance on a 1–5 scale.
The reason pools are shared across all respondents within a topic, allowing structured comparison
across individuals and providing ground-truth data on how value dimensions shape beliefs.

Type 1.3: Contextualized interview beliefs. Through chatbot dialogue, participants explain or
justify their stance in natural language. These free-form responses provide latent belief evidence,
which models must interpret to infer hidden attitudes. The transcripts can be cross-validated against
the structured reason evaluations for consistency.

Type 2.1: Scenario-based interventions. Participants evaluate counterfactual scenarios (e.g., “If
rent prices fall by 15% after upzoning, how would your stance change?”). This probes dynamic
updating of beliefs in response to outcomes.

Type 2.2: Normative fairness interventions. Scenarios manipulate fairness dimensions (e.g., “If
upzoning applied equally to wealthy neighborhoods” or “If cameras were controlled by local boards”).
These tasks test whether models capture fairness-based belief shifts.

Type 2.3: Conditional trade-offs. Participants consider hybrid conditions (e.g., “Universal health-
care exists alongside private insurance” or “Surveillance footage stored for 48 hours only”). These
tasks require reasoning under institutional or design constraints.
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Task Type Upzoning Surveillance Cameras Universal Healthcare

Belief Infer-
ence

Q: “On a scale from 1 to
10, how much do you sup-
port allowing taller apart-
ment buildings in your
neighborhood?” A: “Prob-
ably around 3. I worry it
changes the character of
the area.”
Target: Low support
(3/10); belief: upzoning
harms neighborhood char-
acter.

Q: “How comfortable do
you feel being monitored
by public cameras?” A:
“Honestly, it makes me un-
easy. I don’t trust how the
footage is used.”
Target: Low comfort;
belief: privacy concerns
about surveillance.

Q: “Do you feel your cur-
rent health insurance pro-
vides adequate coverage?”
A: “Not really, I often
avoid going to specialists
due to cost.”
Target: Insurance inade-
quate; belief: high costs
limit access.

Reaction Pre-
diction

Scenario: “After the city
allows more apartments,
rent prices drop 15%.
Your monthly rent is no-
ticeably lower.”
Target: Support increases
(e.g., +2 on 1–10 scale).

Scenario: “After installing
cameras, neighborhood
break-ins fall and rob-
beries drop by 20%.”
Target: Support increases
(stronger acceptance).

Scenario: “After switch-
ing to universal healthcare,
household out-of-pocket
costs fall by $3,000 annu-
ally.”
Target: Support increases
(e.g., from 6/10 to 9/10).

Table 19: Illustrative examples of HugAgent questionnaire and interview tasks. Each domain includes
both belief inference and reaction prediction items, enabling evaluation of models on stance attribution
and dynamic belief updating.

G SCALAR SENSITIVITY ANALYSIS

Scalar responses are sometimes viewed as potentially sensitive to sampling noise in LLMs. To
evaluate the stability of LLM-generated scalar outputs, we analyze the variance of model responses
on both 1–5 and 1–10 scales across three domains (healthcare, surveillance, and zoning). For clarity,
we visualize one representative model from each category (OpenAI, other closed-source, and open-
source). All remaining models demonstrate similar stability patterns; full results are available upon
request.

G.1 CONSISTENCY OF MODEL PREDICTIONS

Across all scalar questions, model predictions remain highly consistent across five independent runs.
With temperature fixed at 0.1 and identical prompting conditions, the variance across runs is minimal,
indicating that LLMs produce stable scalar outputs. Figures below report the standard deviation
across runs for each model.

Figure 11: Scalar sensitivity analysis for GPT-4o.
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Figure 12: Scalar sensitivity analysis for Gemini 2.0 Flash.

Figure 13: Scalar sensitivity analysis for DeepSeek-R1.

Figure 14: Scalar sensitivity analysis for Qwen2.5-32B-Instr.
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G.2 ALIGNMENT WITH HUMAN RESPONSE DISTRIBUTIONS

Beyond run-to-run stability, we also evaluate whether model-generated scalar scores align with
empirical human response distributions. Across all three domains and both scalar ranges, the models
achieve Jensen–Shannon Divergence (JSD) values below 0.10 and Pearson correlation coefficients
of r ≥ 0.2. JSD quantifies the similarity between two probability distributions, where values below
0.10 are commonly interpreted as indicating close alignment in distributional shape. Pearson’s
r measures the correlation between the model and human mean scores, capturing alignment in
central tendencies. Together, these complementary metrics provide evidence that models capture
both the overall distributional patterns and the relative ordering of human scalar judgments. Across
most settings, we observe low JSD (0.02–0.08) and moderate positive correlations (r ≈ 0.2–0.4),
consistent with prior findings on LLM stability. Although certain tasks (e.g., zoning on the 1–10
scale) exhibit slightly higher variability, the broader distributional trends remain similar to human
responses. Taken together, these results demonstrate that model-generated scalar outputs are stable,
well-aligned with human response patterns, and that any numerical noise at the item level does not
affect the main conclusions of the study.

Figure 15: Scalar response distributions for GPT-4o across three topics and two scales.
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Figure 16: Scalar response distributions for Gemini-2.0-Flash across three topics and two scales.

Figure 17: Scalar response distributions for DeepSeek-R1 across three topics and two scales.
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Figure 18: Scalar response distributions for Qwen2.5-32B-Instr. across three topics and two scales.
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H ZONING OPINION QUESTIONNAIRE (HUMAN EVALUATION)
To rigorously evaluate the fidelity of our generative agents’ responses against real human participants,
we conducted a structured public opinion survey titled General Housing & Upzoning Public Opinion
Survey. The survey was carefully designed to facilitate comparison between human-generated
responses and those from LLM-based agents, specifically targeting residents of United states.

MOTIVATION AND OBJECTIVES

This survey aimed to assess public opinion on urban upzoning scenarios, capturing nuanced attitudes
toward housing policies and their underlying reasoning. Our goal was to determine whether generative
agents could reliably replicate human response patterns, especially regarding sensitive issues such as
neighborhood change, density increases, and emotional responses like YIMBY (Yes In My Backyard)
and NIMBY (Not In My Backyard).

SURVEY STRUCTURE AND METHODOLOGY

The survey comprised two primary sections:

Section 1: Demographic and Background Information Participants provided detailed demo-
graphic data aligned with U.S. Census Bureau categories:

• Age
• Housing status (owner or renter)
• Income levels
• Occupation
• Marital status
• Presence of children
• Transportation mode
• Monthly rent as a percentage of income
• Residential mobility
• ZIP code or proximity-based location verification

To ensure data quality, participants were required to explicitly answer an attention check question.

Section 2: Scenario-Based Opinion Measurement Participants were first asked general zoning
questions and rated their support for allowing larger, taller apartment buildings in their neighborhood
on a 1–10 Likert scale (1 = strongly oppose, 10 = strongly support). Each scenario was accompanied
by a set of related factors, which participants evaluated on a 1–5 scale (1 = no impact, 5 = very large
impact), regardless of whether the impact was positive or negative. The factors included:

• Housing supply and availability
• Affordability for low- and middle-income residents
• Neighborhood character and visual compatibility
• Traffic and parking availability
• Walkability and access to amenities
• Noise, congestion, or infrastructure strain
• Fairness and distribution of development
• Economic vitality for local businesses
• Building height/scale relative to surroundings
• Property values or homeownership concerns

Clarifying examples were provided to ensure consistent interpretation of impact ratings.

DATA COLLECTION AND IMPLEMENTATION

The survey was implemented using Google Forms and distributed via the Prolific platform, with
compensation set at $12/hour. Participants were guided through the survey flow with embedded
instructions and examples to ensure comprehension and engagement.
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TRANSPARENCY

All survey items, design rationales, and filtering criteria are publicly documented to support repro-
ducibility and public trust. This enables rigorous evaluation of generative agents’ ability to simulate
human attitudes under complex, emotionally and politically sensitive policy conditions.
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I UNIVERSAL HEALTHCARE QUESTIONNAIRE

MOTIVATION AND OBJECTIVE

This survey was designed to evaluate whether a structured reasoning system—based on Bayesian
networks extracted from interviews and conditioned large language models (LLMs)—can simulate or
recover human judgments on complex policy issues. In this case, we focus on universal healthcare, a
topic involving tradeoffs across fairness, cost, autonomy, and trust.
Rather than simply measuring stance, the survey was constructed to expose the participant’s reasoning
pathway, enabling fidelity evaluation at both outcome and process levels.

SURVEY STRUCTURE AND METHODOLOGY

The survey design draws on the four-stage cognitive model of survey response (Tourangeau et al.,
2000):

• Comprehension: Questions were phrased clearly and definitions were provided (e.g., what
universal healthcare entails).

• Retrieval: Participants were asked to recall relevant experiences (e.g., delays in care,
interactions with public systems).

• Judgment: Participants evaluated tradeoffs and reflected on personal values.
• Response: Structured Likert scales captured quantified opinions.

SURVEY COMPONENTS

The survey includes:

• Stance Rating: Support for universal healthcare on a 1–10 scale.
• Personal Experience: Items capturing healthcare access and insurance adequacy.
• Baseline Reason Evaluation: Participants rated 13 carefully constructed reasons (e.g.,

fairness, efficiency, innovation) for their general influence on stance.

COUNTERFACTUAL SCENARIOS

To probe reasoning dynamics and test the model’s sensitivity to causal perturbations, four counterfac-
tual scenarios were introduced, each followed by a stance re-rating and a focused subset of reasons.
Scenarios included:

1. National cost reduction with increased wait times.
2. Household savings of $3,000 annually.
3. Retention of private insurance alongside a public system.
4. Coverage limited to essential services.

Participants re-evaluated selected reasons in the context of each scenario (e.g., “I worry about tax
increases” or “Universal healthcare might reduce personal choice in care”) on a 1–5 scale, allowing
analysis of belief shifts.

REASON DESIGN

Reasons were drawn from qualitative policy discourse and refined to:

• Reflect distinct value dimensions (e.g., equality, responsibility, institutional trust).
• Avoid biasing language (neutral framing, no moral triggers).
• Enable both positive and negative stance justifications across political orientations.

Each reason was independently interpretable and mapped to latent causal factors in the underlying
Bayesian model. Subsets of reasons were assigned to each counterfactual scenario to ensure relevance
while reducing redundancy.
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J SURVEILLANCE CAMERA QUESTIONNAIRE

MOTIVATION AND OBJECTIVE

This survey is designed to evaluate the reasoning fidelity of structured models such as Bayesian
Networks (BNs) when paired with large language models (LLMs). Specifically, it tests whether a
BN+LLM system can simulate human responses to policy questions about public surveillance more
faithfully than a baseline persona-based LLM. To do this, we use controlled question design inspired
by cognitive science and causal reasoning frameworks.

SURVEY STRUCTURE AND METHODOLOGY

The survey design draws on the four-stage cognitive model of survey response (Tourangeau et al.,
2000):

1. Comprehension: Understand the question and context.

2. Retrieval: Recall relevant experiences and beliefs.

3. Judgment: Synthesize and evaluate relevant considerations.

4. Response: Map judgment to a scale-based response.

This model guides both our baseline attitude elicitation and our counterfactual design. The survey
consists of:

Section 1: Baseline Stance and Experience Participants rate their general support for public
surveillance (1–10), followed by personal experiences such as feelings of safety, comfort, and negative
interactions with surveillance technology.

Section 2: General Reason Evaluation Participants evaluate the importance of twelve potential
reasons (1–5 Likert scale) influencing their baseline stance, including factors like privacy, crime
prevention, power misuse, and behavioral impacts.

Section 3: Counterfactual Scenarios and Dynamic Reasoning Participants are then presented
with three hypothetical surveillance policy changes:

• Crime Reduction vs. False Arrest Tradeoff

• Limited Data Retention (48h)

• Community-Controlled Surveillance

For each scenario:

• Participants rate how the new information affects their stance (1–10 scale).

• Then, they re-evaluate a scenario-specific subset of 3–5 reasons (1–5 scale) that are most
relevant under the new condition.

This design allows us to evaluate whether the model (and human) responses adjust not only the final
stance, but also the internal reasoning paths—a critical distinction for validating structural cognitive
models.

DESIGN HIGHLIGHTS

• Cognitive fidelity: Question wording avoids surface cues and forces reasoning across
multiple values (e.g., privacy vs. safety, trust vs. control).

• Counterfactual sensitivity: Each scenario targets a specific edge in the causal BN, enabling
us to observe how reason weights shift under perturbation.

• Explanation delta: By comparing reason weights before and after each scenario, we
quantify whether the model exhibits structural adaptation or static stance mimicry.

DATA COLLECTION AND IMPLEMENTATION

The survey was implemented using Google Forms and distributed via the Prolific platform, with
compensation set at $12/hour. Participants were guided through the survey flow with embedded
instructions and examples to ensure comprehension and engagement.
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TRANSPARENCY

All survey items, design rationales, and filtering criteria are publicly documented to support repro-
ducibility and public trust. This enables rigorous evaluation of generative agents’ ability to simulate
human attitudes under complex, emotionally and politically sensitive policy conditions.
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K PROMPT

K.1 TASK FORMATTING PROMPT

System Prompt

zoning: "You are an expert at analyzing conversations about urban policy to extract causal
beliefs.
surveillance": "You are an expert at analyzing conversations about surveillance and public
safety to extract causal beliefs.
healthcare": "You are an expert at analyzing conversations about healthcare policy to extract
causal beliefs.

User Prompt

Based on the following conversation about {conversation_topic}, identify ALL question-
answer pairs that reveal the person’s beliefs about causal relationships between different
factors.
Conversation: {context_text} Your task: 1. Find ALL Q&A pairs that show how the person
believes one factor affects another (up to 10 pairs) 2. For each pair, create a direct question
asking about the influence level using everyday language 3. Based on the person’s answer,
determine their belief about the effect.
Selection rule: - PRIORITIZE items with dependency_level >= 1 (needs-context). If fewer
than 10 such items exist, then fill the remainder with the best dependency_level = 0 items. -
Prefer diverse factor pairs; avoid near-duplicates.

Return JSON format as an array.
{answer_options_text}
Use simple, everyday language for the factors. Examples by topic:
Zoning: "building more housing" instead of "upzoning policies", "traffic congestion", "neigh-
borhood character" .
Surveillance: "installing cameras" instead of "surveillance systems", "crime rates", "privacy
concerns" .
Healthcare: "universal coverage" instead of "healthcare policy", "wait times", "healthcare
costs".
Return up to 10 belief inference questions maximum.

K.2 EVALUATION PROMPT

System Prompt

You are an expert psychologist specializing in Theory of Mind and belief inference.
Your task: analyze conversation transcripts to infer what the participant believes about causal
relationships. Focus on understanding their mental model - what they think causes what, not
what is objectively true.
Consider their background, conversation patterns, and implicit beliefs expressed through
their responses. Base your inference strictly on evidence from their statements, not general
assumptions.

User Prompt

{Context QA + Demographic information}
Based on the evidence above (including Conversation History and Person’s Background),
respond with ONLY the single letter (options_str) that best represents this person’s belief.)
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L EXTENDED DESIGN PRINCIPLES

Open-ended reasoning as principle Our benchmark targets reasoning as a dynamic and individu-
alized process, rather than static prediction. We therefore adopt an open-ended elicitation principle:
instead of pre-defining fixed question banks, HugAgent uses a single guiding question to initiate
a semi-structured conversation. All follow-up questions are generated adaptively within the same
dialogue, grounded in the participant’s own responses. This design enables deep, conversational
reasoning to unfold while minimizing artificial scaffolding from the chatbot itself. We do not claim
fully open-world coverage; rather, we emphasize open-domain extensibility: by simply swapping
the guiding question, the benchmark can be ported to new domains while maintaining consistency
in evaluation. Such minimal-interaction protocols align with prior work showing that lightweight
conversational scaffolds preserve ecological validity in human reasoning studies (Van Someren et al.,
1994; Clark, 1996; Sap et al., 2019b; Driess et al., 2023). This principle directly motivates the
guiding-question chatbot protocol we describe in Appendix D.

Proxy tasks of reasoning To evaluate whether models capture not only what individuals believe
but also how their beliefs evolve, we operationalize reasoning through two proxy tasks: belief state
inference (recovering stance and factor polarity from context) and belief dynamics update (predicting
stance shifts and reweighting under new evidence). These tasks follow the tradition of modeling belief
revision as a tractable proxy for underlying cognitive processes (Gopnik & Schulz, 2007; Sloman,
2009). While other proxies could be envisioned, these two are the most direct operationalizations of
individual reasoning trajectories, balancing interpretability and task difficulty. This motivates our
benchmark’s two-task structure, detailed in Appendix D.

Dual-track design: human and synthetic agents Human data provide ecological validity: rich,
idiosyncratic reasoning paths embedded in natural language. Synthetic agents, by contrast, provide
controllability and scale: fully specified stance profiles and deterministic update rules allow stress-
testing model adaptation under known ground truth. Together, the two tracks are complementary:
humans as ecological baselines, synthetics as controlled stress tests. This mirrors dual-track designs
in cognitive science and simulation benchmarks, where naturalistic and synthetic data jointly enhance
validity and reproducibility (Lake et al., 2017; Battaglia et al., 2018). Synthetic agents are not
intended to replace human data but to serve as a complementary axis of evaluation. This dual-track
design is what anchors HugAgent between ecological realism and controlled generalization
tests.

Extended Rationale: Synthetic Stage Justification Synthetic data in HugAgent follows the same
legitimacy principles as established ToM and social reasoning benchmarks. Rather than letting
LLMs freely invent beliefs, we first define a formal structure—a causal belief graph specifying nodes
(beliefs), edges (causal relations), and interventions (external stimuli). Synthetic agents then evolve
along this graph to generate new belief states and reasoning trajectories. The graph itself provides
the ground truth for evaluation (e.g., stance updates, trajectory alignment), while LLMs merely
render these states into natural language explanations. This ensures that labels are independently
controlled and falsifiable, avoiding the risk of self-validation. As in prior benchmarks, sampled
human verification is performed for quality assurance.

Upper bound via test–retest reliability A natural question is whether human annotators could
serve as the benchmark baseline. While this is common in many benchmarks, HugAgent tasks present
unique challenges: they involve long, naturalistic transcripts and fine-grained belief trajectories.
In principle, annotators could be asked to re-read transcripts and label stance updates, but such
procedures are slow, error-prone, and risk conflating annotators’ own heuristics with the original
participant’s reasoning. This creates a fidelity–feasibility tradeoff: while feasible, the outcome would
be a proxy of third-party interpretation, rather than a faithful measure of the individual’s reasoning
process.
Instead, we adopt test–retest reliability as the human ceiling. Here, the same participant is re-sampled
or re-interviewed, and the consistency of their own responses provides a direct measure of reliability.
This practice is well established in psychology and survey research, and has been adopted in recent
large-scale reasoning datasets facing similar challenges (Park et al., 2023; Toubia et al., 2025).
Compared to annotator baselines, test–retest reliability offers a more precise and ecologically valid
upper bound for model performance, aligned with the benchmark’s goal of capturing intra-individual
reasoning fidelity. This principle defines how we report the human ceiling in HugAgent.
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M DATA FULL EXAMPLE

User’s Demographic:

Attribute Example (Anonymized Participant)

Housing Experience Has lived in the same residence for several years
Age 30
Moved Last Year Same house 1 year ago
Housing Status Owner-occupied
Transportation Car / Truck / Van
Household Income $75,000–$99,999
Occupation Sales and office occupations
Marital Status Not married
Children Has children
Neighborhood Safety Very safe. I rarely worry about crime
Health Insurance Private insurance, no disability
Education High school graduate or equivalent
Citizenship Native-born U.S. citizen
Financial Situation Gets by, but money is tight

Table 20: Example anonymized participant profile used in analysis (for illustration only). Personally
identifiable details have been generalized or omitted.

INTERVIEW QA

Note: The following excerpt reflects a simulated or anonymized participant’s responses. It may
contain biased or stereotypical opinions that do not represent the authors’ or dataset creators’ views.
It is included purely for analysis of belief attribution and reasoning behavior.

1. Q: To what extent do you support or oppose upzoning policies that allow for higher density
housing in traditionally single-family neighborhoods? Please explain your reasoning.
A: I don’t support it at all. I’m worried that it’ll cause overcrowding if cheaper apartments
or housing were made. Aside from that, we know that statistically, lower income people
tend to have more of the criminal population in them, isn’t that right? So this might cause
the crime rates to go up!

2. Q: What do you think are the most significant impacts, positive or negative, of increasing
housing density in residential neighborhoods?
A: I’ve mentioned the potential for crime rates to go up, that’s the real worry here. Lots of
new lower income people, lots of potential criminals.

3. Q: How do you think upzoning policies might affect housing affordability in urban areas?
A: They’d most likely lower the price of rent because of “competition”. But at what cost?
The safety of the people!

4. Q: What impact do you believe increased housing density might have on neighborhood
character and quality of life?
A: Safety for sure. Low income places simply have more potential for crimes due to people
being tempted to commit criminal acts for survival.

5. Q: How do you think upzoning might affect transportation systems and traffic congestion in
cities?
A: It’s going to worsen! Look, there was a time when I used to take the bus to get to work
every day when I still didn’t have a car. I live in a big city and sometimes, the bus couldn’t
take all of us! That caused me to get late a couple of times since there wasn’t even any
standing room. So imagine, a rush of new low income people to this area, probably they
don’t have cars so they’ll rely on buses, it’ll just be extra strain on the buses and not everyone
would be able to get on the bus at all.

6. Q: What role do you believe local government should play in regulating housing develop-
ment and density?
A: The government really shouldn’t be too involved with many things. Just minimally
involved. Less government involvement, the better.

7. Q: How might environmental concerns factor into decisions about urban density and zoning?
A: I don’t personally care about these so-called “environmental concerns”. I’m not some
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kind of environmental activist or terrified climate change believer. As long as something
doesn’t dump toxic waste or all sorts of hazardous material in my area, then it’s good.

8. Q: What economic effects, both positive and negative, might result from changing zoning
laws to allow more multi-family housing?
A: More new people, more potential customers for businesses in the area obviously. BUT
we also have to think that these are low income people if we’re talking about low income
housing. So businesses targeting low income people would most likely benefit, but the more
upscale ones wouldn’t.

9. Q: How do you think the interests of current residents versus future residents should be
balanced when making zoning decisions?
A: The current residents should ALWAYS be prioritized, they were there first. New people
should always be considerate of the people living wherever they’re planning to move to. It’s
just basic human decency.

10. Q: What role do you think social equity and access to opportunity play in discussions about
zoning and housing policy?
A: I am totally against EQUITY. Equity means taking opportunities away from someone
in order to give it to somebody else who probably didn’t earn it. I don’t like the idea of
redistributing what a successful person has.

11. Q: How confident are you that changes in Higher density housing lead to changes in Support
for Upzoning? Does it have a positive effect (increasing it) or a negative effect (decreasing
it)? How strong is this effect?
A: It’s going to be NEGATIVE. If we’re talking about people, it’s not just quantity that
we’re supposed to worry about, but also the quality. So we can say “Don’t judge a book by
their cover”, but we also must think that people are in the situation they are for a reason.
So if we’re going to get flooded by low income people, we have to ask, “Why are they low
income?” Of course not all low income people are bad, but majority of criminals are low
income people.

12. Q: What factors do you think influence Support for Upzoning, and how strong is their
impact? Please also indicate if these influences are positive (increasing) or negative (de-
creasing).
A: Definitely the idea of SAFETY is a huge factor. Just imagine you live in a peaceful
neighborhood where crime isn’t really a problem, then suddenly a huge number of new low
income people flood in to your community and suddenly kids start getting bullied at the
playground, people start getting mugged left and right. Safety is really a big concern!

13. Q: Does Crime rates have a positive or negative effect on Support for Upzoning, and how
significant is this effect? Does it have a positive effect (increasing it) or a negative effect
(decreasing it)? How strong is this effect?
A: That’s what I’ve been talking about this entire conversation, the potential for CRIME!
As I’ve already stated numerous times, it’s a MAJOR concern and an influx of low income
people would definitely affect the crime rate!

14. Q: Would small changes in Housing affordability lead to noticeable changes in Support for
Upzoning, or would it take larger shifts? Does it have a positive effect (increasing it) or a
negative effect (decreasing it)? How strong is this effect?
A: At first people would probably think things will be better because rent might go down
a bit, BUT that’s not guaranteed. Second, SAFETY is really something that people are
probably not willing to compromise.

15. Q: Would small changes in Safety lead to noticeable changes in Support for Upzoning, or
would it take larger shifts? Does it have a positive effect (increasing it) or a negative effect
(decreasing it)? How strong is this effect?
A: If there’s really no way about avoiding the creation of some kind of tall low income
apartment building for the sake of “equity”, then the next best thing would be to thoroughly
do background checks on all the renters. For example, there should be strictly nobody in
there with a criminal record.

16. Q: How would you describe the relationship between Low Income People and Support for
Upzoning? Is it a strong or weak connection? Does it have a positive effect (increasing it) or
a negative effect (decreasing it)? How strong is this effect?
A: Well of course low income people would support the creation of low income rental
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building. But the problem is that people already living in the community, like me, wouldn’t
support it at all for fears of safety worsening.

17. Q: Is the effect of Minimal Regulation on Support for Upzoning immediate, or does it take
time to develop? Does it have a positive effect (increasing it) or a negative effect (decreasing
it)? How strong is this effect?
A: Any policy takes TIME to develop. Rushed policies just end up in disaster because it
won’t be well thought out.

18. Q: Would small changes in Impact on businesses lead to noticeable changes in Support for
Upzoning, or would it take larger shifts? Does it have a positive effect (increasing it) or a
negative effect (decreasing it)? How strong is this effect?
A: No. As I’ve said, low income people will only provide benefit to businesses targeting
low income customers. Mid to upscale businesses wouldn’t benefit from them because they
won’t be able to afford their products and services. In short, not all businesses would be in
support of having some kind of low income housing in the area if all they’re going to be
able to afford are low income stuff.

19. Q: How would you describe the relationship between Basic human decency and Support for
Upzoning? Is it a strong or weak connection? Does it have a positive effect (increasing it) or
a negative effect (decreasing it)? How strong is this effect?
A: There are people who make decisions based on feelings alone. Yes, they’ll think it’s
“decent” to allow low income people to have low income housing in their community, BUT
often, these people don’t think about the consequences that would affect the people already
living in the community. They are too focused on helping others that they don’t realize they
are causing harm to themselves.

20. Q: Is the effect of Redistribution on Support for Upzoning immediate, or does it take time
to develop? Does it have a positive effect (increasing it) or a negative effect (decreasing it)?
How strong is this effect?
A: That’s definitely going to be a huge NEGATIVE right away. Nobody in their right mind
would want themselves to be compromised for others. So let’s think about what happens if
in a moderately wealthy area, they allowed low income housing in the name of “equity”. For
actual home owners (not renters), the value of their properties would go down. These are
properties that they’ve worked for years to maintain, and suddenly, in the name of “equity”,
is it alright to allow the values to go down? No of course not! So we have to always think
about how low income housing would affect the people already living in the community.

21. Q: Would small changes in Negative Effect lead to noticeable changes in Support for
Upzoning, or would it take larger shifts? Does it have a positive effect (increasing it) or a
negative effect (decreasing it)? How strong is this effect?
A: No, it’s called “Negative Effect” because it affects people in a bad way. Nobody would
support anything like that knowingly.

22. Q: What factors affect Upzoning policies, and which ones have the strongest influence?
Please also indicate if these influences are positive (increasing) or negative (decreasing).
A: As I’ve been saying this entire conversation, the major facor that affects people’s support
for low income housing is the SAFETY, the potential for crime rates to go up, and these
things will definitely always affect support for low income housing negatively.

23. Q: Does Community Resistance to Upzoning have a positive or negative effect on Support
for Upzoning, and how significant is this effect? Does it have a positive effect (increasing it)
or a negative effect (decreasing it)? How strong is this effect?
A: Of course community resistance won’t support low income housing, that’s the point.
People would resist these places from being built in order to protect the community from
potential safety concerns.

24. Q: How would you describe the relationship between Time for policy development and
Support for Upzoning? Is it a strong or weak connection? Does it have a positive effect
(increasing it) or a negative effect (decreasing it)? How strong is this effect?
A: Of course “Time” will always have something to do with whether low income housing
would be allowed or not. For example, maybe a politician would take his time forming some
kind of bill concerning low income housing and he’ll wait for enough public support before
officially launching it in order to increase its chances of succeeding.

25. Q: Would small changes in Low Income Housing lead to noticeable changes in Support for
Upzoning, or would it take larger shifts? Does it have a positive effect (increasing it) or a
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negative effect (decreasing it)? How strong is this effect?
A: No, even small changes in low income housing won’t change people’s support for it
because it will negatively affect the community. People already know it’s most likely going
to be the cause of many safety concerns aside from property devaluation.

26. Q: Does Equity have a positive or negative effect on Support for Upzoning, and how
significant is this effect? Does it have a positive effect (increasing it) or a negative effect
(decreasing it)? How strong is this effect?
A: Equity has NEGATIVE effects on people already living in the community, because the
point of equity is to take from those people (land space) and to redistribute it to other people
(the low income people). People might try to frame it as “helping the poor”, but you can
help poor people in other ways without harming the community.

27. Q: How would you describe the relationship between Support for low income housing and
Support for Upzoning? Is it a strong or weak connection? Does it have a positive effect
(increasing it) or a negative effect (decreasing it)? How strong is this effect?
A: People are directly against low income housing because it’s more likely to bring bad stuff
with it that good ones. The consequences outweigh the positives.

SAMPLE SURVEY: HOUSING / UPZONING

BASELINE STANCE

• Q1. On a scale from 1 to 10, how much do you support or oppose allowing bigger, taller
apartment buildings in your neighborhood?

1 2 3 4 5 6 7 8 9 10
Strongly Oppose Neutral Strongly Support

REASON EVALUATION (BASELINE)

Q1r. How much do the following reasons influence your general opinion on upzoning?

Reason Scale (1–5)

Building more homes helps with the housing crisis. (A)
This gives more housing choices for middle- and lower-
income people. (B)
Taller buildings might change the look and feel of the neigh-
borhood. (C)
More traffic and parking is a real concern. (D)
I’m worried about my property value or investment. (I)

SCENARIO 1: RENT DROP

• Q2. After the city allows more apartments in low-density areas, rent prices drop 10–15%.
Your monthly rent is noticeably lower. It’s easier to find a decent place. How would this
affect your stance?

1 2 3 4 5 6 7 8 9 10
Much Less Supportive Neutral Much More Supportive

REASON EVALUATION (SCENARIO 1)

Q2r. To what extent do the following reasons influence your stance?

Reason Scale (1–5)

Building more homes helps with the housing crisis. (A)
More traffic and parking is a real concern. (D)
Everyone should help handle the growth. (N)
More people means more business for local shops. (O)
I’d worry about noise and crowding on my block. (P)
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N RATIONALE FOR INDIVIDUAL CROSS-DOMAIN TRANSFER

We assume that cross-domain personalization is feasible because individuals express stable, value-
laden cues throughout natural language. These cues are not tied to a single domain; rather, they reflect
underlying principles that consistently shape preferences across contexts.

Quantitative Evidence: Consistent In- to Out-of-Domain Transfer To empirically support this
assumption, we report cross-domain transfer results for four individuals. For each person, GPT-4o
was evaluated across five independent runs. Across all individuals and all runs, we observe the same
ordering:

In-domain accuracy > Cross-domain accuracy > No-context accuracy.

This strict ordering across all 20 settings (4 individuals × 5 runs) provides a statistically grounded
indication that the observed cross-domain transfer is reliable and not an artifact of noise.

User Experiment Belief State Inference (BSI) Belief Dynamics Update (BDU) ATI (% ↑)
Acc. (% ↑) Acc. (% ↑) MAE (↓) Dir. Acc. (% ↑)

User 1
(n-BSI = 9, n-BDU = 48)

In Domain 88.89±0.01 91.67±0.01 0.57±0.02 85.00±0.01 87.88±0.05

Cross Domain 55.56±0.01 54.58±3.33 1.38±0.03 50.00±0.01 55.28±0.51

No Context 33.33±0.01 8.33±0.01 2.33±0.02 18.00±3.67 27.42±0.91

User 2
(n-BSI = 13, n-BDU = 41)

In Domain 92.31±0.01 91.71±1.95 0.58±0.02 65.00±0.01 84.57±0.30

Cross Domain 92.31±0.01 83.90±1.19 0.97±0.02 73.00±9.80 84.37±2.49

No Context 30.77±9.73 39.02±3.45 1.68±0.04 65.00±0.01 43.78±4.51

User 3
(n-BSI = 5, n-BDU = 24)

In Domain 66.67±0.01 64.23±2.48 1.26±0.04 57.50±0.01 64.29±0.38

Cross Domain 66.67±0.01 28.57±1.88 1.87±0.04 65.00±0.01 59.80±0.34

No Context 46.67±9.79 19.22±1.21 1.95±0.03 50.00±0.01 44.63±5.05

User 4
(n-BSI = 7, n-BDU = 38)

In Domain 57.14±0.01 42.11±3.33 1.72±0.04 92.50±0.01 64.10±0.52

Cross Domain 51.43±0.69 30.00±2.11 1.79±0.02 85.00±0.01 57.63±3.47

No Context 31.43±5.71 30.00±1.29 1.79±0.03 77.50±0.01 45.73±2.76

Table 21: Comparison of GPT-4o performance across In-domain, Cross-domain, and No-context
conditions for four representative users (mean ± std over five runs).

Qualitative Evidence: Stable Value Dimensions Across Domains To complement the quantitative
results, we provide a qualitative analysis of one participant’s transcript. The individual expresses a
coherent set of value-laden principles that appear across healthcare, surveillance, and zoning. These
principles naturally support cross-domain generalization from a single personalized conversation.
The following quotations reflect individual participant beliefs and not normative statements endorsed
by the authors.

1. A safety-first orientation that generalizes across contexts.
In zoning, the participant frames upzoning as a threat to public safety:

“If cheaper apartments were made, it’ll cause overcrowding, and that means more
low-income people moving in. . . which will make crime rates go up!”

In surveillance, the same concern motivates strong support for camera deployment:
“Cameras are a tool of preventing potential crime and it’s effective.”

A safety-oriented value extracted from zoning thus directly predicts pro-surveillance atti-
tudes.

2. A stable opposition to redistribution across domains.
In healthcare:

“Nobody is entitled to other people’s money. Taxpayers shouldn’t be forced to pay
for other people’s medical needs.”

In zoning:
“Equity means taking opportunities away from some to redistribute them to others.
I don’t like redistributing what a successful person has.”

The same anti-redistribution stance explains resistance to equity-oriented policies in both
domains.
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3. A consistent negative framing of low-income groups as a societal risk.
In zoning:

“Lots of new low-income people means lots of potential criminals. . . majority of
criminals are low income.”

In healthcare:
“The only people who’d support universal healthcare are those who can’t afford
healthcare themselves.”

This stable attribution shapes preferences across otherwise unrelated policy areas.
4. Selective distrust of government intervention—except in policing.

In healthcare:
“If the government runs it, everything becomes standardized and we’re forced to
pay for others.”

In zoning:
“The government really shouldn’t be too involved. . . less government involvement,
the better.”

Yet in surveillance:
“If police use cameras to catch criminals, support will grow.”

This produces a predictable cross-domain pattern: skepticism toward government redistribu-
tion and regulation, but support for expanded government authority in security contexts.

Summary These four dimensions (1) safety orientation, (2) redistribution aversion, (3) negative
out-group attribution, and (4) selective distrust of government are expressed consistently across the
participant’s interview.
Taken together, the quantitative seed-level consistency and qualitative evidence provide a clear
explanation for why individual cross-domain personalization is expected and why our empirical
findings are robust.
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O QUALITY-CONTROL PROTOCOL

We applied a standardized protocol to ensure that only participants with reliable and reproducible
data were retained. The following criteria were applied sequentially:

1. Redundant responses: cases where the participant repeatedly produced near-identical
statements without substantive variation.

2. Meta-level questioning: transcripts dominated by repeated challenges to the validity of the
task itself rather than substantive reasoning about the topic.

3. Insufficient length: responses falling below a minimum threshold of tokens or turns,
preventing meaningful inference of reasoning structure.

4. Sparse causal belief networks: chatbot elicitation yielding fewer than five unique nodes,
limiting the interpretability of downstream causal graph construction.

This filtering ensured that the retained dataset reflects consistent engagement with the task, while
minimizing artifacts that could compromise the validity of subsequent analyses.
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P SYNTHETIC AGENT CONSTRUCTION (ALGORITHMIC)

P.1 PROBLEM SETTING AND NOTATION

We construct a synthetic agent population A for topics T =
{ZONING, HEALTHCARE, SURVEILLANCE}. Each agent a ∈ A for topic t ∈ T has (i) a
Causal Belief Network (CBN) G = (V,E), (ii) a demographic profile d, (iii) an initial belief
state b0 = (s0,w0) with stance s0 ∈ {1, . . . , 10} and reason weights w0 ∈ ∆K−1, and (iv) a
deterministic update operator U that maps (bt, e) 7→ bt+1 given an intervention e.

Topic-level statistics. From human CBN corpora we estimate topic-specific sufficient statistics
Θt = {µn, σn, µe, σe, αimp, βimp, αconf, βconf,V}: node/edge count moments (µn, σn) and (µe, σe),
Beta parameters for node importance and edge confidence, and a topic vocabulary V for label
generation. A content hash over source JSON files ensures cache validity.

P.2 CBN SAMPLING MODEL

Graph size. We draw |V | ∼ TruncNorm(µn, σn, [nmin, nmax]) and |E| ∼
min{LogNormal(µ′

e, σ
′
e), |V |(|V | − 1)/2} with log-space moments chosen to match (µe, σe).

Node attributes. For each v ∈ V :

importance(v) ∼ Beta(αimp, βimp), evidence(v) ∼ Poisson(λt).

Text label ℓ(v) is generated by sampling m ∈ {2, 3, 4} tokens from V (frequency-weighted) and
filling a topic template.

Edge attributes and topology. We form a hub–spoke backbone plus random residual edges.
For each selected hub h (top-q by importance), connect h→ u for u ∈ V \{h} with probability
proportional to 0.7 · importance(u) + 0.3 until a target degree. Each edge e = (u→v) gets:

conf(e) ∼ Beta(αconf, βconf), sign(e) ∈ {−1, 0,+1}with p+, p0, p−, weight(e) ∼ Beta(αw, βw).

We then add random non-duplicate edges until |E| is reached.

Stance node selection. Let deg(v) be (undirected) degree. Define score σ(v) = 0.7 ·
importance(v) + 0.3 · deg(v)/maxu deg(u). Sample stance node v⋆ from top-3 nodes according to
σ(v) (softmax). Ensure weak connectivity from v⋆ to all nodes (add minimal edges if needed).

P.3 DETERMINISTIC UPDATE OPERATOR

Let reasons be a fixed topic-specific set {r1, . . . , rK} aligned to V . Given intervention e encoded as
factor deltas ∆f ∈ R|V |, we update stance and reason weights:

st+1 = clip

st + ηs
∑

(u→stance)∈E

signu wu ∆fu, 1, 10

 , (2)

wt+1 = Normalize(wt + ηw M∆f) , Mk,u = g(rk, u), (3)

where wu is the edge weight into stance, ηs, ηw are step sizes, and g(·, ·) aligns reasons to graph
nodes (one-hot or soft map). This yields reproducible ground truth for stance shifts and reweighting.

P.4 DEMOGRAPHIC GENERATOR AND COUPLING

We sample a demographic profile d with correlated marginals: age bands, gender, education, income,
housing status, employment, location, children, and rent-burden. Simple rules induce a small stance
prior δ(d) (e.g., renter ⇒ +δ on pro-development; older age ⇒ −δ on rapid change). We set
s0 ← clip(s0 + δ(d), 1, 10).

P.5 NATURAL LANGUAGE REALIZATION

A realization module renders (G, e, bt, bt+1) to text: (i) paraphrase e with templates; (ii) describe
reasons using top-m nodes connected to v⋆ by high-confidence edges; (iii) optionally ask/answer
interview-style QAs. LLMs are used strictly as a renderer; labels remain from the scripted dynamics
in §P.3 to avoid circularity.
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Algorithm 1: GenerateAgent(t,Θt, seeds)
Input: topic t, stats Θt, RNG seeds
Output: agent (G, d, b0, {(ej , bj)}mj=1, text)

1 Sample |V |, |E|; create V with importance, evidence, label from V;
2 Build E via hubs + random; assign conf, sign, weight;
3 Select stance node v⋆; ensure connectivity;
4 Sample demographics d; set b0 = (s0,w0) and apply prior δ(d);
5 for j = 1 to m do
6 Sample intervention ej (topic-specific deltas ∆f );
7 bj ← U(bj−1, ej) using Eqns. (1)–(2);
8 Realize (ej , bj−1, bj) to text; append to transcript;
9 return packaged JSON: graph G, demographics d, {(ej , bj−1, bj)}, transcript;

P.6 END-TO-END GENERATION

P.7 COMPLEXITY AND SCALING

Graph sampling is O(|V |+ |E|); hub wiring adds O(|V | log |V |) for sorting. Per-agent conversation
of m turns is O(m) render calls. The pipeline trivially parallelizes across agents and topics.

P.8 QUALITY CONTROL AND DETERMINISM

Graph validity: degree bounds, stance reachability, parameter ranges. Topic relevance: label
vocabulary coverage threshold. Determinism: all stochastic steps are seeded; topic stats are cached
with file hashes. Leakage control: interventions and post-update labels never appear in the dialogue
context used for model evaluation.

P.9 RELEASE SCHEMA

Records are released as JSON:

• belief_graph: nodes with label, importance; edges with source, target, sign,
weight, confidence; stance node id.

• demographic: age, gender, education, income, housing, employment, location, children, bur-
den.

• state_before/state_after: stance (1–10), reason weights (1–5 or normalized).
• intervention: structured deltas and a natural-language paraphrase.
• transcript: ordered QA pairs (renderer output).

P.10 HUMAN–SYNTHETIC SIMILARITY

To assess whether synthetic agents provide a faithful approximation of human reasoning structures,
we compare structural statistics of belief graphs across the two tracks. As shown in Figure 19, the
distributions of key properties—including graph size (nodes, edges), sparsity (edge density, average
degree), and semantic alignment (importance, confidence, anchor-node ratio)—exhibit strong overlap
between real and synthetic agents. Notably, synthetic graphs reproduce the long-tailed variation
in node and edge counts observed in human data, while maintaining comparable distributions of
stance-related weights. This alignment suggests that the synthetic track can serve as a scalable proxy
for human reasoning traces, capturing core structural regularities even as it abstracts away from
individual variability.

P.11 LIMITATIONS

Synthetic agents offer coverage and ablation control but abstract from human variability (noise,
inconsistency, framing sensitivity). Thus, results on this track are stress tests and should be interpreted
alongside the human-grounded track, which provides the ecological ceiling.
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Figure 19: Distributional comparison of structural statistics between human-grounded (blue) and
synthetic (red) belief graphs. Synthetic graphs replicate key patterns such as node/edge counts,
confidence levels, and anchor-node ratios, supporting their use as controlled stress-test agents.

Q BENCHMARK TASK STRUCTURE

To clarify how HugAgent maps input materials to evaluation tasks, we provide here a consolidated
overview of the benchmark structure. As shown in Figure 20, raw inputs include (i) demographic
profiles, (ii) structured questionnaires, and (iii) open-ended chatbot transcripts. These inputs are
transformed into two core task families:

• Task 1: Belief State Inference. Given a participant’s responses and contextual cues, models
must infer the person’s stance and factor-level attribution. Example questions include:
“Does the respondent view low-income housing as a positive or negative effect on property
values?”

• Task 2: Belief Dynamics Update. After an intervention (e.g., rent decrease, policy change,
technological improvement), models must predict both the stance shift (1–10 scale) and
the reweighting of reasons (1–5 scale). Example questions include: “How would a 10%
reduction in rents affect the respondent’s stance on upzoning?”

Each topic domain—zoning, healthcare, and surveillance—is instantiated with multiple scenarios
and corresponding reason mappings. This ensures comparability across domains while preserving
topic-specific ecological validity.
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Figure 20: Overview of the HugAgent benchmark structure. Inputs (demographics, questionnaires,
and transcripts) are mapped to outputs, including belief state inference (Task 1) and belief dynamics
update (Task 2).

R USER JOURNEY AND USE CASES OF TRACE-YOUR-THINKING (A
SEMI-STRUCTURED CHATBOT ELICITING HUMAN REASONING)

This appendix provides a detailed user guide and representative use cases for TRACE-YOUR-
THINKING, our semi-structured chatbot system designed to elicit human reasoning at scale. We
describe both participant-facing (user) and researcher-facing (admin) views, followed by system
outputs and illustrative use cases. We use open science practices as an example here. Our design
emphasizes three goals: (i) lowering barriers for participants, (ii) giving researchers flexible and
reliable control, and (iii) producing structured outputs that make reasoning analyzable at scale.
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PARTICIPANT JOURNEY (USER VIEW)

Participants experience a streamlined workflow that reduces friction while maximizing the richness
of collected reasoning.

Step 1: Consent and ID submission. Recruitment begins on the Prolific platform, where partic-
ipants are shown eligibility criteria and compensation details. Upon accepting the study, they are
redirected to a Google Form where they confirm basic requirements (age ≥ 18, residence within a
specified region, consent for anonymous data usage). Entering their Prolific ID links the responses
to the recruitment system, enabling follow-ups without storing personal identifiers, as is shown in
Figure 21.

Figure 21: Participant view of the onboarding and interview flow (Consent)

Figure 22: Participant view of the welcome page

Step 2: Login and onboarding. Participants are then redirected to the TRACE-YOUR-THINKING
website. After inputting their Prolific ID, they are guided through a short tutorial. This tutorial
introduces input modalities (typed text vs. voice-to-text) and explicitly informs users that all answers
can be revised either immediately or retrospectively. A persistent progress bar at the top of the
interface communicates task completion, reducing dropout risk by making expectations transparent.
This part is shown in Figure 22.

Step 3: Semi-structured interview. The core of the participant journey is the semi-structured
interview, which unfolds in a guided yet flexible flow: introduction→ guiding questions→ follow-up
probes→ final review. This design balances standardization with open-ended flexibility, allowing for
wide variation in content, style, and depth of responses.
Participants can choose between typed responses and spoken input, enabling a think-aloud protocol
that captures more spontaneous reasoning processes. Figure 23 illustrates the onboarding screen
where both input modes are explained, while Figure 24 shows a participant actively using voice
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Figure 23: Participant view of the onboarding of the chatbot, including audio and text input

Figure 24: Participant view of using audio to give the answer

input to answer a question. Once the interview begins, participants can monitor their progress via a
persistent progress bar (Figure 25), which reduces fatigue by making task completion transparent.
During processing, the interface will show the processing status while still generating new questions
and allow users to answer (Figure 26).
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Figure 25: Participant view of answering questions and the interview progress

Participants can not only edit their responses immediately but also review the entire transcript at the
end of the interview. As shown in Figures 27 and 28, the system presents an overview of all questions
and answers, enabling users to backtrack, refine, and self-correct their reasoning. This mirrors how
real-world reasoning often evolves over multiple passes rather than being fixed in a single draft.

Step 4: Submission and compensation. Once satisfied, participants submit their responses. Fig-
ures 29 and 30 demonstrate the submission stage, where participants re-enter their Prolific ID to
confirm completion and finalize their session. The system redirects them back to Prolific, which
automatically verifies completion and issues compensation. This tight integration ensures high-quality
participation while minimizing administrative overhead.
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Figure 26: Participant view while AI is processing questions, but the participant can still answer the
following questions without waiting

R.1 RESEARCHER JOURNEY (ADMIN VIEW)

The system provides a dedicated control panel that makes data collection transparent, configurable,
and scalable. Unlike static survey platforms, admins can adapt the study design on the fly and extract
structured reasoning outputs.

Recruitment integration. Admins can publish tasks directly on Prolific, embedding the study link
into recruitment posts. Prolific’s filters (approval rate, demographics, geography) allow targeted
participant pools, while stored Prolific IDs support longitudinal follow-ups. This design enables
researchers to re-engage the same individuals across time or across topics, making it uniquely suitable
for longitudinal reasoning studies.

Session management. The Session Management dashboard (Fig. 31) displays all ongoing and
completed interviews with metadata including status, progress, and timestamps. From this panel,
admins can (i) reorder questions, (ii) export raw QA data, or (iii) export causal graphs for downstream
analysis. This unified view makes it easy to monitor study progress at scale and to recover high-fidelity
reasoning traces.

Configurable guiding questions. Admins can design and adjust the interview protocol using
a guiding question editor (Fig. 32). Each question has metadata (short text, full text, category),
can be toggled on/off, and can be reordered dynamically. This flexibility makes it possible to test
multiple hypotheses without rewriting the underlying system. In practice, this feature has been used
to swap tutorial vs. research questions and to experiment with different probing strategies, making
the platform versatile for diverse research programs.

Global settings. Admins can set a global interview topic (e.g., policy, healthcare, surveillance)
with a single configuration (Fig. 33). This allows open-ended reasoning tasks to be deployed across
arbitrary domains, ensuring that the platform is not tied to a fixed task. In effect, the system generalizes
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Figure 27: Participant view of the overview of the questions and answers. One can edit and go back
to any of their answer.

beyond a dataset-collection tool to become a reusable infrastructure for eliciting reasoning in any
domain.

R.2 RESEARCH OUTPUTS (SYSTEM FEATURES)

The system is designed to produce outputs that go beyond raw transcripts, giving researchers structured
and analyzable data.

Raw QA transcripts. All participant responses are preserved verbatim (Fig. 34). This ensures that
qualitative nuances (hesitations, personal anecdotes, colloquial phrasing) are not lost. At the same
time, transcripts provide the raw material for quantitative benchmarking, enabling evaluations of
stance classification, belief calibration, and reasoning depth. The ability to capture both structured and
noisy responses is a feature, not a limitation: it reflects the diversity of real-world human reasoning.

63



3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

Figure 28: Participant view of the end of the overview of the questions and answers

Figure 29: Participant view of reentering prolific id for submission

Dynamic causal graphs. The distinctive feature of TRACE-YOUR-THINKING is the automatic
construction of causal graphs in real time (Fig. 35). As participants answer questions, the system
incrementally extracts stance nodes (opinions), belief nodes (anchors), and candidate nodes (sup-
porting reasons). The graph expands as reasoning unfolds, producing a structured representation of
how beliefs and justifications interconnect. This design is important for two reasons: (i) it transforms
unstructured reasoning into analyzable graph data, and (ii) it enables researchers to trace belief
updates step by step, rather than relying only on final outcomes. These graphs can be exported for
downstream tasks such as reasoning alignment, structural consistency evaluation, or cross-domain
transfer prediction.

R.3 USE CASES

The flexibility of the system enables multiple research paradigms:
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Figure 30: Participant view of the end of the test

Figure 31: Admin session management panel with status tracking, progress monitoring, and export
functionality. Researchers can monitor studies in real time and batch export reasoning data.

• Baseline data collection: Build large-scale corpora of reasoning traces in a controlled
domain (e.g., housing policy), establishing benchmarks for human reasoning diversity.

• Cross-domain transfer: Instantly switch topics (e.g., from zoning to healthcare) by editing
global settings, to study how reasoning patterns generalize across domains.

• Longitudinal studies: Re-engage the same participants over weeks or months via Prolific
IDs, enabling the study of belief updates and reasoning drift.

• Human–model benchmarking: Compare LLM predictions against human causal graphs to
quantify intra-agent fidelity, context sensitivity, and adaptation gaps.
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Figure 32: Guiding question editor. Researchers can toggle tutorial vs. research questions, reorder
them dynamically, and experiment with alternative protocols. They can also choose to skip some
questions by changing the status.

Figure 33: Global interview settings. With one change, the system can adapt to entirely new domains,
enabling domain-agnostic deployment.
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Figure 34: Sample QA transcripts highlighting variation in response depth and style. The system
captures both structured argumentation and spontaneous informal commentary.
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Figure 35: Dynamic causal graph visualization. Nodes capture beliefs, stances, and supporting
reasons, updated continuously as the participant responds.
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S EVALUATION

S.1 EVALUATION METRICS

Let yi denote the ground-truth response for instance i, ŷi the model prediction, and N the total number
of instances. For belief dynamics update tasks, let yprev

i denote the participant’s pre-intervention
score.

Accuracy.

Acc =
1

N

N∑
i=1

1
[
|ŷi − yi| ≤ τ

]
,

where τ is the tolerance band (τ = 1 for 5-point scales, τ = 2 for 10-point scales).

Mean Absolute Error (MAE).

MAE =
1

N

N∑
i=1

|ŷi − yi|.

Directional Accuracy. We define directional accuracy as a two-stage weighted metric: (1) Change
Detection: detecting whether a belief change occurred, and if so, (2) Directional Inference: correctly
predicting the direction of change (increase, decrease, or no change). To better reflect the importance
of directional reasoning, a higher weight is assigned to the second stage.

DirAcc = λ · 1
N

N∑
i=1

1[(∆yi = 0 ∧∆ŷi = 0) ∨ (∆yi ̸= 0 ∧∆ŷi ̸= 0)]

+ (1− λ) · 1

|C|
∑
i∈C

1[sgn(∆yi) = sgn(∆ŷi)] ,

(4)

where ∆ŷi = ŷi − ŷprev
i and ∆yi = yi − yprev

i denote predicted and true belief changes, respectively.
C = { i | ∆ŷi ̸= 0 ∧∆yi ̸= 0 } is the set of samples where both predicted and true beliefs changed.
We set λ = 0.3 by default, placing greater emphasis on directional correctness.
This weighting reflects the intuition that correctly inferring the direction of belief change is more
informative than merely detecting whether a change occurred. While the first stage (change detection)
captures a coarse perceptual judgment that can often be guessed in noisy or stable settings, the second
stage(directional inference)reveals whether the model truly understands and reasons about belief
dynamics. Hence, emphasizing the latter better reflects a model’s fidelity to human-like reasoning
processes and its capacity to simulate belief evolution.

Average-to-Individual (ATI) Score. To provide a single comprehensive measure of model perfor-
mance across both static and dynamic belief tasks, we define a unified score, Average-to-Individual
(ATI) score, that integrates the Belief State Inference (BSI) and Belief Dynamics Update (BDU)
components into a normalized value within [0, 1]. Specifically, SBSI denotes the normalized accuracy
score for static belief state inference, while SBDU aggregates multiple metrics from the belief dynam-
ics update task, including tolerance accuracy, normalized MAE, and directional reasoning accuracy.
The unscaled ATI score is computed as:

ATIunscaled = 1
2SBSI +

1
2

[
1
2

(
1
2SBDU-mae-norm + 1

2SBDU-acc
)
+ 1

2SDirectional-acc

]
. (5)

where each subscore S· ∈ [0, 1] represents a normalized evaluation metric. For MAE-based compo-
nents, normalization is defined as:

SBDU-mae-norm = max
(
0, min(1, 1− MAE

MAEmax
)
)
, (6)

where MAEmax denotes the task-specific upper bound of allowable error. The unified score assigns
equal weights to the state component (SBSI) and the update component (SBDU). Within the update
branch, tolerance accuracy and MAE are equally weighted (0.5 each) to ensure a balanced consider-
ation of robustness and precision. The directional reasoning component (SDirectional-acc) is assigned
an equal weight (0.5) relative to the combined MAE and accuracy branch, reflecting its comparable
importance in capturing belief-updating dynamics.
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To facilitate interpretation relative to human performance and baseline behavior, we linearly rescale
ATIunscaled to a 0–100 scale:

ATI =
ATIunscaled − ATIrandom

ATIhuman − ATIrandom
× 100, (7)

where ATIrandom and ATIhuman denote the unscaled ATI scores of the random guess baseline and human
upper bound, respectively. Under this rescaling, a score of 0 indicates random-level performance,
while 100 represents human-level performance.

S.2 COMPUTATION DETAILS AND TRACK USAGE

Unless otherwise specified, all quantitative analyses and unified average to individual (ATI) score
computations are performed on the human track, which serves as the primary evaluation benchmark
due to its ecological validity and authentic reasoning diversity.
The synthetic track follows the same survey and interview protocol but is designed for auxiliary and
extensibility testing. It provides a controlled setting for examining model sensitivity, scaling behavior,
and cross-domain generalization under scripted causal belief networks (CBNs). While the human
track grounds evaluation in real participant reasoning, the synthetic track extends the benchmark
toward scalable stress testing and potential future applications in simulated social environments.
In practice, model predictions for both tasks—belief state inference (BSI) and belief dynamics update
(BDU)—are first computed independently. All metrics (accuracy, MAE, and directional accuracy)
are averaged across the three domains (healthcare, surveillance, zoning) before aggregation into
the unified score defined in Equation 5. Reported results in Section 4 and subsequent findings are
therefore based on the human track unless explicitly noted otherwise.
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T USE OF LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.
The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.
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